Abstract:
Methods of manufacturing a pellicle for a lithographic apparatus are disclosed. In one arrangement the method comprises depositing at least one graphene layer (2) on a planar surface (4) of a substrate (6). The substrate comprises a first substrate portion and a second substrate portion (12). The method further comprises removing the first substrate portion to form a freestanding membrane (14) from the at least one graphene layer. The freestanding membrane is supported by the second substrate portion.
Abstract:
There is provided a pellicle membrane comprising a population of metal silicide crystals in a silicon- based matrix, wherein the pellicle membrane has an emissivity of 0.3 or more. Also provided is a method of manufacturing a pellicle membrane, a pellicle assembly, a lithographic apparatus comprising such a pellicle membrane or pellicle assembly. Also described is the use of such a pellicle membrane, pellicle assembly, or lithographic apparatus in a lithographic apparatus or method.
Abstract:
A method for manufacturing a membrane assembly for EUV lithography, the method comprising: providing a stack comprising: at least one membrane layer supported by a planar substrate, wherein the planar substrate comprises an inner region and a border region around the inner region; and a first sacrificial layer between the planar substrate and the membrane layer; selectively removing the inner region of the planar substrate, wherein the step of selectively removing the inner region of the planar substrate comprises using an etchant which has a similar etch rate for the membrane layer and its oxide and a substantially different etch rate for the first sacrificial layer; such that the membrane assembly comprises: a membrane formed from the at least one membrane layer; and a border holding the membrane, the border comprising the border region of the planar substrate and the first sacrificial layer situated between the border and the membrane layer.
Abstract:
The invention relates to a pellicle assembly comprising a pellicle frame defining a surface onto which a pellicle is attached. The pellicle assembly comprises one or more three-dimensional expansion structures that allow the pellicle to expand under stress. The invention also relates to a pellicle assembly for a patterning device comprising one or more actuators for moving the pellicle assembly towards and way from the patterning device.
Abstract:
Methods of manufacturing a membrane assembly are disclosed. In one arrangement, a stack comprises a planar substrate and at least one membrane layer. The planar substrate comprises an inner region, a border region around the inner region, a bridge region around the border region and an edge region around the bridge region. The inner region and a first portion of the bridge region are selectively removed. The membrane assembly after removal comprises: a membrane formed from the at least one membrane layer, a border holding the membrane, the border formed from the border region of the planar substrate, an edge section around the border, the edge section formed from the edge region of the planar substrate, a bridge between the border and the edge section, the bridge formed from the at least one membrane layer and a second portion of the bridge region of the planar substrate. The method further comprises separating the edge section from the border by cutting or breaking the bridge.
Abstract:
Methods of manufacturing a pellicle for a lithographic apparatus are disclosed. In one arrangement the method comprises depositing at least one graphene layer (2) on a planar surface (4) of a substrate (6). The substrate comprises a first substrate portion and a second substrate portion (12). The method further comprises removing the first substrate portion to form a freestanding membrane (14) from the at least one graphene layer. The freestanding membrane is supported by the second substrate portion.
Abstract:
There is provided a pellicle membrane comprising a population of metal silicide crystals in a silicon- based matrix, wherein the pellicle membrane has an emissivity of 0.3 or more. Also provided is a method of manufacturing a pellicle membrane, a pellicle assembly, a lithographic apparatus comprising such a pellicle membrane or pellicle assembly. Also described is the use of such a pellicle membrane, pellicle assembly, or lithographic apparatus in a lithographic apparatus or method.
Abstract:
A pellicle for a lithographic apparatus, wherein the pellicle comprises nitridated metal silicide or nitridated silicon as well as a method of manufacturing the same. Also disclosed is the use of a nitridated metal silicide or nitridated silicon pellicle in a lithographic apparatus. Also disclosed is a pellicle for a lithographic apparatus comprising at least one compensating layer selected and configured to counteract changes in the transmissivity of the pellicle upon exposure to EUV radiation as well as a method of controlling the transmissivity of a pellicle and a method of designing a pellicle.