Abstract:
Provided is a speaker and microphone integrated display panel including: a display panel having a display area and a non-display area surrounding the display area; and a simultaneously convertible film type speaker or film type microphone which is mounted to correspond to an air hole in the non-display area, in which the display panel and the film type speaker or the film type microphone are at least partially integrated so as to be drive-connected.
Abstract:
An apparatus is configured to shape a flat flexible cable (FFC). The apparatus is configured such that a first end and a second end of the FFC can be positioned, respectively, at a first location and a second location of a circuit board assembly (CBA). The apparatus includes a radiused portion configured to determine a bend radius of the FFC when the FFC is installed into the apparatus. The apparatus also includes a clamp portion configured to urge the FFC around the radiused portion when the FFC is installed into the apparatus.
Abstract:
A surgical instrument is disclosed having an elongated body portion having a proximal end and a distal end. The body portion is formed from a plastically deformable material such that the body portion can be bent between the proximal and distal ends from a first configuration to a second bent configuration and maintains the bent configuration. A flexible circuit having at least a pair of lead wires disposed around the body portion. The pair of lead wires are configured to conform to the bent configuration of the body portion such that they do not break during bending of the body portion. A tracking device adapted to cooperate with a navigation system to track the distal end of the instrument is coupled to the flexible circuit.
Abstract:
Provided are interconnect circuits for interconnecting arrays of battery cells and methods of forming these interconnect circuits as well as connecting these circuits to the battery cells. An interconnect circuit may include a conductive layer and one or more insulating layers. The conductive layer may be patterned with openings defining contact pads, such that each pad is used for connecting to a different battery cell terminal. In some embodiments, each contact pad is attached to the rest of the conductive layer by a fusible link formed from the same conductive layer as the contact pad. The fusible link controls the current flow to and from this contact pad. The insulating layer is laminated to the conductive layer and provides support to the contacts pads. The insulating layer may also be patterned with openings, which allow forming electrical connections between the contact pads and cell terminals through the insulating layer.
Abstract:
An electrical component may be mounted on a substrate such as a ceramic substrate. Contacts may be formed on upper and lower surfaces of the substrate. The electrical component may be soldered to the contacts on the upper surface. The contacts on the lower surface may be used to solder the substrate to a printed circuit. During manufacturing, it may be desirable to use metal traces on a ceramic panel to make connections to contacts on the substrate. Following singulation of the ceramic panel to form the ceramic substrate, some of the metal traces may run to the edge of the ceramic substrate. A folded tab of the printed circuit may form a shield that covers these exposed traces. A divided metal-coated groove or a row of divided metal-coated vias running along each edge of the substrate may also provide shielding.
Abstract:
Electronic devices may be provided that include mechanical and electronic components. Connectors may be used to interconnect printed circuits and devices mounted to printed circuits. Printed circuits may include rigid printed circuit boards and flexible printed circuit boards. Heat sinks and other thermally conductive structures may be used to remove excess component heat. Structures may also be provided in an electronic device to detect moisture. Integrated circuits and other circuitry may be mounted on a printed circuit board under a radio-frequency shielding can.
Abstract:
The terminal unit includes a main board, electronic components implemented on the main board, a sub-board covering above the electronic components and a frame member so disposed between the main board and the sub-board as to surround the electronic components. A flexible printed circuit covers an outer side of a wall portion of the frame member and is so wound around the frame member from upper and lower sides of the wall portion as to cover at least part of an inner side of the wall portion. A wiring pattern formed on the flexible printed circuit is electrically connected to the electronic components, and information to be protected that is stored on the electronic components becomes unreadable if the wiring pattern is cut off or short-circuited.
Abstract:
According to one embodiment, a flexible printed wiring board includes a first conductor layer formed on the first surface of an insulation base, a second conductor layer formed on the second surface of the insulation base, a first insulation layer covering the first conductor layer, and a second insulation layer covering the second conductor layer. The first insulation layer has an opening formed in a position corresponding to a connecting terminal portion to expose the first conductor layer. A metal layer is provided in a region ranging from the connecting terminal portion to a bending presumed portion. The metal layer is positioned behind the opening between the second surface and the second insulation layer to avoid the first conductor layer.
Abstract:
A light module (1; 14), comprising a carrier (8, 10) for mounting at least one semiconductor source (5), in particular a light emitting diode, wherein: the carrier (8, 10) has a flexible printed circuit board (10), the flexible printed circuit board (10) is bonded face-to face to at least one base plate, (8) and the carrier (8, 10) can be bent along at least one predetermined bending line (3; 3a-3e), the base plate (8) can be bent along the at least one bending line, (3; 3a-3e), the base plate (8) has at least one cutout (9) along the bending line (3; 3a-3e) and the flexible printed circuit board (10) has at least one strip (11; 15) which crosses at least one of the cutouts (9).