Abstract:
A method for forming a microstructure includes photolithographically forming a vertically extending post on a portion of a surface of a substrate to provide a first structure. A flowable, sacrificial material is deposited over a surface of the first structure. The flowable, sacrificial materially flows off the top surface and sidewall portions of the post onto adjacent portions of the surface of the substrate to provide a second structure. A non-sacrificial material is deposited over a surface of the second structure. The non-sacrificial material is deposited to conform to the surface of the second structure. The non-sacrificial is deposited over the sacrificial material, over the sidewall portions and over the top surface of the post. The deposited sacrificial material is selectively removed while the non-sacrificial material remains to form a third structure with a horizontal member provided by the non-sacrificial material. The horizontal member is supported a predetermined distance above the surface of the substrate by a lower portion of the post. The flowable material is a flowable oxide, for example, hydrogensilsesquioxane glass, and the post has a width less than 20 .mu.m. The resulting structure, formed with a single photolithographic step, is used for supporting a capacitor deposited over it. The capacitor is formed as a sequence of deposition steps; i.e., depositing a first conductive layer over a surface of the support structure; depositing a dielectric layer over the conductive layer; and depositing a second conductive layer over the dielectric layer.
Abstract:
A microstructure comprising a substrate (1), a patterned structure (beam member) (2) suspended over the substrate (1) with an air-space (4) therebetween and supporting structure (3) for suspending the patterned structure (2) over the substrate (1).The microstructure is prepared by using a sacrificial layer (7) which is removed to form the space between the substrate (1) and the patterned structure (2) adhered to the sacrificial layer. In the case of using resin as the material of the sacrificial layer, the sacrificial layer can be removed without causing sticking, and an electrode can be provided on the patterned structure.The microstructure can have application as electrostatic actuator etc., depending on choice of shape and composition.
Abstract:
The invention concerns a fabrication process of at least one generally elated structural element (14) on a substrate (12) in a first material and having a substantially flat upper face (13), said element (14) realized in a second material comprising at least a first wing (14a) parallel to a plan perpendicular to said upper face (13).
Abstract:
A device is provided that includes a handle layer with at least one cavity and suspension structure, a patterned polycrystalline silicon (poly-Si) first device layer, where at least one structural element is suspended by the structure, and may include a seismic element. A second electrically insulating layer is present, followed by a second device layer of patterned single-crystal silicon (mono-Si) with at least one moveably suspended seismic element above the first layer. A cap layer finalizes the structure, with the handle layer, device layers, and the cap layer forming an enclosure's walls. The first and second insulating layers bond the handle and device layers. The enclosure includes at least one seismic element from the second device layer, and at least one static and moveable electrode for motion detection or causation, with the static electrode in the first device layer.
Abstract:
In accordance with an embodiment, a method producing a microelectromechanical system (MEMS) device includes: providing a substrate comprising a first substrate surface and an opposite second substrate surface, wherein the substrate comprises a sacrificial layer arranged at the first substrate surface; depositing a membrane material layer onto the sacrificial layer; the membrane material layer forms a free-standing membrane structure covering the cavity; and creating nanostructures in at least one of a first membrane surface or an opposite second membrane surface of the membrane material layer, wherein the nanostructures protrude from the respective membrane surface of the membrane material layer, and the nanostructures are created by applying a laser structuring process.
Abstract:
Example methods, systems, and apparatus described herein provide a minimally invasive technique of controlling shape and stress in a MEMS device. An example method includes depositing a layer of material continuously across a semiconductor wafer, exposing the layer of material to oxygen plasma to increase a relative amount of oxygen within the layer of material; and etching the layer of material after exposing the layer of material to the oxygen plasma.
Abstract:
Microelectromechanical (MEMS) devices and associated methods are disclosed. Piezoelectric MEMS transducers (PMUTs) suitable for integration with complementary metal oxide semiconductor (CMOS) integrated circuit (IC), as well as PMUT arrays having high fill factor for fingerprint sensing, are described.
Abstract:
Provided is a MEMS microphone structure (1) and, more particularly, to a MEMS microphone structure (1) that ensures excellent sensitivity by including and/or forming a lower electrode (410) and an upper electrode (430) with a diaphragm (110) in a bending area (A1) so that the maximum bending displacement of the diaphragm (110) is controlled by a dielectrophoretic (DFP) force together with sound pressure.
Abstract:
A method for manufacturing an electroacoustic transducer includes a frame; an element movable relative to the frame, the movable element including a membrane and a membrane rigidifying structure; a first transmission arm, the movable element being coupled to one end of the first transmission arm; in which method the membrane of the movable element is moved away from the frame by using a sacrificial layer of greater thickness at least at the periphery of the membrane.
Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.