Ⅲ족 질화물 반도체 소자 및 에피택셜 기판
    1.
    发明公开
    Ⅲ족 질화물 반도체 소자 및 에피택셜 기판 无效
    第III族氮化物半导体器件和外延衬底

    公开(公告)号:KR1020070113094A

    公开(公告)日:2007-11-28

    申请号:KR1020067024397

    申请日:2006-03-06

    Abstract: Disclosed is a group III nitride semiconductor device wherein leakage current from a Schottky electrode is reduced. In a high-electron-mobility transistor (11), a supporting substrate (13) is specifically composed of AlN, AlGaN and GaN. An AlYGa1-YN epitaxial layer (15) has a full width at half maximum of the (0002) plane XRD of not more than 150 sec. A GaN epitaxial layer (17) is formed between the gallium nitride supporting substrate and the AlYGa1-YN epitaxial layer (0

    Abstract translation: 公开了一种III族氮化物半导体器件,其中来自肖特基电极的漏电流减小。 在高电子迁移率晶体管(11)中,支撑衬底(13)特别地由AlN,AlGaN和GaN构成。 AlYGa1-YN外延层(15)的(0002)面XRD的半峰全宽不超过150秒。 在氮化镓支撑衬底和AlYGa1-YN外延层(0

    고전자 이동도 트랜지스터, 전계 효과 트랜지스터,에피택셜 기판, 에피택셜 기판을 제작하는 방법 및III족 질화물계 트랜지스터를 제작하는 방법
    3.
    发明公开
    고전자 이동도 트랜지스터, 전계 효과 트랜지스터,에피택셜 기판, 에피택셜 기판을 제작하는 방법 및III족 질화물계 트랜지스터를 제작하는 방법 无效
    高电子移动性晶体管,场效应晶体管,外延基板,制造外延基板的方法和制造III族氮化物晶体管的方法

    公开(公告)号:KR1020080011264A

    公开(公告)日:2008-02-01

    申请号:KR1020067027121

    申请日:2006-03-03

    Abstract: Disclosed is a high-electron-mobility transistor having a high-purity channel layer and a high-resistance buffer layer. Specifically disclosed is a high-electron-mobility transistor (11) comprising a supporting base (13) composed of a gallium nitride, a buffer layer (15) composed of a first gallium nitride semiconductor, a channel layer (17) composed of a second gallium nitride semiconductor, a semiconductor layer (19) composed of a third gallium nitride semiconductor, and an electrode structure (a gate electrode (21), a source electrode (23) and a drain electrode (25)) for the transistor (11). The band gap of the third gallium nitride semiconductor is larger than that of the second gallium nitride semiconductor. The carbon concentration Nc1 in the first gallium nitride semiconductor is not less than 4 X 10^17 cm-3, and the carbon concentration Nc2 in the second gallium nitride semiconductor is less than 4 X 10^16 cm-3.

    Abstract translation: 公开了具有高纯度沟道层和高电阻缓冲层的高电子迁移率晶体管。 具体公开了一种高电子迁移率晶体管(11),包括由氮化镓构成的支撑基底(13),由第一氮化镓半导体构成的缓冲层(15),由第二氮化镓构成的沟道层(17) 氮化镓半导体,由第三氮化镓半导体构成的半导体层(19)和用于晶体管(11)的电极结构(栅电极(21),源电极(23)和漏电极(25)), 。 第三氮化镓半导体的带隙大于第二氮化镓半导体的带隙。 第一氮化镓半导体中的碳浓度Nc1为4×10 ^ 17cm -3以上,第二氮化镓半导体中的碳浓度Nc2小于4×10 ^ 16cm-3。

    질화갈륨 결정을 제작하는 방법 및 질화갈륨 웨이퍼
    10.
    发明公开
    질화갈륨 결정을 제작하는 방법 및 질화갈륨 웨이퍼 无效
    制造氮化镓晶体和氮化铝膜的方法

    公开(公告)号:KR1020090008321A

    公开(公告)日:2009-01-21

    申请号:KR1020087027015

    申请日:2007-04-24

    Abstract: This invention provides a method for manufacturing a gallium nitride crystal, which, when a gallium nitride crystal is grown using a gallium nitride substrate including a translocation aggregation region and an inversion region is used as a seed crystal substrate, can manufacture a gallium nitride crystal, which has low translocation density and, at the same time, has good crystallinity and, in addition, is less likely to cause cracking upon polishing after slicing. In embedding the translocation aggregation region and the inversion region (17a) for growth of a gallium nitride crystal (79), the gallium nitride crystal (79) is grown at a growth temperature of above 1100°C and 1300°C or below. According to this constitution, the translocation taken from the translocation aggregation region and inversion region (17a) can be reduced, and the occurrence of new translocation on the translocation aggregation region and inversion region (17a) can be suppressed. Good crystallinity of the gallium nitride crystal (79) can be realized, and, at the same time, cracking is less likely to occur in polishing after slicing of the gallium nitride crystal (79).

    Abstract translation: 本发明提供了一种用于制造氮化镓晶体的方法,当使用包含易位聚集区域的氮化镓衬底和反转区域来生长氮化镓晶体作为晶种衬底时,可以制造氮化镓晶体, 其易位密度低,同时具有良好的结晶度,另外在切片后不太可能引起研磨时的开裂。 在嵌入用于氮化镓晶体(79)的生长的易位聚集区域和反转区域(17a)中,氮化镓晶体(79)在高于1100℃和1300℃以下的生长温度下生长。 根据该构成,可以减少从易位聚集区域和反转区域(17a)取得的移位,能够抑制易位聚集区域和反转区域(17a)的新易位化。 可以实现氮化镓晶体(79)的良好的结晶度,并且同时在氮化镓晶体(79)切割之后的抛光中也不太可能发生裂纹。

Patent Agency Ranking