Abstract:
Methods of manufacturing a pellicle for a lithographic apparatus are disclosed. In one arrangement the method comprises depositing at least one graphene layer (2) on a planar surface (4) of a substrate (6). The substrate comprises a first substrate portion and a second substrate portion (12). The method further comprises removing the first substrate portion to form a freestanding membrane (14) from the at least one graphene layer. The freestanding membrane is supported by the second substrate portion.
Abstract:
A pellicle suitable for use with a patterning device for a lithographic apparatus. The pellicle comprising at least one breakage region which is configured to preferentially break, during normal use in a lithographic apparatus, prior to breakage of remaining regions of the pellicle. At least one breakage region comprises a region of the pellicle which has a reduced thickness when compared to surrounding regions of the pellicle.
Abstract:
Methods of manufacturing a pellicle for a lithographic apparatus are disclosed. In one arrangement the method comprises depositing at least one graphene layer (2) on a planar surface (4) of a substrate (6). The substrate comprises a first substrate portion and a second substrate portion (12). The method further comprises removing the first substrate portion to form a freestanding membrane (14) from the at least one graphene layer. The freestanding membrane is supported by the second substrate portion.
Abstract:
Membranes for EUV lithography are disclosed. In one arrangement, a membrane comprises a stack having layers in the following order: a first capping layer comprising an oxide of a first metal; a base layer comprising a compound comprising a second metal and an additional element selected from the group consisting of Si, B, C and N; and a second capping layer comprising an oxide of a third metal, wherein the first metal is different from the second metal and the third metal is the same as or different from the first metal.