Abstract:
A novel transmission-line structure, particularly adapted for printed circuit sheets and the like, and embodying zig-zag line conductors formed of conductive strips successively disposed on opposite sides of the insulating sheet and interconnected transversely through the sheet, with the corresponding strips of each line conductor crossing those of the other line conductor, through on opposite sides of said sheet, effectively to provide a twist of the line conductors through at least a turn to effect magnetic field cancellation, self-shielding and interference suppression.
Abstract:
A circuit board assembly may include a circuit board, a first electrical terminal, and a layer of solder paste. The circuit board may include a minimum thickness, a first side, and a second side opposite the first side. The first electrical terminal may include a solder tab. The layer of solder paste may be disposed on the first side of the circuit board. The solder tab of the first electrical terminal may extend into the first side of the circuit board but not beyond the second side of the circuit board.
Abstract:
A printed circuit board includes a plurality of layers including attachment layers and routing layers; and via patterns formed in the plurality of layers, each of the via patterns comprising: dual diameter first and second signal vias forming a differential signal pair, the first and second signal vias being configured to accept contact tails of signal conductors of a connector; dual diameter ground shadow vias adjacent to each of the first and second signal vias, wherein the dual diameter shadow ground vias have a reversed diameter configuration with respect to the dual diameter first and second signal vias; and ground vias configured to accept contact tails of ground conductors of the connector.
Abstract:
A printed wiring board includes an insulation layer, conductive pads formed on the insulation layer and positioned to connect an electronic component, and a conductive wiring pattern including first and second conductive patterns and formed on the insulation layer such that the conductive wiring pattern is extending between the conductive pads. The first pattern includes first wiring lines, the second pattern includes second wiring lines, the first and second conductive patterns are formed such that the first wiring lines and the second wiring lines are alternately arrayed on the insulation layer, each of the first wiring lines includes a first metal layer formed on an interface with the insulation layer, each of the second wiring lines includes a second metal layer formed on an interface with the insulation layer, and the first metal layer includes a metal material which is different from a metal material forming the second metal layer.
Abstract:
An illustrative inventory of vehicle accessory control components includes a plurality of first circuit boards and a plurality of second circuit boards. The first circuit boards each have a substrate with a plurality of circuit elements supported on the substrate. The first circuit board substrates have an overall perimeter shape including an outer edge profile and a plurality of first deviations from the outer edge profile. The second circuit boards each have a substrate with a plurality of circuit elements supported on them. The second circuit board substrates have the overall perimeter shape including the same outer edge profile as the first circuit board substrates. The second circuit board substrates include a plurality of second deviations from the outer edge profile. At least one portion of the second deviations is different than the first deviations of the first circuit boards.
Abstract:
An electrode of a self-capacitive touch panel is provided. The electrode, coupled to a control circuit of the self-capacitive touch panel via a conducting wire, includes: a serpentine portion, having a first side; a main portion, having a second side; and a connecting portion, connected to the first side and the second side to connect the serpentine portion and the main portion. A length of the connecting portion is smaller than a length of the first side and a length of the second side.
Abstract:
An illustrative inventory of vehicle accessory control components includes a plurality of first circuit boards and a plurality of second circuit boards. The first circuit boards each have a substrate with a plurality of circuit elements supported on the substrate. The first circuit board substrates have an overall perimeter shape including an outer edge profile and a plurality of first deviations from the outer edge profile. The second circuit boards each have a substrate with a plurality of circuit elements supported on them. The second circuit board substrates have the overall perimeter shape including the same outer edge profile as the first circuit board substrates. The second circuit board substrates include a plurality of second deviations from the outer edge profile. At least one portion of the second deviations is different than the first deviations of the first circuit boards.
Abstract:
The disclosure is related to a flexible printed circuit board. The flexible printed circuit board comprises a connecting area and a plurality of gold fingers disposed inside the connecting area, wherein the widths of the gold fingers are different. By the above manner, the disclosure is able to increase the number of the gold fingers without changing the size of the flexible printed circuit board so as to solve the impedance matching problem of the gold fingers of the flexible printed circuit board.
Abstract:
A wiring structure of a head suspension including a flexure that supports a head and is attached to a load beam applying load onto the head, comprises write wiring and read wiring formed on the flexure and connected to the head, each having wires of opposite polarities. The wiring structure further comprises a stacked interleaved part includes segments electrically connected to the respective wires of the write wiring, the segments stacked on and facing the wires through an electrical insulating layer so that the facing wire and segment have opposite polarities.