Abstract:
A permanently sealed vacuum tube is used to provide the electrons for an electron microscope. This advantageously allows use of low vacuum at the sample, which greatly simplifies the overall design of the system. There are two main variations. In the first variation, imaging is provided by mechanically scanning the sample. In the second variation, imaging is provided by point projection. In both cases, the electron beam is fixed and does not need to be scanned during operation of the microscope. This also greatly simplifies the overall system.
Abstract:
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system (“laser”). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.
Abstract:
An inspection apparatus includes: beam generation means for generating any of charged particles and electromagnetic waves as a beam; a primary optical system that guides the beam into an inspection object held in a working chamber and irradiates the inspection object with the beam; a secondary optical system that detects secondary charged particles occurring from the inspection object; and an image processing system that forms an image on the basis of the detected secondary charged particles. The primary optical system includes a photoelectron generator having a photoelectronic surface. The base material of the photoelectronic surface is made of material having a higher thermal conductivity than the thermal conductivity of quartz.
Abstract:
The present invention relates to an apparatus for generating an electron beam, comprising: a cathode; a housing which has an opening formed at one side thereof such that the cathode is coupled to the opening, and which has a resonant cavity formed therein; and a gasket interposed between the cathode and the housing such that the gasket is compressed in accordance with the coupling strength between the cathode and the housing so as to shut off the resonant cavity from the outside.
Abstract:
To obtain a SEM capable of both providing high resolution at low acceleration voltage and allowing high-speed elemental distribution measurement, a SE electron source including Zr—O as a diffusion source is shaped so that the radius r of curvature of the tip is more than 0.5 μm and less than 1 μm, and the cone angle α of a conical portion at a portion in the vicinity of the tip at a distance of 3r to 8r from the tip, is more than 5° and less than (8/r)°. Another SE electron source uses Ba—O and includes a barium diffusion supply means composed of a sintered metal and a barium diffusion source containing barium oxide.
Abstract:
An electron source has an anode and a cathode that is capable of being negatively biased relative to the anode, the cathode having an electron emitting portion and a cathode axis. An electromagnetic radiation source is adapted to generate an electromagnetic radiation beam to heat the cathode. A lens is adapted to direct the electromagnetic radiation beam onto the cathode, the lens having a lens axis that forms an acute angle with, or is substantially parallel to, the cathode axis of the electron emitting portion.
Abstract:
An electron beam source comprises a source surface illuminated with a photon beam of adjustable intensity. The photon beam assists emission of electrons from the source surface due to a photo effect. An electric extraction field further assists in electron emission. Further, a heater is provided for further assisting in electron emission by a thermionic effect. An electron beam current is measured, and the intensity of the photon beam is adjusted based on the measured electron beam current.
Abstract:
An electron gun includes a plate-like main cathode 77 having an electron emitting surface 79 and a sub-cathode 81 provided toward the rear surface of the main cathode to heat the main cathode 77 by imparting an electron bombardment. The sub-cathode 81 is constituted of filaments 83 and 85 coiled in a double helix structure and the diameter of the sub-cathode 81 is larger than the diameter of the main cathode 77. As a result, the temperature at the peripheral area of the electron emitting surface 79 can be set higher than the temperature at the center, to achieve an electron beam with a uniform intensity distribution.
Abstract:
An electron beam source including a longitudinally-displaceable cathode wire having one side disposed nearby an apertured anode for emitting electrons through the aperture during heating of the wire by an energy beam. The emitting side is flattened to limit divergence of the emitted electrons.
Abstract:
An electron source comprising a cathode in the form of a metal wire placed under tension and heated by an energy beam. The energy beam laterally impinges upon the metal wire which has a lateral emitting surface. The metal wire can be displaced along the location where the energy beam impinges without a slackening of the wire. This movement can be automatically controlled in response to the temperature of the metal wire.