Abstract:
The invention relates to a method for producing an electronic module (2) comprising a printed circuit (4) board (3), at least one first type of component (5), and a second type of component (6), said method comprising the following steps: solder is placed on the board; the first type of component is positioned; the solder is melted in order to solder the first type of component; the second type of component is positioned in such a way that it extends above the first type of component and has tongues (7) supported on the board by means of solder; and the solder is melted in order to solder the second type of component.
Abstract:
A packaged surface-mount semiconductor device has the outer, un-encapsulated lead segments structured in five adjoining portions: The first portion protrudes from the encapsulation about horizontally; the second portion forms a convex bend downwardly; the third portion is approximately straight downwardly; the fourth portion forms a concave bend upwardly; and the fifth portion is straight horizontally. Each segment has across the width a first groove in the third portion, either on the bottom surface or on the top surface. Preferably, the groove is about 2 leadframe thicknesses vertically over the bottom surface of the fifth lead portion. When stamped, the groove may have an angular outline about 5 and 50 μm deep; when etched, the groove may have an approximately semicircular outline about 50 to 125 μm deep. A second groove may be located in the second segment portion; a third groove may be located in the transition region from the third to the fourth segment portions.
Abstract:
The present invention relates to surface mount assembly of electronic equipment. More especially it relates to mounting of high frequency electronic components for efficient cooling also with low cost circuit boards. Particularly it relates to efficiently transporting heat and eliminating air gaps in microwave equipment.
Abstract:
A method of coupling a shunt to a printed circuit board (PCB) of an energy management system is provided. The method includes coupling flexible electrical connectors to the shunt and soldering the flexible electrical connectors to connection points on the PCB of the energy management system. An energy management system that includes a shunt coupled to a printed circuit board using the above method is also provided.
Abstract:
The first external electrode has a main body portion a part of which is buried in a side wall of a case and joining portions protruding from an end of the main body portion toward the inside of the case. Each joining portion of the first external electrode is formed to have a thickness smaller than that of the main body portion, and an end portion of each joining portion is directly joined onto a wiring pattern of the insulating substrate through ultrasonic joining. Therefore, a load and ultrasonic vibration necessary for joining the joining portion onto the wiring pattern can be suppressed, which makes it possible to directly join the first external electrode onto the wiring pattern of the insulating substrate without damaging an insulating member of the insulating substrate.
Abstract:
In a vibrator support structure, a vibrator is supported on a substrate through support pins, substrate connection portions of the support pins and pin connection portions of the substrate are joined through conductive adhesive which is made of a resin including conductive filler and has a pencil hardness of about 4H or less, and the conductive adhesive has a thickness which can buffer vibrations and impacts propagated through the support pins.
Abstract:
In a vibrator support structure, a vibrator is supported on a substrate through support pins, substrate connection portions of the support pins and pin connection portions of the substrate are joined through conductive adhesive which is made of a resin including conductive filler and has a pencil hardness of about 4H or less, and the conductive adhesive has a thickness which can buffer vibrations and impacts propagated through the support pins.
Abstract:
An interface printed circuit board is configured to be placed between a leadless component such as a surface mount package used to house a SAW device and a standard printed circuit board configured for solder joints in a leadless contact with the printed circuit board. The interface device is made using materials having similar characteristic thermal expansion properties as that of the printed circuit to with it is affixed. Solder pads are placed in offset pairs and interface board material is removed such that the combination causes the interface board to flex from the forces caused by the differing expansion coefficients of the solder, the package and the printed circuit boards. The configuration causes the relative movement between the leadless carrier and the printed circuit board to occur along a length of epoxy and glass board material by bending the epoxy and glass as opposed to applying tensional or compressive forces to the solder joints. Such an approach relieves the stress and resulting creep seen at solder joints in the typical solder joint or column. In addition, by segregating the input and output pads and placing a metal shield between them, crosstalk rejection of the components is improved.
Abstract:
An electrical resistor comprising an elongated resistor body having a resistance wire winding extending between its ends and terminals at each end contact the resistance winding and each comprise a strip of given width having a first end portion extending about and secured with an end of the body, and a second end portion which extends in a direction transverse to the axis of the body and has a tip for being received through an opening in a printed circuit board. Each strip has an intermediate neck portion of reduced width which is positioned proximate to the resistor body and is twisted so that the second portion extends in a plane which is perpendicular to the axis of the body and in the same direction with and spaced from that of the other terminal allowing adjustment of the distance between their tips. The second end portions each have a shoulder proximate to its tip which is seated on the surface of a circuit board, fixing the position of the resistor and stabilizing its mounting thereon.The method of making an electrical resistor comprises the steps of segmenting a continuous wire wound core to provide resistor bodies, and cutting out portions of a continuous substantially plane strip of metal material at spaced locations therealong to provide narrow neck regions, and first and second end portions above and below each neck region.
Abstract:
A connector post or pin is disclosed which is particularly suitable for use with printed circuit board assemblies. The post includes a coined portion which is designed to permit the pin to be easily inserted into holes of a predetermined size in printed circuit boards, and to increase the quality of a solder joint between the post and the printed circuit board. A solder stripe is placed on each post in the coined region to facilitate soldering of the posts to conductive portions of the printed circuit board. The posts are attached in groups to break-away carrier strips to aid in the rapid assembly of large numbers of posts to printed circuit boards. The posts may also include provisions for coupling them to multilayered printed circuit assemblies. A method of fabricating the coined post is also disclosed which converts a post with normally an interference fit in a printed circuit board aperture to a post which is freely received in the aperture together with masses of solder adhered to said post.