Abstract:
A surface processing apparatus is an apparatus which performs surface processing on an inspection object 20 by irradiating the inspection object with an electron beam. A surface processing apparatus includes: an electron source 10 (including lens system that controls beam shape of electron beam) which generates an electron beam; a stage 30 on which an inspection object 20 to be irradiated with the electron beam is set; and an optical microscope 110 for checking a position to be irradiated with the electron beam. The current value of the electron beam which irradiates the inspection object 20 is set at 10 nA to 100 A.
Abstract:
According to one embodiment, an image acquisition apparatus includes an electron beam source configured to generate an electron beam to be radiated onto an object to be measured, an image detecting unit configured to detect an electronic image of the object based on the electron beam radiated from the electron beam source onto the object, and a voltage modulating unit configured to modulate at least one of a voltage to be applied to the electron beam source and a voltage to be applied to the object.
Abstract:
An information processing apparatus detecting presence or absence of abnormality of a vacuum pump derived from a product produced within a target vacuum pump, including: a determination unit configured to determine a normal variation range or a normal time variation behavior of a target state quantity which is a state quantity varying depending on a load of gas flowing into the vacuum pump, based on at least one of past target state quantities of the target vacuum pump or another vacuum pump; and a comparison unit configured to compare a current target state quantity of the target vacuum pump with the normal variation range or the normal time variation behavior and output the comparison result.
Abstract:
Provided is a method of adjusting an electron-beam irradiated area in an electron beam irradiation apparatus that deflects an electron beam with a deflector to irradiate an object with the electron beam, the method including: emitting an electron beam while changing an irradiation position on an adjustment plate by controlling the deflector in accordance with an electron beam irradiation recipe, the adjustment plate detecting a current corresponding to the emitted electron beam; acquiring a current value detected from the adjustment plate; forming image data corresponding to the acquired current value; determining whether the electron-beam irradiated area is appropriate based on the formed image data; and updating the electron beam irradiation recipe when the electron-beam irradiated area is determined not to be appropriate.
Abstract:
An inspection apparatus includes: beam generation means for generating any of charged particles and electromagnetic waves as a beam; a primary optical system that guides the beam into an inspection object held in a working chamber and irradiates the inspection object with the beam; a secondary optical system that detects secondary charged particles occurring from the inspection object; and an image processing system that forms an image on the basis of the detected secondary charged particles. The primary optical system includes a photoelectron generator having a photoelectronic surface. The base material of the photoelectronic surface is made of material having a higher thermal conductivity than the thermal conductivity of quartz.
Abstract:
The present invention relates to a polishing method and a polishing apparatus for polishing a substrate, such as a wafer. This method includes: polishing a substrate W; producing a torque waveform while polishing the substrate W; and selecting one reference torque waveform from a plurality of reference torque waveforms accumulated before the polishing of the substrate W. Polishing the substrate W includes an asperity polishing process and a flat polishing process. The asperity polishing process includes: determining film thicknesses at measurements point on the substrate W based on a film thickness of reference film data calculated based on a first relational expression; comparing the torque waveform and the selected reference torque waveform; and determining whether the asperity polishing process should be terminated. The flat polishing process includes determining film thicknesses at measurement points on the substrate W based on a film thickness of reference film data calculated based on a second relational expression.
Abstract:
An electron beam inspection device includes: a primary electron optical system that irradiates the surface of a sample with an electron beam; and a secondary electron optical system that gathers secondary electrons emitted from the sample and forms an image on the sensor surface of a detector. An electron image of the surface of the sample is obtained from a signal detected by the detector, and the sample is inspected. A cylindrical member that is formed with conductors stacked as an inner layer and an outer layer, and an insulator stacked as an intermediate layer is provided inside a lens tube into which the secondary electron optical system is incorporated. An electron orbital path is formed inside the cylindrical member, and the members constituting the secondary electron optical system are arranged outside the cylindrical member.
Abstract:
An inspection apparatus capable of facilitating reduction in cost of the apparatus is provided. The inspection apparatus includes: beam generation means for generating any of charged particles and electromagnetic waves as a beam; a primary optical system that guides the beam into an inspection object held on a movable stage in a working chamber and irradiates the inspection object with the beam; a secondary optical system that detects secondary charged particles occurring from the inspection object; and an image processing system that forms an image on the basis of the detected secondary charged particles. The inspection apparatus further includes: a linear motor that drives the movable stage; and a Helmholtz coil that causes a magnetic field for canceling a magnetic field caused by the linear motor when the movable stage is driven.
Abstract:
An inspection apparatus includes beam generation means, a primary optical system, a secondary optical system and an image processing system. Irradiation energy of the beam is set in an energy region where mirror electrons are emitted from the inspection object as the secondary charged particles due to the beam irradiation. The secondary optical system includes a camera for detecting the secondary charged particles, a numerical aperture whose position is adjustable along an optical axis direction and a lens that forms an image of the secondary charged particles that have passed through the numerical aperture on an image surface of the camera. In the image processing system, the image is formed under an aperture imaging condition where the position of the numerical aperture is located on an object surface to acquire an image.
Abstract:
An inspection apparatus includes: beam generation means for generating any of charged particles and electromagnetic waves as a beam; a primary optical system that guides the beam into an inspection object held in a working chamber and irradiates the inspection object with the beam; a secondary optical system that detects secondary charged particles occurring from the inspection object; and an image processing system that forms an image on the basis of the detected secondary charged particles. The primary optical system includes a photoelectron generator having a photoelectronic surface. The base material of the photoelectronic surface is made of material having a higher thermal conductivity than the thermal conductivity of quartz.