Abstract:
A surface mounting stress relief system for mounting a surface mount package such as a leadless ceramic chip carrier on a printed circuit board includes a printed circuit board having a top layer attached to a bottom layer. The top layer includes cavities for exposing top surface portion of the bottom layer which carry a plurality of solder pads. The surface mount package is positioned on the printed circuit board for placing the package bottom surface on a top surface of the printed circuit board between the cavities while positioning package contact pads in spaced relation above corresponding preselected solder pads. A solder column extends between each of the plurality of corresponding solder pads and the selected contact pads for providing an electrical connection. The solder column is formed by applying a solder paste to the solder pads on the printed circuit board, screening a low temperature solder paste onto each of the contact pads of the surface mount package, placing a solder ball onto each pad, and attaching the solder ball to each of the contact pads of the package by passing the package through a reflow oven for reflowing the low temperature solder paste without reflowing the high temperature solder ball.
Abstract:
The present invention provides printed circuit boards for mounting to a semiconductor integrated circuit die. In one embodiment the printed circuit boards comprise a rigid dielectric substrate having a planar face, a plurality of circuit lines affixed to the face of the substrate, and a plurality of conductive bumps affixed to the face of the substrate. Each conductive bump has an upper bonding surface that is substantially planar and a lateral surface which is essentially perpendicular to the face of the substrate. The conductive bumps and the circuit lines are formed from a single metallic layer. The conductive bumps and circuit lines constitute a unitary, integral structure, i.e., each conductive bump and connecting circuit line lack a physical interface therebetween. The upper surfaces of the conductive bumps extend to essentially the same height above the surface of the substrate, i.e., the upper surfaces of the conductive bumps are substantially coplanar relative to each other. In another embodiment, the printed circuit board further comprises a unitary solder dam or a plurality of unconnected solder dams that partially or completely surround the conductive bumps. The solder dam has an upper surface which lies below the upper bonding surface of the conductive bump. The solder dam is positioned to prevent the alloy, particularly solder, which is subsequently disposed on each conductive bump from flowing along the circuit lines that are integrally connected to the conductive bump. The present invention also relates to a microelectronic package that comprises a semiconductor integrated circuit die mounted to a printed circuit board made in accordance with the present invention.
Abstract:
A conductor (112), a method for forming the conductor (112), and a method for attaching a discrete circuit device, such as a bond pad, chip capacitor, chip resistor, etc., to the conductor (112) with solder connections (16). Solder connections (16) formed by the method are characterized as being accurately located on the conductor (112) and having a shape and location that achieves an adequate and uniform stand-off height for the device, and improves thermal cycle fatigue life. Such benefits are achieved by forming a nonsolderable layer (114) on a substrate (10), and then forming a solderable conductor (112) on the substrate (10) such that a first portion of the conductor (112) overlies the nonsolderable layer (114) and a second portion of the conductor (112) does not overlie the nonsolderable layer (114). In so doing, the first and second portions of the conductor (114) define a boundary therebetween beyond which solder deposited on the second portion of the conductor (112) is inhibited from flowing onto the first portion of the conductor (112).
Abstract:
A flip chip is soldered to an array of flexible pillars of compliant dielectric material on a circuit board. Each pillar has an electrically conductive core electrically coupled to the circuit board. The pillars absorb movement due to differences in the coefficient of thermal expansion of the chip and board, and hence reduce the possibility of fatigue failure of the solder joint. The pillars are manufactured by forming a layer of compliant dielectric material on the circuit board, forming blind holes in the layer, filling the holes with electrically conductive material overlapping the edges of the holes, and then laser ablating to remove the compliant dielectric material except where protected by the electrically conductive material.
Abstract:
The electronic device has a structure that a semiconductor package (10) is mounted on a motherboard (21), and a buffer layer (41) for relieving a stress, which is produced due to a difference of physical properties between the semiconductor package (10) and the motherboard (21), is mounted on the electrical and mechanical interface between the semiconductor package (10) and the motherboard (21). For example, the buffer layer (41) having a thermal expansion coefficient close to that of the motherboard (21) is formed on a face of the semiconductor package 10 having an external connecting terminals (12b) mounted. A stress caused due to a difference between a thermal expansion coefficient of a wiring substrate (12) of the semiconductor package and that of the motherboard (21) can be relieved by the buffer layer (41). Therefore, a cyclic stress applied to the connection between the semiconductor package and the motherboard in the actual application environment can be relieved, and reliability of connection can be improved. Thus, a semiconductor package mountable with a high degree of reliability and an electronic device having a high degree of reliability is provided.
Abstract:
A printed wiring board includes features which allow the board to be held firmly in place by a vacuum mounting device so that semiconductor chips can be placed thereon, and wire bonds established between the semiconductor chips and the circuitry on the board. The side of the board opposite the side having the semiconductor chips defines a ridge which encloses a portion of the surface area thereof. The ridge forms a gasket around a vacuum slot on the vacuum mounting device. The ridge also provides a firm surface for wirebonds to be ultrasonically welded to landings on the board.
Abstract:
A semiconductor chip having a number of bonding pads on one face is mounted on a set of matching, mirror-image bonding pads on a packaging substrate, in a flip chip configuration. An alignment template is formed on and permanently secured to the substrate, and takes the form of a frame surrounding the substrate bonding pads. The height of the template is sufficient to receive the edges of the chip and hold the chip in place while the assembly is being transported to the soldering operation. No alignment operation is required, since the chip is merely placed in the receptacle formed by the template. The template is of course aligned with the substrate bonding pads when the template is created. The template can be formed on the substrate using photolithographic techniques, and, preferably, the template itself is formed of a photo-definable material.
Abstract:
An electronic component which is employed in the frequency range in the microwave band or above is mounted on a circuit board. The circuit board comprises two linear transmission line members, a ground electrode, and an electric insulating substrate provided with the transmission line members and the ground electrode on its major surface. The electronic component comprises external electrodes which are formed on its side surfaces. Holding patches which are formed on the lower surface of the electronic component are bonded to the ground electrode by solder members, thereby fixing the electronic component to the circuit board. At this time, small clearances are defined between the electronic component and the circuit board through the solder members, whereby the external electrodes are electromagnetically coupled with the transmission line members and the ground electrode through the clearances respectively. Thus, it is possible to obtain a mounting structure for an electronic component, which can suppress development of unnecessary inductance components.
Abstract:
An aluminum nitride circuit board includes an aluminum nitride ceramic body. An inner conductor metal which is to be used as a wiring material is formed in the aluminum nitride ceramic body. The inner conductor metal is mainly made of copper, a melting point of which is lower than a firing temperature of the aluminum nitride ceramic. A layer mainly made of a periodic table IVa group metal or compound, such as titanium, zirconium, or hafnium, is formed in an interface between the aluminum nitride ceramic body and the inner conductor metal.
Abstract:
A pressure type contact (10) for flexible or conventional wire cable terminations is fabricated from electroformed thin metallic wafers in which one wafer is plated with a raised conductive interconnection feature. The raised feature is formed by placing a small lump (44) of electrically conductive resin on a substrate (12) and then electrolytically forming on the substrate a trace (18) having an enlarged connector pad (20) that completely covers the cured projecting resin lump.