Abstract:
There is provided a semiconductor integrated circuit for an optical sensor for receiving environmental light through a cover member that attenuates visible light and transmits infrared light and a collecting lens, performing luminosity factor correction based on an amount of received light, and detecting an illuminance, wherein the semiconductor integrated circuit includes a first light receiving element having a first spectral property; a second light receiving element having a second spectral property; and a luminosity factor correction unit configured to perform the luminosity factor correction according to output of the first light receiving element and output of the second light receiving element, wherein the luminosity factor correction unit includes an AD conversion unit performed by time division on the output of the first light receiving element and the output of the second light receiving element, and a calculating unit subtracting digital signals obtained by the conversion.
Abstract:
Multispectral images, including ultraviolet light and its interactions with ultraviolet light-interactive compounds, can be captured, processed, and represented to a user. Ultraviolet-light related information can be conveniently provided to a user to allow the user to have awareness of UV characteristics and the user's risk to UV exposure.
Abstract:
Provided are methods and systems for concurrent imaging at multiple wavelengths. In one aspect, a hyperspectral/multispectral imaging device includes a lens configured to receive light backscattered by an object, a plurality of photo-sensors, a plurality of bandpass filters covering respective photo-sensors, where each bandpass filter is configured to allow a different respective spectral band to pass through the filter, and a plurality of beam splitters in optical communication with the lens and the photo-sensors, where each beam splitter splits the light received by the lens into a plurality of optical paths, each path configured to direct light to a corresponding photo-sensor through the bandpass filter corresponding to the respective photo-sensor.
Abstract:
A sensor apparatus for measuring characteristics of optical radiation has a substrate and a low profile spectrally selective detection system located within the substrate at one or more spatially separated locations. The spectrally selective detection system includes a generally laminar array of wavelength selectors optically coupled to a corresponding array of optical detectors. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
Provided is a multi-wave band light sensor combined with a function of infrared ray (IR) sensing including a substrate, an IR sensing structure, a dielectric layer, and a multi-wave band light sensing structure. The substrate includes a first region and a second region. The IR sensing structure is in the substrate for sensing IR. The dielectric layer is on the IR sensing structure. The multi-wave band light sensing structure includes a first wave band light sensor, a second wave band light sensor, and a third wave band light sensor. The second wave band light sensor and the first wave band light sensor are overlapped and disposed on the IR sensing structure on the first region of the substrate from the bottom up. The third wave band light sensor is in the dielectric layer of the second region.
Abstract:
A novel emission and transmission optical spectrometer is introduced herein, which is capable of optically interrogating solid or liquid samples of organic, inorganic or polymeric chemistry, for pharmaceutical research, forensic and liquid analyses, used for identification, purity check, and/or structural study of chemicals. The beneficial aspects of the system are a single sample compartment as confined within the walls of the spectrometer housing, a more compact accessory, and the capability of making both emission (e.g., Raman and Fluorescence) and Infrared (IR, NIR) transmission measurements at designed sample points.
Abstract:
A plurality of AWG filters with aliasing responses are selected such that the wavelength range of a fundamental response of the AWG filters results in the aliased range of AWG filters to be adjacent to a fundamental range of the AWG filters. A plurality of optical sources is provided sufficient to cover each fundamental wavelength range and each alias wavelength range of the AWG filters. When a single one of the optical sources is enabled, reflected optical energy from a series string of FBGs coupled to the optical source is applied to the plurality of AWG filters, and the AWG output in combination with the wavelength range of the optical source is used to discriminate reflected wavelength from the FBG sensors.
Abstract:
Demultiplexing systems and methods are discussed which may be small and accurate without moving parts. In some cases, demultiplexing embodiments may include optical filter cavities that include filter baffles and support baffles which may be configured to minimize stray light signal detection and crosstalk. Some of the demultiplexing assembly embodiments may also be configured to efficiently detect U.V. light signals and at least partially compensate for variations in detector responsivity as a function of light signal wavelength.
Abstract:
A spectroscopic sensor 1A comprises an interference filter unit 20A, a light detection substrate 30A, and a separator 15. The interference filter unit 20A has a cavity layer 21 and first and second mirror layers 22, 23 opposing each other through the cavity layer 21 and selectively transmits therethrough a predetermined wavelength range of light according to its incident position from the first mirror layer 22 side to the second mirror layer 23 side. The light detection substrate 30A has a light-receiving surface 32a for receiving light transmitted through the interference filter unit 20A and detects the light incident on the light-receiving surface 32a. The separator 15 extends from the cavity layer 21 to at least one of the first and second mirror layers 22, 23 and optically separates the interference filter unit 20A as seen in a predetermined direction intersecting the light-receiving surface 32a .
Abstract:
A multiband camera comprises: a band-pass filter having four or more optical filters; a microlens array having arrayed microlenses; a photoelectric conversion element including a plurality of pixels; and a measurement unit for measuring spectral intensity. The multiband camera satisfies the expression below, where Pl is a pitch between the microlenses, Ps is a pitch between the pixels, n is a number of pixels corresponding to one microlens, u is an effective dimension in a prescribed direction of the pixels, t is a dimension in the prescribed direction of a real image that the band-pass filter forms on a plurality of two-dimensionally arrayed pixels, Na is a number of microlenses arrayed in the prescribed direction, L is a distance from an exit pupil to the microlens, and f is a focal length of the microlens. [ Expression 14 ] ( 1 - f L ) nPs - 3 Ps - u - t Na ≤ Pl ≤ ( 1 - f L ) nPs + 3 Ps - u - t Na
Abstract translation:多频相机包括:具有四个或更多个滤光器的带通滤波器; 具有阵列微透镜的微透镜阵列; 包括多个像素的光电转换元件; 以及用于测量光谱强度的测量单元。 多频段相机满足下面的表达式,其中P1是微透镜之间的间距,Ps是像素之间的间距,n是与一个微透镜相对应的像素数,u是像素的规定方向上的有效尺寸,t 是带通滤波器在多个二维排列的像素上形成的实际图像的规定方向上的尺寸,Na是沿规定方向排列的多个微透镜,L是从出射光瞳到 微透镜,f是微透镜的焦距。 [表达式14](1-f L)nPs - 3 Ps - u - t Na≤Pl≤(1-f L)nPs + 3 Ps - u -