Abstract:
An assembling structure of heat dissipation device is applied to a circuit board. A heat generation unit is disposed on one side of the circuit board. The assembling structure of the heat dissipation device includes a heat dissipation unit, at least one latch member and at least one retainer member. The heat dissipation unit is attached to one side of the heat generation unit, which side is distal from the circuit board. At least one latch section outward extends from an edge of the heat dissipation unit. The latch member is fixedly disposed on the circuit board and formed with at least one opening and at least one perforation. The latch section is correspondingly latched in the opening. An elastic member is fitted on the retainer member. The retainer member correspondingly passes through the perforation to fix the latch member on the circuit board.
Abstract:
The invention provides a spacer for soldering comprising an elongate body having one end provided with a tapped hole and an opposite end provided with a transverse bearing surface having a smooth centering peg projecting therefrom, the peg has a longitudinal outer passage extending over at least a fraction of its length as far as the transverse bearing surface to enable molten solder to penetrate by capillarity as far as the transverse bearing surface. The invention also provides a module including such a spacer.
Abstract:
A connector for electrically connecting a first printed circuit board (PCB) with a second PCB wherein, in one example, the connector includes a housing having a keyed feature adapted to mate with a correspondingly keyed feature provided to each of the first and second PCBs and at least one connecting terminal carried by the housing having at least partially exposed opposed ends each of which electrically engages a contact pad formed on an underside of the respective PCBs. The connecting terminal may be arranged to accept a conductor and to thereby electrically couple the conductor to the first and second PCBs.
Abstract:
The present invention is a conductive isolator including a damping structure, a conductive bridge component positioned within the damping structure, axial contact points between the damping structure and the conductive bridge component and radial contact points between the damping structure and the conductive bridge component.
Abstract:
A printed board on which a power module is mounted, a cooling pipe that is a refrigerant pipe of a refrigerant circuit, and a cooler attached to the power module and the cooling pipe are disposed in a casing. A support member by which the cooler is attached to the printed board and supported on the printed board, and a fixing member by which the printed board is fixed to the casing and supported on the casing are used.
Abstract:
There is provided a semiconductor module and a method for manufacturing the same which make it possible to joint the electrode of the bare-chip transistor and the wiring pattern on the substrate by solder mounting operation, in the same process of solder mounting operation for mounting the bare-chip transistor or other surface mounting devices on the wiring patterns on the substrate. A semiconductor module includes: a plurality of wiring patterns formed on an insulating layer; a bare-chip transistor mounted on one wiring pattern out of the plurality of wiring patterns via a solder; and a copper connector constituted of a copper plate for jointing an electrode formed on a top surface of the bare-chip transistor and another wiring pattern out of the plurality of wiring patterns via a solder.
Abstract:
A noise current passing through a substrate on which an electronic component is mounted is suppressed in a housing, to provide a malfunction of an electronic device. A substrate (103) on which an electronic component is mounted is secured to a housing (102) by a metal spacer (108) and a screw (104). A noise control member (100) mainly composed of an insulation substance is disposed between the metal spacer (108) and the substrate (103). A first conductive film is formed on the metal spacer-side of the noise control member (100), and a second conductive film is formed on the substrate-side of the noise control member (100). A resistance member (101) is disposed between the first conductive film and the second conductive film. A noise current introduced from the housing to the substrate can be suppressed by the resistance member.
Abstract:
This multi-layer wiring board is provided with an insulating substrate, an inner layer copper sheet, and an outer layer copper foil. The inner layer copper sheet is disposed within the insulating substrate and has been patterned. The outer layer copper foil is disposed in a state of having been patterned at the surface of the insulating substrate, is thinner than the inner layer copper sheet, and has a cross-sectional area of the current path that is smaller than the cross-sectional area of the current path of the inner layer copper sheet. As a result, provided are: a multi-layer wiring board that can flow a large current and a smaller current while suppressing an increase in the projected area of the substrate; and a method for producing the multi-layer wiring board.
Abstract:
A heat release device is for use with a multilayer board that has an inner layer serving as a power layer. The heat release device includes a heat release member thermally and electrically connected to the power layer, and a heat release board having a heat release layer and a shield layer electrically insulated from each other. The heat release layer is thermally and electrically connected to the heat release member. The shield layer serves to shield against electromagnetic noise radiated from the heat release layer. The shield layer is electrically insulated from the heat release member connected to the heat release layer. The heat release device also includes an electrically conductive member electrically connected to the shield layer and grounded, and an insulator through which the heat release layer is thermally connected to the electrically conductive member.
Abstract:
Sensitive electronic components can be mounted on a printed circuit board within an electronic device. To isolate a sensitive component from stresses that may arise during an unintended impact event, the electronic component can be isolated using a groove in the printed circuit board. The electronic component may be mounted to a component mounting region using solder balls. The component mounting region may be surrounded on some or all sides by the groove. Flex circuit structures that bridge the groove or a portion of the rigid printed circuit board may be used to hold the component mounting region in place. The flex circuit structures may be provided in the form of separate structures or may be provided as an integral portion of the printed circuit board.