Abstract:
Printed wiring boards and methods of manufacturing printed wiring boards are disclosed. In one aspect of the invention, the printed wiring boards include electrically conductive constraining cores having at least one resin filled channel. The resin filled channels perform a variety of functions that can be associated with electrical isolation and increased manufacturing yields.
Abstract:
In a printed circuit board of the invention, a first signal wiring layer, a first ground layer, a second ground layer and a second signal wiring layer are laminated via an insulating material. A first signal wiring is formed on the first signal wiring layer and a second signal wiring is formed on the second signal wiring layer. The two signal wirings are connected via a first through hole. The conductive first ground layer and the conductive second ground layer are connected via a second through hole. The second through hole is insulated from the first through hole and formed so as to surround the first through hole.
Abstract:
A multi-layer wiring substrate capable of high density packaging, and a method of manufacturing the same, in which a carrier substrate, in which through holes can be easily formed in high density corresponding substantially to a pitch of connecting terminals in a semiconductor chip, and build-up layers are formed on the substrate with the application of a conventional build-up technique. When the build-up technique for repeatedly forming insulating layers and wiring layers on a carrier substrate is used to manufacture a multi-layer wiring substrate, the carrier substrate is formed in the following manner. First, an insulating resin layer is formed in a copper foil, in which a plurality of first windows are regularly provided, to cover the copper foil, and the resin layer fills the interior of the windows. Subsequently, second windows of a particular shape are provided in regions of layers of the insulating resin filled in the windows, and independent conducting paths are formed through the second windows to extend from front sides of the second windows to back sides thereof. The conducting paths are formed radially to be spaced a substantially equal distance from centers of the respective second windows.
Abstract:
A multilayer wiring board includes two or more layers laminated together, each layer includes an insulating resin layer having a first surface and a second surface, and a conductor layer. The insulating resin layer includes a first recess that is open to the first surface, a groove section that is open to the first surface, and a second recess that is open to the second surface and communicates with one or more of the first recesses. Each insulating resin layer is integrally formed in a thickness direction thereof. The conductor layer includes a land portion and a wiring portion filling the first recess and the groove section, and a via portion protruding from the first surface at a position of the land portion. The via portion protruding from the first surface of the insulating resin layer fills a recess of another insulating resin layer adjacent to the first surface.
Abstract:
A multi-layer printed circuit board having a first landing pad in a first layer and along a first axis arranged to receive a positive signal and a second landing pad in the first layer and along a second axis that is spaced away from the first axis longitudinally in the first layer and where the second landing pad arranged to receive a negative signal. A first buried in a second layer and along the first axis is spaced away from the first landing pad along the first axis. A second buried in the second layer and along the second axis is spaced away from the second landing pad along the second axis. A first signal connector provides a first electrical connection between the first landing pad and the second buried via and a second signal connector provides a second electrical connection between the second landing pad and the first buried via.
Abstract:
An electronic apparatus includes a first circuit board, a stacked circuit that is provided on the first circuit board through first coupling terminals and has a structure in which arithmetic elements and memory elements are stacked through inter-element coupling terminals and to which a signal is inputted from the first circuit board, and a second circuit board that is provided on the stacked circuit through second coupling terminals and to which a result of processing is outputted from the stacked circuit, wherein a number of the first coupling terminals and a number of the second coupling terminals are smaller than that of the inter-element coupling terminals.
Abstract:
An electrical device including a structure having a plurality of dielectric layers, the structure further having a plurality of vertical electrical connections extending from a top layer of the dielectric layers to a bottom layer of the dielectric layers, a first vertical electrical connection of the plurality of vertical electrical connections including a first capacitive structure that extends in a plane perpendicular to a vertical dimension of the vertical electrical connection, wherein the first capacitive structure is disposed on a first dielectric layer of the plurality of dielectric layers, wherein the first dielectric layer is below the top layer, and a second vertical electrical connection of the plurality of vertical electrical connections including a second capacitive structure extending in the plane and disposed on the first dielectric layer.
Abstract:
An apparatus including a substrate including a first side and an opposite second side; at least one first circuit device on the first side of the substrate, at least one second device on the second side of the substrate; and a support on the second side of the substrate, the support including interconnections connected to the at least one first and second circuit device, the support having a thickness dimension operable to define a dimension from the substrate greater than a thickness dimension of the at least one second circuit device. A method including disposing at least one first circuit component on a first side of a substrate; disposing at least one second circuit component on a second side of the substrate; and coupling a support to the substrate, the substrate defining a dimension from the substrate greater than a thickness dimension of the at least one second circuit component.
Abstract:
An electronic device with a reduced noise may include a printed circuit board and a signal creating unit mounted on the printed circuit board and configured to create at least one signal. The electronic device may also include at least one power via configured to connect a power terminal of the signal creating unit with a main power line disposed in the printed circuit board. The electronic device further includes at least one ground via configured to connect a ground terminal of the signal creating unit with a main ground disposed in the printed circuit board. In this electronic device, the ground via is disposed in parallel with the power via.
Abstract:
First and second signal wiring patterns are formed in a first conductor layer. A first electrode pad electrically connected to the first signal wiring pattern through a first via and a second electrode pad electrically connected to the second signal wiring pattern through a second via are formed in a second conductor layer as a surface layer. A third conductor layer is disposed between the first conductor layer and the second conductor layer with an insulator interposed between those conductor layers. A first pad electrically connected to the first via is formed in the third conductor layer. The first pad includes an opposed portion which overlaps the second electrode pad as viewed in a direction perpendicular to the surface of a printed board and which is opposed to the second electrode pad through intermediation of the insulator. This enables reduction of crosstalk noise caused between the signal wirings.