Abstract:
The present invention relates to space transformer for a probe card. Subject matters of the present invention are a method of manufacturing a space transformer for a polymer-based probe card and the space transformer for a polymer-based probe card manufactured by the same. The method of manufacturing a space transformer for a probe card comprises the following steps. In a first step, a glass substrate is prepared. In a second step, a mask pattern layer for forming a via-hole is formed on the glass substrate. In a third step, a substrate via-hole is formed on the glass substrate according to a set pattern of the mask pattern layer. In a fourth step, a conductive material fills the via-hole. In a fifth step, a polymer substrate is formed on the glass substrate, and a metal interconnection electrode, which is electrically connected to the substrate via-hole, is formed on the polymer substrate. In a sixth step, a second polymer substrate is formed on top of the polymer substrate, on which the metal interconnection electrode is formed, and a polymer substrate via-hole, which is filled with the conductive material, is formed on the second polymer substrate. And in the seventh step, polymer substrates resulted from the fifth and sixth steps are alternately stacked, and the metal interconnection electrode formed on the polymer substrate is electrically connected with the polymer substrate via-hole. According to the present invention, a conventional multilayer ceramic simultaneous sintering process is not adopted, and deformation of the space transformer due to contractions and expansions is thus prevented. Furthermore, a manufacturing yield as well as productivity are improved and a manufacturing cost is reduced.
Abstract:
PURPOSE: A vibrating membrane and a back plate of a capacitance type microphone based on a MEMS(Micro Electro Mechanical System) and a method for manufacturing the same are provided to prevent oxidation due to external humidity by forming an insulating layer on the vibrating membrane and the back plate. CONSTITUTION: A first insulation layer is formed on the upper part of a substrate(101). A vibrating membrane(102) forms a second insulation layer on the top of a first metal layer. A sacrificial layer for an air gap is formed on the upper part of the vibrating membrane. An external surface of the sacrificial layer is patterned by a photolithography process. A third insulation layer is formed on the upper part of the patterned sacrificial layer. A second metal layer is formed on the upper part of the third insulation layer. An upper conductive line is formed on the patterned second metal layer. A fourth insulating layer is formed on the upper part of a second metal layer. A back plate is obtained by the photolithography process. A sound inlet hole and a vibration hole are formed.
Abstract:
PURPOSE: A side exposure type solar battery is provided to increase efficiency by differently forming a part in which sunlight is income and a part in which an electrode is formed and to reduce series resistance of a solar battery. CONSTITUTION: A solar battery comprises a solar battery cell, a first electrode(220), and a second electrode(230). A light receiving part(211) in which external light is income is formed on a first side of the solar battery cell. The solar battery generates current from the light which is income through the light receiving part. The first electrode is formed on a second side of the solar cell. The second electrode is formed on a third side which is faced with the second side of the solar cell. The first side of the solar cell is different with the second side and the third side of the solar cell.
Abstract:
PURPOSE: A cooling apparatus for a wafer and a wafer cover using a gas is provided to prevent thermal damage to a wafer by forming a through hole in a tray for mounting a wafer. CONSTITUTION: A through hole (130) is formed in a tray. The tray transfers a low temperature gas to a wafer and a wafer cover. A tray body (110) is formed around a tray central part (120). An O-ring is in contact with the lower part of the wafer cover. An O-ring accommodating groove is formed along the cylindrical surface of the tray body.