Abstract:
The wavelength of a spectrometer is calibrated by using a commercial Ho glass filter. The spectrometer includes a light source including a D2 lamp and not including a mercury lamp, and a reference wavelength input unit for inputting, as a reference wavelength, a wavelength of a specific absorption peak separately measured for an Ho glass filter to be used. To calibrate the wavelength of the spectrometer by using the wavelength of a specific emission line peak of the D2 lamp and the reference wavelength input by the reference wavelength input unit, the wavelength calibration unit holds a conversion table showing a theoretical relationship between the number of control pulses for rotating a diffraction element and the corresponding wavelength of diffracted light, and calibrates the number of control pulses from the conversion table by the wavelength calibration unit.
Abstract:
A spectrophotometer optics system is provided. The spectrophotometer optics system includes an optical sensing array and an optical waveguide including an input side and an output side. The input side of the optical waveguide receives input light and the optical sensing array is located at the output side of optical waveguide. The optical waveguide is configured to carry light to be analyzed by total internal reflection to the output side of the optical waveguide and to direct the light to be analyzed toward the optical sensing array. The spectrophotometer optics system includes an optical dispersive element configured to separate the light to be analyzed into separate wavelength components, and the optical dispersive element is supported by the optical waveguide.
Abstract:
The present invention is a method of obtaining and isolating sample spectra from a wide wavelength illumination source without the use of filters. The method obtains the combined sample and illumination spectra of a sample and removes the illumination spectrum from the combined spectrum. This is accomplished by obtaining both the combined sample/illumination spectrum and the illumination spectrum separately at the same time and under the same environmental and instrument conditions. The illumination spectrum is then subtracted, wavelength by wavelength from the combined sample/illumination spectrum, leaving the pure sample spectrum which may a single spectrum or combination of two or more spectra from different types and/or compounds in the sample.
Abstract:
Laser scanning microscope or spectral detector having a detection beam path and first imaging optics which image spectrally dispersed sample light in a Fourier plane such that the individual spectral components of the sample light are spatially separated from one another therein. A micromirror arrangement is provided in this plane, and a spectrally selective change in direction of the detection beam is carried out by controlling the micromirrors, where a useful light component of the detection beam arrives on a detector. At least one second micromirror arrangement and a 1:1 imaging of the first micromirror arrangement in the second micromirror arrangement is provided. Alternatively, the same micromirror arrangement is passed at least twice, where, in the light path between the first pass and second pass, a spatial offset of the light beam of at least the first pass and second pass is generated on the micromirror arrangement by optical means.
Abstract:
A system designed to suppress thermal radiation background and to allow IR single-photon sensitive spectromicroscopy of small samples by using both absorption, reflection, and emission/luminescence measurements. The system in one embodiment includes: a light source; a plurality of cold mirrors configured to direct light along a beam path; a cold or warm sample holder in the beam path; windows of sample holder (or whole sample holder) are transparent in a spectral region of interest, so they do not emit thermal radiation in the same spectral region of interest; a cold monochromator or other cold spectral device configured to direct a selected fraction of light onto a cold detector; a system of cold apertures and shields positioned along the beam path to prevent unwanted thermal radiation from arriving at the cold monochromator and/or the detector; a plurality of optical, IR and microwave filters positioned along the beam path and configured to adjust a spectral composition of light incident upon the sample under investigation and/or on the detector; a refrigerator configured to maintain the detector at a temperature below 1.0K; and an enclosure configured to: thermally insulate the light source, the plurality of mirrors, the sample holder, the cold monochromator and the refrigerator.
Abstract:
A specimen measuring device includes: a light source device that irradiates a specimen surface of a specimen with illumination light from multiple illumination units at a plurality of illumination angles; a spectral camera device that is arranged above the specimen surface, spectrally separates reflected light from the specimen surface, and acquires 2D spectral information through a single image capturing operation; and a calculating unit that calculates deflection angle spectral information of the specimen surface used to measure a measurement value of a certain evaluation item of the specimen using a change in an optical geometrical condition of an illumination direction and an image capturing direction between pixels in an X axis direction and a Y axis direction of the spectral information.
Abstract:
There is provided is a spectrometer having a concave reflection type diffraction element, wherein, among surfaces other than a diffraction surface of the diffraction element, non-diffraction surfaces which are located outside the diffraction surface at the same side as the diffraction surface are a glossy surface, the spectrometer includes a light detection unit which is located at an imaging position of a first-order diffracted light diffracted by the diffraction element to receive the first-order diffracted light, and the light detection unit is disposed inside optical paths of light beams regularly reflected on the non-diffraction surfaces outside the diffraction surface. Accordingly, it is possible to effectively suppress a stray light reflected on the surfaces other the diffraction surface from being incident into the light detection unit and to detect the light spectrally diffracted by the diffraction surface at high accuracy.
Abstract:
A fiber grating sensor system is used to measure key parameters that include pressure, strain and temperature at specific locations and at high speed. The system relies on spectral properties associated with the fiber grating sensors, the light source and the optical detection system to provide these capabilities. The system has been successfully applied to measurement of pressures up to 1,200,000 psi and by increasing the spectral width of the light source extensions of pressure measurements to 4,000,000 psi and higher are possible. Temperature change measurements have been made of 400 degrees C. over a period of 25 micro-seconds limited by the physical response of the fiber sensors and the output detector bandwidth both of which can be greatly improved by reducing fiber sizes and with improved detectors. Novel methods have been devised to lower cost and enable measurements with spatial location, speed and accuracy that have been very difficult or not yet achieved.
Abstract:
Methods and apparatus for combining or separating spectral components by means of a polychromat. A polychromat is employed to combine a plurality of beams, each derived from a separate source, into a single output beam, thereby providing for definition of one or more of the intensity, color, color uniformity, divergence angle, degree of collimation, polarization, focus, or beam waist of the output beam. The combination of sources and polychromat may serve as an enhanced-privacy display and to multiplex signals of multiple spectral components. In other embodiments of the invention, a polychromat serves to disperse spectral components for spectroscopic or de-multiplexing applications.
Abstract:
A spectrometer comprises a package having a stem and a cap, an optical unit arranged on the stem, and a lead pin penetrating through the stem. The optical unit has a dispersive part for dispersing and reflecting light entering from a light entrance part of the cap, a light detection element for detecting the light dispersed and reflected by the dispersive part, a support for supporting the light detection element such as to form a space between the dispersive part and the light detection element, a projection projecting from the support, and a wiring electrically connected to the light detection element. The projection is arranged at such a position as to be separated from the stem. The lead pin is electrically connected to the second terminal part while being disposed to the projection.