Abstract:
A multi-axis magnetic lens with stable performance in focusing a plurality of charged particle beams is provided. The multi-axis magnetic lens comprises a plurality of magnetic dub-lens modules. On the one hand, the multi-axis magnetic lens employs an annular permanent-magnet unit to provide a basic and stable magnetic flux to the plurality of magnetic sub-lens modules. One the other hand, the multi-axis magnetic lens uses a plurality of subsidiary coils to provide additional and adjustable magnetic flux to the plurality of magnetic sub-lens modules respectively. The invention also proposes a method to turn off or adjust the basic and stable magnetic flux for some applications. Hence, this invention will benefit the applications which need to execute in a long time period while keeping a high stabilization in performance.
Abstract:
A user interface for operation of a scanning electron microscope device that combines lower magnification reference images and higher magnification images on the same screen to make it easier for a user who is not used to the high magnification of electron microscopes to readily determine where on the sample an image is being obtained and to understand the relationship between that image and the rest of the sample. Additionally, other screens, such as, for example, an archive screen and a settings screen allow the user to compare saved images and adjust the settings of the system, respectively.
Abstract:
The present invention provides means and corresponding embodiments to control charge-up in an electron beam apparatus, which can eliminate the positive charges soon after being generated on the sample surface within a frame cycle of imaging scanning. The means are to let some or all of secondary electrons emitted from the sample surface return back to neutralize positive charges built up thereon so as to reach a charge balance within a limited time period. The embodiments use control electrodes to generate retarding fields to reflect some of secondary electrons with low kinetic energies back to the sample surface.
Abstract:
There is provided an electromagnetic lens which includes an electromagnetic coil wound to be rotationally symmetrical about an optical axis of an electron beam, and a pole piece covering the electromagnetic coil, in which: a gap is integrally formed in either one of an inner wall formed at an inner circumference side of the pole piece and a lower end wall formed in an end portion at an emission side of the electron beam, or a boundary portion between the two walls; the inner wall is formed to be thinnest at a portion close to the gap and to gradually become thicker as a distance from the gap increases; and the electromagnetic lens is formed such that a width in a radial direction thereof is more increased as being closer to the gap along with the change of the thickness of the inner wall.
Abstract:
The present invention provides means and corresponding embodiments to control charge-up in an electron beam apparatus, which can eliminate the positive charges soon after being generated on the sample surface within a frame cycle of imaging scanning. The means are to let some or all of secondary electrons emitted from the sample surface return back to neutralize positive charges built up thereon so as to reach a charge balance within a limited time period. The embodiments use control electrodes to generate retarding fields to reflect some of secondary electrons with low kinetic energies back to the sample surface.
Abstract:
An apparatus includes a magnetic adjustment lens positioned at the electron beam path between the electron source and sample, the magnetic adjustment lens excited by an electric coil, and a permanent magnet lens positioned below the magnetic adjustment lens to focus the electron beam onto the sample surface, the permanent magnet lens excited by one or more permanent ring magnets enclosed except on a bottom surface by a magnetic field conductor. The magnetic adjustment lens may be excited to eliminate magnetic field leakage of the permanent magnet lens.
Abstract:
The chromatic aberration corrector (100) has a first multipole element (110) for producing a first electromagnetic field and a second multipole element (120) for producing a second electromagnetic field. The first multipole element (110) first, second, and third portions (110a, 110b, 110c) arranged along an optical axis (OA) having a thickness and producing a quadrupole field in which an electric quadrupole field and a magnetic quadrupole field are superimposed. In the first and third portions (110a, 110c), the electric quadrupole field is set stronger than the magnetic quadrupole field. In the second portion (110b), the magnetic quadrupole field is set stronger than the electric quadrupole field. The second portion (110b) produces a two-fold astigmatism component that is opposite in sign to two-fold astigmatism components produced by the first portion (110a) and third portion (110c).
Abstract:
There provided a device for effectively drawing a fine pattern using a permanent magnet. The device has an outer cylinder 201 composed of a cylindrical ferromagnet with a Z axis as a central axis, a cylindrical permanent magnet 202 located inside the outer cylinder and polarized along the Z axis direction, a correction coil 204 located inside the cylindrical permanent magnet with a gap from the cylindrical permanent magnet, for adjusting a magnetic field strength generated by the cylindrical permanent magnet along the Z axis direction, and a coolant passage 203 located in the gap between the cylindrical permanent magnet and the correction coil, for allowing a coolant to flow therethrough and controlling temperature changes in the cylindrical permanent magnet.
Abstract:
A magnetic domain imaging system is offered which permits application of a strong magnetic field to a specimen. The imaging system includes a transmission electron microscope having an objective lens. The specimen that is magnetic in nature is placed in the upper polepiece of the objective lens. An electron beam transmitted through the specimen is imaged and displayed on a display device. A field application coil assembly for applying a magnetic field to the specimen and two deflection coil assemblies for bringing the beam deflected by the field applied to the specimen back to the optical axis are mounted in the upper polepiece.
Abstract:
A ribbon-shaped ion beam having an elongate cross-section normal to a beam direction is modified by generating, at a predetermined position along the ribbon-shaped beam, a magnetic field extending in an x-direction along an x-axis. The x-direction magnetic field has a non-uniform intensity which is a desired function of x.