Abstract:
A disclosed digital media device operational at user premises to receive media signals from a media source for presentation via endpoint devices such as a television display. The digital media device can include gateway and digital media management functionality and can be referred to as a gateway and digital media device. The device offers application services obtained over a wide area network and a user premises network. The digital media device may form a composite signal from the media signal and application service information, for example, for a composite audio and/or video signal for television type presentation to the user. The digital media device may receive a selection signal based on the presentation, for transmission to the application service provider device or to the media source. The media device also offers a GUI presenting a moveable arrangement of icons for selectively accessing application services.
Abstract:
A powder coating composition is provided herein. The powder coating composition includes a glycidyl-functionalized (meth)acrylic resin as a film-forming binder, a cross-linking agent (hardener) for the binder, particles chosen from the group comprising aluminum oxide Al2O3 and aluminum hydroxide Al(OH)3 particles, and a coating additive, the wt % based on the total weight of the powder coating composition. A process for the production of a scratch resistant powder coating is also provided herein. The process includes the steps of a) applying a transparent clear coat or a pigmented top coat directly onto a substrate surface or onto a prior coating, and b) curing the clear coat or the top coat applied in step a) wherein the transparent clear coat or the pigmented top coat includes the powder coating composition.
Abstract:
A method of making a solution including poly(ethylene terephthalate). The method includes dissolving poly(ethylene terephthalate) in a solvent mixture to form a solution, the solvent mixture including two solvent components. A Hansen Solubility Parameter Distance between the solvent mixture and HSP coordinates having a dispersion HSP of 18.02 MPa0.5, a polar HSP of 5.56 MPa0.5, and a hydrogen bonding HSP of 14.27 MPa0.5 is less than about 2 MPa0.5.
Abstract:
A method for painting a component such as a motor vehicle body component includes applying to the component a base coat layer, a pattern such as a decorative strip or a graphic element, and applying a clear lacquer coat. The pattern (7) is applied to the base coat layer without interposing a clear lacquer coat. A corresponding painting facility is provided.
Abstract:
A robust and self-healing coating has been developed by incorporating a thermally self-healing chemical coating on smooth and/or roughened solid. When the chemically coated solid is combined with a lubricating fluid, the material system is capable to repel a broad range of liquids and solids. The thermally self-healing chemical coating may be applied on various industrial metals, glass and plastics, and has shown exceptionally physical and chemical robustness as compared to state-of-the-art liquid-repellent coatings.
Abstract:
The present invention relates to a process for depositing an anti-reflective layer on a transparent flat substrate comprising the steps of providing a liquid coating composition comprising at least one solvent, at least one inorganic oxide precursor, and at least one pore forming agent; applying the coating composition to the substrate; drying the applied coating layer, and curing the coating layer; wherein during drying a gas flow is provided to the substrate at a flow rate of between 0.2 and 6 m/s. The advantage of this process is that defects visible in edge areas of the coated substrate can be significantly reduced.
Abstract:
This invention discloses apparatus for processing one or more of a Lens Precursor, a Lens Precursor Form and an ophthalmic Lens. The apparatus provides for vapor phase processing of the subject Lens Precursor, a Lens Precursor Form and an ophthalmic Lens.
Abstract:
Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9
Abstract translation:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, 1)表示的复合氧化物(B)或羧酸(B),通式(2)表示的化合物(其中0.9
Abstract:
The invention relates to polymerizates that can be obtained by a) reacting at least one polyisocyanate with at least one polyol and optionally at least one radically curable monomer A with groups reactive toward isocyanate in at least one radically curable monomer B to form polyurethane particles having an average diameter of less than 40 nm, preferably less than 20 nm, and especially preferably less than 10 nm and an average number of radically curable functionalities in a range of 2 to 4, preferably 2 to 3, and b) emulsion polymerizing the product obtained under a). By means of the emulsion polymerization, larger cross-linked polyurethane/polymer hybrid dispersions are produced, in which the nanoparticles act as a connecting member between the polymer areas and the polyurethane components. This structure results in improved chemical resistance and significantly improved mechanical properties in comparison with traditional polyurethane dispersions, in which polyurethane nanoparticles are subsequently dispersed in polyacrylates, for example by means of an acetone method. Furthermore, the content of polyurethane in the polymer can be better controlled by means of this production method. The invention further relates to a method for producing such polymerizates and the use of such polymerizates as adhesives or coatings, in particular for textiles, or as paints, or for films and foils.
Abstract:
The invention is directed to a process for the continuous acetylation of wood elements. The process particularly combines a batchwise impregnation step, with a continuous reaction step. In order to realize this, a collection step is built-in, so as to allow batches of impregnated wood elements to be fed into a reactor in a continuous manner. Very high acetylation contents can be obtained, at a level that had not been achievable before in a continuous and non-catalyzed acetylation process.