Abstract:
A spectrometer configurable for field analyses of chemical properties of a material is provided. The spectrometer includes: at least one sensor adapted for providing Fourier transform infrared spectroscopy (FTIR) surveillance and at least another sensor for providing Raman spectroscopy surveillance. The spectrometer can be provided with a user accessible instruction set for modifying a sampling configuration of the spectrometer. A method of determining the most likely composition of a sample by at least two technologies using the spectrometer is also provided.
Abstract:
Apparatus and systems, preferably using UV spectroscopy, for the dynamic and continuous detection and quantification of a range of chemicals, particularly pollutants, in the environment, and to the production of a real-time display or map to display chemical levels in the environment are provided. By providing data packets which combine details of pollutants in the atmosphere with very accurate position and temporal information, and real-time map of pollution is provided.
Abstract:
An optical emission spectroscopic (OES) instrument includes a spectrometer, a processor and an adjustable mask controlled by the processor. The adjustable mask defines a portion of an analytical gap imaged by the spectrometer. The instrument automatically adjusts the size and position of an opening in the mask, so the spectrometer images an optimal portion of plasma formed in the analytical gap, thereby improving signal and noise characteristics of the instrument, without requiring tedious and time-consuming manual adjustment of the mask during manufacture or use.
Abstract:
To provide a device, system, and program with which it is possible for photometric information or colorimetric information corresponding to an international industry standard to be accurately measured in a simple manner. In one embodiment, a measurement apparatus (1) includes: an imaging unit (11) that acquires image data of an image; converters (141, 142) that use image data shooting information to convert the image data into data including photometric information or colorimetric information; and an output unit (16) that outputs the photometric information or the colorimetric information obtained by the converters
Abstract:
The present invention is directed to a spectrophotometer instrument that includes an arm that can swing between a closed position and an open position which is upward and backward of the lower position and wherein the display is moveable between a position behind the arm to a position to a side of the arm. Thus, the features herein provides the instrument user with positioning features to allow for a superior human factors user experience.
Abstract:
A spectrometer comprises a plurality of isolated optical channels comprising a plurality of isolated optical paths. The isolated optical paths decrease cross-talk among the optical paths and allow the spectrometer to have a decreased length with increased resolution. In many embodiments, the isolated optical paths comprise isolated parallel optical paths that allow the length of the device to be decreased substantially. In many embodiments, each isolated optical path extends from a filter of a filter array, through a lens of a lens array, through a channel of a support array, to a region of a sensor array. Each region of the sensor array comprises a plurality of sensor elements in which a location of the sensor element corresponds to the wavelength of light received based on an angle of light received at the location, the focal length of the lens and the central wavelength of the filter.
Abstract:
A simple and compact apparatus, and a method, for determining the characteristics of a number of fluids used in the truck and automotive industries including coolant, bio-diesel, gas-ethanol and diesel engine fluid (DEF). The apparatus includes a sample container providing optical paths of different lengths for making measurements on a sample. The dual path length design allows the apparatus to capture both NIR and UV spectral ranges. The qualitative and quantitative properties of the fluid under test are compared to test results under normal conditions or to the properties of unused fluid. Two light sources are used within a spectrometer with each source being associated with a different optical path length.
Abstract:
A system and apparatus for: (i) receiving an image of a visually perceptible scene; (ii) sensing the presence and intensity of signals in a selected frequency band, which may include one or more of radio frequency, microwave, infrared, visible and ultraviolet, in part or all of the scene; (iii) displaying the frequency band as a visually distinguishable overlay on the visually perceptible scene; and (iv) indicating whether the signal intensity for a selected frequency interval is changing with passage of time.
Abstract:
The method and system may be used to provide an indication of a color value for a particular siding sample and to color match a specific siding product to the color value of the siding sample. The system receives a digital image of a siding sample and a desired color value to be matched. A color query module plots this desired color value as a desired color point in a multidimensional color space together with a plurality of color reference points. Each color reference point represents the color value of an existing siding product. The system determines a “distance” between the desired color point and each plotted color reference point within the color space and identifies the siding product associated with the color reference point that is located the shortest distance to the desired color point within the color space.
Abstract:
In accordance with an embodiment, a measurement apparatus includes a library creation unit, a spectral profile acquiring unit, and a measurement unit. The library creation unit creates a library in which a layer stack model is matched to a theoretical profile regarding a pattern of stacked layers. The spectral profile acquiring unit acquires an actual measured profile by applying light to a measurement target pattern obtained when the pattern is actually created. The measurement unit measures the sectional shape of the measurement target pattern by performing fitting of the theoretical profile to the actual measured profile. The layer stack model is created by calculating a feature value that reflects the intensity of reflected light from an interface for each of the layers, determining a priority order of analysis from the feature value, and sequentially performing fitting of the theoretical profile to the measured profile in the determined priority order.