Abstract:
A smartphone is adapted for use as an imaging spectrometer, by synchronized pulsing of different LED light sources as different image frames are captured by the phone's CMOS image sensor. A particular implementation employs the CIE color matching functions, and/or their orthogonally transformed functions, to enable direct chromaticity capture. A great variety of other features and arrangements are also detailed.
Abstract:
Methods and systems for efficiently and accurately detecting and identifying concealed materials. The system includes an analysis subsystem configured to process a number of pixelated images, the number of pixelated images obtained by repeatedly illuminating, through a patterning component, regions, where an electromagnetic radiation source, from a number of electromagnetic radiation sources, illuminates the patterning component, each repetition performed with a different wavelength. A number of Global pixelated images are obtained. The number of global pixelated images, after processing, constitute a vector of processed data at each pixel from a number of pixels. At each pixel, the vector of processed data is compared to a predetermined vector corresponding to a predetermined material, presence of the predetermined material being determined by the comparison.
Abstract:
The present invention causes measurement light, emitted from an object and to be measured, to enter a fixed mirror and a movable mirror forming interfering light between the measurement light reflected by the fixed mirror and measurement light reflected by the movable mirror. Change to the intensity of the interference light of measurement light is obtained by moving the movable mirror unit, acquiring the interferogram of measurement light. Reference light of a narrow wavelength band included in a wavelength band of the measurement light enters the fixed mirror and the movable mirror, forming interference light of the reference light. The movable mirror is moved to correct the interferogram of measurement light, which is at the same wavelength as the reference light in the measurement light, and the reference light, and a spectrum of the measurement light is acquired based on the corrected interferogram.
Abstract:
The invention provides a measuring device for analyzing a luminescent sample and, in particular, for measuring the concentration of at least one analyte in a luminescent sample, comprising: a housing with a sample receptacle space for accommodating a sample container; a sample container for accommodating the luminescent sample; a radiation receiver apparatus for receiving radiation emitted by the luminescent sample; and an evaluation apparatus for evaluating the radiation from the luminescent sample received by the radiation receiver apparatus. The invention moreover provides a measuring device comprising a base part and a measuring head arranged at the base part in an interchangeable manner, wherein the measuring head is embodied to analyze the luminescent sample or it is embodied as a spectrometer measuring head.
Abstract:
An optochemical sensor comprises a measuring element excitable by the light of an excitation light source and in contact with a medium to be measured, and a measuring arrangement including at least one excitation light source and a detector as well as a hood separating the measuring arrangement from the measuring element, wherein the excitation light source and the detector are fixed to a base plate arranged in parallel with the measuring element, the hood, the excitation light source and the detector are separated from one another by at least a portion of the material thickness of the hood, and light from the excitation light source through an optical waveguide impinges on the measuring element at such an angle that fluorescence light emitted by the measuring element impinges perpendicularly on the detector.
Abstract:
A spectrometer comprises a plurality of isolated optical channels comprising a plurality of isolated optical paths. The isolated optical paths decrease cross-talk among the optical paths and allow the spectrometer to have a decreased length with increased resolution. In many embodiments, the isolated optical paths comprise isolated parallel optical paths that allow the length of the device to be decreased substantially. In many embodiments, each isolated optical path extends from a filter of a filter array, through a lens of a lens array, through a channel of a support array, to a region of a sensor array. Each region of the sensor array comprises a plurality of sensor elements in which a location of the sensor element corresponds to the wavelength of light received based on an angle of light received at the location, the focal length of the lens and the central wavelength of the filter.
Abstract:
A Raman spectroscopy based system and method for examination and interrogation provides a method for rapid and cost effective screening of various protein-based compounds such as bacteria, virus, drugs, and tissue abnormalities. A hand-held spectroscope includes a laser and optical train for generating a Raman-shifting sample signal, signal processing and identification algorithms for signal conditioning and target detection with combinations of ultra-high resolution micro-filters and an imaging detector array to provide specific analysis of target spectral peaks within discrete spectral bands associated with a target pathogen.
Abstract:
The embodiments of the present invention are directed to applying intimate contact pressures to samples while undergoing ATR infrared interrogation. As a general mode of operation, after a solid sample is placed on the ATR element, a force actuator moves an anvil arm to apply a contact force to the sample against the ATR. Thereafter, when the scan is over, the user can see the result of the one or more scans. The force actuator may be a motor or a solenoid or other type of force actuator. The applied contact force may be a fixed force or may be a user-selectable force or may be automatically controlled through feedback from the spectrometer based on the spectroscopic signature of the sample material.
Abstract:
A portable color detector comprises a light source for illuminating a surface of an object; and a light detector for capturing reflected light from the surface of the object and generating RGB analog signals based on the captured reflected light. The portable color detector comprises a processing unit for converting the RGB analog signals into RGB data, and transmitting the RGB data to a portable quality inspection terminal. The portable quality inspection terminal comprises a processing unit for processing the RGB data received from the portable quality inspection terminal. Processing the RGB data comprises transmitting the RGB data to a quality control platform. Alternatively, nominal RGB data are received by the quality inspection terminal, and processing the RGB data comprises comparing the RGB data with the nominal RGB data, detecting a color anomaly based on the comparison, and transmitting the color anomaly to a quality control platform.
Abstract:
A handheld LIBS spectrometer includes an optics stage movably mounted to a housing and including a laser focusing lens and a detection lens. One or more motors advance and retract the optics stage, move the optics stage left and right, and/or move the optics stage up and down. A laser source in the housing is oriented to direct a laser beam to the laser focusing lens. A spectrometer subsystem in the housing is configured to receive electromagnetic radiation from the detection lens and to provide an output. A controller subsystem is responsive to the output of the spectrometer subsystem and is configured to control the laser source and motors. In this way, auto-calibration, auto-clean, and auto-focus, and/or moving spot functionality is possible.