Abstract:
PROBLEM TO BE SOLVED: To provide an FET structure which uses an organic/inorganic by hybrid material as a semiconductor channel. SOLUTION: This FET structure uses an organic/inorganic hybrid material 32 as a semiconductor channel between a source electrode 34 and a drain electrode 36 in a device. The organic/inorganic material has advantages of an inorganic crystalline solid and an organic material. The inorganic element forms an extended inorganic one-dimensional, two-dimensional or three- dimensional network, and provides a high carrier mobility for an inorganic crystalline solid. The organic element promotes self assembly of these materials and permits adhesion of the materials under conditions of simple low- temperature treatment such as spin coating, dipping coating, thermal vapor- deposition, etc. In addition, the organic element is used to adjust the electronic characteristics of inorganic skeleton, by defining the dimension of the inorganic element and the electronic bonding between inorganic units.
Abstract:
PROBLEM TO BE SOLVED: To provide a dielectric material containing elements of Si, C, O and H, having specific mechanical property values (tensile stress, elastic modulus, hardness, cohesive force, and crack speed in water) which provide stable ultralow-k film without deterioration arising from steam or integration processing. SOLUTION: The dielectric materials 34, 38 and 44 have dielectric constants of approximately 2.8 or less, tensile stress of less than 45 Mpa, elastic modulus of somewhere between 2 and 15 GPa, hardness between around 0.2 to 2 GPa. Additionally, an electronic device structure containing the dielectric materials and various methods for producing them are disclosed. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
A method for forming a ultralow dielectric constant layer with controlled biaxial stress is described incorporating the steps of forming a layer containing Si, C, O and H by one of PECVD and spin-on coating and curing the film in an environment containing very low concentrations of oxygen and water each less than 10 ppm. A material is also described by using the method with a dielectric constant of not more than 2.8. The invention overcomes the problem of forming films with low biaxial stress less than 46 MPa.
Abstract:
PROBLEM TO BE SOLVED: To provide a dielectric material which includes Si, C, O and H atoms and has specific mechanical characteristic (tensile stress, degree of elasticity, hardness, cohesive strength, crack velocity in water) values giving stable ultralow k film which is not deteriorated by steam or integration processing. SOLUTION: This dielectrics materials has an about ≤2.8 dielectric constant, tensile stress of less than 45 Mpas, degree of elasticity of about 2 to about 15 GPas, and hardness of about 0.2 to about 2 GPas. An electronic device structure including the dielectric materials by this invention and various methods by which the dielectrics materials of this invention are manufactured are also disclosed. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To widen a scope of material and process which can be used for a thin film transistor device by a method wherein, by use of an organic semiconductor layer coming into contact with a gate insulator of an inorganic mixture oxide, any one of the semiconductor layer and gate insulator is deposited to the other at substrate temperatures in a predetermined range. SOLUTION: An organic semiconductor layer 15 of a thin film transistor(TFT) device is deposited onto a gate insulation layer 13 as an inorganic oxide at temperatures close to room temperatures. An organic semiconductor material suitable therefor is pentacene. The TFT is constituted by depositing a source 16 and drain 17 to an exposed surface of the organic semiconductor layer 15 by a low temperatures deposition process at temperatures close to room temperatures in compliance with a position of a gate 12, so that a channel definition isolation region 18 is positioned at a center of the gate 12. The layer operating by deposition at the temperatures close to the room temperatures such as 25 deg.C to 150 deg.C is suitable for an appropriate dielectric property demanded for the organic semiconductor, and it becomes possible to process by a substrate enduring at fairly lower temperatures, and a use for such substrate is spread.
Abstract:
Field effect transistor has a channel layer between source (34) and drain (36) regions, a gate region (40) arranged next to the channel layer, and an electrically insulating layer (38) between the gate region and the source region, the drain region and the channel layer. The channel layer (32) contains a semiconducting inorganic-organic hybrid material.
Abstract:
Halbleiterstrukturen, die parallele Graphennanobänder oder Kohlenstoff-Nanoröhren aufweisen, die entlang kristallographischer Richtungen ausgerichtet sind, werden aus einer Vorlage aus Siliciumcarbid(SiC)-Finnen oder -Nanodrähten bereitgestellt. Die SiC-Finnen oder -Nanodrähte werden zuerst bereitgestellt, und anschließend werden durch Tempern Graphennanobänder oder Kohlenstoff-Nanoröhren auf den freigelegten Flächen der Finnen oder der Nanodrähte ausgebildet. Bei Ausführungsformen, bei denen geschlossene Kohlenstoff-Nanoröhren ausgebildet werden, werden die Nanodrähte vor dem Tempern frei hängen gelassen. Der Ort, die Ausrichtung und die Chiralität der Graphennanobänder und der Kohlenstoff-Nanoröhren, die bereitgestellt werden, werden durch die entsprechenden Siliciumcarbidfinnen und -Nanodrähte bestimmt, aus denen sie ausgebildet werden.
Abstract:
Semiconductor structures including parallel graphene nanoribbons or carbon nanotubes oriented along crystallographic directions are provided from a template of silicon carbide (SiC) fins or nanowires. The SiC fins or nanowires are first provided and then graphene nanoribbons or carbon nanotubes are formed on the exposed surfaces of the fin or the nanowires by annealing. In embodiments in which closed carbon nanotubes are formed, the nanowires are suspended prior to annealing. The location, orientation and chirality of the graphene nanoribbons and the carbon nanotubes that are provided are determined by the corresponding silicon carbide fins and nanowires from which they are formed.
Abstract:
Auf einer Oberseite einer Graphenschicht wird eine Siliciumnitridschicht bereitgestellt, und dann wird auf einer Oberseite der Siliciumnitridschicht eine Hafniumdioxidschicht bereitgestellt. Die Siliciumnitridschicht wirkt als ein Benetzungsmittel für die Hafniumdioxidschicht und verhindert dadurch die Bildung von diskontinuierlichen Hafniumdioxidsäulen über der Graphenschicht. Die Siliciumnitridschicht und die Hafniumdioxidschicht, die zusammen ein Doppelschicht-Gate-Dielektrikum mit geringer äquivalenter Oxiddicke (EOT) bilden, weisen über der Graphenschicht eine kontinuierliche Morphologie auf.