Abstract:
본 발명의 일 측면에 의하면, 플렉서블한 기판 상에 금속 시드층을 형성하는 제1단계; 상기 금속 시드층 상에 드라이 필름 레지스트(Dry Film Resist; 이하 DFR층)를 적층하는 제2단계; 상기 DFR층의 패터닝에 의해 1차 패턴을 형성하여 상기 금속 시드층의 일부를 노출시키는 제3단계; 상기 일부 노출된 금속 시드층 상에 도금 공정을 통한 제1금속패턴을 형성하는 제4단계; 상기 제1금속패턴 및 상기 DFR층 상에 PR(Photoresist)층을 코팅하고, PR층의 패터닝에 의해 2차 패턴을 형성하여 상기 제1금속패턴의 일부 영역을 노출시키는 제5단계; 상기 제1금속패턴 상의 노출된 영역 상에 도금 공정을 통해 제2금속패턴을 형성하는 제6단계; 상기 DFR층 및 PR층을 동시에 제거하여, 플렉서블 기판 상에 상기 제1금속패턴과 제2금속패턴으로 이루어진 금속 구조체를 형성하는 제7단계; 를 포함하여 구성되는 것을 특징으로 하는 플렉서블 기판 상에 입체형 금속 구조체를 제조하는 방법을 제공한다. 본 발명에 의하면, 높은 단차가 필요한 구성에 감광필름(Dry Film Resist; DFR)을 사용함으로써, 플렉서블 기판에 금속 구조체를 제작할 때, 고열이 기판에 작용하지 않도록 하는 효과가 있다.
Abstract:
본 발명은 태양 전지의 자가 생성 전류를 이용하여, 태양 전지의 전극을 전해 도금으로 형성하는 방법에 있어서, 에너지를 전달했을 때, 정공-전자쌍이 생성되는 태양 전지 기판을 도금 용액에 담그는 제1단계와, 상기 태양 전지가 전력을 생성하기 위해 필요한 에너지 전달 조건을 변경하여 에너지를 전달하는 제2단계 및 상기 태양 전지의 자가 생성 전력으로 상기 태양 전지 기판 상의 전극 영역에 상기 태양 전지의 전극 형성을 위한 도금을 진행하는 제3단계를 포함하여 이루어지는 것을 특징으로 하는 태양 전지의 전극을 전해 도금으로 형성하는 방법을 기술적 요지로 한다. 이에 의해 태양 전지의 발전 전류를 이용하여 특정 영역에 선택적으로 전해 도금이 가능한 공정이기 때문에, seed-metal이 필요없으므로, 공정 시간 및 비용을 절감시키며, 공정의 단순화에 따른 태양 전지의 특성을 향상시키고, 태양 전지가 전류를 생성하기 위한 광원 전달 조건을 다양하게 변경하여, 그리드 전극의 도금 속도, 밀도, 구조 등 특성을 조절할 수 있어, 사용하고자 하는 태양 전지의 특성에 적합한 고품질의 전극을 형성할 수 있는 이점이 있다.
Abstract:
본 발명은 나노패턴을 가지는 금속 필름을 제조하는 방법에 관한 것으로서, 나노패턴을 가지는 금속 필름을 제조하는 방법에 있어서, 기판 상층에 희생층을 형성하는 제1단계와, 상기 희생층 상층에 도금을 위한 시드층을 형성하는 제2단계와, 전기 도금을 통하여 상기 시드층 상에 금속 필름을 형성하는 제3단계와, 상기 금속 필름 상층에 감광성 수지층을 형성한 후 노광 패터닝 및 현상 공정을 거쳐 상기 금속 필름 상층에 감광성 수지로 이루어진 나노패턴을 형성하는 제4단계 및 상기 희생층을 제거하여 상기 기판으로부터 나노패턴이 형성된 금속 필름을 분리시키는 제5단계를 포함하여 이루어지는 것을 특징으로 하는 나노패턴을 가지는 금속 필름의 제조방법을 기술적 요지로 한다. 이에 의해 본 발명은 공정의 단순화로 공정 비용 및 공정 시간을 절감시키면서 100nm 이하의 미세한 나노패턴을 균일하게 형성시킬 수 있으며, 간단하게 나노패턴을 가지는 금속 필름을 제조할 수 있는 이점이 있다.
Abstract:
The present invention relates to space transformer for a probe card. Subject matters of the present invention are a method of manufacturing a space transformer for a polymer-based probe card and the space transformer for a polymer-based probe card manufactured by the same. The method of manufacturing a space transformer for a probe card comprises the following steps. In a first step, a glass substrate is prepared. In a second step, a mask pattern layer for forming a via-hole is formed on the glass substrate. In a third step, a substrate via-hole is formed on the glass substrate according to a set pattern of the mask pattern layer. In a fourth step, a conductive material fills the via-hole. In a fifth step, a polymer substrate is formed on the glass substrate, and a metal interconnection electrode, which is electrically connected to the substrate via-hole, is formed on the polymer substrate. In a sixth step, a second polymer substrate is formed on top of the polymer substrate, on which the metal interconnection electrode is formed, and a polymer substrate via-hole, which is filled with the conductive material, is formed on the second polymer substrate. And in the seventh step, polymer substrates resulted from the fifth and sixth steps are alternately stacked, and the metal interconnection electrode formed on the polymer substrate is electrically connected with the polymer substrate via-hole. According to the present invention, a conventional multilayer ceramic simultaneous sintering process is not adopted, and deformation of the space transformer due to contractions and expansions is thus prevented. Furthermore, a manufacturing yield as well as productivity are improved and a manufacturing cost is reduced.
Abstract:
The present invention relates to a method for manufacturing a nano-patterned metal film. In terms of a method for manufacturing a nano-patterned metal film, the method for manufacturing a nano-patterned metal film using a nano-imprint lithography and a plating process comprises: a first step where a resin layer is formed on the upper layer of a substrate; a second step where nano-pattern is formed on the resin layer by an imprinting and a hardening process after locating a stamp for imprinting on the resin layer; a third step where a seed layer is vapour-deposited on the nano-patterned resin layer; a fourth step where a metal layer is formed on the seed layer by a plating process; and a fifth step where a nano-patterned metal film is produced by separating the seed and metal layers from the substrate after removing the resin layer. Hence, the present invention uses a nano-imprint lithography and a plating process which reduces cost and time for processing by simplifying the processes. Also, a nano-patterned metal film can simply be produced.
Abstract:
본 발명은 광전자 소자의 활성층을 요철 또는 만곡형상으로 형성하여 활성층의 표면적을 증가시키고, 광 추출 효율 및 광 흡수 효율을 향상시키는 나노 그레이스케일 패턴의 활성층을 포함하는 광전자 소자 및 그 제조방법에 관한 것으로, 도전성 기판 상에 형성된 반도체 층. 반도체 층 상에 형성되며, 상부가 요철 또는 만곡 구조으로 이루어진 n형 반도체 층, n형 반도체 층 상에 형성되며, 요철 또는 만곡 구조으로 이루어진 활성층 및 활성층 상에 형성된 p형 반도체 층을 포함하는 것을 특징으로 한다. 나아가, 본 발명에 따른 나노 그레이스케일 패턴의 활성층을 포함하는 광전자 소자 제조방법은 기판 상에 형성된 반도체 층의 상부에 n형 반도체 층을 형성하는 단계, n형 반도체 층의 상부에 레지스트(Resist)를 코팅하는 단계, 리소그래피(Lithography) 공정으로 레지스트를 요철 또는 만곡 구조로 패터닝하는 단계, 패터닝된 레지스트를 식각하여 n형 반도체 층에 요철 또는 만곡형상을 형성한 후, 버퍼 층을 형성하는 단계, 버퍼 층의 상부에 요철 또는 만곡 구조의 활성층을 형성하는 단계 및 활성층의 상부에 p형 반도체 층을 형성하여 나노 그레이스케일 패턴의 활성층을 포함하는 광전자 소자를 취득하는 단계를 포함하는 것을 특징으로 한다.
Abstract:
PURPOSE: A method for growing a nitride semiconductor with high quality and a method for manufacturing a nitride semiconductor light emitting device using the same are provided to reduce manufacturing costs by manufacturing a vertical LED without a surface texturing process. CONSTITUTION: A dielectric mask layer(20) is formed on a substrate(10) or a thin film. A polymer layer is formed on the dielectric mask layer. A pattern layer made of resins or metal organic precursors is formed on the polymer layer. The polymer layer is etched on the lower side of the pattern layer by a dry etching process. A pattern of the dielectric mask layer is formed to expose a part of the substrate or the thin film. The polymer layer and the pattern layer are removed from the upper side of the pattern of the dielectric mask layer. A nitride semiconductor layer(60) is laterally grown on the upper side of the partially exposed substrate.
Abstract:
전자 수용층과 전자 도너층의 계면 면적을 증가시켜 높은 에너지 변환효율을 가지는 유기 태양전지 및 그 제조 방법을 제공한다. 본 발명에 따른 유기 태양전지는 양극; 상기 양극 상에 형성되고 상면에 규칙적인 패턴이 형성된 전자 수용층; 상기 전자 수용층 상에 형성된 전자 도너층; 및 상기 전자 도너층 상에 형성된 음극을 포함하고, 상기 패턴은 2개의 단으로 이루어지고 단면 형상이 T자인 복수의 기둥을 포함한다.
Abstract:
본 발명은 윈도우층의 산화를 방지하고, 캡층 제조시 윈도우층이 식각되지 않는 태양전지에 관한 것이다. 본 발명에 따른 태양전지는 기판 상에 형성되며 광신호를 전기적 신호로 변환하는 광전 변환셀과, 광전 변환셀 상에 형성되며 알루미늄을 포함한 화합물 반도체로 이루어진 제1 윈도우층(window layer)과, 제1 윈도우층 상에 형성되며 내산화성을 갖는 물질로 이루어진 제2 윈도우층과, 제2 윈도우층 상에 형성되는 캡층(cap layer)과, 기판의 하부에 형성되는 하부 전극과 캡층 상에 형성되는 상부 전극을 구비한다. 그리고 제2 윈도우층은 캡층과 서로 다른 식각 선택비(etch selectivity)를 갖는 물질로 이루어진다.