Abstract:
A coating system (1) is provided comprising a coating chamber (20) having arranged therein a coating apparatus (10) for providing a substrate (S) with an organic coating layer. The coating apparatus (10) comprises a coating device (12) for depositing a solvent free, curable liquid organic precursor for said organic coating layer and a curing unit (14) for curing the liquid organic precursor deposited on said substrate (S) by supplying energy to said liquid organic precursor. The coating system further comprises a vacuum pump (30) that, while coating, maintains a pressure inside said coating chamber below 1 mbar. A supply facility (152, 152′) for controllably supplies the curable liquid organic precursor from the reservoir to the coating device (12), The supply facility (152, 52′) has an input (1510) for receiving curable liquid organic precursor from the reservoir. A position of a bottom (150B) of the reservoir is arranged at a height (H1) above the input (1510). The coating system has a first operational mode wherein curable liquid organic precursor to be supplied to the coating apparatus is exposed to a vacuum having a pressure with a first pressure value that is equal to or lower than the chamber pressure value, and has a second operational mode following the first operational mode, wherein the supply facility (152, 152′) supplies the curable liquid organic precursor to the coating device (12).
Abstract:
Methods and apparatus for coating a medical device are provided. In one embodiment, the method for preparing a substantially uniform coated medical device includes (1) preparing a coating solution comprising a solvent, a therapeutic agent, and an additive; (2) loading a metering dispenser with the coating solution; (3) rotating the medical device about the longitudinal axis of the device and/or moving the medical device along the longitudinal or transverse axis of the device; (4) dispensing the coating solution from the metering dispenser onto a surface of the medical device and flowing the coating solution on the surface of the medical device while the medical device is rotating and/or linearly moving; and (5) evaporating the solvent, forming a substantially uniform coating layer on the medical device.
Abstract:
A method of modifying substrate surface includes: performing an O2 plasma treatment on a substrate including polydimethylsiloxane (PDMS); coating hydrophilic UV curing coating uniformly on the substrate; disposing the substrate into an oxygen-free environment; and exposing to an UV light to cure the hydrophilic UV curing coating. The method of modifying substrate surface may greatly enhance the hydrophilicity and the stability of the PDMS substrate.
Abstract:
An apparatus for powder coating a welded pipe joint includes a coating head having a powder chamber and at least one vacuum chamber. The coating head is mounted to a carriage operable to circumferentially traverse a pipe workpiece. The powder chamber has at least one inlet for receiving an air/powder suspension, and at least one outlet for delivering the air/powder suspension to a pre-heated weld zone of the pipe, such that the suspension fuses to and coats the weld zone. The vacuum chamber has at least one powder inlet for receiving excess air/powder suspension from the weld zone, and is connectable to a source of vacuum for exhausting the excess air/powder suspension from the weld zone. The coating thickness in the weld zone can be controlled by coordinated regulation of the air/powder flow rate into the powder chamber and the exhaust flow rate from the vacuum chamber.
Abstract:
A deposition nozzle has a housing, an inlet into the housing arranged to receive a solution carrying randomly oriented fibers, an orientation component within the housing, the orientation component positioned to receive the solution from the inlet and operate to produce aligned fibers in a predetermined, single direction, and an outlet on the housing arranged to receive the aligned fibers and deposit them on a substrate. A system includes a porous substrate, a deposition nozzle, a reservoir of randomly oriented fibers in solution connected to the deposition nozzle, the deposition nozzle position adjacent the porous substrate and connected to the reservoir, the nozzle to receive the randomly oriented fibers and output aligned fibers, and a vacuum connected to the porous substrate to remove fluid from the porous substrate as the deposition nozzle deposits the aligned fibers on the porous substrate to produce a fiber pre-form having aligned fibers. A method includes providing a reservoir of randomly oriented fibers in a solution, dispensing the solution of randomly oriented fibers through a nozzle having an orientation component onto a porous substrate as a solution of aligned fibers, and immobilizing the fibers to form a fiber pre-form.
Abstract:
A method of forming a photochromic segmented multifocal lens is described. The method involves, forming a segmented multifocal lens blank by molding, in which the segmented multifocal lens blank has a front surface and a rear surface. The front surface of the segmented multifocal lens blank includes a segmented optical power addition portion. The method further includes, grinding the rear surface of the segmented multifocal lens blank, thereby forming a segmented multifocal finished lens having a front surface and a rear surface. The front surface of the segmented multifocal finished lens includes the segmented optical power addition portion. The method additionally includes, forming a photochromic coating layer over at least a portion of the rear surface of the segmented multifocal finished lens. The photochromic coating layer includes at least one photochromic compound.
Abstract:
An implantable medical device is provided having a plurality of interstices including concave or convex shaped coatings. The concave or convex shaped coatings are configured to straighten and then stretch as the implantable medical device is compressed or elongated, thereby delaying the onset of wrinkling in the coating material. The implantable medical device may include a tubular body having a central body portion and a flange of greater diameter than the central body portion.
Abstract:
Articles having coatings that are resistant to high temperature degradation are described, along with methods for making such articles. The article comprises a coating disposed on a substrate. The coating comprises a plurality of elongated surface-connected voids. The article further includes a protective agent disposed within at least some of the voids of the coating; the protective agent comprises a substance capable of chemically reacting with liquid nominal CMAS to form a solid crystalline product outside the crystallization field of said nominal CMAS. This solid crystalline product has a melting temperature greater than about 1200 degrees Celsius. The method generally includes disposing the protective agent noted above within the surface connected voids of the coating at an effective concentration to substantially prevent incursion of CMAS materials into the voids in which the protective agent is disposed.
Abstract:
A method of coating a substrate with a liquid comprising a catalyst component, the method comprising: (a) holding the substrate vertically, thereby defining upper and lower ends thereof, wherein the vertical substrate comprises a plurality of channels that are open at said upper and lower ends; (b) continuously introducing the liquid into the substrate by pushing or injecting the liquid through the open ends of the channels at the lower end of the substrate with a piston; and (c) after the lower end of the substrate has been partly filled with the liquid in step (b), applying a vacuum to the open ends of the channels at the upper end of the substrate while continuing to introduce the liquid into the substrate.
Abstract:
A method that relates to the fields of polymer chemistry, pharmacy and medicine and releases drugs as a component of implants into the environment of the implant. A method that, in a simple and easily reproducible manner, generates a drug delivery system, which releases drugs in a locally targeted and controllably delayed manner. Polyanions and polycations are mixed in a liquid in a non-stoichiometric ratio, relative to the charged monomer units, wherein drugs are added to the polyelectrolytes either before, during or after the mixing, or charge-carrying drugs and an oppositely charged polyelectrolyte are mixed, and after the mixing the polyelectrolyte complex produced is applied to the surface of a medical structure or material or is positioned on the surface directly at the location where the drug is to be released.