US10805012B1

The disclosed computer-implemented method for protecting users may include (i) detecting, by a sensor component, an electromagnetic signal radiating from an eavesdropping device, (ii) receiving, by a mobile computing device, information identifying the electromagnetic signal, and (iii) displaying, by the mobile computing device, an augmented reality display that overlays a visual indication of a location of the eavesdropping device on an image captured by a camera of the mobile computing device to enable a user to locate the eavesdropping device. Various other methods, systems, and computer-readable media are also disclosed.
US10805009B2

An optical modulation apparatus that can adjust modulation timing. A timing adjuster adjusts the modulation timing on the basis of an intensity detected by a light intensity detector, after a data generator respectively generates, as a first data signal and a second data signal, a first test data signal and a second test data signal each having a data string containing a test pattern in which a plurality of continuous marks and a plurality of continuous spaces are alternately repeated, and after a phase adjuster adjusts a phase difference to zero or π.
US10805008B1

An apparatus includes an optical amplifier configured to receive an input optical signal and generate an amplified output optical signal. The optical amplifier includes multiple amplifier stages including at least a first amplifier stage and a second amplifier stage. The apparatus also includes a gain clamp configured to accumulate optical power from the first amplifier stage after an optical power level of the input optical signal drops and provide a first portion of the accumulated optical power to the first amplifier stage to clamp a gain applied by the first amplifier stage. The gain clamp is also configured to provide a second portion of the accumulated optical power to the second amplifier stage to adjust a gain applied by the second amplifier stage. The second amplifier stage is configured to amplify the second portion of the accumulated optical power.
US10805007B2

Embodiments of the present invention disclose an EPON communication method, an ONU, and an OLT. The method includes: generating, by an ONU, a first control frame, where the first control frame includes a first data field, and the first data field includes a bandwidth requirement of the at least one LLID; and sending, by the ONU, the first control frame to an OLT. In addition, the OLT generates a second control frame, where the second control frame includes a second data field, and the second data field includes grant information of the at least one LLID; and the OLT sends the second control frame to the ONU. In the embodiments of the present invention, the first control frame may carry bandwidth requirements of a plurality of LLIDs, so that one first control frame can be used to report bandwidth requirements of a plurality of LLIDs.
US10804991B2

Methods and apparatus are provided for mobility support through beam tracking in the new radio access system. In one novel aspect, one or more beam-sets are configured for fast beam tracking. Each beam-set includes one or more multiple beams or transmit-receive points (TRPs). The UE performs the mobility support through lower layer based on one or more configured beam-sets. The lower layer can be a MAC layer or a PHY layer. In one embodiment, a channel status information (CSI) set and a transmission set are configured. The UE performs CSI measurements on all beams of the CSI set for potential beam tracking and data transmitting and receiving, and control signaling through one or more beams of the transmission set. In another embodiment, the UE further configures a candidate set. The beam-sets can be configured by the network or by the UE.
US10804985B2

The present disclosure relates to an electronic device and communication method. The electronic device comprising a RF link unit radiating a data stream in form of electromagnetic wave radiation onto a phase shifter; a processing circuitry configured to determine an analog precoding matrix; phase shifters, each of which for performing analog precoding on the received signal of the electromagnetic wave radiation according to the determined analog precoding matrix, and an antenna array, each of antenna elements of which transmits the analog precoded signal, wherein the number of the phase shifters is the same as the number of the antenna elements of the antenna array, and the phase shifters and the antenna elements are in one-to-one correspondence.
US10804977B2

The present disclosure relates to an electronic device and communication method. The electronic device used in a first terminal device side of a wireless communication system including: a memory for storing computer instructions; and a processing circuit configured to perform the computer instructions stored thereon for: measuring a first reference signal subject to a first precoding from a base station, wherein a first precoding matrix for the first precoding is determined by the base station based on respective channel states fed back from a plurality of candidate terminal devices, wherein the first terminal device is included in the plurality of candidate terminal devices; determining an interference of other terminal devices in the plurality of candidate terminal devices to the first terminal device based on a result of the measuring and information about the first precoding; and feeding back information indicating the interference to the base station.
US10804975B2

A method for a transmitter of a mobile communication system transmitting and receiving signals according to an embodiment of the present specification comprises the steps of: transmitting to a receiver system information for transmitting a signal to the receiver including a connection between a wireless resource and a transmitting antenna; transmitting a reference signal to the receiver based on the system information; and receiving from the receiver feedback information generated based on the reference signal. According to an embodiment of the present specification, in a beamforming transmission method of a mobile communication system, a transmitter can determine whether to perform digital pre-coding without advance information from a receiver and can consequently perform a transmission, and can thereby perform lower-overhead and efficient signal transmission/reception.
US10804972B2

A satellite communications apparatus including an antenna assembly having: a directional antenna arranged to receive signals from and transmit signals to a satellite, an electronic motor arranged to adjust at least one of a position and orientation of the directional antenna; and a sensor arranged to detect the position and orientation of the directional antenna. An RF interface, in communication with the antenna, is arranged to receive the received signals from the directional antenna. A controller, in communication with the RF interface, is arranged to: i) measure a gain associated with the received signals during a first time interval, ii) receive the detected position and orientation of the directional antenna during the first time interval, and iii) send a control signal to the electronic motor to adjust the position and orientation of the directional antenna to limit a decrease in the measured gain to less than a threshold.
US10804969B1

Embodiments of the present invention provides a microcontroller unit for a short-range wireless transmission (such as IR or BLE) in a one-cell battery powered remote control comprising a voltage doubler for increasing an input voltage provided by the one-cell battery to increase distance of wireless transmission when the remote control is in use and for maintaining original output voltage when the remote control is idle; and a voltage detector for detecting voltage increased by the voltage doubler. The voltage doubler includes an oscillator, a logic control unit and multiple transistors with external capacitors connected to each other. When the voltage doubler is activated, the logic control unit turns on the multiple transistors on and off sequentially to increase the input voltage, at least twice, provided by the one-cell battery to increase the distance of the wireless transmission, and when the voltage doubler is deactivated, the original output voltage is maintained.
US10804958B2

Methods, systems, computer-readable media, and apparatuses for providing dynamic block control of multi-bitrate video are described. In some embodiments, a computing device may determine transcoder conditions of a transcoder independent of a client device. The computing device may dynamically adjust a block size of one or more blocks of a stream based on the transcoder conditions. In some embodiments, a computing device may receive a stream. The client device may package the stream into a first packaged stream having a first block size and a second packaged stream having a second block size less than the first block size. In some embodiments, a client device may determine an actual minimum number of blocks to buffer prior to initiating content playback based on a received predicted network and/or transcoder quality of service forecast. The client device may adjust its preset minimum number of blocks to the actual minimum number of blocks.
US10804954B2

Systems of multiple transmitters and multiple receivers, allowing receivers to identify the transmitters from which reference signals originate. Identification is according to frequency offset patterns based on transmitter and local oscillator frequencies, and is particularly suitable in radio-frequency integrated-circuit devices and MIMO radar systems.
US10804946B2

A low-power wake-up receiver. The receiver includes a transformer/filter resonating at a pre-selected frequency to realize passive RF voltage gain. A pseudo-balun envelope detector is coupled to an output of the transformer filter. A comparator or other quantizer is coupled to an output of the active pseudo-balun envelope detector (ED) for comparing the ED output to a comparison threshold voltage. The pseudo-balun envelop detector can be an active detector. The pseudo-balun detector can also be a passive detector.
US10804933B2

A quasi-cyclic low density parity check (QC LDPC) code rate matching method is disclosed. According to the rate matching method in the present disclosure, the minimum lifting value can be selected from among lifting values by which a codeword longer than a target code block can be generated. A coding gain through retransmission can be acquired by generating the codeword that is longer than the target code block. In addition, by selecting a lifting value of a proper magnitude, rate matching for information bit sequences of various lengths can be performed.
US10804923B2

A superposition operation circuit and a float-voltage digital-to-analog conversion circuit to superpose analog elements according to an indirect current superposition principle, where a voltage follower is implemented using a first operational amplifier such that an output end of the voltage follower is clamped to a voltage that is input to a positive-phase input end, namely, a to-be-superposed analog element. Then a current generation circuit converts a voltage signal to a current signal, a voltage drop for the current signal is generated on a first resistor coupled to an output end of the first operational amplifier, and the voltage drop is superposed on a voltage signal output by the first operational amplifier.
US10804921B1

A family of current mode analog to digital converters, or TiADC, utilizing methods, circuits, and apparatuses, are disclosed with the following benefits: (1) There are normal and random non-systematic mismatch between devices in silicon manufacturing, that introduce non-linearity in current mode analog to digital converter's, or iADC, reference network. The iADC's linearity is improved by utilizing a thermometer current mode signal conditioning method, SCM. Successive applications of the SCM effectuates a segmented current reference network to function like a thermometer network, which operates based on the function of summation. Having a TiADC with a thermometer reference network, where current segments are summed or accumulated incrementally, would inherently reduce the impact of statistical distribution of component's random mismatch on the iADC's non-linearity. Accordingly, linearity of TiADC can be improved by the square root of the sum of the square of mismatch errors of the number of segmented current references in the thermometer network. (2) speed is improved by operating the TiADC in current mode, which is inherently faster. (3) voltage swings in current mode are small, which enables he iADC to operate at lower power supply voltages. (4) The TiADC can operate in subthreshold and at very low currents, which lower powers consumption. (5) the TiADC is asynchronous. Being clock free, TiADC has lower dynamic power consumption with reduces digital system noise. (6) the signal conditioning method or SCM utilized in TiADC provides concurrent functions of analog differencing and digital comparison. This trait enhances the dynamic response of iADC, wherein the digital output throughput accuracy degrades gradually and not abruptly as a function of increasing frequency of iADC's input signal. (7) No passive devices, such as capacitors or resistors, are required for the TiADC. (8) TiADC can be fabricated on low cost mainstream standard digital CMOS processes.
US10804915B2

An atomic oscillator includes: a light emitting element; a temperature control element that controls a temperature of the light emitting element; an atomic cell which is irradiated with a light from the light emitting element and in which an alkali metal atom is contained; a light detection element that detects a light transmitted through the atomic cell; an oscillator that outputs an oscillation signal; a wave detection circuit that detects a wave of a signal, which is based on an output of the light detection element, using the oscillation signal of the oscillator, and outputs a wave detection signal; and a drive circuit that includes a constant current circuit generating a current of a specified value for driving the light emitting element and superimposes a modulation current, which is based on the oscillation signal of the oscillator, on the current to output a drive current to the light emitting element.
US10804913B1

The present invention relates to data communication and electrical circuits. More specifically, embodiments of the present invention provide a clock and data recovery (CDR) architecture implementation for high data rate wireline communication links. In an embodiment, a CDR device includes a phase detector, a loop filter, and a fractional-N PLL. The fractional-N PLL generates output clock signal based on output of the loop filter. There are other embodiments as well.
US10804910B2

A circuit device includes a phase comparison circuit that performs phase comparison between a reference clock signal and a feedback clock signal, a control voltage generation circuit that generates a control voltage, a voltage controlled oscillation circuit that generates a clock signal, a dividing circuit that divides the clock signal and outputs the feedback clock signal, a processing circuit that sets a division ratio of the dividing circuit, a first register in which slope information of a waveform signal for spreading the frequency of the clock signal is set, and a second register in which amplitude information of the waveform signal is set. The processing circuit generates a waveform signal value based on the slope information and the amplitude information set in the first and second registers, and outputs division ratio data based on the waveform signal value and the division ratio setting value to the dividing circuit.
US10804905B2

Using a burn-in operational amplifier (opamp) for a phased locked loop (PLL) regulator including activating a voltage stress mode for an integrated circuit comprising a PLL regulator for a PLL, wherein the PLL regulator comprises thin-oxide transistors, and wherein activating the voltage stress mode for the integrated circuit comprises applying an elevated voltage to an input of the PLL regulator; and enabling, during the voltage stress mode, a burn-in opamp coupled to the input of the PLL regulator, wherein enabling the burn-in opamp bias the input of the PLL regulator to a voltage lower than the elevated voltage.
US10804897B2

A touch-sensitive keypad control device for use with a controlled device is provided. The touch-sensitive keypad control device includes: a housing, a touch control device disposed in the housing, and a keypad device uncovered from the housing and disposed above the touch control device. The touch control device generates a first command for controlling the controlled device in response to a gesture of a user relative to the keypad device, and the keypad device generates a second command for controlling the controlled device in response to a level change of the keypad device relative to the housing in response to a pressing operation of a user.
US10804887B1

A system includes: 1) a buffer circuit; 2) circuitry coupled to an input of the buffer circuit; 3) a load coupled to an output of the buffer circuit; and 4) a clamp circuit coupled between an input of the buffer circuit and the output of the buffer circuit. The clamp circuit includes: 1) a bipolar junction transistor (BJT); 2) a first resistor with a first end coupled to a base terminal of the BJT and with a second end coupled to a collector terminal of the BJT; and 3) a second resistor with a first end coupled to the collector terminal of the BJT and with a second end coupled to the input of the buffer circuit. The second resistor is between an output of the circuitry and the input of the buffer circuit.
US10804886B2

Some embodiments of the invention include a pre-pulse switching system. The pre-pulsing switching system may include: a power source configured to provide a voltage greater than 100 V; a pre-pulse switch coupled with the power source and configured to provide a pre-pulse having a pulse width of Tpp; and a main switch coupled with the power source and configured to provide a main pulse such that an output pulse comprises a single pulse with negligible ringing. The pre-pulse may be provided to a load by closing the pre-pulse switch while the main switch is open. The main pulse may be provided to the load by closing the main switch after a delay Tdelay after the pre-pulse switch has been opened.
US10804880B2

A device structure comprises an acoustic wave transducer comprising a component. The component comprises a piezo-electric material. Component electrodes are disposed on the component and connection posts extend away from the component. Each of the connection posts is electrically connected to one of the component electrodes. The component has a center and a length greater than a width and, for at least one pair of the connection posts, a distance between the connection posts and the center is less than one quarter of the length.
US10804878B2

There are provided an acoustic resonator module, and a method of manufacturing the same. An acoustic resonator module includes a resonating part disposed on a substrate and an inductor electrically connected to the resonating part, and having at least a portion disposed to be spaced apart from the substrate.
US10804877B2

An acoustic resonator structure comprises: a substrate comprising a cavity having a plurality of sides; a first electrode disposed over the cavity; a first connection portion that connects to the first electrode over only one side of the plurality of sides of the cavity; a piezoelectric layer disposed over at least a portion of the first electrode; a second electrode disposed over the piezoelectric layer; and a second connection portion that connects to the second electrode over only the one side of the plurality of sides. The second connection portion does not overlap the first connection portion, and a contacting overlap of the first electrode, the piezoelectric layer and the second electrode provides an active area of the acoustic resonator.
US10804871B1

The present subject matter provides technical solutions for the technical problems facing cryogenic ion traps by providing a cryogenic radio-frequency (RF) resonator that is compact, monolithic, modular, and impedance-matched to a cryogenic ion trap. The cryogenic RF resonator described herein is power-efficient, properly impedance-matched to the RF source, has a stable gain profile, and is compatible with a low temperature and ultra-high vacuum environment. In some examples, the gain profile is selected so that the cryogenic RF resonator acts as a cryogenic RF amplifier. This cryogenic RF resonator improves the performance of ion traps by reducing or minimizing the heat load and reducing or minimizing the unwanted noise that may erroneously drive trapped ions. These features of the present subject matter improve the performance of atomic clocks and mass spectrometers, and especially improve the performance of trapped ion quantum computers.
US10804863B2

System includes first and second amplifying circuits that are configured to receive input signals having a fundamental frequency. The system also includes first and second transmission lines that are configured to receive voltage and current waveforms from the first and second amplifying circuits, respectively. The system also includes a capacitively-compensated transmission line resonator (CC-TLR) that is configured to be electrically connected to a load having a load impedance. The CC-TLR is configured to receive and combine RF power from the first and second transmission lines. The CC-TLR has a compensation capacitance that causes the CC-TLR to present an open circuit at the fundamental frequency and present a short circuit at harmonic frequencies. Optionally, a characteristic impedance (Z0) of the first and second transmission lines and a load impedance (ZL) are unequal, and the first and second transmission lines cause a load impedance transformation.
US10804858B2

An apparatus comprises an amplifier circuit and a bias circuit. The bias circuit is generally configured to dynamically adjust a bias voltage reference at a bias node connected to one or more input transistors of the amplifier circuit to maintain a low baseband impedance.
US10804857B2

An amplifier typically exemplified by a TIA is realized that provides an optimal band characteristic, that reduces the possibility of the oscillation, and that achieves a reduced dispersion of the band characteristics. An amplifier for amplifying an electric signal, comprising: a first buffer for amplifying the electric signal; a filter that is connected to an output of the first buffer and that includes a parallel circuit consisting of an inductor and a first capacity; and a second buffer connected to an output of the filter.
US10804843B2

Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
US10804832B2

The invention relates to a control system and to a method for operating a synchronous machine. In particular, the synchronous machine is controlled on the basis of a rotor angle that was determined by means of a sensorless rotor-angle detection method. In order to check the reliability of the rotor angle determined without sensors, the difference value between the rotor inductances in the q direction and in the d direction is monitored. If said difference value falls below a limit value, this indicates possible instabilities in the determination of the rotor angle.
US10804809B1

A power converter apparatus includes a plurality of inverters where each inverter receives power from a separate DC voltage source. The apparatus includes a magnetic structure. The magnetic structure includes a primary winding for each inverter, where each primary winding is connected to an output a corresponding inverter and each primary winding is coupled to a magnetic core, and a single secondary winding coupled to one or more magnetic cores to which each primary winding is coupled. The apparatus includes a rectifier that receives an AC waveform from the secondary winding and that rectifies the AC waveform and is connected to a load at output terminals. The secondary winding includes a secondary bus and the one or more magnetic cores of the magnetic structure that are arranged to provide a pathway for the secondary winding that minimizes a length of the secondary winding.
US10804807B2

An apparatus for zero voltage switching includes a ZVS assist circuit connected between a switching node and a negative connection of a converter. The switching node is located between first and second switches of a switching leg of the converter. The converter is fed by a constant current source and feeds a constant current load. The ZVS assist circuit includes a ZVS inductance, a first ZVS switch that allows current through the ZVS inductance to change a voltage of the switching node to a condition for zero voltage switching of the first switch of the switching leg, and a second ZVS switch that allows current through the ZVS inductance to change the voltage of the switching node to a condition for zero voltage switching of the second switch of the switching leg. Current through the first ZVS switch is opposite current through the second ZVS switch.
US10804803B1

A DC-DC converter that provides both buck and boost voltages using a single inductor is disclosed. The DC-DC converter includes an H-bridge circuit having an inductor having first and second terminals, and a number of switches. The switches include a first switch coupled between the second inductor terminal and a boost voltage node, a second switch coupled between the second inductor terminal and a buck voltage node, and a third switch coupled between the first inductor terminal and an input voltage node. A control circuit is coupled to activate the switches in accordance with a number of different phases such that a buck voltage (e.g., less than the input voltage) is provided on the buck voltage node, while a boost voltage (e.g., greater than the input voltage) is provided on the boost voltage node.
US10804794B2

A charge pump controller for controlling a charge pump adapted to convert an input voltage into an output voltage with a conversion ratio is presented. The charge pump is operable in a plurality of modes corresponding to different conversion ratios. The controller includes a first selector for selecting a mode of operation of the charge pump. The first selector comprises a first input for coupling to a voltage supply; and a second input for coupling to a source signal. The first selector identifies a target value of the output voltage. The selector calculates a product of the conversion ratio and the input voltage. The selector compares the product with the target value and selects a mode of operation of the charge pump by increasing or decreasing the conversion ratio based on the comparison. The selector maintains the conversion ratio for a length of time before decreasing the conversion ratio.
US10804790B2

In some examples, a controller is configured to control a primary-side switch in a power converter circuit, and the controller includes a first node configured to receive a first signal indicating a current or a voltage through a primary side of a transformer of the power converter circuit. The controller also includes a second node configured to receive a second signal indicating a current or a voltage through a primary-side switch of the power converter circuit. The controller further includes processing circuitry configured to determine a target value for the second signal based on the first signal and generate the control signal for the primary-side switch based on the target value for the second signal.
US10804788B2

The invention refers to an electric machine (300) and a hand guided and/or hand held electric power tool (1), comprising an electric motor (15), a working element (9) and a gear arrangement functionally located between the motor (15) and the working element (9). The electric motor (15) has a stator (100) with electrical windings (102) and a rotor (104) with permanent magnets (106) mounted thereon. It is suggested that the gear arrangement is a magnetic gear arrangement (20) using magnetic fields to transmit the rotational movement and torque from the motor (15) to the working element (9), the magnetic gear arrangement (20) comprising three components (51, 52, 54) rotatable in respect to one another, with a first component (52) generating a first magnetic field with a first number (n_input) of magnetic pole pairs (56), a second component (54) generating a second magnetic field with a second number (n_output) of pole pairs (58), and a third component (51) having a third number (n_pp) of ferromagnetic pole pieces (50). The rotor (104) of the motor (15) extends in an axial direction beyond the stator (100) of the motor (15). The magnetic pole pairs (56) are provided on the extended part (108) of the rotor (104) in order to make the extended part (108) together with the magnetic pole pairs (56) form the first rotating component (52) of the magnetic gear arrangement (20).
US10804754B2

A permanent magnet embedded motor includes a cylindrical stator core disposed on an inner side of a cylindrical frame and configured by stacking a first annular core and a second annular core disposed to be adjacent to the first annular core in an axial direction of the frame, and a rotor disposed on an inner side of the stator core. The second annular core is fixed to the first annular core by using swaging portions formed in the second annular core, and adjacent first yokes are in contact with each other, while adjacent second yokes are separated from each other.
US10804753B2

A rotor core (21) in a permanent magnet type rotating electric machine (1) is formed by laminating a plurality of plate materials (21A), (21B), (21C), and (21D) and includes one or a plurality of center bridges (26) formed between adjacent magnet slots (23) to couple an outer peripheral edge (24) and a core portion (25) together in one magnetic pole. Non-magnetic portions (30) are formed at a part or all of the one or the plurality of respective center bridges (26). Insulation films (32) are disposed on surfaces of parts other than regions where the non-magnetic portions (30) are formed on the plurality of respective plate materials (21A), (21B), (21C), and (21D) forming the rotor core (21).
US10804752B2

Method for contactlessly transmitting electrical energy to a load (17) using a transmission system (1), having the steps of: converting alternating current from an alternating current source (4) into direct current using a primary rectifier (5), converting the direct current generated by the primary rectifier (5) into alternating current using a primary inverter (7), changing a primary parameter (di) at a component (38) of a primary part (2) of the transmission system, such that the electrical power consumed by a load (17) is changed as a result, contactlessly transmitting the electrical energy of the alternating current generated by the primary inverter (7) from a primary coil (9) to a secondary coil (12), converting the alternating current generated in the secondary coil (12) into direct current using a secondary rectifier (15), changing a secondary parameter at a component (16) of a secondary part (3) of the transmission system (1), such that the electrical power consumed by the load (17) is changed as a result, supplying electrical energy as direct current to the load (17), wherein an A-efficiency of the contactless transmission of energy with respect to a secondary A-parameter is determined, the secondary parameter is then changed from the secondary A-parameter to at least one secondary B-parameter and a B-efficiency is determined for the at least one secondary B-parameter, and that efficiency with the maximum efficiency is selected from the A-efficiency and from the at least one B-efficiency and this selected maximum efficiency is referred to as C-efficiency, and energy is then contactlessly transmitted with a secondary C-parameter assigned to the C-efficiency as an iteration step for determining the secondary C-parameter.
US10804750B2

A method of measuring a Q-factor in a wireless power transmitter includes charging a capacitor in a LC tank circuit that includes a transmission coil to a voltage; starting a Q-factor determining by coupling the LC tank circuit to ground to form a free-oscillating circuit; monitoring the voltage across the capacitor as a function of time as the LC tank circuit oscillates; and determining the resonant frequency and the Q-factor from monitoring the voltage.
US10804747B1

A turret system includes a base subassembly and a turret subassembly. The base subassembly includes a base housing and a first turret mounting interface coupled to the base housing. The base subassembly also includes a first antenna configured to wirelessly transmit an electrical power signal. The turret subassembly includes a turret housing and a second turret mounting interface coupled to the turret housing. The second turret mounting interface is configured to rotate with respect to the first turret mounting interface, thereby rotating the turret housing with respect to the base housing. The turret subassembly further comprises a second antenna configured to wirelessly receive the electrical power signal from the first antenna.
US10804745B2

A non-contact power reception apparatus is provided, in which a power reception coil for a charging system and a loop antenna for an electronic settlement system are mounted on a battery pack and a cover case of a portable terminal such that the power reception coil is arranged in the center thereof and the loop antenna is disposed outside the power reception coil, so that a mode of receiving a wireless power signal and a mode of transmitting and receiving data are selectively performed, thereby preventing interference from harmonic components and enabling non-contact charging and electronic settlement using a single portable terminal. A jig for fabricating a core to be mounted to the non-contact power reception apparatus is provided.
US10804742B2

A wireless power receiver includes one or more tunable capacitors in parallel with an inductor. The wireless power receiver adapted to receive an induced voltage input at the inductor due to a magnetic field generated by a wireless power transmitter. The rectifier has an output with a rectified voltage and a rectified current. A controller has a first input for receiving a signal representative of the rectified voltage and a first output for supplying an adjustment signal to the tunable capacitor. The controller includes a processor coupled to the first input and is configured to operate on the signal representative of rectified voltage to produce a desired capacitance value for capacitor and provide the adjustment signal determined so as to adjust a capacitance value of capacitor to the desired capacitance value.
US10804735B2

Techniques for providing an uninterruptible power supply are disclosed. An example system includes three single-phase Uninterruptible Power Supplies (UPSs) and an adapter. The adapter is to receive three-phase AC power, and separate the three-phase AC power into three separate single-phase outputs. Each single-phase output is coupled to an input of one of the three single-phase UPSs. An output of each one of the single-phase UPSs is coupled to one of three single-phase inputs of the adapter, and the adapter is to combine the three single-phase inputs into a single three-phase output.
US10804733B2

A power supply system that is mountable on a vehicle has a lead-acid storage battery connected to an electrical load, a lithium-ion storage battery having different charge and discharge characteristics form the lead-acid storage battery, and connected in parallel with the lead-acid storage battery with respect to the electrical load, a power generator configured to charge the lead-acid storage battery and the lithium-ion storage battery, and a controller configured to drive the power generator based on a relationship between a discharge current of the lead-acid storage battery and a discharge current of the lithium-ion storage battery.
US10804729B2

A wireless power transmitter which is capable of charging a plurality of wireless power receivers is discussed. The wireless power transmitter includes a plurality of coil cells, a main half-bridge inverter to which a main pulse signal is applied, a plurality of sub half-bridge inverters to which a first sub pulse signal or a second sub pulse signal is applied, at least one current sensor configured to monitor a current, and a communications and control unit configured to control the pulse signals applied to the main half-bridge inverter and sub half-bridge inverters and communicate with the wireless power receivers.
US10804723B2

A dual-output port charging circuit includes a primary switching circuit, a secondary first switching circuit, a secondary second switching circuit, a transformer connected to the three circuits, and a controller. The controller receives and samples an output voltage and an output current of the secondary second switching circuit, the output voltage and the output current are compared with a reference value, and a compensation is made, so as to eventually control an on-off time of a switch in the primary switching circuit; and the controller receives and samples an output current of the primary switching circuit, a zero-cross delay is calculated through a zero detection, so as to control an on-off time of a rectification switch in the secondary second switching circuit. One controller is used to flexibly control voltages of two direct current output ports with accurate voltage regulation and strong antijamming capability.
US10804722B2

An object of the present invention is to provide a control device and a control method for a storage battery, which calculates an appropriate maximum allowable input/output power that suppresses deterioration of the storage battery while suppressing deterioration of power performance of a vehicle when a current is continuously charged or discharged.When it is detected that charging or discharging is continuously performed over a predetermined duration time with respect to the maximum allowable charge power and the maximum allowable discharge power which can be input and output during the calculated predetermined duration time, the value of the maximum allowable charge power or the maximum allowable discharge power communicated to a vehicle controller on the basis of the state of charge or discharge is reduced based on the time during which charging or discharging is actually continued.
US10804708B2

A wireless power transmission apparatus includes: a transmitter that wirelessly transmits electric power; and a receiver that can receive, in a resonant relation with the transmitter, a transmission signal including the electric power transmitted from the transmitter, wherein the receiver includes a frequency variable unit that can change a reception resonant frequency; a detecting unit that detects reception power; and a control unit that controls the frequency variable unit to perform frequency adjustment such that the reception power detected by the detecting unit is maximized.
US10804706B2

A solar cell management system for increasing the efficiency and power output of a solar cell and methods for making and using the same. The management system provides an electric field across one or more solar cells. The imposed electric field exerts a force on both the electrons and holes created by light incident on the solar cell and accelerates the electron-hole pairs towards the electrodes of the solar cell. The solar cell management system considers variations in configuration of solar cells to maximize the power output of the solar cells. The accelerated electron-hole pairs have a lower likelihood of recombining within the cells' semiconductor's material. This reduction in the electron-hole recombination rate results in an overall increase in the solar cells' efficiency and greater power output.
US10804700B2

The present invention provides a method for forecasting load and managing a control plan for households having electric appliances wherein the control plan determines the activation of the electric appliances at pre-defined control periods. The method comprises the steps of: pre-processing per meter of households historical consumption of electric appliances at control period in relation to time dependent environmental parameters and household profiles and control program parameters, creating forecast model of consumption of each controlled appliance during next control plan period based on said pre-processing enabling to simulate control program parameters according to predefined goals parameter including at least target cost or consumption, determining control plan parameters for incoming control period, based on forecast models using defined goal parameters and sending control instructions to each group member control module based on determined control plan parameters, time dependent parameters and measured environmental parameters within the household.
US10804697B2

A plurality of DC/DC converters in a power converter each converts an output voltage of a corresponding one of DC power sources into a voltage of a different value according to a switching operation and outputs the voltage as converted to a common DC bus. A controller controls the plurality of DC/DC converters to perform the switching operation in different phases. The controller resets the phases in accordance with an operating state of the plurality of DC power sources and the plurality of DC/DC converters.
US10804690B2

An optically communicative battery management system includes a pack controller and one or more module controllers optically coupled to the pack controller. The module controllers may themselves be optically coupled together in series, and communication from an upstream module controller may be relayed through one or more downstream controllers en route to the pack controller. The pack controller may also send an optical signal that is used by the pack controller to determine whether any one or more of the battery modules is experiencing a safety fault, and the communication channel used to transmit that optical signal may, absent any safety faults, be used to multiplex message data to the module controllers.
US10804681B2

A method for manufacturing a spark plug so as to make welded portions uniform. A method, for manufacturing a spark plug having a ground electrode to which a tip is welded, includes: a preparation step of preparing the ground electrode in which a plating layer is formed so as to at least exclude a first portion to which the tip is to be welded; an application step of applying a laser beam or electron beam to the first portion of the ground electrode after the preparation step; and a joining step of joining the tip to the first portion of the ground electrode by resistance welding after the application step.
US10804678B2

An example method of manufacturing a semiconductor device. A first wafer may be provided that includes a first layer that contains quantum dots. A second wafer may be provided that includes a buried dielectric layer and a second layer on the buried dielectric layer. An interface layer may be formed on at least one of the first layer and the second layer, where the interface layer may be an insulator, a transparent electrical conductor, or a polymer. The first wafer may be bonded to the second wafer by way of the interface layer.
US10804674B2

Provided are a saturable absorber including at least one material selected from a group of MXenes, and a Q-switching and mode-locked pulsed laser system using the same.
US10804672B2

A monolithic laser cavity (100, 200, 300, 400) for generating an output series of pulses (37) based on an input pump signal 36. This is achieved by a novel cavity design that utilizes a transparent, low-loss, and near zero-dispersion spacer (38) to form an optical resonator without the use of wave-guiding effects. The pulse forming material (32), optical elements (10-16, 30, 31, 33), and the laser gain medium (34) are in direct contact with the spacer and/or each other without any free-space sections between them. Therefore, the light inside the laser cavity never travels through free space.
US10804667B2

A device for automatically mounting a connector-housing with a contact-part attached to an electrical line includes a holder, a movable-gripper, an alignment-station, a camera, and a control-device. The holder fixes the connector-housing. The movable-gripper holds the contact-part and inserts the contact-part into a cavity of the connector-housing. The alignment-station includes an alignment-gripper that holds the contact-part and rotates the contact-part about a rotation-axis parallel to an insertion-direction. The camera determines an actual-rotational-position of the contact-part held by the alignment-gripper in relation to the rotation-axis. The control-device compares the actual-rotational-position with a predetermined-rotational-position based on the characteristics and arrangement of the connector-housing. The control-device further controls the alignment-gripper to perform a corrective rotational movement based on the result of the comparison.
US10804660B2

An outlet device for hanging on a plate includes a counterweight portion, a hanging portion arranged distant from the counterweight portion, an extending portion having two ends respectively connected to the counterweight portion and the hanging portion, and a power core connected to the counterweight portion. Each of the counterweight portion and the hanging portion has an outlet unit electrically connected to the power core. The outlet device is configured so that the counterweight portion is arranged under the plate and the hanging portion is arranged on the plate, and the hanging portion remains hung on the plate by using a weight distribution of the outlet device, thereby maintaining the outlet device in a static balance state.
US10804650B2

Electrical connector technology is disclosed. In one example, a connector for coupling an electronics sub-assembly to an electronics assembly comprises a connector body having and a sub-assembly interface configured to electrically couple to an electronics sub-assembly. The connector has a circuit board interface configured to electrically couple to a circuit board of an electronics assembly. The connector has at least two rows of contacts configured to electrically couple the circuit board to the electronics sub-assembly. The at least two rows of contacts are aligned offset relative to each other such that any ground contact of one row avoids intersection of a plane in which any ground contact of the other row resides to at least partially cancel row-to-row crosstalk when the at least two rows of contacts are transmitting signals at a predetermined high-speed bit rate.
US10804649B2

Examples disclosed herein relate to a non-conductive member including a surface defining a first hole to mate to a first pin of a terminal and a second hole to mate to a second pin of the terminal and a third pin of the terminal; and a protrusion extending from the surface.
US10804640B2

The electrical connector includes an insulative housing enclosed within a metallic shell unit and retaining a plurality of contacts therein. The housing includes a base and a tongue extending forwardly from the base. Each contact has a contacting section exposed upon the tongue and a leg located outside the housing. The shell unit includes an inner shell attached to the housing, and an outer shell secured to the inner shell and forming a pair of rear mounting legs. The housing forms a rear fixing block holding the pair of mounting legs in position for alignment with corresponding holes in the printed circuit board to which the legs of the contacts are soldered.
US10804637B2

A connector-assembly includes a connector-housing and a primary-lock-reinforcement device. The connector-housing retains electrical-terminals within terminal-cavities defined by a terminal-tower disposed within the connector-housing. The electrical-terminals mate with one or more corresponding electrical-terminals along a mating-axis of the connector-assembly. The primary-lock-reinforcement device slideably engages the terminal-tower and is moveable from a shipping-position to a pre-stage-position. The primary-lock-reinforcement device has a base and a skirt. The primary-lock-reinforcement device has a post extending beyond an inner-surface of the skirt that engages a corresponding L-shaped slot defined by an outer-surface of the terminal-tower. The corresponding L-shaped slot has a first-leg and a second-leg. The first-leg defines a wall configured to inhibit a movement of the primary-lock-reinforcement device along the mating-axis. When the primary-lock-reinforcement device is moved from the shipping-position to the pre-stage-position, the post aligns with an entrance to the second-leg, thereby enabling the primary-lock-reinforcement device to move from the pre-stage-position to a full-stage-position.
US10804632B2

A connection terminal in which alloy particles made of an intermetallic compound containing tin and palladium are exposed on an outermost surface of a contact configured to electrically contact a mating conductor and distributed on a surface of a base material at least in the contact, wherein: a tin part made of pure tin or an alloy having a higher ratio of tin to palladium than the intermetallic compound is not exposed on a plane passing through a point where a height of the alloy particles from the surface of the base material is highest.
US10804627B2

A connector system includes a cage with an intermediate section. The cage support a connector and the resulting connector system includes an upper port and a lower port. A heat sink is provided in the intermediate section that is configured to cool a module inserted into the lower port. Apertures can allow air to flow through the connector system so as to allow for improved cooling by more directly cooling the inserted module. The heat sink can be urged into the lower port by a biasing element.
US10804625B2

A terminal includes a connecting portion, a cover fixing portion configured to fix a cover of an electric wire, and a conductor fixing portion configured to fix a conductor core wire exposed from the cover of the electric wire. The conductor fixing portion has a holding portion which has an insertion portion and is configured to hold at least one side of the conductor core wire inserted into the insertion portion, and an elastic deformation portion which does not allow the conductor core wire to be inserted through the insertion portion by interference between the elastic deformation portion and the conductor core wire when the elastic deformation portion is at an initial position and which allows the conductor core wire to be inserted through the insertion portion when the elastic deformation portion is at a deformed position.
US10804619B2

An antenna array of a high frequency antenna device includes a plurality of subarrays having the same arrangement. Each subarray includes antennas arranged in rows. Any two adjacent antennas of each of the subarrays respectively have two central points spaced apart from each other by a first interval, and any two adjacent antennas respectively belonging to two of the subarrays respectively have two central points spaced apart from each other by a second interval equal to the first interval. The antenna array is operated in at least one of operation modes, and the operation modes include: any subarray is wirelessly communicated with an external electronic device spaced apart from the corresponding subarray by a first distance; and at least two adjacent subarrays are jointly cooperated to wirelessly communicate with an external electronic device spaced apart from the corresponding subarrays by a second distance greater than the first distance.
US10804609B1

Apparatuses, methods, and systems for an antenna element are disclosed. For an embodiment, the antenna element includes a feed line layer, a first substrate adjacent to the feed line layer, a ground layer adjacent to the first substrate, a second substrate adjacent to the ground layer, and a third layer adjacent to the second substrate. The feed line layer includes a conductive fork-shape that includes a conductive handle adapted to be electrically connected to a center conductor of a coaxial line, a conductive cross-section that crosses an end portion of the conductive handle, and a plurality of conductive fingers. For an embodiment, a rectangular slot is formed in the ground layer, wherein a length of the rectangular slot is perpendicular to the conductive handle. For an embodiment, the third layer includes four parasitic elements, wherein each parasitic element is electrically connected to the ground layer through a shorting via.
US10804608B2

An electronic device is provided. The electronic device includes a housing that has a first plate facing a first direction, a second plate facing a second direction and opposite to the first plate, and a lateral member surrounding a space between the first plate and the second plate. The electronic device further includes an antenna structure disposed to be substantially parallel to the second plate in the space, and including at least one antenna element disposed to face the second plate. Also, the electronic device includes a dielectric disposed, in the space, to overlap, at least in part, with the antenna structure without exceeding a half area of the antenna structure when the second plate is viewed from above, and a wireless communication circuit configured to form a directional beam, at least in part, through the at least one antenna element.
US10804602B2

A 5G MIMO antenna system includes at least four antenna units which are arrayed at intervals. Each antenna unit includes a first branch and a second branch, wherein the first branch is of an inverted-U structure, and two ends of an opening of the first branch are grounded; the second branch is located in an area defined by the first branch and is a monopole branch, and a feed point is arranged at an end, close to the opening of the first branch, of the second branch. The first branches and the second branches generate two different resonances, so that the 5G antenna system has a broadband operation. Meanwhile, the 5G MIMO antenna system has the characteristics of being small in size, good in isolation and broad in frequency band.
US10804600B2

Methods and systems for producing magnetic walls for use in a switchable or activated non-reciprocal antenna array are presently disclosed. The non-reciprocal antenna array includes a plurality of omni-directional antennas linearly aligned with a phase center of each omni-directional antenna antennas on a line. Each antenna of the plurality of omni-directional antennas has an antenna rotation respective to the line. The array also includes an antenna spacing between the antennas equaling 360 degrees divided by a quantity of antennas in a full operational wavelength. Additionally, the array includes a set of antenna feeds corresponding to one feed for each antenna. The set of antenna feeds is configured to selectively enable or disable the plurality of antennas. When the plurality of omni-directional antennas are enabled, the array has a composite radiation pattern in having a maximum in one direction perpendicular to the line and a minimum in an opposite direction.
US10804593B2

A mobile device includes a body, an antenna structure, and a floating radiation element. The body includes a frame and a housing. The frame is positioned on a first plane. The housing includes a parallel region and a cutting retraction region. The parallel region is positioned on a second plane which is parallel to the first plane. The floating radiation element is adjacent to the antenna structure, and is configured to enhance the radiation efficiency of the antenna structure. The antenna structure has a first vertical projection on the housing, and the first vertical projection is inside the parallel region. The floating radiation element has a second vertical projection on the housing, and the second vertical projection is inside the cutting retraction region. The frame is at least partially made of a nonconductive material. The housing is at least partially made of a conductive material.
US10804591B1

Disclosed herein are implementations of devices and methods for side mounting of microelectromechanical systems (MEMS) transducers on tapered horn antennae. A hole is made in a sidewall of a tapered horn antenna, where the hole is substantially cylindrical, tapered and the like. In an implementation, an internal port opening of a MEMS microphone is aligned with the hole and attached to the sidewall of the tapered horn antenna. In an implementation, the hole is tapered with a diameter at one end, either the same or slightly larger than the diameter of the port opening of the MEMS microphone and a larger diameter at another end of the hole. In an implementation, a tube is used to connect the internal port opening of the MEMS antenna to the hole in the tapered horn antenna. In an implementation, the tapered horn antenna may have multiple holes, each having its respective MEMS transducer.
US10804590B2

To provide excellent reception performance on a narrow area of an automotive window glass, it is provided an antenna to be arranged on a window glass of a vehicle, the antenna comprising: a core-side power feeding unit; an earth-side power feeding unit; a first element extending from the core-side power feeding unit; and a second element extending at an angle of approximately 90 degrees with respect to the first element from the core-side power feeding unit, the first element having a length of 3αλ/4+δ and the second element having a length of αλ/4−δ, or the first element having a length of 3αλ/4−δ and the second element having a length of αλ/4+δ, where λ refers to a wavelength of a reception frequency, α refers to a wavelength shortening rate of glass, and δ refers to an offset length for each of the first element and the second elements.
US10804584B1

Systems, methods, and devices for diverting surface current on a display panel support plate are provided. An electronic transceiver device including a display panel may include a display back plate and a support plate, such that the support plate is disposed beneath the display back plate. The support plate may include an array of slots etched into the support plate, such that the array of slots may be used and positioned to divert an electromagnetic field on the support plate to redirect propagation of the surface current towards ground pins located on the display panel housing.
US10804574B2

A battery charger and method is disclosed for detecting when a battery has a low state of health while simultaneously charging or maintaining the battery. A battery charger includes a processor; a non-transitory memory device; a power management device to receive an input power and to output a charging current; a pair of electrical conductors to electrically couple with a battery, and a display electrically coupled to the processor. The display being configured to indicate a bad battery indicator when the battery has a low state of health and whether the battery is good to start.
US10804573B2

Provided is a battery comprising an iron electrode and an electrolyte comprised of sodium hydroxide, lithium hydroxide and a soluble metal sulfide. In one embodiment, the concentration of sodium hydroxide in the electrolyte ranges from 6.0 M to 7.5 M, the amount of lithium hydroxide present in the electrolyte ranges from 0.5 M to 2.0 M, and the amount of metal sulfide present in the electrolyte ranges from 1 to 2% by weight.
US10804561B2

Disclosed are a clamping device and a battery module comprising the same, the clamping device being suitable for reducing the number of screw coupling portions of long bolts at a lower plate, a battery stack, and an upper plate, and for securing, in a balanced manner, the battery stack, the lower plate and the upper plate by means of the long bolts. The clamping device according to the present invention comprises: a support; and pressing parts respectively protruded from one end and the other end of the support, wherein the support and the pressing parts define a bent part along the central portion of the outer circumference while forming a band shape, and the pressing parts include locking holes which intersect with the bent portion.
US10804559B2

The present application relates to a separator and a battery comprising the same. A separator according to an exemplary embodiment of the present application includes: a porous substrate; and a first bonding layer pattern provided on at least one surface of the porous substrate, in which each pattern constituting the first bonding layer pattern is a pattern including a second bonding layer pattern having an aperture ratio of 5% or more and 40% or less.
US10804556B2

The invention relates to a fuel cell stack, a fuel cell system, and a vehicle having such a fuel cell system. The fuel cell stack comprises a stack of membrane electrode assemblies and bipolar plates arranged in alternation between two end plates and comprises main supply channels for supplying and discharging operating media for the fuel cell stack which main supply channels extend through the stack in the stacking direction of the stack. It is provided that means for retaining particles be provided in at least one of the main supply channels.
US10804553B2

A fuel cell system according to one embodiment performs refresh control of an electrode catalyst of a fuel cell, by reducing a stack voltage as a voltage of the fuel cell to a refresh voltage at which the electrode catalyst is activated. The system includes the fuel cell that generates electric power by an electrochemical reaction using fuel gas and oxidation gas, a stack voltage sensor that sensors the stack voltage, and a controller that controls power of the fuel cell. When a high load demand that makes the stack voltage lower than a given voltage is made on the fuel cell, the controller causes the fuel cell to deliver power commensurate with the high load demand, and performs refresh control when the stack voltage becomes lower than the given voltage through the above control.
US10804549B2

Provided are: a power generation system that can generate electric power efficiently with a fuel cell; and a method for operating said power generation system. This power generation system comprises: a fuel cell including a plurality of unit fuel cell modules; a gas turbine; various lines for circulating fuel gas, air, discharged fuel gas, and discharged air between the fuel cell and the gas turbine; and a control device. The control device determines the number of said unit fuel cell modules to be operated on the basis of the required power generation amount, and operates the determined number of said unit fuel cell modules.
US10804547B2

The power generation system includes a fuel-cell subsystem having a fuel-cell configured to generate an electrical power. The power generation system further includes a power electronics subsystem electrically coupled to the fuel-cell subsystem and configured to process at least a portion of the electrical power generated by the fuel-cell subsystem. The power generation system also includes a first conduit fluidly coupled to the power electronics subsystem and configured to supply at least a portion of a fuel stream to the power electronics subsystem. The power electronics subsystem is configured to heat the portion of the fuel stream to form a pre-heated fuel stream. Moreover, power generation system includes a second conduit fluidly coupled to the power electronics subsystem and the fuel-cell subsystem and configured to supply the pre-heated fuel stream to the fuel-cell subsystem. The fuel-cell is configured to generate the electrical power using the pre-heated fuel stream.
US10804544B2

A gas diffusion electrode substrate that is used in a fuel cell and is constituted by an electrode substrate and microporous parts, in which a microporous part (A) is formed on one surface of the electrode substrate with a thickness in the range of 10 μm or more and 60 μm or less, and in the gas diffusion electrode substrate, the pore volume of pores with a pore size of 0.1 μm or more and less than 10 μm is within the range of 0.9 times or more and 5 times or less of the pore volume of pores with a pore size of 10 μm or more and less than 100 μm.
US10804543B2

The present invention provides a method of producing ternary metal-based nanowire networks. The method comprises combining an aqueous mixture of a platinum hydrate, a ruthenium hydrate, and an iron hydrate with a solution of hexadecyltrimethylammonium bromide in chloroform to form an inverse micellar network; adding a reducing agent to reduce metal ions within the inverse micellar network; and isolating the nanowires. The relative amounts of the platinum, ruthenium and iron in the mixture correlate to the atomic ratio of the platinum, ruthenium and iron in the ternary nanowires. The diameters of the ternary nanowires are from about 0.5 nm to about 5 nm.
US10804540B2

A bipolar plate can include at least one resin selected from the group consisting of acrylonitrile butadiene styrene (ABS), polyphenylsulfone, a polymer resistant to sulfuric acid, and combinations of any thereof. The bipolar plate can further include conductive fibers comprise amount of from about 20% to about 50% by volume.
US10804536B2

Substituted λ-MnO2 compounds are provided, where a portion of the Mn is replaced by at least one alternative element. Electrochemical cells incorporating substituted λ-MnO2 into the cathode, as well as methods of preparing the substituted λ-MnO2, are also provided.
US10804529B2

An electrode material including a carbonaceous-coated electrode active material having primary particles of an electrode active material and secondary particles that are aggregates of the primary particles, and a carbonaceous film that coats the primary particles of the electrode active material and the secondary particles that are the aggregates of the primary particles, in which a proportion of a volume of micropores having a micropore diameter of 50 nm or less in a volume of micropores having a micropore diameter of 300 nm or less, which is obtained using a nitrogen adsorption method, is 40% or more.
US10804526B2

The present invention relates to the technical field of rechargeable batteries and, in particular, to an electrode member, an electrode assembly and a rechargeable battery. The electrode member of the present invention includes an electrode body. The electrode body includes an insulating base and a conductive layer disposed on a surface of the insulating base. The conductive layer has a first portion and a second portion extending from the first portion, the first portion is adapted to be coated with an active material and the second portion is uncoated with the active material. A portion of the insulating base corresponding to the second portion is provided with a first through-hole throughout a thickness direction.
US10804520B2

An electrode assembly includes a cell stack part having (a) a structure in which one kind of radical unit is repeatedly disposed and has same number of electrodes and separators which are alternately disposed and integrally combined, or (b) a structure in which at least two kinds of radical units are disposed in a predetermined order, and an auxiliary unit disposed on at least one among an uppermost part or a lowermost part of the cell stack part. The one kind of radical unit of (a) has a four-layered structure in which a first electrode, a first separator, a second electrode and a second separator are sequentially stacked or a repeating structure in which the four-layered structure is repeatedly stacked, and each of the at least two kinds of radical units are stacked by ones in the predetermined order to form the four-layered structure or the repeating structure.
US10804511B2

A battery array frame may include a frame body extending along a longitudinal axis and including a top frame rail, a bottom frame rail, and frame arms that connect between the top frame rail and the bottom frame rail. An insert extends inside the frame body for increasing the stiffness of the frame body.
US10804510B2

Disclosed is a battery pack, which may effectively prevent a bending phenomenon caused by a load while ensuring excellent assembling and compatibility and light weight, and a vehicle including the battery pack. The battery pack includes: a plurality of battery modules including at least one secondary battery accommodated in a module case and a side surface coupling unit provided at an outer side portion of the module case, the plurality of battery modules being arranged in a lateral direction so that side surfaces thereof face each other with intervals therebetween; and a fixing member having an interposing portion interposed between side surfaces of two adjacent battery modules and coupled to the side surface coupling units of the two adjacent battery modules so that two or more battery modules are coupled and fixed.
US10804508B2

A sealed cell according to the present invention includes an angular case 50 that accommodates an electrode body. The angular case 50 includes a concave case main body 52, having an opening, and a sealing member 54. The case main body 52 has a flat surface 52a opposed to the sealing member 54, with the electrode body interposed therebetween, and a side wall 52b rising from the flat surface 52a. The peripheral edge portion of the opening provided in the case main body 52 and the sealing member 54 are joined to each other by seal welding. Concave and convex portions including concave portions 56a, 156a recessed toward the inside of the case and convex portions 56b flush with the flat surface 52a are formed on at least one side 58a portion of end sides of the flat surface 52a. Electrode terminals 80, 82 are disposed on bottom surfaces of the concave portions 56a, 156a.
US10804507B2

The present disclosure relates to a pouch case for a secondary battery, and a secondary battery comprising the same, and in particular, to a pouch case for a secondary battery fabricated by laminating an inner resin layer, a middle resin layer and an outer resin layer, wherein the inner resin layer comprises a polyolefin-based resin and a thermosetting moisture absorber, and a secondary battery comprising the same.
US10804502B2

According to one embodiment, a display device capable of preventing spreading of color mixture even in a case where a bank has a defect, and preventing light emission failure in a pixel is provided. A plurality of first banks are provided on a substrate. A plurality of second banks are arranged to cross the first banks, and separate a plurality of pixels with the first banks. A plurality of repair members having liquid repellency are provided on the first banks located on both sides of a pixel corresponding to a defective portion of the second bank, of the pixels.
US10804481B2

The present invention relates to a an organic electroluminescent device comprising a light-emitting layer B comprising a host material HB, a first thermally activated delayed fluorescence (TADF) material EB, and a second TADF material SB, wherein SB transfers energy to EB and EB emits TADF with an emission maximum between 420 and 500 nm.
US10804477B2

A flexible display device, which has a bending area and a non-bending area, includes a display panel, and a window member disposed on the display panel and including a first glass substrate, a second glass substrate disposed opposite to the second glass substrate, and a bonding layer disposed between the first glass substrate and the second glass substrate. The bonding layer includes a first bonding part overlapping the bending area and a second bonding part overlapping the non-bending area and having a modulus greater than a modulus of the first bonding part.
US10804476B2

Platinum and palladium complexes are disclosed that can be useful as narrow band phosphorescent emitters. Also disclosed are methods for preparing and using the platinum and palladium complexes.
US10804471B2

A triarylamine derivative represented by a general formula (G1) given below is provided. Note that in the formula, Ar represents either a substituted or unsubstituted phenyl group or a substituted or unsubstituted biphenyl group; α represents a substituted or unsubstituted naphthyl group; β represents either hydrogen or a substituted or unsubstituted naphthyl group; n and m each independently represent 1 or 2; and R1 to R8 each independently represent any of hydrogen, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
US10804470B2

An organic compound, applications thereof, an organic mixture, and an organic electronic device. The structure of the organic compound is represented by formula (1), and definitions of substituent groups in the formula (1) are the same as those in the specifications.
US10804464B2

A structure and formation method of a semiconductor device structure is provided. The method includes forming a lower electrode layer over a semiconductor substrate and forming a data storage layer over the lower electrode layer. The method also includes forming an ion diffusion barrier layer over the data storage layer and forming a capping layer over the ion diffusion barrier layer. The ion diffusion barrier layer is a metal material doped with nitrogen, carbon, or a combination thereof. The capping layer is made of a metal material. The method further includes forming an upper electrode layer over the capping layer.
US10804461B1

A method for manufacturing a memory device is provided, the method includes the following steps: firstly, providing a dielectric layer, then simultaneously forming a contact window and an alignment mark trench in the dielectric layer, wherein the contact window exposes a lower metal line, then forming a conductive layer on the surface of the dielectric layer, in the contact window and in the alignment mark trench, performing a planarization step on the conductive layer, and leaving a residue in the alignment mark trench. Subsequently, a nitrogen plasma step (N2 plasma) is performed on the dielectric layer, a cleaning step is performed to remove the residue in the alignment mark trench, and a patterned magnetic tunneling junction, MTJ) film is laminated on the contact window.
US10804452B2

Solid-state lighting devices including light-emitting diodes (LEDs) and more particularly LED chips with interconnect structures are disclosed. LED chips are provided that include first interconnects electrically coupled to an n-type layer and second interconnects electrically connected to a p-type layer. Configurations of the first and second interconnects are provided that may improve current spreading by reducing localized areas of current crowding within LED chips. Various configurations are disclosed that include collectively formed symmetric patterns of the first and second interconnects, diameters of certain ones of either the first or second interconnects that vary based on their relative positions in LED chips, and spacings of the second interconnects that vary based on their distances from the first interconnects. In this regard, LED chips are disclosed with improved current spreading as well as higher lumen outputs and efficiencies.
US10804444B2

A light-emitting device including at least one light-emitting unit, a wavelength conversion adhesive layer, and a reflective protecting element is provided. The light-emitting unit has an upper surface and a lower surface opposite to each other. The light-emitting unit includes two electrode pads, and the two electrode pads are located on the lower surface. The wavelength conversion adhesive layer is disposed on the upper surface. The wavelength conversion adhesive layer includes a low-concentration fluorescent layer and a high-concentration fluorescent layer. The high-concentration fluorescent layer is located between the low-concentration fluorescent layer and the light-emitting unit. The width of the high-concentration fluorescent layer is WH. The width of the low-concentration fluorescent layer is WL. The width of the light-emitting unit is WE. The light-emitting device further satisfies the following inequalities: WE
US10804443B2

A light-emitting device with high luminance which has high uniformity in color and intensity can be provided. The light-emitting device includes a mounting substrate, a plurality of light-emitting elements disposed on the mounting substrate side by side, a wavelength conversion plate provided over the plurality of light-emitting elements and having a side surface, and a plurality of bumps disposed on the mounting substrate to abut against the side surface of the wavelength conversion plate, so as to determine a position of the wavelength conversion plate.
US10804431B2

Current-injecting nanorod LEDs are demonstrated to emit linear polarized light that is detected from the backside of the sample. The polarization ratio of the electroluminescence reaches 71% when the length of the minor axis is as small as 150 nm. Electromagnetic simulation confirms the occurrence of the polarization selectivity especially when the length of the minor axis is down to 150 nm. The destructive interference between the light directly from light source and the reflected light by the top metal interface is the origin of the selectivity. Emission with the polarization perpendicular to the nanorods is extracted out of the nanorods and the remaining light with the other polarization transmits to the substrate. The linearly polarized light can be also detected from the front side of the sample if the conductive pad is transparent. The simulation also suggests that it is possible to obtain circularly or elliptically polarized light by tuning the height of the nanorods. These observed phenomena could also apply to fin-shaped nanowall LED. The results in this study will be beneficial for applications that required linearly or circularly polarized light especially for devices that are not suitable to use an external polarizer.
US10804424B2

A method for manufacturing a light emitting element includes: forming a semiconductor structure on a first substrate; providing a second substrate configured to be bonded above a side of the semiconductor structure opposite the first substrate; forming a metal layer above at least one of (i) a side of the semiconductor structure opposite the first substrate, and/or (ii) a side of the second substrate that is to be located closer to the semiconductor structure; bonding the second substrate above the semiconductor structure via a bonding member; removing the first substrate from the semiconductor structure to obtain a bonded body in which the second substrate is bonded above the semiconductor structure; and singulating the bonded body.
US10804422B2

Multi-operation tools for photovoltaic cell processing are described. In an example, a multi-operation tool includes a conveyor system to move a photovoltaic (PV) cell continuously along a conveyor path through a laser scribing station and an adhesive printing station. Furthermore, the PV cell may be aligned to a laser head of the laser scribing station and a printer head of the adhesive printing station in a single alignment operation prior to being laser scribed and printed with an adhesive in a continuous process.
US10804420B2

The present invention relates to a solar cell array configuration comprising a plurality of solar cells provided on at least one substrate, a plurality of contact pads, one contact pad for each of the plurality of solar cells, provided on the at least one substrate, electrical wiring connecting each of the plurality of solar cells with a corresponding one of the plurality of contact pads and a diode electrically connected with at least two of the plurality of solar cells.
US10804413B1

A package component includes a base layer, a sensing layer, a photo-curable adhesive, a cover layer and a first filter structure. The photo-curable adhesive and the sensing layer are disposed on the base layer. The sensing layer includes a sensing unit surrounded by the photo-curable adhesive. The cover layer is disposed on the sensing layer. The first filter structure faces the photo-curable adhesive and is disposed on the cover layer. The first filter structure is configured for transmitting a curing light which is used to cure the photo-curable adhesive, and for reflecting a detectable light which is to be sensed by the sensing unit, where the wavelength of the curing light is different from the wavelength of the detectable light.
US10804403B2

A method of fabricating a semiconductor device includes patterning a substrate to form an active fin, forming a sacrificial gate pattern crossing over the active fin on the substrate, removing the sacrificial gate pattern to form a gap region exposing the active fin, and forming a separation region in the active fin exposed by the gap region. Forming the separation region includes forming an oxide layer in the exposed active fin and forming an impurity regions with impurities implanted into the exposed active fin.
US10804402B2

The present disclosure describes various non-planar semiconductor devices, such as fin field-effect transistors (finFETs) to provide an example, having one or more metal rail conductors and various methods for fabricating these non-planar semiconductor devices. In some situations, the one or more metal rail conductors can be electrically connected to gate, source, and/or drain regions of these various non-planar semiconductor devices. In these situations, the one or more metal rail conductors can be utilized to electrically connect the gate, the source, and/or the drain regions of various non-planar semiconductor devices to other gate, source, and/or drain regions of various non-planar semiconductor devices and/or other semiconductor devices. However, in other situations, the one or more metal rail conductors can be isolated from the gate, the source, and/or the drain regions these various non-planar semiconductor devices. This isolation prevents electrical connection between the one or more metal rail conductors and the gate, the source, and/or the drain regions these various non-planar semiconductor devices.
US10804401B2

The present disclosure provides one embodiment of a semiconductor structure. The semiconductor structure includes a first active region and a second fin active region extruded from a semiconductor substrate; an isolation featured formed in the semiconductor substrate and being interposed between the first and second fin active regions; a dielectric gate disposed on the isolation feature; a first gate stack disposed on the first fin active region and a second gate stack disposed on the second fin active region; a first source/drain feature formed in the first fin active region and interposed between the first gate stack and the dielectric gate; a second source/drain feature formed in the second fin active region and interposed between the second gate stack and the dielectric gate; a contact feature formed in a first inter-level dielectric material layer and landing on the first and second source/drain features and extending over the dielectric gate.
US10804400B2

This disclosure relates to a semiconductor structure for, e.g., a high-k metal gate fin field-effect transistor, and a manufacturing method therefor. The method may include providing a substrate structure including a first portion for forming a first PMOS device and a second portion for forming a second PMOS device; forming a first P-type work function adjustment layer on the substrate structure; forming a protective layer on the first P-type work function adjustment layer; patterning the protective layer to expose the first P-type work function adjustment layer on the first portion; oxidizing the exposed first P-type work function adjustment layer on the first portion; removing the protective layer; and forming a second P-type work function adjustment layer on the first P-type work function adjustment layer. Because the first P-type work function adjustment layer on the first portion is oxidized, gate voltage thresholds of the first portion and the second portion are different even when the thicknesses of metal layers on the first portion and the second portion are the same.
US10804396B2

In some embodiments, a field effect transistor (FET) structure comprises a body structure, dielectric structures, a gate structure and a source or drain region. The gate structure is formed over the body structure. The source or drain region is embedded in the body structure beside the gate structure, and abuts and is extended beyond the dielectric structure. The source or drain region contains stressor material with a lattice constant different from that of the body structure. The source or drain region comprises a first region formed above a first level at a top of the dielectric structures and a second region that comprises downward tapered side walls formed under the first level and abutting the corresponding dielectric structures.
US10804393B1

A monolithically-integrated AC switch includes a semiconductor substrate having first and second insulated-gate field effect transistors therein, which contain first and second spaced-apart and independently-controllable source terminals extending adjacent a first surface of the semiconductor substrate, yet share a common drain electrode extending adjacent a second surface of the semiconductor substrate. According to some of these embodiments of the invention, the first and second insulated-gate field effect transistors include respective first and second independently-controllable gate electrodes, which extend adjacent the first surface. The first and second insulated-gate field effect transistors may be configured as first and second vertical power MOSFETs, respectively. The semiconductor substrate may also include at least one edge termination region therein, which extends between the first and second vertical power MOSFETs.
US10804387B1

A vertical transistor is provided that includes a base structure and a superlattice structure overlying the base structure. The superlattice structure comprises a multichannel ridge having sidewalls. The multichannel ridge comprises a plurality of heterostructures that each form a channel of the multichannel ridge. The vertical transistor also includes a source region that overlies the base structure and is in contact with a first end of the superlattice structure, a floating drain that overlies the base structure and is in contact with a second end of the superlattice structure, and a drain. When the vertical transistor is in an ‘ON’ state, current flows from the source region through the channels of the multichannel ridge to the floating drain, which funnels the current to the drain through at least a portion of the base structure.
US10804382B2

A replacement gate structure (i.e., functional gate structure) is formed and recessed to provide a capacitor cavity located above the recessed functional gate structure. A ferroelectric capacitor is formed in the capacitor cavity and includes a bottom electrode structure, a U-shaped ferroelectric material liner and a top electrode structure. The bottom electrode structure has a topmost surface that does not extend above the U-shaped ferroelectric material liner. A contact structure is formed above and in contact with the U-shaped ferroelectric material liner and the top electrode structure of the ferroelectric capacitor.
US10804374B2

Semiconductor device structures comprising a spacer feature having multiple spacer layers are provided. In one example, a semiconductor device includes an active area on a substrate, the active area comprising a source/drain region, a gate structure over the active area, the source/drain region being proximate the gate structure, a spacer feature having a first portion along a sidewall of the gate structure and having a second portion along the source/drain region, wherein the first portion of the spacer feature comprises a bulk spacer layer along the sidewall of the gate structure, wherein the second portion of the spacer feature comprises the bulk spacer layer and a treated seal spacer layer, the treated seal spacer layer being disposed along the source/drain region and between the bulk spacer layer and the source/drain region, and a contact etching stop layer on the spacer feature.
US10804372B2

This application discloses a gate-all-around field effect transistor and a method for manufacturing same. In some implementations the method may include: forming a first fin structure on a substrate, where each first fin structure includes one first laminated structure, where the first laminated structure sequentially includes a sacrificial layer, a support layer, and a channel layer from bottom to top; forming a dummy gate structure across the first fin structure, where the dummy gate structure includes a dummy gate dielectric layer, a dummy gate on the dummy gate dielectric layer, and a first spacer on a side surface of the dummy gate; removing parts of the first fin structure located on two sides of the dummy gate structure, to form a second fin structure; performing first etching on a side surface of the sacrificial layer in the second fin structure, to form a first space; forming a second spacer in the first space; performing second etching on a side surface of the channel layer in the second fin structure, to form a second space; and performing selective epitaxy on the side surface of the channel layer in the second fin structure, to form a source region and a drain region, where along a direction of a channel, compared with a side surface, distal to the sacrificial layer, of the second spacer, the side surface of the channel layer after the second etching is closer to the sacrificial layer.
US10804368B2

Techniques for fabricating a semiconductor device having a two-part spacer. In one embodiment, a device is provided that comprises a spacer having a first portion and a second portion, where the first portion comprises one or more layers and the second portion comprises a dielectric material. In one or more implementations, the device further comprises an isolation layer coupled to the spacer, where the isolation layer comprises a silicon oxide material. In one or implementation, the device can further comprise a gate structure formed on a substrate, where the gate structure comprises a polysilicon contact portion, a first silicon dioxide portion, a silicon nitride portion and a second silicon dioxide portion.
US10804363B2

Disclosed are three-dimensional semiconductor memory devices and methods of fabricating the same. The three-dimensional semiconductor memory device comprises a substrate that includes a cell array region and a connection region, an electrode structure that includes a plurality of electrodes and a plurality of dielectric layers alternately stacked on the substrate and has a stepwise structure on the connection region, an etch stop pattern that covers the stepwise structure of the electrode structure. The electrode structure and the etch stop pattern extend in a first direction when viewed in plan. The electrode structure has a first width in a second direction intersecting the first direction. The etch stop pattern has a second width in the second direction. The second width is less than the first direction.
US10804358B2

A compound semiconductor device includes: a compound semiconductor area in which a compound semiconductor plug is embedded and formed; and an ohmic electrode provided on the compound semiconductor plug, wherein the compound semiconductor plug includes, in a side surface portion that is as an interface with the compound semiconductor area, a high concentration dopant layer containing a dopant whose concentration is higher than that of other portions.
US10804350B2

An organic light-emitting display device including: pixels disposed on each of horizontal lines, each of the pixels includes an organic light-emitting diode, and an auxiliary transistor coupled between an anode electrode of the organic light-emitting diode and an auxiliary power source; and at least one reference transistor disposed on each of the horizontal lines and coupled between a reference power source and at least one of the pixels. The auxiliary transistor and the reference transistor may be simultaneously turned on.
US10804345B2

An organic light emitting diode display apparatus includes a substrate and a pixel structure disposed on the substrate. The pixel structure includes an active element, a first electrode electrically connected to the active element, a bank layer disposed on the first electrode, a light emitting layer disposed on the first electrode and an opening of the bank layer, and a second electrode disposed on the light emitting layer. The first electrode has a first region and a plurality of protrusions disposed outside the first region. The opening of the bank layer overlaps with the first region and the protrusions of the first electrode.
US10804340B2

A display device including a substrate, a circuit portion including a thin film transistor on the substrate, a display element on the circuit portion, the display element including a pixel electrode electrically connected to the thin film transistor, an encapsulation layer covering the display element, a color filter layer on the encapsulation layer, the color filter layer including a black matrix and a color filter, and a light transmission control layer located farther from the display element than the color filter layer in a direction perpendicular to an upper surface of the substrate, the light transmission control layer having light transmittance that varies according to an electrical signal. The light transmission control layer overlaps the black matrix. A width of the light transmission control layer is greater than a width of the black matrix.
US10804337B2

Disclosed is an in-cell type organic electroluminescent device. The in-cell type organic electroluminescent device according to an embodiment of the present disclosure includes at least one OLED-driving Thin-Film Transistor (OLED driving TFT) that is formed on a substrate and drives an organic light emitting device (OLED); the OLED connected to the at least one OLED driving TFT through a first contact hole; at least one touch-sensing thin-film transistor (though sensing TFT) that is simultaneously formed with the at least one OLED driving TFT on the substrate and senses touch; and an touch electrode that is connected to the at least one touch sensing TFT through a second contact hole and does not overlap with the OLED, wherein the at least one OLED driving TFT and the at least one touch sensing TFT share a gate line.
US10804334B2

An organic light emitting diode display includes: a display panel; and a color conversion panel positioned on the display panel. The color conversion panel includes: a substrate; a color filter layer disposed under the substrate; a first light blocking layer disposed under the color filter layer; and a first color conversion layer, a second color conversion layer, and a third color conversion layer positioned under the first light blocking layer. The color filter layer includes a first color filter, a second color filter, and a third color filter, the first light blocking layer includes a first portion that overlaps the first color filter, a second portion that overlaps the second color filter, and a third portion that overlaps the third color filter, and the first portion, the second portion, and the third portion are connected.
US10804333B2

A display, a circuit arrangement for a display and a method of operating a display are disclosed. In an embodiment a display includes a plurality of pixels, each pixel of the plurality of pixels includes a given number of light emitters, a current control element for each light emitter, the current control element configured to control an electric current through the light emitter and at least one digital circuit element for each light emitter, the at least one digital circuit element configured to provide at least one data value to the current control element and the at least one data value being indicative of the current through the light emitter.
US10804325B2

According to one embodiment, a semiconductor memory device includes a substrate, a first signal line, a first conductive layer, a first storage layer and a first insulation layer. The first signal line extends in a first direction crossing the substrate. The first conductive layer extends in a second direction crossing the first direction and being parallel to the substrate, and has a first surface and a second surface that is away from the first signal line in a third direction crossing the first and second directions. The first storage layer is provided between the first signal line and the first conductive layer. The first insulation layer is provided between the second surface and the first storage layer.
US10804322B2

A cross-point array device includes a substrate, a first conductive line disposed over the substrate and extending in a first direction, a plurality of pillar structures disposed on the first conductive line, each of the pillar structure comprising a memory electrode, a resistive memory layer disposed along surfaces of the pillar structures, a threshold switching layer disposed on the resistive memory layer, and a second conductive line electrically connected to the threshold switching layer and extending a second direction that is not parallel to the first conductive line.
US10804321B2

A switch device according to an embodiment of the technology includes a first electrode, a second electrode that is disposed to face the first electrode, and a switch layer that is provided between the first electrode and the second electrode. The switch layer contains a chalcogen element. The switch layer includes a first region and a second region which have different composition ratios of one or more of chalcogen elements or different types of the one or more of chalcogen elements. The first region is provided close to the first electrode. The second region is provided closer to the second electrode than the first region.
US10804319B2

A top pinned magnetic tunnel junction (MTJ) stack for use in spin-transfer torque magnetoresistive random access memory (STT MRAM) is provided. The top pinned MTJ stack contains a synthetic anti-ferromagnetic magnetic free layer stack that is formed on an insulating aluminum nitride (AlN) seed layer having hexagonal symmetry. For such a top pinned MTJ stack, the symmetry requirements for the tunnel barrier layer do not conflict anymore with the symmetry requirements for strong anti-ferromagnetic exchange. Further, and compared to using only a metallic seed, the insulating AlN seed layer limits spin pumping from the magnetic free layer into the metallic seed layer and therefore lowers the switching current, while only making a small contribution to the resistance of a STT MRAM.
US10804317B2

A display apparatus includes a plurality of light-emitting diodes (“LED”s); a stretchable substrate including a flat portion, and a plurality of protrusions protruding from the flat portion, where each of the protrusions has inclined surfaces, and at least some of the light-emitting diodes are disposed on the protrusions; and a plurality of thin film transistors in the stretchable substrate and connected to the LEDs.
US10804316B2

A light emitting diode array is provide to include: a substrate; light emitting diodes positioned over the substrate, each including a first semiconductor layer, an active layer, and a second semiconductor layer, wherein each light emitting diode is disposed to form a first via hole structure exposing a portion of the corresponding first semiconductor layer; lower electrodes disposed over the second semiconductor layer; a first interlayer insulating layer disposed over the lower electrodes and configured to expose the portion of the first semiconductor layer of corresponding light emitting diodes; upper electrodes electrically connected to the first semiconductor layer through the first via hole structure, wherein the first via hole structure is disposed in parallel with one side of the corresponding second semiconductor layer and the first interlayer insulating layer is disposed to form a second via hole structure exposing a portion of the lower electrodes.
US10804315B2

The present disclosure, in some embodiments, relates to method of forming an integrated chip. The method may be performed by forming an image sensing element within a substrate. A dry etching process is performed on the substrate to form a plurality of intermediate protrusions defined by the substrate. A wet etching process is performed on the plurality of intermediate protrusions to form a plurality of protrusions from the plurality of intermediate protrusions.
US10804312B2

The present disclosure relates to a semiconductor device, an electronic device, and a manufacturing method that can maintain the mounting reliability of an underfill. A chip is formed by a circuit 5 of an imaging element being produced on a Si substrate that is a first substrate and a second substrate being produced on an adhesive formed on the circuit. In this event, a photosensitive material is formed around the chip after the chip is mounted on a mounting substrate by a solder ball or in the state of the chip, then an underfill is formed, and then only the photosensitive 10 material is dissolved. The present disclosure can be applied to, for example, a CMOS solid-state imaging sensor used for an imaging device such as a camera.
US10804300B2

A complementary thin film transistor drive back-plate and manufacturing method thereof, a display panel. The method comprises: providing a lower semiconductor layer on a base substrate (101), and forming a P-type semiconductor active layer (103); providing a gate insulating layer (107) on the lower semiconductor layer; providing a lower electrode layer on the gate insulating layer (107), and forming a P-type transistor gate electrode (108), an N-type transistor source electrode (109) and an N-type transistor drain electrode (110); providing an upper semiconductor layer on the lower electrode layer, and forming a pixel electrode (111) and an N-type semiconductor active layer (112); providing an isolation insulating protective layer (113) on the upper semiconductor layer, and forming contact holes (114) and a protection unit (115); providing an upper electrode layer on the isolation insulating protective layer (113), and aiming a P-type transistor source electrode (116), a P-type transistor drain electrode (117) and an N-type transistor gate electrode (118); and providing a pixel defining layer (119) on the upper electrode layer, and forming a pixel connection opening (120).
US10804293B2

A nonvolatile memory device includes a semiconductor substrate including a page buffer region, a memory cell array, bitlines, first vertical conduction paths, and second vertical conduction paths. The memory cell array is formed in a memory cell region above the semiconductor substrate and includes memory cells. The bitlines extend in a column direction above the memory cell array. Each of bitlines is cut into each of first bitline segments and each of second bitline segments. The first vertical conduction paths extend in a vertical direction and penetrate a column-directional central region of the memory cell region. The first vertical conduction paths connect the first bitline segments and the page buffer region. The second vertical conduction paths extend in the vertical direction and penetrate the column-directional central region. The second vertical conduction paths connect the second bitline segments and the page buffer region.
US10804286B2

According to one embodiment, a semiconductor device includes: a stack body including an insulator, a first conductor and a second conductor stacked stepwise by interposing the insulator and electrically disconnected from each other; and a first contact plug which reaches the first conductor from a region above the stack body. The first conductor includes a first portion positioned below the insulator, a second portion positioned above the insulator, and a third portion that electrically connects the first portion of the first conductor and the second portion of the first conductor. The third portion of the first conductor is provided in an opening formed on the insulator.
US10804283B2

Embodiments of semiconductor devices and methods for forming the semiconductor devices are disclosed. In an example, a method for forming device openings includes forming a material layer over a first region and a second region of a substrate, the first region being adjacent to the second region, forming a mask layer over the material layer, the mask layer covering the first region and the second region, and forming a patterning layer over the mask layer. The patterning layer covers the first region and the second region and including openings corresponding to the first region. The plurality of openings includes a first opening adjacent to a boundary between the first region and the second region and a second opening further away from the boundary. Along a plane parallel to a top surface of the substrate, a size of the first opening is greater than a size of the second opening.
US10804282B2

An alternating stack of insulating layers and sacrificial material layers is formed over a substrate, and memory stack structures are formed through the alternating stack. A backside trench is formed through the alternating stack, and backside recesses are formed by removing the sacrificial material layers. An undoped aluminum oxide backside blocking dielectric layer is formed in the backside recesses and on sidewalls the backside trench. A portion of the undoped aluminum oxide backside blocking dielectric layer located at an upper end of the backside trench is converted into a carbon-doped aluminum oxide layer. An electrically conductive material is deposited in the backside recesses and at peripheral regions of the backside trench. The electrically conductive material at the peripheral regions of the backside trench is removed by an etch process, with the carbon-doped aluminum oxide layer providing etch resistivity during the etch process.
US10804274B2

A method of performing co-integrated fabrication of a non-volatile memory (NVM) and a gate-all-around (GAA) nanosheet field effect transistor (FET) includes recessing fins in a channel region of the NVM and the FET to form source and drain regions adjacent to recessed fins, and removing alternating portions of the recessed fins of the NVM and the FET to form gaps in the recessed fins. A stack of layers that make up an NVM structure are conformally deposited within the gaps of the recessed fins leaving second gaps, smaller than the gaps, and above the recessed fins of the NVM while protecting the FET with the organic planarization layer (OPL) and a block mask. The OPL and block mask are removed from the FET, and another OPL and another block mask protect the NVM while a gate of the FET is formed above the recessed fins and within the gaps.
US10804266B2

An embodiment may include a microelectronic device. The microelectronic device may include a first pair of transistors stacked vertically and connected in series. Each of the first pair of transistors are of the same type. The microelectronic device may include a second pair of transistors connected in parallel. The second pair of transistors being a different type than the first pair of transistors. The first pair of transistors and the second pair of transistors are arranged substantially perpendicular to the plurality of layers.
US10804264B2

An integrated circuit device includes a substrate from which a plurality of fin-type active regions protrude, the plurality of fin-type active regions extending in parallel to one another in a first direction, and a plurality of gate structures and a plurality of fin-isolation insulating portions extending on the substrate in a second direction crossing the first direction and at a constant pitch in the first direction, wherein a pair of fin-isolation insulating portions from among the plurality of fin-isolation insulating portions are between a pair of gate structures from among the plurality of gate structures, and the plurality of fin-type active regions include a plurality of first fin-type regions and a plurality of second fin-type regions.
US10804256B2

A semiconductor die assembly in accordance with an embodiment of the present technology includes first and second semiconductor dies and a package substrate carrying the first and second semiconductor dies. The second semiconductor die includes a first peripheral portion extending laterally outward beyond a first edge surface of the first semiconductor die. Similarly, the package substrate includes a second peripheral portion extending laterally outward beyond a second edge surface of the second semiconductor die. The semiconductor die assembly further includes a first volume of molded underfill material between the first and second semiconductor dies, a second volume of molded underfill material between the package substrate and the second semiconductor die, a first molded peripheral structure laterally adjacent to the first edge surface of the first semiconductor die, and a second molded peripheral structure laterally adjacent to the second edge surface of the second semiconductor die.
US10804255B1

A circuit for transmitting signals in an integrated circuit device is described. The circuit comprises a first die; a second die stacked on the first die; and a buffer transmitting data between the first die and the second die; wherein a first inverter of the buffer is on the first die, and a second inverter of the buffer is on the second die. A method of transmitting signals in an integrated circuit device is also described.
US10804254B2

Structures and methods of forming fan-out packages are provided. The packages described herein may include a cavity substrate, one or more semiconductor devices located in a cavity of the cavity substrate, and one or more redistribution structures. Embodiments include a cavity preformed in a cavity substrate. Various devices, such as integrated circuit dies, packages, or the like, may be placed in the cavity. Redistribution structures may also be formed.
US10804246B2

The present disclosure relates to a microelectronics package with vertically stacked flip-chip dies, and a process for making the same. The disclosed microelectronics package includes a module board, a first thinned flip-chip die with a through-die via, a second flip-chip die with a package contact at the bottom, and a mold compound. Herein, a top portion of the through-die via is exposed at top of the first thinned flip-chip die. The first thinned flip-chip die and the mold compound reside over the module substrate. The mold compound surrounds the first thinned flip-chip die and extends above the first thinned flip-chip die to define an opening. The second flip-chip die, which has a smaller plane size than the first thinned flip-chip die, resides within the opening and is stacked with the first thinned flip-chip die by coupling the package contact to the exposed top portion of the through-die via.
US10804241B2

A semiconductor structure which includes a first semiconductor substrate having a first plurality of copper connectors; a second semiconductor substrate having a second plurality of copper connectors; and a joining structure joining the first plurality of copper connectors to the second plurality of copper connectors, the joining structure including a copper intermetallic mesh having pores filled with silver.
US10804236B2

An assembly that includes a first substrate, a second substrate, and a stress mitigation layer disposed between the first and the second substrates. The stress mitigation layer is directly bonded onto the second substrate, and the second substrate is separated from the intermetallic compound layer by the stress mitigation layer. The stress mitigation layer has a high purity of at least 99% aluminum such that the stress mitigation layer reduces thermomechanical stresses on the first and second substrates. The assembly further includes an intermetallic compound layer disposed between the first substrate and the stress mitigation layer such that the stress mitigation layer is separated from the first substrate by the intermetallic compound layer.
US10804235B2

A method for manufacturing connection structure, the method includes arranging conductive particles and a first composite on a first electrode located on a first surface of a first member, arranging a second composite on the first electrode and a region other than the first electrode of the first surface, arranging the first surface and a second surface of a second member where a second electrode is located, so that the first electrode and the second electrode are opposed to each other, pressing the first member and the second member, and curing the first composite and the second composite.
US10804233B1

Wafer-level (chip-scale) package semiconductor devices are described that have bump assemblies configured to maintain standoff (bump) height. In an implementation, the wafer-level chip-scale package devices include an integrated circuit chip having an array of bump assemblies disposed over the integrated circuit chip. The array of bump assemblies comprises a plurality of first bump assemblies that include solder bumps composed at least substantially of a solder composition (i.e., do not include a core). The array further includes at least one second bump assembly including a solder bump having a core configured to maintain standoff height of the wafer-level package device.
US10804232B2

A semiconductor device with thin redistribution layers is disclosed and may include forming a first redistribution layer on a dummy substrate, electrically coupling a semiconductor die to the first redistribution layer, and forming a first encapsulant layer on the redistribution layer and around the semiconductor die. The dummy substrate may be removed thereby exposing a second surface of the first redistribution layer. A dummy film may be temporarily affixed to the exposed second surface of the redistribution layer and a second encapsulant layer may be formed on the exposed top surface of the semiconductor die, a top surface and side edges of the first encapsulant layer, and side edges of the first redistribution layer. The dummy film may be removed to again expose the second surface of the first redistribution layer, and a second redistribution layer may be formed on the first redistribution layer and on the second encapsulant layer.
US10804227B2

In various embodiments, disclosed herein are systems and methods directed to the fabrication of a coreless semiconductor package (e.g., a millimeter (mm)-wave antenna package) having an asymmetric build-up layer count that can be fabricated on both sides of a temporary substrate (e.g., a core). The asymmetric build-up layer count can reduce the overall layer count in the fabrication of the semiconductor package and can therefore contribute to fabrication cost reduction. In further embodiments, the semiconductor package (e.g., a millimeter (mm)-wave antenna packages) can further comprise dummification elements disposed near one or more antenna layers. Further, the dummification elements disposed near one or more antenna layers can reduce image current and thereby increasing the antenna gain and efficiency.
US10804219B2

A semiconductor device includes a plurality of lower electrodes repeatedly arranged at a first pitch in a first direction and a second direction crossing the first direction at an acute angle on a substrate, and a support pattern in contact with sidewalls of the plurality of lower electrodes and supporting the plurality of lower electrodes. The support pattern includes a first support region having a plurality of openings penetrating the support pattern and a second support region disposed at a periphery of the first support region. The plurality of openings may continuously extend in a zigzag manner, respectively, throughout an entirety of the first support region.
US10804216B2

A chip having a substrate region having a substrate contact, an RS latch having two complementary nodes representing a storage state of the RS latch, a control circuit having a control input and configured to connect one of the complementary nodes to a supply potential depending on a potential at the control input, wherein the control input is connected to the substrate contact, and an output circuit connected to an output of the RS latch and configured to trigger an alarm depending on the storage state of the RS latch.
US10804213B2

A circuit apparatus according to an embodiment includes: a wiring substrate having a wiring; a first electronic component provided on the wiring substrate; a second electronic component provided on the wiring substrate, the second electronic component having a height higher than a height of the first electronic component; a sealing member provided on the wiring substrate, the sealing member covering the first electronic component and the second electronic component, a first distance between a first surface of the sealing member above the first electronic component and the wiring substrate being shorter than a second distance between a second surface of the sealing member above the second electronic component and the wiring substrate; and a conductive member provided on the sealing member, the conductive member exposing the second surface, a third distance between a third surface of the conductive member provided above the first electronic component and the wiring substrate being equal to the second distance, and a film thickness of the conductive member at the third surface being thicker than a film thickness of the conductive member at a fourth surface provided between the third surface and the second surface.
US10804208B2

An interposer for an integrated system comprises a plurality of first connecting members and a plurality of second connecting members to be electrically connected to each other and a contact area realizing an electric short circuit of a group of the first connecting members which are electrically equivalent or homologous transporting a same signal, the contact area being electrically connected with at least one of the second connecting members thus realizing a scrambling between a number of the first connecting members and a number of the second connecting members.
US10804200B2

An integrated circuit includes a cell that is between a substrate and a supply conductive line and that includes a source region, a contact conductive line, a power conductive line, and a power via. The contact conductive line extends from the source region. The power conductive line is coupled to the contact conductive line. The power via interconnects the supply conductive line and the power conductive line.
US10804199B2

A method of fabricating interconnects in a semiconductor device is provided, which includes forming an interconnect layer with a plurality of first conductive lines formed of a first conductive material in a dielectric layer. At least one via opening is formed over the plurality of first conductive lines and an interconnect via formed of a second conductive material is formed in the via opening, wherein the formed interconnect via has a convex top surface.
US10804197B1

A three-dimensional memory device includes a pair of alternating stacks of insulating layers and electrically conductive layers located over a semiconductor region, and laterally spaced from each other by a backside trench, memory stack structures extending through the pair of alternating, each memory stack structure containing a vertical semiconductor channel and a memory film, and a backside contact assembly located in the backside trench. The backside contact assembly includes an isolation dielectric spacer contacting the pair of alternating stacks, a conductive liner contacting inner sidewalls of the isolation dielectric spacer and a top surface of the semiconductor region, and composite non-metallic core containing at least one outer dielectric fill material portion that is laterally enclosed by a lower portion of the conductive liner and a dielectric core contacting an inner sidewall of the at least one outer dielectric fill material portion.
US10804194B2

A semiconductor device comprises a peripheral circuit region provided on a first substrate and including circuit devices and a contact plug extending on the first substrate in a vertical direction; a memory cell region provided on a second substrate disposed above the first substrate and including memory cells; and a through insulating region penetrating through the second substrate on the contact plug and covering an upper surface of the contact plug.
US10804191B2

A printed wiring board includes a first build-up layer having first insulating layer, conductor layer and via conductor, a second build-up layer formed on the first build-up layer and having second insulating layer, conductor layer and via conductor, a third build-up layer formed on the second build-up layer and having third insulating layer, conductor layer and via conductor, and a fourth build-up layer formed on the third build-up layer and having fourth insulating layer, conductor layer and via conductor. The first insulating layer has a thickness that is larger than a thickness of the second insulating layer, the thickness of the second insulating layer is larger than a thickness of the third insulating layer, the thickness of the second insulating layer is larger than a thickness of the fourth insulating layer, and the thickness of the fourth insulating layer is larger than the thickness of the third insulating layer.
US10804189B2

A package structure of a power device includes a substrate having a first circuit, a first power device, a second power device, an insulation film having a second circuit, at least one electronic component, and a package. The first power device, the second power device, and the insulation film are disposed on the substrate. The first power device and the second power device are directly electrically connected to each other via the first circuit of the substrate. The electronic component is disposed on the insulation film. The package encapsulates the substrate, the first power device, the second power device, and the electronic component.
US10804188B2

An electronic device may include a substrate, and the substrate may include one or more layers. The one or more layers may include a first dielectric material and one or more electrical traces. A cavity may be defined in the substrate, and the cavity may be adapted to receive one or more electrical components. One or more lateral traces may extend through a wall of the cavity. The lateral traces may provide electrical communication pathways between the substrate and the electrical components.
US10804182B2

The invention is concerned with a semiconductor power module comprising an electrically and thermally conductive base plate (14) and a semiconductor chip (12) and where a first layer of graphene (32) is placed between the semiconductor chip (12) and the base plate (14) in electrical and thermal contact with a first side the base plate (14). Thereby the cooling of the semiconductor power module is improved.
US10804175B2

Semiconductor devices comprising a getter material are described. The getter material can be located in or over the active region of the device and/or in or over a termination region of the device. The getter material can be a conductive or an insulating material. The getter material can be present as a continuous or discontinuous film. The device can be a SiC semiconductor device such as a SiC vertical MOSFET. Methods of making the devices are also described. Semiconductor devices and methods of making the same comprising source ohmic contacts formed using a self-aligned process are also described. The source ohmic contacts can comprise titanium silicide and/or titanium silicide carbide and can act as a getter material.
US10804173B2

The present disclosure relates to a semiconductor device package, which includes a carrier, a lid, a first adhesive layer and a constraint structure. The carrier includes a surface and a first conductive pad on the surface of the carrier. The lid includes a first portion and a second portion separated from the first portion on the surface of the carrier. The first conductive pad is disposed between the first portion of the lid and the surface of the carrier. The first adhesive layer includes a first portion between the first portion of the lid and the first conductive pad. The constraint structure surrounds the first adhesive layer.
US10804168B2

Particular embodiments described herein provide for a silicon layer, where the silicon layer includes a profile and a thermal conductor coupled to the silicon layer, where the thermal conductor includes one or more residual stresses. The thermal conductor is modified based on the one or more residual stress such that when pressure is applied to the thermal conductor, a profile of the thermal conductor at least approximately matches the profile of the silicon layer. In an example, the thermal conductor is modified by removing material from one or more areas of the thermal conductor and the thermal conductor is coupled to the silicon layer by one or more pressure inducing mechanisms.
US10804166B2

A method for forming CMOS devices includes masking a first portion of a tensile-strained silicon layer of a SOI substrate, doping a second portion of the layer outside the first portion and growing an undoped silicon layer on the doped portion and the first portion. The undoped silicon layer becomes tensile-strained. Strain in the undoped silicon layer over the doped portion is relaxed by converting the doped portion to a porous silicon to form a relaxed silicon layer. The porous silicon is converted to an oxide. A SiGe layer is grown and oxidized to convert the relaxed silicon layer to a compressed SiGe layer. Fins are etched in the first portion from the tensile-strained silicon layer and the undoped silicon layer and in the second portion from the compressed SiGe layer.
US10804163B2

A method of forming a semiconductor structure includes: providing a substrate; forming a first pair of source/drain regions in the substrate; disposing an interlayer dielectric layer over the substrate, the interlayer dielectric layer having a first trench between the first pair of source/drain regions; depositing a dielectric layer in the first trench; depositing a barrier layer over the dielectric layer; removing the barrier layer from the first trench to expose the dielectric layer; depositing a work function layer over the dielectric layer in the first trench; and depositing a conductive layer over the work function layer in the first trench.
US10804155B2

The present disclosure, in some embodiments, relates to a method of forming an integrated chip. The method may be performed by forming a first conductive wire within a first dielectric structure formed on a first surface of a first substrate. A through-substrate-via (TSV) is formed to extend though the first substrate. A second conductive wire is formed within a second dielectric structure formed on a second surface of the first substrate opposing the first surface. The TSV electrically couples the first conductive wire and the second conductive wire. The first conductive wire, the second conductive wire, and the TSV define an inductor that wraps around an axis.
US10804151B2

In interconnect fabrication (e.g. a damascene process), a barrier layer (possibly conductive) is formed over a substrate with holes, a conductor is formed over the barrier layer, and the conductor and the barrier layer are polished to expose the substrate around the holes and provide interconnect features in the holes. To prevent erosion/dishing of the conductor over the holes, the conductor is covered by another, “first” layer before polishing; then the first layer, the conductor, and the barrier layer are polished to expose the substrate. The first layer may or may not be conductive. The first layer protects the conductor to reduce or eliminate the conductor erosion/dishing over the holes.
US10804143B2

A semiconductor structure includes an integrated circuit, a first dielectric layer, an etching stop layer, a barrier layer, a conductive layer, and a second dielectric layer. The first dielectric layer is over the integrated circuit. The etching stop layer is over the first dielectric layer. The barrier layer has an upper portion extending along a top surface of the etching stop layer and a lower portion extending downwardly from the upper portion along a sidewall of the etching stop layer and a sidewall of the first dielectric layer. The conductive layer is over the barrier layer and having a void region extending through the conductive layer, the barrier layer and the etching stop layer. The second dielectric layer is over the conductive layer and the void region.
US10804141B2

Damascene plug and tab patterning with photobuckets for back end of line (BEOL) spacer-based interconnects is described. In an example, a back end of line (BEOL) metallization layer for a semiconductor structure includes an inter-layer dielectric (ILD) layer disposed above a substrate. A plurality of conductive lines is disposed in the ILD layer along a first direction. A conductive tab is disposed in the ILD layer. The conductive tab couples two of the plurality of conductive lines along a second direction orthogonal to the first direction.
US10804140B2

Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In an embodiment, a structure includes a first dielectric layer over a substrate, a first conductive feature in the first dielectric layer, a second dielectric layer over the first dielectric layer, a second conductive feature in the second dielectric layer, and a blocking region disposed between the first conductive feature and the second conductive feature. The second conductive feature is disposed between and abutting a first sidewall of the second dielectric layer and a second sidewall of the second dielectric layer. The blocking region extends laterally at least from the first sidewall of the second dielectric layer to the second sidewall of the second dielectric layer.
US10804129B2

An electrostatic chuck assembly for processing a semiconductor substrate is provided. The electrostatic chuck assembly includes a first layer, a baseplate, a second layer, and at least one annular gasket. The first layer includes ceramic material and a first radio frequency (RF) electrode. The first RF electrode is embedded in the ceramic material. The second layer is disposed between the first layer and the baseplate. The at least one annular gasket extends along an upper surface of the baseplate and through the second layer. The at least one annular gasket electrically couples the upper surface of the baseplate to the first RF electrode. RF power passes from the baseplate to the first RF electrode through the at least one annular gasket.
US10804124B2

A wafer processing tool is capable of detecting wafer warpage. The wafer processing tool includes a wafer holder on which a wafer is held and at least one sensor set. The at least one sensor set is disposed above the wafer or under the wafer, and a projection of each of the at least one sensor set on the wafer radially extending from a center of the wafer to an edge of the wafer. The at least one sensor set is configured to scan an entire surface of the wafer so as to measure warpage of the wafer while the wafer holder and the at least one sensor set are rotatable relative to each other.
US10804115B2

An electronics package includes an insulating substrate, an electrical component having an active surface coupled to a first surface of the insulating substrate, and an insulating structure disposed adjacent the electrical component on the first surface of the insulating substrate. A first wiring layer is formed on a top surface of the insulating structure and extends down at least one sloped side surface of the insulating structure. A second wiring layer is formed on a second surface of the insulating substrate. The second wiring layer extends through a plurality of vias in the insulating substrate to electrically couple at least one contact pad on the active surface of the electrical component to the first wiring layer.
US10804114B2

A method for forming a multilevel leadframe for an integrated circuit is provided. A conductive sheet is etched from one side to form a thinner region within a frame region for leads lines and bond pads. The conductive sheet is etched to form a plurality of bond pads in a first level of the thinner region arranged in at least a first row and a second row. Each bond pad has a pad width and is separated from an adjacent bond pad by a bond pad clearance distance. The conductive sheet is etched from an opposite side to form a plurality of lead lines in a second level of the thinner region having a line width and is separated from an adjacent lead line by at least a lead line clearance distance. Each bond pad of the second plurality of bond pads is connected to one of the plurality of lead lines on the second level that is routed between adjacent bond pads in the first row, so that the lead lines are routed on a different level from the bond pads.
US10804104B2

The present application discloses a semiconductor device and a method for forming a p-type conductive channel in a diamond using an abrupt heterojunction, which pertain to the technical field of fabrication of semiconductor devices. The method includes: forming a diamond layer on a substrate; forming one or multiple layers of a heterogeneous elementary substance or compound having an acceptor characteristic on an upper surface of the diamond layer; forming a heterojunction at an interface between the diamond layer and an acceptor layer; forming two-dimensional hole gas at one side of the diamond layer with a distance of 10 nm-20 nm away from the heterojunction; and using the two-dimensional hole gas as a p-type conductive channel. The method enables a concentration and a mobility of carriers to maintain stable at a temperature range of 0° C.-1000° C., thereby realizing normal operation of the diamond device at high temperature environment.
US10804100B2

There is provided a method of forming a film with improved step coverage on a substrate by performing, a predetermined number of times, forming a first layer by supplying a halogen-free precursor having a first chemical bond cut by thermal energy at a first temperature and a second chemical bond cut by thermal energy at a second temperature lower than the first temperature and having a ratio of the number of first chemical bonds to the number of second chemical bonds in one molecule thereof, the ratio being equal to or more than 3, to the substrate at a temperature equal to or higher than the second temperature and lower than the first temperature.
US10804098B2

The present invention relates to a process and system for depositing a thin film onto a substrate. One aspect of the invention is depositing a thin film metal oxide layer using atomic layer deposition (ALD).
US10804089B2

A switch for coupling a first ion manipulation device to a second ion manipulation device comprises a first surface and a second surface, at least one first electrode coupled to each of the first and second surface and configured to receive a first voltage and generate a first potential, and at least one second electrode coupled to each of the first and second surface and configured to receive a second voltage and generate a second potential, wherein the first potential inhibits the motion of ions along a first direction and the second potential inhibits the motion of ions along a second direction different from the first direction.
US10804079B2

An active showerhead used for a plasma reactor is described. The active showerhead includes a plurality of substrate layers. The substrate layers include at least one actuator and transfer component. The actuator and transfer component is coupled to a gas line via a gas channel. The active showerhead further includes an electrode layer located below the substrate layers. The electrode layer and the actuator and transfer component both share an opening. The actuator and transfer component allows passage of one or more process gases received from the gas line and the gas channel into the opening without the need for a conventional gas box.
US10804073B2

An apparatus and method for a large-scale high-throughput quantitative characterization and three-dimensional reconstruction of a material structure. The apparatus having a glow discharge sputtering unit, a sample transfer device, a scanning electron microscope unit and a GPU computer workstation. The glow discharge sputtering unit can achieve large size (cm order), nearly flat and fast sample preparation, and controllable achieve layer-by-layer ablation preparation along the depth direction of the sample surface; rapid scanning electron microscopy (SEM) can achieve large-scale and high-throughput acquisition of sample characteristic maps. The sample transfer device is responsible for transferring the sample between the glow discharge sputtering source and the scanning electron microscope in an accurately positioning manner. The GPU computer workstation performs splicing, processing, recognition and quantitative distribution characterization on the acquired sample characteristic maps, and carries out three-dimensional reconstruction of the structure of the sample prepared by layer-by-layer sputtering.
US10804070B2

The present invention relates to a deflection scanning device with a multi-phase winding and a deflection scanning system. The deflection scanning device is of an axisymmetric structure, and comprises a ferromagnetic frame and a deflection scanning winding, wherein the inner side of the ferromagnetic frame is longitudinally provided with 2aw wire slots equally distributed along the circumference; and the deflection scanning winding comprises a w-phase winding, wherein the axis of the each phase winding is symmetrically distributed. The deflection scanning system comprises a deflection scanning device, a drive power supply unit and, a central, control unit. The deflection scanning device of the present invention can improve the uniformity of the magnetic induction intensity in the charged particle beam channel, and then reduce the defocusing effect and improve the scanning accuracy.
US10804069B2

A photocathode can include a body fabricated of a wide bandgap semiconductor material, a metal layer, and an alkali halide photocathode emitter. The body may have a thickness of less than 100 nm and the alkali halide photocathode may have a thickness less than 10 nm. The photocathode can be illuminated with a dual wavelength scheme.
US10804060B2

A contactor with a rotary actuation system, the contactor including a plurality of switching devices configured to switch a plurality of electrical circuits, a plurality of cam followers each operably coupled to one of the switching devices, wherein each cam follower is configured to actuate a switching device, and a cam mechanism, the cam pivotally attached to a point rotation, the cam having plurality of lobes about its perimeter, the cam in operable communication with each cam follower such that upon rotation of the cam mechanism, each cam follower engages a lobe of the plurality of lobes, it causes each cam follower to actuate the respective switching device. The contactor also includes an actuator connected to the cam, the actuator responsive to a control current and operable to rotate the cam and a controller, the controller operable to supply a control current the actuator.
US10804052B1

A switch assembly for electrically coupling and uncoupling a first device to a second device may include a first switch configured to electrically couple and uncouple a first device to the second device, and a first switching barrel. The switch assembly may further include a second switch configured to electrically couple and uncouple a power source to the second device, and a second switching barrel. The switch assembly may also include an isolator barrier separating the first and second switches from one another and the first and second switching barrels from one another. The switch assembly may further include a shaft associated with the first and second switching barrels, such that rotation of the shaft causes angular displacement of the first and second switching barrels, electrically coupling or uncoupling of the first device to the second device, and electrically coupling or uncoupling of the power source to the second device.
US10804051B2

An illuminated glass keycap having a glyph diffuser layer that may diffuse light through a glyph window opened in a background layer. The background layer may be opaque and the glyph window may be transparent. The keycap is adhered to a scissor mechanism positioned above electrical switch circuitry. Included within, below, or adjacent to the scissor mechanism may be one or more light sources positioned to emit light through the keycap, around the perimeter of the keycap, and/or through the background layer.
US10804049B1

A keyswitch structure includes a base plate, a keycap, a scissors support connecting the keycap and the base plate, a linking support rotatably disposed on the base plate, a movable part movably disposed relative to the base plate, and a magnetic part on the movable part. The linking support includes a magnetic portion and a driving portion. The magnetic part and the magnetic portion produce a magnetic attraction force therebetween. When the movable part is located at a first position, the magnetic part is located under the magnetic portion, and the magnetic attraction force drives the keycap through the linking support to move away relative to the base plate. When the movable part moves from the first position to a second position, the magnetic part moves away relative to the magnetic portion, so that the magnetic attraction force decreases so as to make the keycap move toward the base plate.
US10804047B2

The mobile terminal is disclosed. The mobile terminal of the present invention may include a display unit, a body, a first signal unit, a second signal unit, and a signal connection module. The signal connection module may be disposed in a hole formed in the body to shield the hole. The signal connection module may electrically connect the first signal unit and the second signal unit. The first signal unit may be various circuit boards. The second signal unit may have a function of receiving an input or an antenna function.
US10804044B2

An improved electrical contact alloy, useful for example, in vacuum interrupters used in vacuum contactors is provided. The contact alloy according to the disclosed concept comprises copper particles and chromium particles present in a ratio of copper to chromium particles of 2:3 to 20:1 by weight. The electrical contact alloy also comprises particles of a carbide, which reduces the weld break strength of the electrical contact alloy without reducing its interruption performance.
US10804042B2

Provided is a supercapacitor electrode, comprising: (a) preparing a deformable mass of multiple flakes of exfoliated graphite worms or expanded graphite dispersed in or impregnated by a liquid or gel electrolyte; and (b) subjecting the deformable mass to a forced assembling and orientating procedure, forcing the deformable mass to form the electrode, wherein these fakes are spaced by thin electrolyte layers, having an electrolyte layer thickness from 0.4 nm to 10 nm, and the flakes are substantially aligned along a desired direction, and wherein the electrode has a physical density from 0.5 to 1.7 g/cm3 and a specific surface area from 50 to 3,300 m2/g, when measured in a dried state of the flakes without the electrolyte. This supercapacitor has a large electrode thickness, high active mass loading, high tap density, and exceptional energy density.
US10804041B2

Disclosed herein are embodiments of an electrochemical device comprising graphene material made using embodiments of the method disclosed herein. Also disclosed is a graphene electrode comprising the graphene material made using embodiments of the method disclosed herein. The graphene material disclosed herein for use in the disclosed electrochemical devices has superior properties and activity compared to carbon-based materials known and used in the art. The disclosed graphene material can be used in multiple different technologies, such as water treatment, batteries, fuel cells, electrochemical sensors, solar cells, and ultracapacitors (both aqueous and non-aqueous).
US10804040B2

The present disclosure provides a heat energy-powered electrochemical cell including an anode, a cathode, and a solid metal polymer/glass electrolyte. The solid metal polymer/glass electrolyte includes between 1% and 50% metal polymer by weight as compared to total solid metal polymer/glass electrolyte weight and between 50% and 90% solid glass electrolyte by weight as compared to the total solid metal polymer/glass electrolyte weight. The solid glass electrolyte includes a working cation and an electric dipole. The heat energy-powered electrochemical cells may be used to capture heat from a variety of sources, including solar hear, waste heat, and body heat. The heat energy-powered electrochemical cells may be fabricated at large-area, thin cells.
US10804035B2

A ceramic electronic device includes multiple chip components and a pair of metal terminal portions. The chip components consist of a pair of chip end surfaces and four chip side surfaces. Terminal electrodes are formed on the pair of chip end surfaces. The pair of metal terminal portions is arranged correspondingly with the pair of chip end surfaces. Each of the pair of metal terminal portions includes an electrode face portion, multiple pairs of engagement arm portions, and a mount portion. The electrode face portion faces the chip end surface. The multiple pairs of engagement arm portions extend from the electrode face portion toward the chip side surface and sandwich and hold the chip components. The mount portion extends from one of terminal second sides toward the chip components and is partially substantially vertical to the electrode face portion.
US10804023B2

An inductor includes a printed wiring board (PWB) and a plurality of electrically-conductive heat pipes operatively connected to the PWB. The PWB includes electrically conductive traces electrically connected to the plurality of electrically-conductive heat pipes. The traces and plurality of electrically conductive heat pipes form an inductor winding. A method of manufacturing an inductor includes mounting a plurality of electrically conductive heat pipes to a printed wiring board (PWB), wherein the PWB includes electrically conductive traces to connect the plurality of electrically-conductive heat pipes to form an inductor winding.
US10804021B2

A chip electronic component includes a magnetic body including an insulating substrate, and an internal coil part formed on at least one surface of the insulating substrate. The internal coil part includes first coil patterns formed on the insulating substrate, second coil patterns disposed on the first coil patterns, and third coil patterns disposed on the second coil patterns, and interface parts distinguished from the first to third coil patterns are disposed on at least one of interfaces between the first and second coil patterns and interfaces between the second and third coil patterns.
US10804016B2

One object is to provide an electronic component in which a standoff for filling solder is maintained. An electronic component according to an embodiment of the present invention is configured to be surface-mountable on a circuit board. The electronic component includes: an insulating base member; an internal conductor provided in the base member; a first external electrode provided on the mounting surface of the base member so as to be electrically connected to the internal conductor; and a second external electrode provided on the mounting surface of the base member so as to be electrically connected to the internal conductor. The first external electrode has a first protrusion, and the second external electrode has a second protrusion. The first protrusion and the second protrusion enables a standoff for filling solder to be maintained within a region defined by the mounting surface of the base member and the circuit board.
US10804011B2

A flat cable 10 according to the invention has a plurality of arrayed conductors 11; and an insulating layer 12 covering the periphery of the conductors 11 with a coating film, in which the insulating layer 12 includes a plurality of layers, the outermost layer 13 of the insulating layer 12 and the innermost layer 14 contacting the conductors are both formed from polyphenylene sulfide-based resins, and the melting point of the polyphenylene sulfide-based resin constituting the innermost layer 14 is lower by 5° C. or more than the melting point of the polyphenylene sulfide-based resin constituting the outermost layer 13.
US10803996B2

Provided is a plasma diagnosis system using multiple-reciprocating-pass Thompson scattering. The plasma diagnosis system includes: a laser which supplies laser pulses; an optical system configured to make the laser pulse multiple roundtrips, focus the laser pulse to a predetermined position, rotate the plane of polarization by 90 degrees in every completion of the roundtrip; a collection optics which collects lights scattered from the focused region in plasma, ‘first collected scattering’ by the vertical polarization of the laser pulse and ‘second collected scattering’ by the horizontal polarization of the laser pulse; a polychromator which filters the collected lights provided from the collection optics according to spectral characteristics and output the filtered lights; and a computer which measures spectral characteristics of the first and second collected scatterings by using the filtered lights and outputs Thomson scattering signal with the background noise and the background noise without Thomson scattering signal.
US10803995B2

A method and system for non-invasive assessment of coronary artery stenosis is disclosed. A patient-specific real anatomical model of a diseased coronary artery of a patient is generated from medical image data of the patient. A hypothetical normal anatomical model is generated for the diseased coronary artery of the patient. Blood flow is simulated in each of the patient-specific real anatomical model of the diseased coronary and the hypothetical normal anatomical model for the diseased coronary artery. A hemodynamic index is calculated using simulated blood flow rates in the patient-specific real anatomical model of the diseased coronary and the hypothetical normal anatomical model for the diseased coronary artery. In particular, fractional flow reserve (FFR) for the diseased coronary artery is calculated as the ratio of the simulated blood flow rate in the patient-specific real anatomical model of the diseased coronary artery and the simulated blood flow rate in the hypothetical normal anatomical model for the diseased coronary artery.
US10803993B2

Infection control methods and systems associate proximity-detection devices with people in a population, such as people in a hospital. Each proximity-detection device detects proximity events with other people. The methods and systems detect proximity events and, for person-to-person pairs who were involved in such an event, records at least one risk value as a measure of risk of an infectious agent having been transferred between the pair. Upon indication of an infectious agent transfer to a member of the population, a health worker may conduct an infection control intervention on members of a subpopulation of people based on detected proximity events and risk values. The method and system may be extended to fomites. Correlations may be made over multiple infection events.
US10803984B2

A medical image processing apparatus according to an embodiment comprises a memory and processing circuitry. The memory is configured to store a plurality of neural networks corresponding to a plurality of imaging target sites, respectively, the neural networks each including an input layer, an output layer, and an intermediate layer between the input layer and the output layer, and each generated through learning processing with multiple data sets acquired for the corresponding imaging target site. The processing circuitry is configured to process first data into second data using, among the neural networks, the neural network corresponding to the imaging target site for the first data, wherein the first data is input to the input layer and the second data is output from the output layer.
US10803965B2

A semiconductor memory device according to an embodiment includes a string, a bit line, a well line, and a sequencer. The string includes first and second select transistors, and memory cell transistors using a ferroelectric material. The bit line and the well line are connected to the first and second select transistors, respectively. At a time in an erase verify operation, the sequencer is configured to apply a first voltage to the memory cell transistors, to apply a second voltage lower than the first voltage to the first select transistor, to apply a third voltage lower than the first voltage to the second select transistor, to apply a fourth voltage to the bit line, and to apply a fifth voltage higher than the fourth voltage to the well line.
US10803963B2

A memory sub-system includes a power management integrated circuit (PMIC) compatible with operation at an uppermost PMIC supply voltage that is lower than a primary supply voltage of the memory sub-system. The PMIC is configured to output multiple voltages for operation of the memory sub-system based on a PMIC supply voltage. The memory sub-system further includes a capacitive voltage divider (CVD) coupled to the PMIC. The CVD is configured to receive the primary supply voltage of the memory sub-system as an input and provide a modified primary supply voltage (MPSV) to the PMIC as the PMIC supply voltage, where the MPSV is not higher than the uppermost PMIC supply voltage.
US10803958B2

A non-volatile memory device includes a memory cell array including a plurality of memory cells; a page buffer for performing a plurality of read operations and storing results of the read operations, wherein each of the read operations includes at least one sensing operation for selected memory cells from the plurality of memory cells; a multi-sensing manager for determining a number of sensing operations for each of the plurality of read operations and controlling the page buffer to perform the read operations; and a data identifier for identifying a data state of a bit for the selected memory cells based on the results of the read operations, wherein the multi-sensing manager determines the number of sensing operations for at least one read operation from among the read operations to be different from the number of sensing operations for other read operations from among the read operations.
US10803956B2

A memory device includes a memory cell array including a plurality of memory blocks; a peripheral circuit configured to sequentially perform a channel initialization operation and a read operation on a memory block selected from among the plurality of memory blocks; and control logic configured to control the peripheral circuit to perform the channel initialization operation and the read operation, wherein the control logic sets a time during which the channel initialization operation is to be performed as channel initialization period depending on a potential level of supply voltage, the channel initialization operation being performed to remove hot holes in a channel of the selected memory block.
US10803949B2

A clocked driver circuit can include a master-slave level shifter latch and a driver. The master-slave level shifter latch can be configured to receive an input signal upon a first state of a clock signal, latch the input signal upon a second state of the clock signal and generate a level shifted output signal corresponding to the latched input signal. The driver can be configured to receive the level shifted output signal from the master-slave level shifter and drive the output signal on a line. The signal levels of the output signal can be greater than the signal level of the input signal.
US10803947B2

A nonvolatile memory device performs a read operation comprising first and second intervals. In the first interval the device applies a turn-on voltage to string selection lines and ground selection lines connected to the string selection transistors and the ground selection transistors, respectively. In the second interval, the device applies a turn-off voltage to unselected string selection lines and unselected ground selection lines while continuing to apply the turn-on voltage to a selected string selection line and a selected ground selection line. In both the first and second intervals, the device applies a first read voltage to a selected wordline connected to memory cells to be read by the read operation and applying a second read voltage to unselected wordlines among connected to memory cells not to be read by the read operation.
US10803945B2

Apparatuses and methods for segmented SGS lines are described. An example apparatus includes a plurality of memory subblocks, a plurality of first select gate control lines, each first select gate control line of the plurality of first select gate control lines configured to couple a memory subblock of the plurality of memory subblocks to a signal line, and a second select gate control line configured to couple the plurality of memory subblocks to a source line.
US10803942B1

Transistor noise tolerant, non-volatile (NV) resistance element-based static random access memory (SRAM) physically unclonable function (PUF) circuits and related systems and methods. In exemplary aspects, a transistor and its complementary transistor, such as a pull-up transistor and complement pull-down transistor or pull-down transistor and complement pull-up transistor, of the PUF circuit are replaced with passive NV resistance elements coupled to the respective output node and complement output node to enhance imbalance between cross-coupled transistors of the PUF circuit for improved PUF output reproducibility. The added passive NV resistance elements replacing pull-up or pull-down transistors in the PUF circuit reduces or eliminates transistor noise that would otherwise occur if the replaced transistors were present in the PUF circuit as a result of changes in temperature, voltage variations, and aging effect. The bit error rate of the PUF circuit is reduced by the reduction in transistor noise thereby improving PUF output reproducibility.
US10803938B2

Embodiments disclosed herein may relate to adjusting an aspect of a programming pulse for one or more memory cells, such as based at least in part on one or more detected programmed resistance values for the one or more memory cells.
US10803930B2

According to one embodiment, a memory system comprising includes a semiconductor memory and a memory controller. The memory controller is configured to obtain first data read from the semiconductor memory using a first voltage, obtain second data read from the semiconductor memory using a second voltage, calculate a first value for a first section of the first data using the first data and the second data, calculate a second value for a second section of the first data using the first data and the second data, calculate a third value for a third section of the first data using the first data and the second data, and correct an error of the first data using the first to third values.
US10803926B2

Memory devices and systems with on-die data transfer capability, and associated methods, are disclosed herein. In one embodiment, a memory device includes an array of memory cells and a plurality of input/output lines operably connecting the array to data pads of the device. In some embodiments, the memory device can further include a global cache and/or a local cache. The memory device can be configured to internally transfer data stored at a first location in the array to a second location in the array without outputting the data from the memory device. To transfer the data, the memory device can copy data on one row of memory cells to another row of memory cells, directly write data to the second location from the first location using data read/write lines of the input/output lines, and/or read the data into and out of the global cache and/or the local cache.
US10803920B2

A method of operating a first-in-first-out memory, called a FIFO, includes performing write and read operations of data with a FIFO. The FIFO has a size fifo_size and a maximum retention time. Once a datum is written to the FIFO, there is a limit of fifo_size-1 write operations before the datum becomes invalid and there is a limit of fifo_size-1 read operations before the datum is read, and the data is refreshed before reaching the maximum retention time. During the refreshing, the FIFO is available for further write and read operations.
US10803917B2

A semiconductor storage device includes a first bank that includes a first memory cell group and writes data into the first memory cell group upon receipt of a first command, a second bank that includes a second memory cell group and writes data into the second memory cell group upon receipt of the first command, and a delay controller that issues the first command for the first bank upon receipt of a second command, and issues the first command for the second bank after an interval of at least a first period.
US10803913B1

A memory circuit includes a memory array with one or more reference columns providing a reference signal and a data column providing a data signal when selected by a read operation. The memory circuit also includes a first circuit that removes a common signal component from the reference signal and from the data signal, along with a second circuit that adjusts the reference signal to be between a logic 1 signal level and a logic 0 signal level. The memory circuit also includes a sense amplifier that determines whether the data signal represents a logic 1 or a logic 0 using the reference signal after the common signal component is removed and after being adjusted, along with the data signal after having the common signal component removed.
US10803912B2

A circuit or associated system or apparatus includes a first transistor, a second transistor, a first switch, a second switch, a first current source, and a third switch. The first transistor is configured to sample a first current of a control line. The second transistor is configured to apply a second current to the control line. The second transistor is also configured to match the second current to the first current. The first switch is connected in series between a control terminal of the first transistor and a control terminal of the second transistor. The second switch is connected in series between the second transistor and the control line. The third switch is connected in series between the first current source and the control line.
US10803903B2

Methods and systems for recording streaming audio and video by directing an incoming audio-visual stream to a discrete memory region serving as a virtual display. The virtual display is configured with a section visible to the viewer and a section invisible to the viewer, wherein a streaming video is hidden from the user's display under all conditions. The user's browser is pre-loaded with hooks to redirect the video portion of the stream to the invisible section of the virtual memory wherein a video capture tool specifically designed to interact with the hooks can now recognize each function call and intercept each frame as it is rendered in the GPU. Concurrently, the audio portion of the stream is remapped using an audio indexing application. The GPU framebuffers and audio sinks are multiplexed together and saved to disk. The file is immediately accessible for playback or copying.
US10803902B1

Systems and methods are disclosed for hardware-based read sample averaging in a data storage device. In one example, a read channel circuit including a buffer memory is configured to receive a read instruction to read a selected sector, obtain detected sample values for the selected sector, and determine whether the read instruction corresponds to a re-read operation for the selected sector based on determining whether there are stored samples for the selected sector already stored to a locked buffer entry of the buffer memory. When there are stored sample values stored to the locked buffer entry, the example read channel circuit determines the re-read operation is occurring, and performs read sample averaging based on the detected sample values and the stored sample values to produce averaged sample values. Other examples and configurations are also described.
US10803892B1

A method includes monitoring an amount of power of a power supply being used by a voice-coil motor (VMC) during a seek operation, detecting that the amount of power has crossed a threshold during the seek operation, and modifying a subsequent seek operation in response to detecting that the amount of power has crossed the threshold.
US10803888B1

A manufacturing method for a magnetic head includes the steps of: forming a main pole; forming a spin torque oscillator; and forming a trailing shield. The step of forming the spin torque oscillator includes: a step of forming a layered film; a step of forming an interposition layer; a step of forming a mask; a first etching step of etching a portion of the interposition layer using the mask; a second etching step of etching a portion of the layered film using the mask and the interposition layer as an etching mask; a step of removing the interposition layer and the mask; and a patterning step of patterning the layered film into the spin torque oscillator.
US10803887B2

According to one embodiment, there is provided a magnetic disk drive comprising a magnetic disk, a magnetic head configured to read/write data from/to the magnetic disk, a signal processing circuit configured to convert data to be recorded on the magnetic disk into a write signal, and to output the write signal to the magnetic head that generates a recording magnetic field corresponding to the write signal, and a recording control circuit configured to control the signal processing circuit and the magnetic head to record, in a target recording area of the magnetic disk, first data in the target recording area with a recording magnetic field having a first frequency, and to write, second data different from the first data over the first data with a recording magnetic field having a second frequency higher than the first frequency.
US10803880B2

A method and apparatus that filters audio data received from a speaking person that includes a specific filter for that speaker. The audio characteristics of the speaker's voice may be collected and the specific filter may be formed to reduce noise while also enhancing voice quality. For instance, if a speaker's voice does not contain specific frequencies, then a filter may cancel the noise at such frequencies to ease noise cancellation and reduce processing sound spectrum for cleaning that is not needed. Additionally, the strength frequencies of a speaker's voice may be identified from the collected audio characteristics and those spectrums can be filtered with finer granularity to provide a speaker specific filter that enhances the voice quality of the speaker's voice data that is transmitted or output by a communication device. The audio data may also be output based upon a user's predefined hearing spectrum.
US10803878B2

Disclosed are a method and an apparatus for high frequency decoding for bandwidth extension. The method for high frequency decoding for bandwidth extension comprises the steps of: decoding an excitation class; transforming a decoded low frequency spectrum on the basis of the excitation class; and generating a high frequency excitation spectrum on the basis of the transformed low frequency spectrum. The method and apparatus for high frequency decoding for bandwidth extension according to an embodiment can transform a restored low frequency spectrum and generate a high frequency excitation spectrum, thereby improving the restored sound quality without an excessive increase in complexity.
US10803874B2

An electronic device includes a communication interface that receives voice data and fingerprint data; and a processor that determines an access right to the electronic device based on at least one of a voice score obtained by comparing the received voice data with stored voice data and a fingerprint score obtained by comparing the received fingerprint data with stored fingerprint data.
US10803868B2

A sound output system includes a receiving apparatus comprising receiving circuitry configured to receive a user input; and a sound apparatus comprising circuitry configured to receive the user input from the receiving apparatus and perform an operation based on the user input received from the receiving apparatus. The sound apparatus may include a sound outputter comprising sound output circuitry; a first communicator comprising communication circuitry configured to communicate with the receiving apparatus; and a controller configured to control the sound apparatus to perform the operation based on a command received from the receiving apparatus through the first communicator. The receiving apparatus is removably attachable to the sound apparatus. The sound apparatus is configured to perform different operations depending on different attachment positions of the receiving apparatus, in response to the same user input.
US10803861B2

Embodiments of the present disclosure disclose a method and apparatus for identifying information. One embodiment of the method includes: collecting to-be-processed audio in real-time; performing voice recognition on the to-be-processed audio; performing data-processing on the to-be-processed audio, when the audio is recognized as a wake-up word, the wake-up word is used for instructing performing data-processing on the to-be-processed audio. The embodiment can identify keywords from the to-be-processed audio obtained in real-time and then perform data-processing on the to-be-processed audio, which improves completeness in obtaining the to-be-processed audio and accuracy in performing data-processing on the to-be-processed audio.
US10803853B2

A system and method for tokenizing sentences in transcriptions of electronic communication audio files includes one or more electronic data storage systems coupled in electronic communication with an audio receiver. A collection of audio files is stored in the electronic data storage system(s). The audio receiver is configured to receive one or more audio files from the electronic data storage systems. The system also includes a speech-to-text processing engine configured to transcribe the one or more audio files received by the audio receiver to produce input transcriptions. In addition, the system includes a call tokenization engine that stores a list of candidate expressions and expression pairs that are indicative of turn taking and change of context in phone conversations. The call tokenization engine also receives input transcriptions of the one or more audio files from the speech-to-text processing engine, scans each input transcription for the one or more candidate expressions and expression pairs, inserts a punctuation marker adjacent a detected expression when the detected expression is one of the one or more candidate expressions and expression pairs, and outputs a tokenized transcription when the call tokenization engine reaches an end of the input transcription.
US10803852B2

A speech processing apparatus includes a specifier, a determiner, and a modulator. The specifier specifies an emphasis part of speech to be output. The determiner determines, from among a plurality of output units, a first output unit and a second output unit for outputting speech for emphasizing the emphasis part. The modulator modulates the emphasis part of at least one of first speech to be output to the first output unit and second speech to be output to the second output unit such that at least one of a pitch and a phase is different between the emphasis part of the first speech and the emphasis part of the second speech.
US10803851B2

The present disclosure provides a method for processing speech splicing and synthesis and apparatus, a computer device and a readable medium. The method comprises: expanding a speech library according to a pre-trained speech synthesis model and an obtained synthesized text; the speech library before the expansion comprises manually-collected original language materials; using the expanded speech library to perform speech splicing and synthesis processing. According to the technical solution of the present embodiment, the speech library is expanded so that the speech library includes sufficient language materials. As such, when speech splicing processing is performed according to the expanded speech library, it is possible to select more speech segments, and thereby improve coherence and naturalness of the effect of speech synthesis so that the speech synthesis effect is very coherent with very good naturalness and can sufficiently satisfy the user's normal use.
US10803843B2

A computer user interface (UI) is capable of generating a sound when a predetermined event occurs. The sound generated when the predetermined event occurs may possess at least some characteristics of a predominant natural language used by a user and/or a location of a computer implementing the UI. This enables the user to quickly assimilate the sound generated when the predetermined event occurs. Because the user quickly assimilates the sound generated when the predetermined event occurs, the user is able to rapidly respond to the predetermined event, at times using the computer UI, which reduces undesirable memory use, processor use and/or battery drain associated with a computing device that implements the computer UI.
US10803830B2

A device and method for correcting mura within a display device. The device may include a display driver that includes lookup table circuitry, correction amount calculation circuitry, and mura correction circuitry. The lookup table circuitry is configured to calculate a second grayscale value for a second display brightness value (DBV), the second grayscale value being determined to achieve a brightness level corresponding to a first grayscale value and a first DBV. The correction amount calculation circuitry is configured to calculate a mura correction amount based on a mura correction data for the second grayscale value and the second DBV. Further, the mura correction circuitry is configured to perform a mura correction on input image data by using the mura correction amount.
US10803829B2

A display device includes: a first controller that outputs an output image signal having the same resolution as that of pixels to an image display panel; and a second controller that transmits an input image signal to the first controller, generates second luminance distribution data divided into regions at a second density lower than a first density equal to the resolution, and transmits the second luminance distribution data to the first controller. The second controller generates first luminance distribution data divided into regions at a third density lower than the second density, controls an illuminator based on the first luminance distribution data, and generates the second luminance distribution data by applying a polynomial interpolation to the first luminance distribution data. The first controller generates third luminance distribution data having the resolution, and generates the output image signal by adjusting the input image signal based on the third luminance distribution data.
US10803828B2

Systems, methods, and computer readable media to improve the operation of display systems are disclosed. In general, techniques are disclosed for dynamically adjusting backlight elements based on image content. More particularly, a backlight element's intensity may be targeted for boosting (i.e., increasing) based on content of the backlight element's corresponding image region, where after a check may be made to determine if the proposed increase is likely to risk generation of a halo. If the proposed intensity increase would risk a halo, the backlight element's proposed intensity may be dimmed. Repeating the boost/dim cycle in an iterative fashion permits an image to be displayed with brighter highlights and deeper blacks.
US10803821B2

The present invention discloses a liquid crystal display panel and a liquid crystal display device, the liquid crystal display panel includes: a plurality of data lines and a plurality of scan lines, wherein the plurality of data lines intersect with the plurality of scan lines to define X rows and Y columns of pixel units arranged in a matrix, S types of different polarity inversion positions are existed from an i-th column of pixel unit to an [i+(U−1)]-th column of pixel unit, where 0
US10803818B2

A pixel architecture includes a plurality of pixel cell groups disposed in parallel in a row direction. Each pixel cell group includes a plurality of pixel cells disposed in parallel in a column direction. Each pixel cell includes one first sub-pixel and two second sub-pixels. The first sub-pixels in a same pixel cell group are disposed adjacently in sequence in the column direction. The second sub-pixels in a same pixel cell group are disposed adjacently in sequence in the column direction. In a same pixel cell group, one second sub-pixel in each pixel cell and another second sub-pixel that is in another adjacent pixel cell and is adjacent to the second sub-pixel have a same color.
US10803811B2

The present application provides a driver for driving a display panel. The driver includes a timing controller, and N cascaded source drivers, N being an integer equal to or larger than 2. The N source drivers are configured to receive sensing signals obtained by detecting characteristics of pixel units in the display panel, respectively. An n-th source driver of the N source drivers is configured to transmit the sensing signal received by the n-th source driver to the timing controller through all source drivers of the N source drivers after the n-th source driver as a signal transmission channel, where 1≤n
US10803806B2

Pixel circuit and display substrate and driving methods, and display apparatus are provided. Pixel circuit includes: driving resetting sub-circuit to input voltage at first initial voltage terminal to gate of driving transistor in driving sub-circuit under control of first resetting signal terminal; writing compensation sub-circuit to input data voltage to driving sub-circuit and compensate driving sub-circuit under control of scanning signal terminal in writing compensation phase, and input reference voltage output at data voltage terminal to driving sub-circuit in blanking phase, so driving transistor in On-Bias state; light-emitting resetting sub-circuit to input voltage at first initial voltage terminal to light-emitting device to reset light-emitting device under control of scanning signal terminal; and light-emitting enabling sub-circuit to provide voltage at first power supply voltage terminal to driving sub-circuit and connect driving sub-circuit to light-emitting device under control of enabling signal terminal; and driving sub-circuit to provide driving current to light-emitting device.
US10803785B2

An electronic device includes a display panel; a processor; and display driving integrated circuitry (DDIC). The DDIC is configured to control the display panel and includes an internal memory. The DDIC is configured to receive, from the processor while the processor operates in an active state, a first content including a plurality of images to be displayed based on a specified order through the display panel while the processor operates in a low-power state; store the first content in the internal memory; change a timing for outputting a signal corresponding to a state capable of receiving a second content based on a change of a location in which an image among the plurality of images is displayed through the display panel while the processor operates in the low-power state; and output the signal to the processor based on the changed timing.
US10803782B2

An unevenness correction data generation method provided for generating unevenness correction data for effectively improving the yield of a display panel. The method includes: a step of capturing an image of a display panel where a predetermined pattern is displayed; a step of generating iteration data for correcting unevenness of the captured image; a step of storing the iteration data in a storage means; a step of capturing an image of the display panel where a pattern in the storage means is displayed; a step of generating iteration data for correcting unevenness of the captured image; a step of storing iteration data in the storage means; a step of judging whether or not an ending condition for ending repetition of the steps is satisfied; and a step of generating the unevenness correction data based on the iteration data stored in the storage means the ending condition is satisfied.
US10803779B2

A gate driver on array (GOA) circuit unit, including: a scan portion and an emission portion. The scan portion includes: a first thin film transistor (TFT), a second TFT, a third TFT, a fourth TFT, a fifth TFT, a sixth TFT, a first capacitor, a turn-on signal end, a first clock signal end, a second clock signal end, a power supply end, and a first node. The emission includes: a seventh TFT, an eighth TFT, a ninth TFT, a tenth TFT, an eleventh TFT, a twelfth TFT, a thirteenth TFT, a fourteenth TFT, a fifteenth TFT, a sixteenth TFT, a second capacitor, a third capacitor, a fourth capacitor, a third clock signal end, a first controlling clock signal end, a second node, a third node, a fourth node, and a fifth node.
US10803773B2

According to an embodiment of the present disclosure, a method of labeling a plurality of products includes coating a pressure sensitive adhesive to a roll of face stock, the roll of face stock configured to be converted to a plurality of individual labels aligned in a single lane; singulating an individual label from the roll of face stock; and applying the individual label to a product of the plurality of products, wherein the coating, singulating and applying are conducted sequentially in a single continuous operation with a single continuous web of material.
US10803765B2

A data collection, display, and report generation platform has a first input interface configured to present a learning module comprising a series of questions and answers on a plurality of successive question/answer screens comprising a plurality of radio buttons, at least one of the radio buttons configured to accept both a first input action and a subsequent second input action, each providing a different visual indication. The first and second input action each indicate a different confidence level of a learner's answer. A display dashboard displays a plurality of data visualizations of metrics of misinformation and struggle of plurality of learners based on a plurality of answers collected through the first input interface, and comprises one or more bar graph displays, one or more heat map displays, and one or more sorting tools configured to alter the one or more bar graph displays or one or more heat map displays.
US10803755B2

A method, system, and computer program product for providing an indication that a received vehicle operation instruction can be performed is provided. During operation of a vehicle a vehicle operation instruction is received and at least one vehicle performance parameter to perform the vehicle operation instruction is calculated. Then, a determination is made as to whether the calculated at least one vehicle performance parameter exceeds performance limitations of the vehicle. If at least one performance parameter exceeds a performance limitation, then a first alert is generated and output.
US10803751B2

A processing device according to the present invention includes an object identification unit that generates, based on data measured by sensors, an object identification information that is information indicative of a state of an object, and a reliability degree determination unit that determines a reliability degree of the object identification information using at least one of individual information of the sensors, environmental information obtained when the sensors have performed the measurement, and time information that is a time at which the sensors have performed measurement.
US10803747B2

Users within transit in a vehicle may initiate location queries to fulfill a set of interests, such as stops for food, fuel, and lodging. A device may fulfill the queries according to various factors, such as the distance of nearby locations to the user or to another location specified by the user, and the popularity of various locations. However, the user may not have specified or even chosen a route, and may wish to have interests fulfilled at a later time (e.g., stopping for food in 30 minutes), and a presentation of search results near the user's current location may be unhelpful. Presented herein are techniques for fulfilling location queries that involve predicting a route of the user, and identifying a timing window for the query results (e.g., locations that are likely to be near the user's projected location when the wishes to stop for food in 30 minutes).
US10803744B2

A vehicular collision mitigation method includes providing a plurality of cameras, a non-imaging sensor, and a control that processes data captured by the cameras and non-imaging sensor. When the equipped vehicle is traveling forward, and responsive at least in part to determination that the equipped vehicle is approaching an object forward of the equipped vehicle, braking by an automatic emergency braking system of the equipped vehicle is controlled to mitigate collision with the object present forward of the equipped vehicle. Responsive to determination that a following vehicle is following the equipped vehicle and that the determined following vehicle is within a threshold distance from the equipped vehicle and is approaching the equipped vehicle above a threshold rate of approach, braking by the automatic emergency braking of the equipped vehicle is adjusted to mitigate collision at the rear of the equipped vehicle by the determined following vehicle.
US10803741B2

A controller is adapted to receive respective images from a sensors of a first vehicle. The images provide a gapless view along, and within a predetermined perpendicular distance away from, a side of the first vehicle. Movement of a second vehicle along, and within the predetermined perpendicular distance away from, the side of the first vehicle, is detected based on at least one of the images. A position of a front of the second vehicle is predicted based on the movement of the second vehicle. An image sequence is recorded at the position.
US10803738B2

Provided is an electronic device including a communication unit, an acquisition unit, and a controller. The communication unit communicates a roadside unit associated with a pedestrian overpass to acquire height information of the pedestrian overpass from the roadside unit. The acquisition unit acquires height calculation information for calculating the height information of the electronic device. The controller determines whether a user of the electronic device is crossing the pedestrian overpass based on the height information of the electronic device calculated based on the height calculation information and the height information of the pedestrian overpass.
US10803736B1

An external smart device for a ceiling fan receiving box comprises a wireless control receiving box body and a ceiling fan control receiving box body, which are of selectable in assembly and disassembly, so as to provide users with the choices of their selections. It reduces costs of production and purchase. When some component fails, it can be individually replaced, reducing material waste and generation in an environment-friendly way. It also reduces the costs for component replacements. Thus, it achieves the effects of low costs of purchase and replacements and being environment-friendly.
US10803734B2

The present disclosure relates to power management of a remote control device by a host control device. In one embodiment, a method for power management includes detecting, by a host control device, a status indication of the remote control device, wherein the status indication is associated with a power-on state of the remote control device. The method also includes monitoring received sensor data associated with user presence, and outputting a control signal to the remote control device for the remote control device to enter a low power state. Power management may be provided for loudspeaker units, communications devices, and display devices.
US10803733B2

A method for managing voltage event alarms in an electrical system includes processing electrical measurement data from energy-related signals captured by at least one intelligent electronic device (IED) of a plurality of IEDs to identify an anomalous voltage condition at a point of installation of a respective one of the plurality of IEDs in the electrical system. In embodiments, the anomalous voltage condition corresponds to a measured IED voltage being above one or more upper alarm thresholds or below one or more lower alarm thresholds. The method also includes determining if the electrical system is affected by the identified anomalous voltage condition. In response to determining that the electrical system is not affected by the identified anomalous voltage condition, at least one of the one or more upper alarm thresholds or at least one of the one or more lower alarm thresholds may be adjusted to the measured IED voltage.
US10803731B2

A first device may determine to activate a location detection mode of a second device. The location detection mode may be related to locating the second device. The second device may not be within a short-range communicative proximity of a wireless transceiver component of the first device. The first device may select a user device, of a plurality of user devices, via which to cause the second device to activate the location detection mode. The first device may provide, via the user device, a set of instructions to cause the second device to activate the location detection mode. The first device may perform one or more other actions related to locating the second device after providing the set of instructions.
US10803722B2

According to an example embodiment, a method is provided, the method comprising receiving, in a user device, over a first wireless link from a wearable device, a beaconing message that includes emergency information concerning a user wearing the wearable device, initiating, in the user device, in response to said beaconing message, an emergency call to a destination that hosts an emergency service entity, and relaying, by the user device, the emergency information received in the beaconing message from the wearable device to the emergency service entity via a second wireless link.
US10803718B2

Embodiments of the present invention are directed to systems and methods for displaying and securing articles of merchandise. In one example, a merchandise security system includes a plurality of security devices, wherein each of the security devices includes a sensor configured to be attached to an article of merchandise. Each of the security devices further includes a base for removably supporting the sensor and the article of merchandise thereon. The system also includes a controller in communication with each of the security devices, wherein the controller is configured to communicate with a remote device to lock at least one of the security devices such that the article of merchandise and the sensor cannot be removed from the base.
US10803717B2

Implementations generally relate to systems, apparatuses, and methods for a security application for a residential electrical switch sensor device platform. In some implementations, a sensor device performs operations including detecting an activity in the living space, determining contextual security information, and determining an occurrence of an intrusion event based on the activity in the living space. In response to the occurrence of the intrusion event, the device is operative to perform further operations including sending a notification to one or more destinations based on the intrusion event, and activating one or more surveillance devices based on the intrusion event.
US10803715B2

Technologies for an emergency evacuation system include a system operator and one or more emergency lighting units located in a building. Each emergency lighting unit further includes a processor, communication circuitry configured to communicate with the system operator, and a light indicator configured to be illuminated to indicate an exit of the building.
US10803711B2

A modular valuable media recycling device is presented. The valuable media recycling device includes a media infeed module, a validator module, an escrow module, a plurality of media feeder/stacking modules, and a plurality of cassette modules. When a module handles a valuable media item along a media transport path, the module's identifier and security information are passed as a message to a next module that is to handle the media item in a processing path for the media item. Each module independently validates the authenticity of the message received from a previous module. The number of media feeder/stacking modules and cassette modules are scalable based on the transaction terminal that the modular valuable media recycling device is integrated into.
US10803705B2

Systems, methods, and articles of manufacture provide for dynamic wager sizes.
US10803697B2

An electronic gaming machine comprising a video display and a game controller arranged to select a plurality of symbols from a symbol set for display on the video display, evaluate the symbols displayed on the display to determine whether to initiate a symbol lock event, and upon initiating a symbol lock event, identify symbols which contribute to an award configuration, control the display to lock identified symbols, and updating remaining symbols in the display.
US10803695B2

In various embodiments, the present disclosure relates generally to gaming systems and methods for collecting eye gaze data associated with a player's experience at an electronic gaming machine and utilizing one or more electronic gaming machine communication links to transmit the collected eye gaze data to one or more entities for further analysis.
US10803694B2

Games, networked gaming systems, gaming machines and methods are disclosed that provide various player-centric games and rewards the casino patrons, as well as systems games, rewards, and tournaments to the casino patrons.
US10803690B2

The present disclosure relates to methods and apparatus for accurately calculating time with a Miniature Atomic Clock along with other components that can receive process and communicate information to enable locating, identifying, and tracking physical Assets and data contained within the Assets. More specifically, the present disclosure presents a Global Resource Locating (GRL) device and service that may be adhered or inserted in the Asset, which may be built in or attached to a second Asset, wherein the device may comprise a receiver and a trilateration mechanism. In some aspects, the Asset may comprise a product, organism, produce, or component of a logistics based operational process and marketing based Asset movement and usage analysis.
US10803687B1

A system implemented in a vehicle, the system comprises a sensing module, a zone determination module, and an intent determination module. The sensing module is configured to sense a signal from a mobile device proximate to the vehicle. The zone determination module is configured to determine locations of the mobile device in a plurality of zones around the vehicle based on the signal. A sequence of the locations indicates movement of the mobile device in the plurality of zones. The intent determination module is configured to select weights according to a set of rules to apply to successive locations in the sequence, determine an intent indicator of whether a person carrying the mobile device intends to enter the vehicle by applying the selected weights to the successive locations in the sequence, and generate an output to perform one or more operations in the vehicle based on the intent indicator.
US10803680B2

A method and apparatus for a motor vehicle to increase safety for remote triggering and a motor vehicle having such an apparatus. Data are received from a second device, from which there is a communication link to a first device. The data are associated with user inputs in an application on the second device. The first device receives, for each user input, a portion of the data in a data packet of a data packet structure and prevents remote triggering if the data packet structure does not correspond to a predetermined data packet structure. A difference in the reception sequence of the data packets from the predetermined order is an indicator of malfunctioning in the second device. Preventing remote triggering in the event of a difference reduces the risk of remote triggering by a faulty second device and faulty remote triggering.
US10803668B2

Information obscured to a user is provided through a display of a hybrid reality system (DHR). data associated with an occluded object at least partially occluded by a real-world object at a position of the user is received and a display window is created on the DHR. A first magnification factor is obtained and a first image of at least the portion of the occluded object is rendered in the display window at the first magnification factor at a first time. A second magnification factor, different than the first magnification factor, is obtained, and a second image of at least the portion of the occluded object is rendered in the display window at the second magnification factor at a second time after the first time.
US10803661B1

Systems and methods are provided for the refining and coarsening of a polyhedra mesh. The refinement includes identifying a plurality of polyhedral cells within a polyhedra mesh. A plurality of parent faces having a plurality of parent face edges are extracted for each polyhedral cell within the polyhedra mesh. For each parent face, a plurality of nodes are defined and connected either isotropically or anisotropically. A plurality of non-overlapping child faces are generated with a perimeter defined by a combination of parent face edges and child face edges. A plurality of child cells are generated from the connection of child faces of the plurality of non-overlapping child faces. Subsequent coarsening of the plurality of child cells occurs by the simultaneous agglomeration into each respective parent cell.
US10803632B2

An image processing system, comprising an input port (IN) for receiving a projection image of an object. The image is acquired by a rotational image apparatus (IM) at a position on an imaging trajectory in an adjustable rotation plane (π) around an imaging region. An image artifact extent predictor (AP) of the system is configured to predict for said image a projection area of a reconstruction artifact. A visualizer (VIZ) is configured to visualize, on a display unit (MT), said image with a visual indication of the projection area.
US10803627B2

In one example, the present disclosure describes a device, computer-readable medium, and method for enabling secure video sharing by exploiting data sparsity. In one example, the method includes applying a transformation to a video dataset containing a plurality of video samples, to produce a plurality of sparse vectors in a first dimensional space, wherein each sparse vector of the plurality of sparse vectors corresponds to one video sample of the plurality of video samples, and multiplying each sparse vector of the plurality of sparse vectors by a transformation matrix to produce a plurality of reduced vectors in a second dimensional space, wherein the dimension of the second dimensional space is smaller than a dimension of the first dimensional space, and wherein the plurality of reduced vectors in the second dimensional space hides information about the video dataset while preserving relational properties between the plurality of video samples.
US10803626B2

Systems and techniques for a large scale online lossless animated GIF processor are described herein. In an example, a lossless animated GIF processor is adapted to receive an animated GIF image and decode a first and second frame of the animated GIF image, wherein the decoding identifies a disposal method for each frame. The lossless animated GIF processor may determine an optimized disposal method for the second frame based on transparency pixels in the second frame and an overlap estimation between the second frame and the first frame. The lossless animated GIF processor may encode the second frame with the optimized disposal method. The lossless animated GIF processor may be further adapted to identify pixels in an area of interest, designate pixels outside the area of interest as transparent, and encode the area of interest and the pixels designated as transparent for the second frame.
US10803620B2

An example trailer monitoring system includes a trailer monitoring unit including an image capture arrangement disposed within the trailer monitoring unit to capture first image data. An accelerometer is carried by the trailer monitoring unit is to generate acceleration data of the trailer monitoring unit. The trailer monitoring system also includes one or more processors configured to access the acceleration data and configured to compare the acceleration data to a reference acceleration data range to determine if the acceleration data is within the reference acceleration range. In response to the acceleration data being outside the reference acceleration data range, the one or more processors are to increase a tally of impact events associated with the trailer monitoring unit being impacted. In response to the tally satisfying a threshold, the one or more processors are to generate an alert indicative of the trailer monitoring unit requiring maintenance.
US10803618B2

A system for multiple subject attention tracking includes: an input video controller to receive images of a plurality of people in an audience viewing an event occurring in a presentation area; a gaze detection circuit to: determine a plurality of gaze vectors of respective people of the plurality of people based on the images; and identify a fixation area using the plurality of gaze vectors; and a presentation controller to control at least one of a camera or a spotlight, to focus on the fixation area.
US10803611B2

A workcell has a camera module with two optical systems configured to determine the 3D position of an object placed within the effective field of view of the workcell.
US10803608B1

The present disclosure provides a method of medical procedure using augmented reality for superimposing a patient's medical images (e.g., CT or MRI) over a real-time camera view of the patient. Prior to the medical procedure, the patient's medical images are processed to generate a 3D model that represents a skin contour of the patient's body. The 3D model is further processed to generate a skin marker that comprises only selected portions of the 3D model. At the time of the medical procedure, 3D images of the patient's body are captured using a camera, which are then registered with the skin marker. Then, the patient's medical images can be superimposed over the real-time camera view that is presented to the person performing the medical procedure.
US10803593B2

The disclosure relates to method and system for compressing an image. The method involves receiving an image of the one or more images. Further, at least one segmentation algorithm is applied on the image and dividing the image into a plurality segments. The method further includes comparing the plurality of segments of the image with a seed image, where seed images include a seed image identifier. Further, a seed image is associated with the segments of the image in case there is a match between the seed image and the plurality of segments. The method also includes storing the image as a residual image and a seed image along with one or more seed image identifiers. Further, the image may be reconstructed based on the residual image and one or more seed images associated with the image. Thereafter, the image may be displayed on a display unit.
US10803589B2

The present invention provides an image processing device in which an image processing section for configuring a pipeline by connecting a plurality of processing modules for performing predetermined processing on input image data in series performs image processing for each block obtained by dividing image data of one frame read from a data storage section via a data bus, wherein the image processing section includes an external input/output module incorporated into the pipeline as a processing module configured to perform processing different from processing of each of the processing modules and wherein the external input/output module is configured to directly transmit data from and to an external processing section outside the image processing section without involving the data bus at a position where the external input/output module is incorporated into the pipeline.
US10803585B2

The present disclosure relates to the classification of images, such as medical images using machine learning techniques. In certain aspects, the technique may employ a distance metric for the purpose of classification, where the distance metric determined for a given image with respect to a homogenous group or class of images is used to classify the image.
US10803583B2

The disclosure relates to systems and methods for determining blood vessel conditions. The method includes receiving a sequence of image patches along a blood vessel path acquired by an image acquisition device. The method also includes predicting a sequence of blood vessel condition parameters on the blood vessel path by applying a trained deep learning model to the acquired sequence of image patches on the blood vessel path. The deep learning model includes a data flow neural network, a recursive neural network and a conditional random field model connected in series. The method further includes determining the blood vessel condition based on the sequence of blood vessel condition parameters. The disclosed systems and methods improve the calculation of the sequence of blood vessel condition parameters through an end-to-end training model, including improving the calculation speed, reducing manual intervention for feature extraction, increasing accuracy, and the like.
US10803573B2

A method for automatic defect inspection in wheel shaped casting products is provided, and the three major phases contain preprocessing samples, offline training and online inspection. Specific steps include: collecting and preprocessing training samples, dividing them into three kinds of spoke, rim and axle samples; offline training with the aforementioned three kinds of samples, then generating online detectors respectively for spokes, rims and axles; uploading the well-trained spoke, rim and axle CNN defect detector to the upper computer, placed it in automatic production inspection line. Inspect for defects online automatically. The defect inspection system outputs signals according to the user's requirements. The present invention has a high level of accuracy and reliability, and a strong robustness to variations in illumination, shooting angle and the position of the work piece. It delivers a high level of automation and has no need for an operator to adjust any significant parameters.
US10803565B2

An example apparatus for imaging in low-light environments includes a raw sensor data receiver to receive raw sensor data from an imaging sensor. The apparatus also includes a convolutional neural network trained to generate an illuminated image based on the received raw sensor data. The convolutional neural network is trained based on images captured by a sensor similar to the imaging sensor.
US10803554B2

An image processing method and an image processing device are provided. The method includes acquiring an initial image, performing super-pixel segmentation on the initial image, and acquiring final image blocks; extracting a region of interest from the final image blocks in accordance with an image feature of a target image; and performing super-resolution reconstruction on the region of interest and acquiring an optimized image.
US10803550B2

An image processing device includes an image determiner which determines whether an image data is a still image or a motion picture image, a first compensator which gradually changes a scaling ratio of the image data of which a center part is fixed and a second compensator which divides the image data into a plurality of sub-image data and change a scaling ratio of the sub-image data.
US10803538B2

A system and method that provides for integrated data entry and workflow capabilities through one or more computing devices provided to personnel who work at various stations throughout a facility. Automated identification, record updates, workflow management, and alerts are facilitated through the computing devices, which include a headset that includes one or more input devices such as a microphone, a speaker, a camera, and/or a visual display device.
US10803535B2

The subject invention relates to employing interactive components and execution components to facilitate power transactions. In an example, a method includes receiving a first set of data from a set of agent components, wherein the first set of data represents a purchase, a transmission, a production, a sale or a consumption of energy; and facilitating execution, by the system, of a set of contracts between a first subset of agent components and a second subset of agent components based on the first set of data. In another example, a method can further include insuring, by the system, the set of contracts against a supply surplus of energy or a production shortage of energy.
US10803530B2

According to some embodiments, systems and methods for a medical risk underwriting computer system are disclosed. Access to the system is blocked if an invalid password is received. Receipt of a valid password for which a predetermined time period has expired may cause the system to delete some of the components of the medical underwriting computer system. Receipt of a valid password for which a predetermined time period has not expired will provide access to the system. The system is configured to generate graphical interfaces for the input of medical risk factors, to generate suggested values for the risk factors, and to automatically calculate an overall risk level associated with the policy based on the medical risk value associated with each of the plurality of selected medical risk factors. The system then automatically generates a recommended underwriting decision based on the overall risk level, and generates a customized decision document.
US10803526B1

Methods and systems for processing trip-based insurance policies for vehicles. According to aspects, a trip-based insurance policy of a vehicle specifies an amount of trip units for insured vehicle travel and has an associated policy term. In certain cases, a customer may exhaust trip units before an expiration of the policy term. The methods and systems therefore enable the purchase of additional trip units so that the customer remains insured. In other cases, upon expiration of the policy term, an insurance provider may calculate an amount of unused trip units. The insurance provider may determine one or more types of credit that are based on the amount of unused trip units. The insurance provider may also apply the one or more types of credit to an account of the customer.
US10803524B1

The Multidimensional Asset Management Tag Pivot Apparatuses, Methods and Systems (“MAMTP”) transforms iTag Creation Request and iTag Creation Responses, holdings selections, allocation splits, goal map selections, goal option selections, account links inputs via MAMTP components into iTag records, iTagged asset information, asset buy/sell approval, asset order, map goal add, tracking, outputs. In one embodiment, the MAMTP includes a memory connected to a processor, wherein the processor issues instructions to obtain an asset collection identifier for an asset collection from a user, obtain interest profile constraints associated with the asset collection identifier, which allows the MAMTP to provide a plurality of interest tags for selection to the user. The MAMTP may then obtain an interest tag selection to be applied to the asset collection, obtain constituent asset collection proportion allocation information based on the interest tag selection, and determine if the obtained interest tag selection conflicts with the interest profile constraints associated with the asset collection. The MAMTP may then provide a selection mechanism for the user to specify preferences amongst any conflicting tag selections. Thus, the MAMTP may generate synthetic alternatives according to any specified preferences for any conflicting tag selections and generate a rebalance of the asset collection based on the obtained constituent asset collection proportion allocation information, any obtained specified preferences amongst any conflicting tag selections, and any generated synthetic alternatives. The MAMTP then may provide the rebalanced asset collection to the user for approval, and rebalance the asset collection upon obtaining approval, wherein rebalancing executes asset trades to comport with the generated rebalancing of the asset collection.
US10803521B2

The disclosed embodiments relate to communication of financial messages from an exchange to market participants whereby messages, or at least a portion of the content thereof, indicative of changes in the market, due to one or more trades between two or more market participants, are structured so as to reduce redundant data therein and prioritize the transmission of that portion of the message which summarizes the event and result thereof. Further, these event reporting messages may further consolidate, or otherwise be combined with, the corresponding directed reporting messages communicated to the particular market participants participating in the reported trade while preserving the anonymity of those market participants to which messages are particularly directed.
US10803512B2

Systems and methods are provided for object discovery and object mapping through an application with a Graphical User Interface (GUI). Objects are discovered through an object recommendation channel and through user input of key words and/or key phrases. Each object includes an Intensity of Interest (IoI), which is a relative preference for an object reflected by relative size in the object map. Additionally, the object map provides a visual display which indicates relationships among objects.
US10803508B1

According to certain aspects of the disclosure, a computer-implemented method may be used for determining one or more vehicle recommendations. The method may include receiving at least one vehicle purchase requirement and transmitting the at least one vehicle purchase requirement to at least one merchant. Additionally, the method may include determining a vehicle cost based on the at least one vehicle purchase requirement and historical transaction information of the at least one merchant and comparing the vehicle cost with a credit profile of the purchase. Additionally, the method may include determining at least one available vehicle based on the at least one vehicle purchase requirement and the vehicle cost, wherein a price of the at least one vehicle satisfies a predetermined cost threshold based on the credit profile of the purchaser and transmitting the at least one available vehicle to the purchaser and the at least one merchant.
US10803504B2

A computerized method for integrating actionable items using a messaging artificial intelligence. A first actionable item is provided to a user for selection. In response to the selection, a processor activates a messaging artificial intelligence (“AI”) for instantiation in a messaging software. The messaging AI interacts with the user in the messaging software as a function of the message and the action and obtains parameters for the action. The messaging AI determines to terminate the interaction and, once terminated, the messaging AI generates a second actionable item for execution by a data payload execution platform. The data payload execution platform executes the second actionable item to complete processing of the action in the first actionable item.
US10803491B2

A computer-implemented method includes receiving input questions through interactive digital content and determining demographic designators associated the questions. The method further includes grouping together similar input questions and, for each group of similar questions, creating an answer. Scripts are created from each answer and each script and the corresponding group of similar input questions is recorded into a data repository.
US10803482B2

A system for exclusivity bidding for mobile sponsored content includes one or more computers having computer readable mediums having stored thereon instructions which, when executed by one or more processors of the one or more computers, causes the system to perform the steps of (a) receiving a bid for an exclusive sponsored content item to be presented on a mobile communication facility, the bid including an amount and at least two exclusivity characteristics, wherein the exclusivity characteristics relate to (i) a usage history as recorded via use of the mobile communication facility by a user thereof; and (ii) a geography associated with the mobile communication facility, respectively; and (b) matching the at least two exclusivity characteristics with the exclusive sponsored content item based at least in part on a relevancy for presentation to the mobile communication facility.
US10803481B2

An embodiment may involve receiving input information related to an offered product or service, two or more layouts of a print advertisement for the offered product or service, demographics of potential buyers of the offered product or service, and online behavior of the potential buyers. The information may be normalized into a predefined schema for a machine-learning-based recommendation engine operated by a computing device. The embodiment may further involve determining respective selections of the two or more layouts for the potential buyers. The machine-learning-based recommendation engine may select a layout for a potential buyer based on the offered product or service, content and organization of the layout, demographics of the potential buyer, and online behavior of the potential buyer. The embodiment may also involve transmitting, to a printing system, one or more output files representing the offered product or service, the layout, and the potential buyer.
US10803479B2

Systems and methods for management of automated dynamic messages are providing. In some embodiments, a data store is populated with one or more knowledge sets and one or more lead datasets in response to a user's input. A campaign builder may be provided to the user for generating and initiating campaigns. A campaign is a series of messages designed to satisfy one or more objectives. The campaign builder allows the creation of a campaign by allowing the composition of a series of message templates with variable fields. The variable fields correspond to classes of data from the knowledge sets and/or the lead data. Once the campaign has been initiated, the system categorizes the responses using algorithms. These categorizations have corresponding confidence levels. If the confidence level is too low, manual user intervention may be required in order to determine which subsequent action the system should perform.
US10803474B2

A system for mobile devices that facilitates the creation and dissemination of interactive advertisements to a plurality of mobile devices. A computer or PC comprising an interactive media creator is used to generate interactive advertisements and communicate it to a distribution server. Mobile devices have an interactive media client component to receive and present interactive media, such as these interactive advertisements, to a user. User response is collected, user interaction is monitored and reported. Charging for distributing advertisements is supported.
US10803473B2

Embodiments of the invention provide a method, system and computer program product for retail deployed CRM. A CRM method for retail environments includes sensing entry of a mobile device into a physical space and identifying a customer record for a customer in a CRM system associated with the detected mobile device. The method also includes thereafter detecting a proximity of the mobile device to a product stored in the physical space and creating an opportunity record in the CRM system in connection with the customer for the product. Finally, the method includes responding to sensing egress of the mobile device from the physical space, by marking the opportunity record as closed-won if the product has been purchased by the customer.
US10803466B2

This disclosure includes techniques for analyzing patient data. In one example, a method includes accessing, by a computer system, one or more databases comprising health information for a plurality of patients, wherein the health information includes protected health information, randomly selecting, by the computer system, a subset of the health information from the one or more databases, wherein the subset of the health information corresponds to a subset of the plurality of patients, removing, by the computer system, the protected health information from the subset of health information to produce a de-identified analytics subset of patient data suitable for analytical model construction and evaluation, and storing, by the computer system, the de-identified analytics subset of the patient data in the one or more databases.
US10803465B2

Some embodiments of the present invention include a method for processing entities and may include generating, by a computing system, a hierarchical structure representation of entities from a plurality of entities of an object; receiving, by the computing system, information about a current entity; displaying, by the computing system, the current entity and a number of entities related to the current entity using the hierarchical structure representation of the entities, the number of related entities displayed being based on a display range; and updating, by the computing system, the display of the current entity and the related entities based on detecting a scrolling up action on a graphical user interface associated with the computing system.
US10803464B1

A system for crowdsourcing annotations for transactions includes a crowdsourcing annotation database and a processor. The database stores crowdsourced annotations associated with merchants. The crowdsourced annotations are shared among, and contributed by, users of a community. The processor receives transaction data for a transaction by a user with a merchant. Relevant crowdsourced annotations associated with the merchant are retrieved from the database and sent to the user to enable to the user to annotate the transaction. The user provides an annotation for the transaction. The system dynamically updates the database based on the annotation provided by the user.
US10803463B1

A system for authorizing a transaction includes one or more processors, and a memory storing instructions. When executed by the one or more processors, the instructions cause the system to perform operations including: receiving a configuration request associated with a financial service account via a web interface; setting a limitation in accordance with the configuration request; and generating a graphic indicium or a card number as a token for authorizing a transaction, associated with the financial service account, which satisfies the limitation in accordance with the configuration request. The token is configured to be printed on a substrate or loaded into an electronic payment system.
US10803460B2

A method for establishing an index of usability associated with a replacement payment card is provided. The method may include receiving a payment card replacement request in a vending facility. The method may further include identifying at least one possible risk factor associated with a user utilizing the replacement payment card. The method may also include creating a risk assessment based on the at least one identified possible risk factor. The method may further include establishing an index of usability for the replacement payment card based on the created assessment, whereby a value of the index of usability correlates to a plurality of restrictions placed on using the replacement payment card. The method may also include storing the established index of usability in a database.
US10803454B2

This disclosure illustrates that resource exchange requests may be identified and sent directly to ATMs. The service providers access the ATMs and are able to select the resource exchange request from the ATMs (e.g., electronically, or the like). The service providers transfer the resources at the ATMs, and reconcile the resources at the ATMs. The ATMs may send service provider and/or organization reconciliation notices confirming the reconciliations. In some embodiments, the reconciliation may be stored in a distributed ledger within a blockchain system.
US10803450B1

A mobile device is configured to receive a first receipt pertaining to a first mobile wallet transaction of a user, the first receipt being a digital receipt and receive information pertaining to a plurality of transactions of the user. The mobile device is also configured to capture an image of a second receipt pertaining to the second mobile wallet transaction of the user, the second receipt being a physical receipt. The mobile device is also configured to generate an image of the first receipt of the use and extract identifying information regarding the first and second mobile wallet transactions from the first and second images, identify the first and second mobile wallet transactions within the plurality of transactions based on information extracted from the images of the first and second receipts, and associate the images of the first and second receipts with the first and second mobile wallet transactions.
US10803445B2

A system and method of conducting an authentication transaction; and a near field communication (NFC) enabled mobile device for conducting the authentication transaction. The method includes the steps of: storing data associated with one or more authentication certificates in a secure element of the NFC enabled mobile device; sending the data associated with the one or more authentication certificates from the NFC enabled mobile device to a server via a NFC enabled transceiver; verifying the authenticity of the one or more authentication certificates at the server; and upon successful authentication, sending transaction data from the server to the NFC enabled mobile device via the NFC enabled transceiver.
US10803441B1

Systems, methods, and devices are disclosed which allow a mobile device user to complete financial transactions even when the mobile device is not connected to a wireless network. The systems, methods, and devices of the present disclosure may utilize a combination of an encrypted lockbox containing out of network payment codes on the mobile device and a matching set of out of network payment codes stored on a server of a payment authority.
US10803437B2

Various embodiments herein each include at least one of systems, methods, and software for self-service terminal technical state monitoring and alerting. One such embodiment in the form of a method performed on a computer of an SST, such as an ATM or POS terminal, includes comparing at least one computer platform layer system configuration setting retrieved from a computer platform layer memory device of the SST to respective expected values stored in a second memory device of the SST. The method may then transmit an alert via a network to an alert repository including data identifying the SST when the comparing identifies at least one of the computer platform layer system configuration values does not match a respective expected value.
US10803434B2

Apparatuses and methods provide an automated store with a number of product locations and a fetch and delivery bucket that conveys product from a shelf location to a delivery location. Cameras and sensors within the automated store acquire data that may be stored in a remote database and analyzed to improve the reliability of the delivery process. Camera images may also be used to re-position the fetch and delivery bucket in real time, to provide images of actual, available product to consumers via a remote interface, to determine inventory, and to monitor the activities of replenishers and service personnel, and to generally operate the automated store remotely.
US10803427B2

Systems, methods, and devices for interfaces for resolving maintenance activities are described herein. For example, one or more embodiments include receiving an indication of a fault associated with an equipment item of a building, providing an interface via a display, wherein the interface includes a first portion configured to provide information associated with the fault based on the data, a second portion configured to provide navigation to the building, a third portion configured to provide navigation within the building to the equipment item, and a fourth portion configured to display an augmented reality visualization of the equipment item.
US10803425B1

A method includes displaying to a patient, via a touchscreen display of a mobile device, a date selection interface which includes a calendar display of days in a month; receiving user input corresponding to selection of a first one or more days of the month; displaying an interface displaying available appointment times for the first one or more days of the month; receiving user input corresponding to an indication to continue searching for an available appointment time; and displaying, to the patient via the touchscreen display of the mobile device, an updated date selection interface which has been updated to indicate availability of the first one or more days of the month.
US10803424B2

A server for providing scheduling services to at least two remote devices includes a communications interface for transmitting scheduling options to the at least two remote devices and receiving user inputs from the at least two remote devices. The server further includes a processing circuit configured to manage scheduling services for the at least two remote devices. In one embodiment, the server provides scheduling services for two users, allowing the two users to schedule an appointment with each other. In another embodiment, the server provides scheduling services for a first user and a plurality of second users, allowing the multiple users to schedule an appointment with one another.
US10803423B2

A vehicle sensing system includes a vehicle sensing device configured to detect entry of a vehicle into a given area, and in response, to send to the vehicle an instruction message. At least one beacon device is disposed somewhere between a location of entry of the vehicle into the given area and an available parking space. A parking server communicates with the vehicle based on the instruction message, and sends parking instructions to the vehicle, the parking instructions instructing the vehicle to autonomously drive toward the available parking space, and informing the vehicle of expected interactions with the beacon device as it autonomously drives toward the available parking space. The beacon device performs the expected interactions with the vehicle if the vehicle is driving on a proper path toward the available parking space, with the proper path including the vehicle autonomously driving within wireless communication range of the beacon device.
US10803417B2

An administrative server stores replacement component information relating to at least one replacement component that can be distributed by a supplier in delivery service. A replacement component desired by the user is selected. A selected replacement component information relating to the at least one selected replacement component is transmitted to the administrative server. When the usage degree of at least one of the at least one selected replacement component indicated by the usage degree information reaches a predetermined usage degree, the ordering request specifying the at least one replacement component included in the selected replacement component information is transmitted to the supplier. Therefore, the supplier can offer the automatic sales service with a replacement component that the supplier distributes normally without preparing a wide variety of replacement components, which reduces burden on the supplier.
US10803407B2

A method for selectively providing a learned model using a learned model providing device includes saving various learned models and model information associated with a generation environment in a database of the learned model providing device. The generation environment indicates an environment where sensing data used for generating each of the learned models is sensed. The method further includes acquiring needs information associated with a use environment of a user side device, and selecting one of the learned model suitable for the needs information by referring to the model information by a processor of the learned model providing device.
US10803395B2

Systems, computer-implemented methods, and computer program products to facilitate quantum domain computation of classical domain specifications are provided. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise an input transformation component that can be adapted to receive one or more types of domain-specific input data corresponding to at least one of a plurality of domains. The input transformation component can transform the one or more types of domain-specific input data to quantum-based input data. The computer executable components can further comprise a circuit generator component that, based on the quantum-based input data, can generate a quantum circuit.
US10803390B1

A method for the management of artifacts in knowledge ecosystems is disclosed. The management of artifacts may be performed through the interaction of project participants with a computing device which may display a project repository interface of a software module within a knowledge ecosystem. The method may include the process to retrieve an artifact from a knowledge base to store in the project repository, and the process to store a new artifact in the knowledge base. Moreover, the method may include a process for associating a retention policy, a quality rank and suitable categories and tags to each artifact stored in the knowledge base, which may facilitate the selection of a suitable artifact according to the project requirements. As a result, the method for the management of artifacts may allow leveraging human expertise, saving human efforts, improving decision-making and fostering innovation.
US10803386B2

Systems and methods for determining items in a target domain to recommend to a user whom has not previously interacted with items in the target domain is described. The method comprises generating an auxiliary domain user embedding based on user affinities for each of a plurality of items in an auxiliary domain and embeddings for each of the plurality of items in the auxiliary domain, providing the auxiliary domain user embedding as input to a neural network configured to output a target domain user embedding, predicting target domain user affinities for items in the target domain based, at least in part, on a similarity measure between the target domain user embedding and an embedding for at least one item in the target domain, and determining a set of items in the target domain to recommend to the user based, at least in part, on the predicted target domain user affinities.
US10803380B2

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating document vector representations. One of the methods includes obtaining a new document; selecting a plurality of new document word sets; and determining a vector representation for the new document using a trained neural network system, wherein the trained neural network system comprises: a document embedding layer and a classifier, and wherein determining the vector representation for the new document using the trained neural network system comprises iteratively providing each of the plurality of new document word sets to the trained neural network system to determine the vector representation for the new document using gradient descent.
US10803379B2

Provided are systems, methods, and integrated circuits for a neural network processing system. In various implementations, the system can include a first array of processing engines coupled to a first set of memory banks and a second array of processing engines coupled to a second set of memory banks. The first and second set of memory banks be storing all the weight values for a neural network, where the weight values are stored before any input data is received. Upon receiving input data, the system performs a task defined for the neural network. Performing the task can include computing an intermediate result using the first array of processing engines, copying the intermediate result to the second set of memory banks, and computing a final result using the second array of processing engines, where the final result corresponds to an outcome of performing the task.
US10803374B2

A circuit provides a physically unclonable function. The circuit includes a first portion that provides a random value that varies according to an input to the circuit and a second portion that hashes the random value to provide an output value from the circuit. The first portion covers the second portion to prevent access to the random value. A breach of the first portions may alter operation of the first portion in a detectable manner. The first portion may cover a surface of a cube or parallelepiped. The first portion may be wrapped around a parallelepiped a plurality of times to cover each facet thereof from different directions. The output from the second portion may not intersect the first portion. The circuit may also include an external layer disposed on the first portion. The external layer may be glued to the first portion.
US10803364B2

A control method includes: executing a first process that includes obtaining movement information on movement of an object from an image sequence; executing a second process that includes presuming a set of a candidate region in which an object may be present in a first image in the image sequence and an index indicating probability of presence of the object in the candidate region according to a feature amount of the first image; and executing a third process that includes determining a position of the object in the first image by using the set of the candidate region and the index presumed, wherein the second process includes correcting information obtained during the presuming based on the obtained movement information.
US10803355B2

A method for training an image generator includes multiple iterations, each including: inputting a real image the a first generator; generating a generated image by an image transformation branch of the first generator; inputting the generated image to a discriminator; obtaining a loss value from the discriminator; generating a segmented image by an image segmentation branch of the first generator; obtaining a segmentation loss value according to the segmented image; inputting the generated image to a second generator; generating a reconstructed image by the second generator; and obtaining a reconstruction loss value according to the reconstructed and the real images. Difference in network weights of the image transformation and segmentation branches is compared to obtain a similarity loss value. Network parameters of the first and the second generators are updated according to the loss value, the segmentation loss value, the reconstruction loss value and the similarity loss value.
US10803351B2

In a case where generating a training image of an object to be used to generate a dictionary to be referred to in image recognition processing of detecting the object from an input image, model information of an object to be detected is set, and a luminance image of the object and a range image are input. The luminance distribution of the surface of the object is estimated based on the luminance image and the range image, and the training image of the object is generated based on the model information and the luminance distribution.
US10803350B2

Computer-implemented methods for detecting objects within digital image data based on color transitions include: receiving or capturing a digital image depicting an object; sampling color information from a first plurality of pixels of the digital image; optionally sampling color information from a second plurality of pixels of the digital image; generating or receiving a representative background color profile based on the color information sampled from the first plurality of pixels; generating or receiving a representative foreground color profile based on the color information sampled from the second plurality of pixels and/or the first plurality of pixels; assigning each pixel a label; binarizing the digital image based on the labels; detecting contour(s) within the binarized digital image; and defining edge(s) of the object based on the detected contour(s). Corresponding systems and computer program products configured to perform the inventive methods are also described.
US10803349B2

Provided is a latent variable based taste determination method of determining including acquiring, by a computing apparatus, a response of the user on a plurality of questions associated with one of a plurality of areas including a gustatory area, a food ingredient area, and a restaurant environment area, or supporting another apparatus interacting with the computing apparatus to acquire the response; extracting, by the computing apparatus, independent latent variables representing taste load of the user in each of the plurality of areas, based on the response; extracting, by the computing apparatus, p hidden variables representing a correlation between the independent latent variables using a pretrained estimation model; and determining the taste of the user by comparing, by the computing apparatus, Euclidean distances between the hidden variables of the user and centroids of pre-grouped k taste groups. Here, each of p and k denotes a natural number of 1 or more.
US10803344B2

Provided are a panel adsorption device and an automatic adsorption method using the same. A position of a liquid crystal panel on a platform is determined by providing a plurality of image capture devices above the platform, and then correspondingly sets the vacuum adsorption hole to a negative pressure state to firmly locate the liquid crystal panel on the platform. Meanwhile, the platform can be compatible with panels of various models and sizes.
US10803332B2

The present disclosure provides a traffic sign detection method, apparatus, system and medium. The method includes: determining geographic location information of a to-be-detected traffic sign; sending a request message for requesting for obtaining sign formation of the traffic sign, where the request message includes the geographic location information; and receiving the sign formation of the traffic sign corresponding to the geographic location information.
US10803330B1

Provided herein is a system and method that detects an airborne object and determines a driving action based on the airborne object. The system comprises one or more sensors; one or more processors; a memory storing instructions that, when executed by the one or more processors, causes the system to perform detecting an airborne object within a detection radius of a vehicle. In response to detecting the airborne object, the system performs tracking the airborne object to obtain 3-D coordinate information of the airborne object at distinct times, determining a probability that the airborne object will collide with the one or more sensors based on the 3-D coordinate information, determining whether to take an action of the vehicle based on the determined probability, the action being one of actuating a shield to block the airborne object or activating an air curtain; and performing the action in response to determining to take the action.
US10803316B2

Handheld optical devices (HOD) such as binoculars, spotting scopes and riflescopes that have an integrated camera wherein the camera, via Bluetooth and/or Wi-Fi, sends an image to a mobile phone, which then processes the image with a third party computer application for real time identification of the object being viewed are disclosed.
US10803309B2

Disclosed are a method and apparatus for determining a given variation of a form used by a filled in instance of that type of form from amongst a number of form templates. The given instance is aligned to each of the variants or form templates. The result of the alignment includes a series of key points that did not match up well (“bad” key points). The bad key points are taken from the form templates. Then, a set of pixel patches from around each of the bad key points of the form templates are extracted. The pixel patches are individually compared to corresponding pixel patches of the instance. The comparison generates a match score. The form template having the greatest match score is the correct form template.
US10803303B2

A detection apparatus includes an acquisition unit and a detector. The acquisition unit acquires temperatures respectively corresponding to multiple parts of a subject identified from a visible image from a temperature image in which the temperatures of the parts of the subject are visualized. The detector detects a part not included in a temperature range preset for each of the parts, the part being included in the multiple parts of the subject whose temperatures are acquired by the acquisition unit.
US10803290B2

A technique for automatically and accurately determining life or death of cells in a sample prepared without any labeling, not relying on the subjectivity of a determiner, is intended. A fluorescent specimen in which respective fluorescence generation modes in response to excitation light are different from each other between a living cell and a dead cell is prepared, and fluorescence imaging of the fluorescent specimen is performed. Bright field imaging of the fluorescent specimen is performed, and respective positions of the living cell and the dead cell are specified from a fluorescent image. Image objects in a bright field image, which are located at positions corresponding to the specified positions of the living cell and the dead cell are extracted as a living cell object and a dead cell object, respectively, and a classifier is constructed through machine learning using supervisor data including respective feature vectors of the extracted objects.
US10803278B2

Panel structure includes a substrate, a piezoelectric material layer and a thin film transistor. The piezoelectric material layer is disposed under the substrate, in which the piezoelectric material layer is configured to generate human recognizable sound waves by vibrating at a human audible frequency in a first time interval, and the piezoelectric material layer is configured to generate ultrasonic waves by vibrating at an ultrasonic frequency in a second time interval. The piezoelectric material layer is used for recognizing human fingerprints when it vibrates at the ultrasonic frequency. The thin film transistor is positioned under and electrically connected to the piezoelectric material layer.
US10803277B2

A fingerprint sensing circuit and a fingerprint sensing apparatus are provided. The fingerprint sensing circuit includes a sensing electrode; a first converting circuit connected to the sensing electrode and configured to convert a coupling capacitance sensed by the sensing electrode into a drive voltage, where the drive voltage is equal to a sum of a voltage variation converted from the coupling capacitance and a reference voltage; and a second converting circuit configured to generate a sensing current based on the drive voltage, and send the sensing current to a fingerprint signal processor, where the sensing current is equal to a product of a transconductance gain of the second converting circuit and the voltage variation, and the fingerprint signal processor performs fingerprint sensing based on the sensing current. With the fingerprint sensing circuit and the fingerprint sensing apparatus, the detection accuracy can be improved.
US10803256B2

Systems and methods for a translation management system include performing a source text collection and translation process. The source text collection and translation process includes collecting, from one or more applications, one or more source texts for translation. Source segments for translation are determined using the one or more source texts. Source text properties associated with the one or more source texts are provided to a machine learning engine. Translation performance requirement predictions associated with the plurality of source segments respectively are generated by the machine learning engine based on the source text properties. A plurality of translation requests associated with the plurality of source segments is provided by the machine learning engine based on the translation performance requirement predictions. One or more translated texts generated in response to executing the plurality of translation requests are received. A translation result storage is updated using the one or more translated texts.
US10803235B2

An electronic device with a display: concurrently displays a first electronic document and a second electronic document, the first electronic document including a displayed content object; detects a first user input that starts on the content object; in response to a determination that the first user input corresponds to a first command, creates and displays a copy of the content object in the second electronic document; and, in response to a determination that the first user input corresponds to a second command, distinct from the first command: selects the content object; displays an animation of the content object separating from the first electronic document; and initiates display of a plurality of icons proximate to the separated content object, the plurality of icons including at least one icon to initiate display of a user interface for sending the content object to one or more other users.
US10803232B2

A method, system and computer program product for optimizing the loading of a web page. The server receives indications (e.g., Document Object Model (DOM) elements) of web page elements of interest of a web page from multiple client devices. The server updates a list of web page elements for the requested web page that is sorted in terms of popularity based on these received indications of web page elements of interest. The server may then appropriately respond to a request to retrieve that web page by accessing such a list and transmitting to the browser of the requesting client device the data to populate the content of the web page elements for the requested web page in an order based on the sorted list. In this manner, the browser will be able to optimize the loading of the web page.
US10803221B1

Described is a method for implementing a snap to capability that enables the manufactured of a valid pattern in a semiconductor device, based upon an originally invalid pattern.
US10803219B1

A method for a combined formal static analysis of a design code, the method comprising using a lint checker performing Lint checks to identify a suspected violation in the design code; using a formal static analyzer, performing formal checks to identify a suspected property that corresponds to the suspected violation; applying a formal proof technique to determine whether the suspected property is proven or disproved; and if the suspected property is disproved, issuing an alert.
US10803213B2

A method of predicting, in real-time, a relationship between a vehicle's engine speed, trip time, cost, and fuel consumption, comprising: monitoring vehicle operation over time to acquiring data representing at least a vehicle location, a fuel consumption rate, and operating conditions; generating a predictive model relating the vehicle's engine speed, trip time, and fuel consumption; and receiving at least one constraint on the vehicle's engine speed, trip time, and fuel consumption, and automatically producing from at least one automated processor, based on the predictive model, a constrained output.
US10803208B2

Systems and techniques for processing three-dimensional (3D) data are presented. Captured three-dimensional (3D) data associated with a 3D model of an architectural environment is received and at least a portion of the captured 3D data associated with a flat surface is identified. Furthermore, missing data associated with the portion of the captured 3D data is identified and additional 3D data for the missing data is generated based on other data associated with the portion of the captured 3D data.
US10803206B2

Systems and methods for wireless enabled security in relation to a storage drive are described. In one embodiment, the systems and methods may include receiving, at a storage drive, a request from a host of the storage drive. In some cases, the request may be received via a wired connection between the storage drive and the host. In some embodiments, the systems and methods may include determining whether the request is flagged by the host as a secure connection request, processing the request upon determining the request is not flagged as a secure connection request, and establishing a wireless connection with the host upon determining the request is flagged by the host as a secure connection request.
US10803205B1

Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for performing an attestation verification. One of the methods includes sending an attestation request to a relay system node by a relay system controller. The relay system controller receives an attestation evidence of the relay system node from the relay system node. The relay system controller sends the attestation evidence of the relay system node to an attestation verification server. The relay system controller receives an attestation verification report from the attestation verification server. The relay system controller sends the attestation verification report to a relay system smart contract.
US10803201B1

System and method to produce an anonymized electronic data product having an individually-determined threshold of re-identification risk, and adjusting re-identification risk measurement parameters based on individual characteristics such as geographic location, in order to provide an anonymized electronic data product having a sensitivity-based reduced risk of re-identification.
US10803198B2

Computer systems and methods for: (1) analyzing electronic correspondence associated with a data subject (e.g., the emails within one or more email in-boxes associated with the data subject); (2) based on the analysis, identifying at least one entity that that the data subject does not actively do business with (e.g., as evidenced by the fact that the data subject no longer opens emails from the entity, and/or has set up a rule to automatically delete emails received from the entity); and (3) in response to identifying the entity as an entity that the data subject no longer does business with, at least substantially automatically populating and/or submitting a data subject access request to the entity (e.g., to delete all personal information being processed by the entity).
US10803197B1

Unstructured data items are stored at an object storage service. A filtering requirement to be used to generate a result set for an access request is determined. Using a transformed representation of the filtering requirement, a target set of tokens of the filtering requirement which are to be obfuscated within a log record is identified. A log record that comprises substitute tokens for the target set of tokens is generated and stored.
US10803195B2

An image communication apparatus includes a storage unit including a shared address book area and an individual address book area, a communication unit configured to receive an import file including shared address book data shared among a plurality of users or private address book data limiting users who can utilize the data, and a CPU, and if the import file includes the private address book data and the shared address book area is designated as an import destination, the CPU warns the user that the private address book data may be shared and prevents the user from importing the import file.
US10803181B2

A data security and protection system that provides monitoring, diagnostics, and analytics within an enterprise network to identify potentially sensitive data is disclosed. The system may provide one or more data stores to store and manage personal data within a network. The system may also provide one or more servers to facilitate operations using information from the one or more data stores. The system may also provide an analytics system with processing components that determines uniqueness of personal data. The system may receive personal data and population attribute data via a data access interface. The analytics system may compare the data received to determine a fraction assignment, which when further processed using at least a combination or correlation technique, may yield a detailed uniqueness factor classification and analysis of the personal data to indicate its relative sensitivity. If there is risk associated with the sensitivity of the personal data, additional security actions may be taken by the data security and protection system.
US10803180B2

In one aspect, a method useful for preventing exploitation of a vulnerability in an interpreted code by monitoring and validating an execution of the interpreted code in a script file by an application server, includes the step of generating a mapping for an incoming network connection to a specified script file to be executed by an application server. The computerized method includes the step of inserting a hook for monitoring an application programming interface (API) call or a privileged instruction executed by the application server. The computerized method includes the step of inserting a validation code configured to validate the API call or the privileged instruction executed by the interpreted code in a script.
US10803176B2

Examples associated with basic input/output system (BiOS) security are described. One example includes detecting a mismatch between an active BiOS setting and a saved BIOS setting. An update previously applied to the active BiOS setting is validated. The update Is applied to the saved BIOS setting creating an updated BIOS setting. The saved BIOS setting is updated when the updated BIOS setting and the active BIOS setting match. The saved BIOS setting is updated to the active BIOS setting. A security action is taken when the updated BiOS setting and the active BiOS setting differ.
US10803175B2

A device boots in a secure manner that allows measurements reflecting which components are loaded during booting to be generated. Measurements of such components, as well as of a device management agent and the security state of the device, are also obtained. The device management agent accesses an attestation service for an enterprise, which is a collection of resources managed by a management service. The device management agent provides the obtained measurements to the attestation service, which evaluates the measurements and based on the evaluation determines whether the device is verified for use in the enterprise. The management service uses this verification to ensure that the device management agent is running in a secure manner, is accurately providing indications of the state of the device to the management service, and is implementing policy received from the management service.
US10803164B2

Disclosed are various embodiments for validating that relying parties of a federated identity provider have correctly implemented sign-out functionality. In one approach, a network page is received from a network site that is operated by a relying party of a federated identity provider. It is then determined whether the network page includes code that properly implements a sign-out from the federated identity provider. An action is initiated in response to determining that the network page does not include code that properly implements the sign-out from the federated identity provider.
US10803156B2

In a biometrics system for a building entrance unlocking or a bank account authentication, reference information registered under administration by the system is transmitted to a room or mobile-phone for private storage, with the original reference information deleted from the system. Biologic information gotten upon authentication is transmitted through wireless system to the room or mobile-phone for comparison with the reference, the result being returned to the system. Or, the reference is tentatively sent back to the system for comparison with the gotten biologic information. The biologic information sent to mobile-phone also includes health control information for storage and display. Mobile-phone also can receive blood pressure information at a waiting lounge of medical institution though wireless local communication even if the main power shut down. The communication between the biometrics system and the mobile-phone is encrypted. The system includes sensor unit and protection unit, the abnormality thereof being separately checked.
US10803154B2

Aspects of the disclosure relate to multicomputer processing and authentication of user data associated with telephone calls. A call security assessment computing platform may receive data associated with a telephone call made from a user computing device. Subsequently, the call security assessment computing platform may parse the received data to identify header information in a Session Initial Protocol (SIP) header. The platform then may analyze the header information to generate a call fingerprint for the telephone call. This call fingerprint may then be transmitted to one or more call authentication computing platforms, which return one or more call security responses that may further characterize security features of the telephone call. The call fingerprint and the call security responses may then be used to determine a call security score, which may be transmitted in a notification to a call handling system in order to adjust how the call is handled.
US10803153B2

A server includes a processor to execute a single generic composited layered image that includes an operating system layer and an application layer. A layering engine hooks into the user log-in process to capture a user identification of the user initiating the log-in process, and compares the user identification to a list of additional application layers that are to be available to different users based on their respective user identifications. The layering engine determines if at least one additional application layer is to be available to the user based on the compare, and creates a single user-specific composited layered image by mounting the at least one additional application layer to the single generic composited layered image if the at least one additional application layer is to be available to the user.
US10803138B2

The present disclosure is directed to systems and methods of managing remote devices. The system can include a server with memory, a detection module, and a collection module. The memory can store a management information base (MIB) having a hierarchical tree of object identifiers and corresponding object values. The detection module can query devices and receive a first object identifier and its first object value, which can vary from those in the MIB; and use patterns to match the first object identifier and object value; and generate an identification of the device from the matches. The collection module can use the identification to select a collection template, which can indicate a subtree of the MIB and a collection pattern; traverse the subtree and identify a second object identifier that matches the collection pattern, and its second object value; and associate the second object value with the first object value.
US10803136B2

Digital information is transferred between an application that processes a plurality of on-line transactions executed on the mainframe computer and a file system of an operating system. A programmable processor identifies the data held in memory under control of the application. The programmable processor calls a first routine to associate a portion of the data with a container of the application and calls a second routine to dynamically allocate a file of the file system. The programmable processor opens the file of the file system and calls an input/output routine of the operating system to transfer the data associated with the container to the file of the file system.
US10803134B2

A method, software, database and system for attribute partner identification and social network based attribute analysis are presented in which attribute profiles associated with individuals can be compared and potential partners identified. Connections can be formed within social networks based on analysis of genetic and non-genetic data. Degrees of attribute separation (genetic and non-genetic) can be utilized to analyze relationships and to identify individuals who might benefit from being connected.
US10803133B2

An event clustering system includes an extraction engine and a signalizer engine. The extraction engine is in communication with a managed infrastructure. In operation the extraction engine receives messages from the managed infrastructure and produces events that relate to the managed infrastructure. The events are converted into words and subtexts that are used to group the events into clusters relating to failures or errors in the managed infrastructure physical hardware. The managed infrastructure supports the flow and processing of information. The signalizer engine determines one or more common characteristics of events and produces clusters of events relating to the failure or errors in the managed infrastructure. Membership in a cluster indicates a common factor of the events that is a failure or an actionable problem in the physical hardware of the managed infrastructure directed to supporting the flow and processing of information. In response to production of the clusters of events one or more physical changes in a managed infrastructure hardware is made.
US10803129B2

The present disclosure relates to a method for processing online user distribution. The method includes acquiring a map for displaying online user distribution; determining the projection algorithm of the map; determining intermediate coordinates of at least one of the points according to a longitude and a latitude and the projection algorithm, and acquiring, by using a fitting algorithm, approximate solutions of functions of mapping the intermediate coordinates to the coordinates on the map. The method further includes calculating coordinates of each online user on the map according to the projection algorithm and the approximate solutions of the mapping functions; and assembling distribution data of online users on the map according to coordinates of all the online users on the map. The present disclosure further provides an apparatus for processing online user distribution. By using embodiments of the present disclosure, online user distribution can be displayed on a map and higher precision and real-time data quality are achieved.
US10803116B2

A system and method that distinguishes between logos and other categories of images, such as natural images, cartoon images, and computer-processed or generated images (“concept images”). The system receives a query image, which may, for example, be intended to be evaluated by an image search and comparison engine to identify matches to a catalog of images. The system evaluates characteristics of the query image, such as the gray-levels in the image, the edge crossings in the image, and the gradient magnitudes in the image, to identify whether the image is a logo. Based on identifying the image is a logo, the logo query image may be excluded from being evaluated by the image search and comparison engine.
US10803106B1

A system with methodology for dynamic modular ontology. In one embodiment, for example, a method comprises: receiving a command from an analyst to create a new ontology module; receiving, from the analyst, a selection of a first ontology module to import into the new ontology module; receiving, from the analyst, a selection of a second ontology module to import into the new ontology module; detecting an ambiguous data type definition conflict between a first definition of a data type in the first ontology module and a second definition of the data type in the second ontology module; generating a third definition of the data type reflecting a resolution of the ambiguous data type definition conflict; and storing, in a data container, the new ontology module comprising the third definition of the data type.
US10803105B1

Given a number of records and a number of target classes to which these records belong to, a (weakly) supervised machine learning classification method leverages known possibly dirty classification rules, efficiently and accurately learns a classification model from training data, and applies the learned model to the data records to predict their classes.
US10803097B2

In particular embodiments, a data processing data inventory generation system is configured to: (1) generate a data model (e.g., a data inventory) for one or more data assets utilized by a particular organization; (2) generate a respective data inventory for each of the one or more data assets; and (3) map one or more relationships between one or more aspects of the data inventory, the one or more data assets, etc. within the data model. In particular embodiments, a data asset (e.g., data system, software application, etc.) may include, for example, any entity that collects, processes, contains, and/or transfers personal data (e.g., such as a software application, “internet of things” computerized device, database, website, data-center, server, etc.). For example, a first data asset may include any software or device (e.g., server or servers) utilized by a particular entity for such data collection, processing, transfer, storage, etc.
US10803096B2

System and methods are provided for parallel geospatial clustering. A link tile association is determined between one or more links and a tile of a plurality of tiles. Map matched geospatial data is acquired for the tile based on the link tile association. A family of links is generated from the one or more links. A cluster of the map matched geospatial data is identified that is at least partially associated with the family of links. The cluster is determined to be centered on a link of the family of links that originates in the tile. The cluster is assigned to the tile. The cluster is reported for aggregation with other clusters from other parallelized processes.
US10803094B1

A method for determining reach of a content item that is displayed on one or more client devices associated with at least one unresolved identifier. An unresolved identifier defines a context in which a client device accesses one or more online systems, the context not determined to be associated with a specific user. The method comprises identifying a set of unresolved identifiers, and identifying information describing one or more access events associated with each unresolved identifier. For each pair of unresolved identifiers, a similarity score for the pair is determined based on the identified information. Responsive to the similarity score exceeding a threshold similarity score, the pair of unresolved identifiers is clustered, the clustering indicating a prediction that the pair of unresolved identifiers are associated with a common user. Finally, for the reach of the displayed content item is determined based on the clustering of the set of unresolved identifiers.
US10803093B2

Techniques for labeling data files that enable a file management label to persist on a data file. Variations disclosed herein enable a file management label to be embedded within a data file so that the file management label propagates with the data file when the data file is copied and/or moved between systems and/or workloads. In some embodiments, an application may be configured to write the file management label directly into a stream of the data file. For example, an application client that is run locally on a client device may open the data file by accessing its corresponding stream. While the data file is open within the application client such that a user may edit content of the data file, the application client may be caused to associate the file management label with the data file. Ultimately, the application client may write this association directly into the stream.
US10803087B2

Adaptive data collections may include various type of data arrays, sets, bags, maps, and other data structures. A simple interface for each adaptive collection may provide access via a unified API to adaptive implementations of the collection. A single adaptive data collection may include multiple, different adaptive implementations. A system configured to implement adaptive data collections may include the ability to adaptively select between various implementations, either manually or automatically, and to map a given workload to differing hardware configurations. Additionally, hardware resource needs of different configurations may be predicted from a small number of workload measurements. Adaptive data collections may provide language interoperability, such as by leveraging runtime compilation to build adaptive data collections and to compile and optimize implementation code and user code together. Adaptive data collections may also provide language-independent such that implementation code may be written once and subsequently used from multiple programming languages.
US10803083B2

A method generating a platform-agnostic abstract syntax tree (AST) comprises receiving data in a predefined format, through an input unit; subsequently parsing the data to extract model information corresponding to the predefined format of the data; and transforming, by a processing server, the model information to an abstract syntax tree (AST) structure. The above steps aid in generating, by the processing server, a platform-agnostic AST by combining predefined metadata and the abstract syntax tree (AST) structure.
US10803078B2

In an approach, a database management system is configured in a manner that allows all pluggable databases within a cluster to be treated, from the perspective of a user, as though stored on a single container database, even when the pluggable databases are distributed across a plurality of container databases. When a command is received by a database server that is to be executed on all or a subset of the pluggable databases within the cluster, the database inspects mapping information replicated on all container databases within the cluster by a cluster synchronization server to determine which container databases store pluggable databases implicated by the command. The command is then forwarded to the database servers responsible for the determined container databases for execution. As a result, the commands issued by the user can be agnostic in regard to the actual location of the pluggable databases within the cluster.
US10803077B2

An online system receives a request to generate presentation content for presentation to a user. The online system receives a set of content items and identifies a surface for presenting the presentation information to the user. For example, the surface may be a voice only surface, a voice and graphical display, a graphical display only. Based on the identified surface, the online system ranks the set of content items. The online system then determines presentation information for a subset of the content items and transmits instructions to present the presentation information at the surface.
US10803072B2

A method and system for identifying assets in support of a transaction includes obtaining a set of filter values for a customer from each of a plurality of filtering entities. The filtering entities may provide rules, which may be executed in a distributed manner by remote systems, that generate filter values based on input data, or that generate customized filter rules based on the input data. Filter values are used to filter search results produced by a query of a database of assets. Where customized filter rules are generated, the rules are executed against the characteristics of the assets identified in response to the query in order to produce filter values, and the filter values are then used to filter the search results. The search results can be ranked according to a ranking value generated in advance of filtering in order to rank the assets in order of suitability.
US10803071B2

A method for presenting a data handling method on a graphical user interface includes identifying a type of service associated with a pending data handling process, sending one or more user characterizations associated with a user's identity to a server for performing the data handling process, receiving data handling capabilities corresponding to one or more data handling methods for performing the identified type of service, determining one or more candidate data handling methods to be displayed on a graphical user interface (GUI) of the client computing device, initiating display of the candidate data handling methods on the client computing device GUI based on the data handling capabilities, performing the pending data handling process with a particular data handling method selected from the candidate data handling methods, and sending a performance result associated with the pending data handling process.
US10803067B2

In one implementation, a computer-implemented method includes receiving a parameterless search request, which was provided to a mobile computing device, for information that is relevant to a user of the mobile computing device. The method also includes, in response to the received parameterless search request, identifying with a digital computer system one or more results that are determined to be relevant to the user of the mobile computing device based upon a current context of the mobile computing device. The method further includes providing the results for display to a user of the mobile computing device.
US10803066B2

Embodiments of the present invention provide a hardware accelerator that assists a host database system in processing its queries. The hardware accelerator comprises special purpose processing elements that are capable of receiving database query/operation tasks in the form of machine code database instructions, execute them in hardware without software, and return the query/operation result back to the host system.
US10803065B1

A system includes determination of a plurality of queries, each of the plurality of queries indicating a first object as a data source, generation of a first query on the first object based on a first two or more of the plurality of queries, modification of each of the first two or more queries to indicate the first query as the data source, requesting of execution of the first query and the modified first two or more queries, and reception of a result set associated with each of the first two or more queries.
US10803062B2

In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing a BY PARTITION command term within a multi-tenant aware structured query language within a computing environment. For instance, such an exemplary system having a processor and a memory therein includes means for operating a multi-tenant database system having customer data stored therein for a plurality of distinct customer organizations; maintaining a plurality of tables within the multi-tenant database system to store the customer data, in which one or more of the tables is partitioned into a plurality of table partitions; receiving a database query specifying a command term to restrict a specified table accessed pursuant to execution of the database query by a partition_id parameter; parsing the database query to identify the command term specified; parsing the database query to identify any part of the received database query corresponding to the specified table within the multi-tenant database system to be restricted by the partition_id parameter; generating a new structured query language statement to execute against the multi-tenant database system in fulfillment of the database query received, in which the new structured query language statement accesses only a sub-portion of the specified table corresponding to exactly one table partition of the specified table having a partition ID matching the partition_id parameter; and executing the new structured query language statement against the multi-tenant database system. Other related embodiments are disclosed.
US10803058B2

There is provided an information processing device capable of searching for a network structure more efficiently, the information processing device including: a structure acquisition unit configured to acquire a graph structure searched for on a basis of information related to a structure of a graph-structured network.
US10803052B2

Implementations of the present disclosure include setting, by a first consensus node, a timer that runs out before a timeout of a view change; sending, to a second consensus node, a request for one or more consensus messages missing by the first consensus node in response to the timer running out; receiving, from the second consensus node, the one or more consensus messages each digitally signed by a private key of a corresponding consensus node that generates the respective one or more consensus messages; and determining that a block of transactions is valid, if a quantity of commit messages included in the received one or more consensus messages is greater than or equal to 2f+1, where f is a maximum number of faulty nodes that is tolerable by the blockchain based on practical Byzantine fault tolerance.
US10803050B1

In one embodiment, a method includes accessing a number of records describing a number of entities generated based on data collected from a number of data sources, where the records are grouped by data source, deduping the number of records in each group, selecting a data source as a core source, identifying, for a record in the core group, a candidate set including records from the non-core groups of records that satisfy conditions to be in the candidate set for the record, generating a feature vector for each pair of records between a record in the core group and a record in the candidate set, computing a probability that the pair of records describe a common entity for each pair of records, and linking the record in the candidate set to a globally unique entity identifier identifying a unique entity if the probability exceeds a threshold.
US10803044B1

An exemplary embodiment of the present invention indexes components of a systematization of technical data. An author, a publisher, and a renderer are defined. The author, the publisher, and the renderer are relatedly configured in the technical data system so that the author represents a first stage, the publisher represents a second stage, and the renderer represents a third stage. The author creates and outputs author data, which is input into and implemented by the publisher. The publisher creates and outputs publisher data, which is input into and implemented by the renderer. The renderer creates and outputs renderer data, which is input into and implemented by a user. Respective levels of data are determined at the three stages. A first-stage level of data corresponds to the author data. A second-stage level of data corresponds to the publisher data. A third-stage level of data corresponds to the renderer data.
US10803042B2

A performance measurement indexing system indexes a data store containing data entries indicative of message processing by an application. The application includes a plurality of checkpoints, and the data store contains data logged upon each message traversing the checkpoints in the application. The performance measurement indexing system determines which data entries relate to messages that satisfy a delay condition, and limits queries run on the data store to those data entries, thereby increasing the speed and efficiency with which queries can be serviced.
US10803041B2

Implementations of a system, method and apparatus described herein receive, for a configuration item in a configuration management database, status indicating an operational state and an automation state associated with the configuration item, and determine whether a conflict will occur with at least one of the operational state or the automation state of the configuration item as a result of a process affecting the configuration item. When the conflict will not occur, a change is made to at least one of the operational state or the automation state of the configuration item in accordance with the process. Upon a conclusion of the process, the change is removed. If the conflict will occur, the process not allowed to continue.
US10803039B2

Techniques are provided for enabling a requesting entity to retrieve data that is managed by a database server instance from the volatile memory of a server machine that is executing the database server instance. The techniques allow the requesting entity to retrieve the data from the volatile memory of the host server machine without involving the database server instance in the retrieval operation. Because the retrieval does not involve the database server instance, the retrieval may succeed even when the database server instance has stalled or become unresponsive. In addition, direct retrieval of data using the techniques described herein will often be faster and more efficient than retrieval of the same information through conventional interaction with the database server instance.
US10803027B1

In general, embodiments of the invention relate managing the interaction of applications with one or more file systems and/or data managed by the file systems. More specifically, embodiments of the invention relate to providing applications with access to an overlay file system (OFS) and then servicing OFS operations using a file system module and one or more underlay file systems (UFSes) that are not directly accessible to the applications.
US10803021B2

Techniques to perform event-based synchronization of data are disclosed. In various embodiments, an indication is received, during the course of performing a synchronization event-based synchronization with a synchronization client, that a user of the synchronization client has provided an input associated with a request to access a file or other object the changes to which have not yet been downloaded completely to the synchronization client. Download of the changes to the file other object with respect to which the input associated with a request to access is associated is reprioritized, to enable the synchronization client to provide access to the file or other object more quickly than would have been possible without the reprioritization.
US10803017B2

Embodiments relate to systems and methods for tracking local and remote file usage, and aggregating the resulting file usage statistics for presentation to a user. The operating system of a local computer can track and generate local file usage statistics, such as most recently used files and editing time. A Web application or service, such as an email or word processing application or service, can record the file usage data for a user's remote stored or served files. A file usage aggregator module, which can be located or resident in the operating system of the local computer or hosted at a Web site, can receive and combine the local and remote file usage statistics. The file usage aggregator module can generate a display of the aggregated file usage statistics, so that local and remote files are listed in a most-recently used order, on a combined basis.
US10803000B2

Disclosed herein are system and electronic structure embodiments for implementing phase-aware control and scheduling. An embodiment includes a system with a bus controller configured to be activated in response to a first command. The bus controller may have a first clock speed and may drive an interface having a second clock speed. The system may further configure the bus controller to wait for a first time period in response to being activated, and a first circuit element structured to detect a first phase value of a first signal. In some embodiments, the bus controller may process a second command following passage of the first time period, and wait for a second time period, based on the detected first phase value and a ratio of the first and second clock speeds.
US10802997B2

A semiconductor integrated circuit operates with a voltage supplied from a first power supply IC to transmit and receive data to and from an external memory. The semiconductor integrated circuit includes: an interface circuit operating with a voltage supplied from a second power supply IC and accessing the external memory to transmit and receive data to and from the external memory; a determination circuit which determines, based on a result of the access by the interface circuit, an AC timing specification between the external memory and the interface circuit to generate control information for controlling an output voltage of the second power supply IC in accordance with the AC timing specification; and a voltage control circuit which controls the output voltage of the second power supply IC in accordance with the control information.
US10802992B2

The present invention relates to artificial neural network (ANN), for example, convolutional neural network (CNN). In particular, the present invention relates to how to implement and optimize a convolutional neural network based on an embedded FPGA. Specifically, it proposes a CPU+FPGA heterogeneous architecture to accelerate ANNs.
US10802988B2

Embodiments are provided herein for dynamic memory-based communication in a disaggregated computing system. A pool of similar computing elements is configured as a large address space, the large address space segmented by an identifier. Data travel distances are optimized depending on a historical or expected use of a data object by using a grouping and amortization algorithm to relocate the data object within the pool of similar computing elements at a particular address within the large address space according to the historical or expected use.
US10802985B2

A method of GPU virtualization comprises allocating each virtual machine (or operating system running on a VM) an identifier by the hypervisor and then this identifier is used to tag every transaction deriving from a GPU workload operating within a given VM context (i.e. every GPU transaction on the system bus which interconnects the CPU, GPU and other peripherals). Additionally, dedicated portions of a memory resource (which may be GPU registers or RAM) are provided for each VM and whilst each VM can only see their allocated portion of the memory, a microprocessor within the GPU can see all of the memory. Access control is achieved using root memory management units which are configured by the hypervisor and which map guest physical addresses to actual memory addresses based on the identifier associated with the transaction.
US10802984B2

Examples may include techniques for persistent memory virtualization. Persistent memory maintained at one or more memory devices coupled with a host computing device may be allocated and assigned to a virtual machine (VM) hosted by the host computing device. The allocated persistent memory based on a file based virtual memory to be used by the VM. An extended page table (EPT) may be generated to map physical memory pages of the one or more memory devices to virtual logical blocks of the file based virtual memory. Elements of the VM then enumerate a presence of the assigned allocated persistent memory, create a virtual disk abstraction for the file based virtual memory and use the EPT to directly access the assigned allocated persistent memory.
US10802978B2

Node resets in a distributed environment can be disruptive due to the need to reset shared state. However, a central system can notify all other nodes asynchronously of a pending event, and then multiple nodes can use that notification to mitigate costs when it actually happens. For example, in anticipation of a first node leaving a group of nodes, a second node can reduce its cache to store the cache from the first node. Additionally, a client device can be directed to the second node so as not to interrupt a service provided to the client device by the first node.
US10802974B2

A device includes a data path, a first interface configured to receive a first memory access request from a first peripheral device, and a second interface configured to receive a second memory access request from a second peripheral device. The device further includes an arbiter circuit configured to, in a first clock cycle, a pre-arbitration winner between a first memory access request and a second memory access request based on a first number of credits allocated to a first destination device and a second number of credits allocated to a second destination device. The arbiter circuit is further configured to, in a second clock cycle select a final arbitration winner from among the pre-arbitration winner and a subsequent memory access request based on a comparison of a priority of the pre-arbitration winner and a priority of the subsequent memory access request.
US10802965B2

Memory reclamation is tailored to avoid certain synchronization instructions, speeding concurrent garbage collection while preserving data integrity and availability. Garbage collection reclaims objects no longer in use, or other unused areas of memory. Pointers are partitioned into address portions holding address values and garbage collection portions having a special bit. Marking code writes only the garbage collection portions, setting the special bit as a mark reference, relocation candidate, etc. Mutator threads may concurrently mutate the entire pointer to update the address, but mutation does not cause incorrect reclamations or failure to do other operations such as relocation. Meanwhile, execution speed is increased by avoiding CAS (compare-and-swap instructions or compare-and-set) synchronization instructions in the garbage collector. Non-CAS yet nonetheless atomic writes are used instead. Mutators run in user or kernel address spaces. Partitioned pointers and their use may be enclosed in the garbage collector to avoid runtime errors by code that expects references to be in a canonical non-partitioned form.
US10802961B2

An apparatus and a method for accessing a plurality of memory blocks is disclosed. The An apparatus comprises: a memory circuit configured to store a recording table, wherein the recording table corresponds to quality index of the plurality of memory blocks; and a control circuit configured to group the plurality of memory blocks to a first memory group and a second memory group according to the quality index; to enable to access the memory blocks in the first memory group, and to disable to access the memory blocks in the second memory group.
US10802957B2

A control module for a multi-level data storage device having a plurality of memory devices is disclosed. The control module may include: an access determination circuit configured to determine that access has been made to a piece of data stored on at least one of the plurality of memory devices, the piece of data associated with a level being one of a first level, a second level, or a third level; a level management circuit configured to change the level from the third level to the second level or from the second level to the first level upon determining that access has been made to the piece of data; and a memory controller configured to promote the piece of data in response to whether the level is the first level, the second level or the third level, wherein at least two levels of the first level, the second level, and the third level are associated with one of the plurality of memory devices.
US10802944B2

Embodiments of the present disclosure relate to dynamically maintaining alarm thresholds for software application performance management. Other embodiments may be described and/or claimed.
US10802940B1

Systems and methods are provided for executing a program that produces one or more data streams. A visual graph can be generated based at least in part on the data streams. A given data stream can be represented in the visual graph as a dot and a connection between a pair of data streams can be represented in the visual graph as an arc connecting a pair of dots representing the pair of data streams. The visual graph can be provided for presentation through an interface. The visual graph can provide a visual representation of an execution state of the program during execution.
US10802939B2

Disclosed are a method for scanning cache of an application, an electronic device and a computer-readable storage medium. The method may include: acquiring a list of applications to be scanned; querying a historical scanning record of each application in the list of applications to be scanned; determining a scanning priority of each application and whether the application needs to be scanned according to the historical scanning record of each application; scanning applications that need to be scanned in the list of applications to be scanned in a descending order of the scanning priorities, so as to acquire cache sizes of respective applications that need to be scanned; and scanning applications that need not to be scanned in the list of applications to be scanned in a descending order of the scanning priorities, so as to acquire cache sizes of respective applications that need not to be scanned.
US10802936B2

In one example a system includes a memory, and at least one memory controller to: detect a failed first memory location of the memory, remap the failed first location of the memory to a spare second location of the memory based on a pointer stored at the failed first memory location, and wear-level the memory. To wear-level the memory, the memory controller may copy data from the spare second location of the memory to a third location of the memory, and keep the pointer in the failed first memory location.
US10802935B2

In one aspect, synchronous replication failover support is provided for a storage system that includes a source site and a target site. The failover support includes locating a recovery snap set on the source site. The source site is identified as a subject of a failover event, and the recovery snap set includes a snap set that contains a subset of data content that is also stored at the target site. The recovery snap set also has a time of creation that is equal to or greater than a timeout value for serving input/outputs (IOs) to the target site. The failover support further includes sending a difference between volumes of the source site and the recovery snap set to the target site. The difference is configured to enable in sync status between the source site and the target site.
US10802934B2

Systems and methods for preventing system crashes due to memory link failure in memory mirroring mode in an information handling system (IHS). The IHS may include a first memory device, a second memory device, and an integrated memory controller (IMC). The IMC may issue write transactions to both the first and second memory devices and issue read transactions to the first memory device when the IMC is in memory mirroring mode. The IMC may transmit a system management interrupt (SMI) with an IMC error to a basic input/output system (BIOS) when a persistent uncorrected IMC error is detected within the first memory device. The BIOS may perform a memory mirror failover process that may cause the IMC to issue the write transactions and the read transactions to the second memory device when the IMC error is a fatal memory link error.
US10802932B2

A data processing system and methods for operating the same are disclosed. The method includes detecting a fault by comparing output signals from a first processing core and a second processing core, entering a safe mode based upon detecting the fault, completing transactions while in the safe mode, and determining whether the fault corresponds to a hard error. Based upon the fault corresponding to a hard error, one of processing cores is identified as a faulty core. The faulty core is inhibited from executing instructions and the other processing core is allowed to execute instructions.
US10802930B2

In response to an occurrence of a failure in a storage controller, an input on a plurality of attributes of the storage controller at a time of occurrence of the failure is provided to a machine learning module. In response to receiving the input, the machine learning module generates a plurality of output values corresponding to a plurality of recovery mechanisms to recover from the failure in the storage controller. A recovery is made from the failure in the storage controller, by applying a recovery mechanism whose output value is greatest among the plurality of output values that are generated by the machine learning module.
US10802928B2

A method for restoring a target file system in a storage system by a computer system, the computer system being connected to a network, the storage system including a tier of sequential access media, the method includes receiving a backup image including metadata of a file of the target file system, from a remote computer system via the network, the metadata indicating a sequential access medium, and restoring the metadata of the target file system using the backup image, the target file system being restored on the computer system by sharing a resource with a native file system operating on the computer system.
US10802917B2

According to one embodiment, a memory system includes a nonvolatile memory having a first writing area and a second writing area, and a controller, in which the controller confirms whether processing of preserving data which has been written before shutdown which is not going through a predetermined shutdown procedure is being executed, in the nonvolatile memory, when the controller receives a write command, causes the nonvolatile memory to write data to the first writing area if the processing is not being executed, and causes the nonvolatile memory to write data to the second writing area if the processing is being executed.
US10802916B2

An information handling system includes a central processing unit, multiple storage devices, and a service processor. The central processing unit executes an operating system of the information handling system. The storage devices include a first storage device that stores a primary boot image for the information handling system, and a second storage device. The service processor executes a first boot process. During the first boot process, the service processor stores a recovery boot image on the second storage device, and restarts the first boot process after the recovery boot image being stored on the second storage device. During a second boot process, the service processor removes the second storage device from a bootable device menu in response to the second storage device storing the recovery boot image, and hides the second storage device from being discoverable by the operating system.
US10802915B2

A method includes upon storage of a set of encoded data slices in one or more sets of storage units of a dispersed storage network (DSN), setting, by a computing device of the DSN, a deletion time for the set of encoded data slices and an encoded data slice reduction time for the set of encoded data slices. The encoded data slice reduction time is set at a time prior to the deletion time. Upon expiration of the encoded data slice reduction time, the method further includes implementing an encoded data slice reduction scheme. The encoded data slice reduction scheme includes one or more of: a reduced rebuild operation and an explicit deletion. The explicit deletion includes deleting encoded data slices such that a remaining number of encoded data slices is equal to or exceeds a decode threshold number and is less than a pillar width number.
US10802914B2

A disclosed method is performed at a fault-tolerant object-based storage system including M data storage entities, each is configured to store data on an object-basis. The method includes obtaining a request to store N copies of a data object and in response, storing the N copies of the data object across the M data storage entities, where the N copies are distributed across the M data storage entities. The method additionally includes generating a first parity object for a first subset of M copies of the N copies of the data object, where the first parity object is stored on a first parity storage entity separate from the M data storage entities. The method also includes generating a manifest linking the first parity object with one or more other subsets of M copies of the N copies of the data object.
US10802911B2

A non-volatile storage apparatus includes a set of non-volatile memory cells and one or more control circuits in communication with the set of non-volatile memory cells. The one or more control circuits are configured to collect failure bit counts (FBCs) for data read from the set of non-volatile memory cells in a first time period and manage the set of non-volatile memory cells according to a probability of occurrence of a target FBC in a second time period that is subsequent to the first time period. The probability of occurrence of the target FBC during the second time period is calculated from a model of FBC distribution change of the set of non-volatile memory cells.
US10802906B2

A monitoring method of a server is provided. The server starts a target monitoring process of a client, and monitors, after the server starts the target monitoring process, whether the target monitoring process exceptionally exits. Further, the server sends, to a preset terminal when the server detects that the target monitoring process exceptionally exits, alarm information used to indicate that the target monitoring process exceptionally exits, where the preset terminal sends an operation and maintenance instruction to the server according to the alarm information. The server also maintains the target monitoring process according to the operation and maintenance instruction.
US10802899B2

A tubular connection made during various oil and/or gas operations such as a tripping operation can be identified based on received data such as hookload and/or block position data. A type of tubular connected can also identified by comparing hookload and/or block position data to a tubular specification database. The identification of the tubular connection and/or type of tubular connected can be used to measure a machine sequence, such as a tripping sequence. The measurement of the machine sequence can be used to optimize an operation such as a tripping or drilling operation.
US10802885B2

A communication technique for combining a fifth generation (5G) communication system that supports higher data transmission rates after fourth generation (4G) systems with Internet of things (IoT) technology and to the system therefor are provided. The disclosure relates to a multiple cores-based data processing method and apparatus, the method including determining whether a condition for a first packet flow among one or more packet flows for data communication is met, if the condition is met, selecting cores to distribute packets of the first packet flow from among the multiple cores, allocating packets received through the first packet flow to the selected cores, and operating the selected cores in parallel to process the packets allocated from the first packet flow.
US10802882B2

A method accelerates memory access in a network using thread progress based arbitration. A memory controller identifies a prioritized thread from multiple threads in an application. The prioritized thread reaches a synchronization barrier after the other threads due to the thread encountering more events than the other threads before reaching the barrier, where the events are from a group consisting of instruction executions, cache misses, and load/store operations in a core. The memory controller detects a cache miss by the prioritized thread during execution of the prioritized thread after the barrier is reached by the multiple threads. The memory controller then retrieves and returns data from the memory that cures the cache miss for the prioritized thread before retrieving data that cures cache misses for the other threads by applying thread progress based arbitration in the network.
US10802861B2

In one embodiment, in accordance with the present invention, a method, computer program product, and system for accessing non-functional host capabilities and services of a host operating system, by a guest operating system, are provided. The method includes a hypervisor, of a host OS, intercepting a hardware instruction from a guest operating system, wherein the hardware instruction is associated with data located in a register and in memory that is accessible by the hypervisor. The method further includes analyzing the hardware instruction and data to determine if the hardware instruction is a non-functional service request. The method further includes, upon determining that the hardware instruction is a non-functional service request, executing the related non-functional service request and writing a response to the associated memory. The method further includes notifying the guest operating system that the execution of the non-functional service request is complete and the response is available.
US10802860B2

The present disclosure broadly discloses an operating system (OS) management service for a cloud platform of a cloud provider (CP). The OS management service may be configured for receiving OS version information indicative of a plurality of OS versions of an OS available from an OS provider, receiving OS image information indicative of a plurality of OS images of the OS made available by the CP within the cloud platform, receiving VM OS information indicative of a plurality of VMs of the cloud platform that are running the OS available from the OS provider, and initiating a management action based on various combinations of the OS version information, the OS image information, and the VM OS information. The OS management service may be provided by an OS management server of the cloud platform, which may be implemented as a database server or other suitable system.
US10802854B2

Implementations of the present specification are provided for interpreting a bytecode instruction stream. An interpreter of a virtual machine receives an instruction stream comprising a plurality of machine instructions. A first value, comprising a current analog function address and stored in a first register corresponding to a current instruction of the plurality of machine instructions, is read. The validity of the first value is determined. If the first value is valid, the first value is stored in a second register configured to store current analog function addresses corresponding to current instructions in the instruction stream. A subsequent analog function address corresponding to a subsequent instruction associated with the current instruction is retrieved by using the current analog function address. The subsequent analog function address is stored in the first register. The current instruction is executed based on the current analog function address read from the second register.
US10802848B2

In one embodiment, a method includes accessing a plurality of input tuples associated with a first user from a data store, wherein each input tuple comprises a gesture-input and a corresponding speech-input, determining a plurality of intents corresponding to the plurality of speech-inputs, respectively, by a natural-language understanding (NLU) module, generating a plurality of feature representations for the plurality of gesture-inputs based on one or more machine-learning models, determining a plurality of gesture identifiers for the plurality of gesture-inputs, respectively, based on their respective feature representations, associating the plurality of intents with the plurality of gesture identifiers, respectively, and training a personalized gesture-classification model for the first user based on the plurality of feature representations of their respective gesture-inputs and the associations between the plurality of intents and their respective gesture identifiers.
US10802843B1

Examples of multi-user configuration are disclosed. An example method includes, at an electronic device: receiving a request; and in response to the request: if the voice input does not match a voice profile associated with an account associated with the electronic device: causing output of first information based on the request using a first account associated with the electronic device; if a setting of the electronic device has a first state, causing update of account data of the first account based on the request; and if the setting has a second state, forgoing causing update of the account data; and if the voice input matches a voice profile associated with an account associated with the electronic device: causing output of the first information using the account associated with the matching voice profile; and causing update of account data of the account based on the request.
US10802839B2

The present disclosure is related to devices, systems, and methods for user interface customization. An example device can include instructions executable by a processor to receive indications of user actions with respect to an application, wherein the actions are made using a plurality of selectable elements of an interface, determine a user tendency based on the user actions, and provide a customized interface to the user based on the determined user tendency, wherein the customized interface includes at least one customized selectable element.
US10802835B2

Systems for rule-based data protection of virtualized computing entities. A method embodiment commences upon receiving specification parameters that correspond to one or more data protection schemes or data protection configurations such as schemes for making backups or snapshots. Based on the specification parameters and the data protection configurations, one or more resource entities associated with the data protection configurations are identified. Each of the resource entities are accessed and one or more applicable data protection administration rules that correspond to the respective resource entities are applied. The resource entities might be organized hierarchically. Determination of which data protection administration rules are applicable to the resource entities is based on the type of resource entity being considered. The combination of the resource entity type and respective applicable rules is used to generate entity-specific data protection commands. The entity-specific commands to administer the data protection configurations over the resource entities are executed.
US10802834B2

A computing system is configured to securely boot different operating systems. The computing system includes one or more processors, a first memory device storing a first firmware element for booting a first operating system, a second memory device storing a second firmware element for booting a second operating system, a first security module configured to provide authentication for booting the first operating system, and a second security module configured to provide authentication for booting the second operating system. The computing system is configured such that, when the first security module is connected to the one or more processors, either the first operating system or the second operating system is selected for booting based on a selection signal, and when the first security module is not connected to the one or more processors, the second operating system is selected for booting.
US10802830B2

A computer data processing system includes a plurality of logical registers, each including multiple storage sections. A processor writes data a storage section based on a dispatched first instruction, and sets a valid bit corresponding to the storage section that receives the data. In response to each subsequent instruction, the processor sets an evictor valid bit indicating a subsequent instruction has written new data to a storage section written by the first instruction, and updates the valid bit to indicate the storage section containing the new written data. A register combination unit generates a combined evictor tag to identify a most recent subsequent instruction. The processor determines the most recent subsequent instruction based on the combined evictor tag in response to a flush event, and unsets all the evictor tag valid bits set by the most the most recent subsequent instruction along with all previous subsequent instructions.
US10802827B2

An in-situ in-memory implication gate is disclosed. The gate include a memory cell. The cell includes a first voltage source, a second voltage source lower in value than the first voltage source, a first and second magnetic tunneling junction devices (MTJ) selectively juxtaposed in a series and mirror imaged relationship between the first and second sources, each having a pinned layer (PL) in a first direction and a free layer (FL) having a polarity that can be switched from the first direction in which case the MTJ is in a parallel configuration presenting an electrical resistance to current flow below a first resistance threshold to a second direction in which case the MTJ is in an anti-parallel configuration presenting an electrical resistance to current flow higher than a second resistance threshold, and further each having a non-magnetic layer (NML) separating the PL from the FL.
US10802820B2

Techniques for cognitive interpretation of source code are provided. Metadata associated with a section of code in a software project is analyzed to determine a change history of the section of code. A plurality of discussions related to the section of code is evaluated, where each of the plurality of discussions occurred during a code review process. Further, a plurality of support records related to the section of code is analyzed. A sentiment score for the section of code is determined based on the associated metadata, the evaluation of the plurality of discussions, and the analysis of the plurality of support records. Additionally, a display color for the section of code is selected based on the sentiment score. Finally, generation of a graphical user interface (GUI) is facilitated, where the GUI displays the first display color in association with the first section of code.
US10802818B2

In one or more embodiments, one or more systems, methods, and/or processes may determine that an external device is coupled to an input/output (I/O) port of an information handling system and may provide a first message to an information handling system firmware (IHSFW) that indicates information associated with the external device. The IHSFW may provide a second message to a management information exchange, and the management information exchange may start an application in response to the second message. The application may determine firmware of the external device can be updated, may receive user input that indicates updating the firmware of the external device, may retrieve new firmware associated with the external device, and may provide the new firmware to the external device. In one or more embodiments, the new firmware associated with the external device may be retrieved before the external device is coupled to the information handling system.
US10802815B1

Software product versions installed on clients are detected. At least a subset of clients have different versions. Directed acyclic graphs are built specific to a client based on a particular version of the software product installed. Weighted values are assigned to edges in each graph. The weighted values indicate a degree of stability associated with upgrading the software product or an estimated time associated with the upgrading. Upgrade paths present in each graph are traversed to calculate sums of the weighted values. Based on the sums, recommended upgrade paths for the clients are identified, each recommended upgrade path is specific to a respective client. Upgrade packages, corresponding to the recommended upgrade paths, are created for the clients. Each upgrade package is specific to the respective client, includes the desired version of the software product, intermediate versions, and a sequence indicating an order in which the intermediate versions should be installed.
US10802807B1

Embodiments herein use control application programming interfaces (APIs) to control the execution of a dataflow graph in a heterogeneous processing system. That is, embodiments herein describe a programming model along with associated APIs and methods that can control, interact, and at least partially reconfigure a user application (e.g., the dataflow graph) executing on the heterogeneous processing system through a local executing control program. Using the control APIs, users can manipulate such remotely executing graphs directly as local objects and perform control operations on them (e.g., for loading and initializing the graphs; dynamically adjusting parameters for adaptive control; monitoring application parameters, system states and events; scheduling operations to read and write data across the distributed memory boundary of the platform; controlling the execution life-cycle of a subsystem; and partially reconfiguring the computing resources for a new subsystem).
US10802805B2

A code lineage tool includes a scanner, a parser, and an integrator. The scanner identifies a plurality of elements in software code. The parser determines that a value of a first element is affected by a second element and a third element. The parser adds the first element to a parse tree and adds the second and third elements to the parse tree as sub-nodes of the first element. The parser determines that a value of the second element is affected by a fourth element and adds the fourth element to the parse tree as a sub-node of the second element. The integrator determines that a change to the fourth element will change the value of the first element and the value of the second element and generates a lineage for the first element.
US10802789B2

An information processing device is provided with an information obtaining unit and a reproduction information transmitting unit. The information obtaining unit obtains first management information of content from a first reproducing device. The reproduction information transmitting unit, based on the first management information that the information obtaining unit has obtained, causes a second reproducing device to obtain reproduction information that reproduces content that the first reproducing device manages.
US10802786B2

Content sharing methods and apparatuses are provided that relate to the field of communications. A method comprises: determining a projection region of a second display region of a second display device on a first display region of a first display device; acquiring related information of the second display region; and displaying corresponding content in the projection region according to the related information of the second display region. The methods and apparatuses can simplify content sharing steps, improve content sharing efficiency and/or enhance user experience.
US10802779B2

Information that is used for identifying a print data file having been obtained by an image processing apparatus is notified to a print server in response to an error occurring in processing for obtaining the print data files from a first storage server, and a print data file stored by a storage unit is obtained from a second storage server based on an index file including acquisition source information about a not-yet-obtained print data file, and print processing is executed.
US10802778B2

Provided is an information processing apparatus that efficiently executes a series of tasks related to reading a document. An information processing system includes an upstream server, image forming apparatuses and a regional server. An apparatus-information-acquiring unit of the upstream server acquires apparatus information from plural image forming apparatuses. A task-sharing unit shares the respective tasks of a series of tasks for document data that is read by a specified image forming apparatus, based on a storage unit that is an apparatus-information-storage unit that stores an ID, position information that indicates a position in a network, and performance information for that image forming apparatuses that is included in the apparatus information. The task-sharing unit, in accordance with the ID and performance information of plural image forming apparatuses, determines and shares tasks so as to be executed by image forming apparatuses that are at nearby positions in the network.
US10802774B2

An image forming apparatus includes a feeding unit to supply a sheet, an acquiring unit, a fixing unit, a printing unit, a determining unit, and a comparing unit. The acquiring unit acquires, as a number, a remaining amount of sheets existing in the feeding unit. The fixing unit fixes a number of sheets required for a printing process per a certain unit for an accepted print job. The printing unit performs the printing process for the print job. The determining unit determines whether a restriction is imposed on interruption of the printing process for the print job. If, in comparing the remaining amount of sheets with the required number of sheets, the comparing unit determines that the remaining amount of sheets is greater than or equal to the required number of sheets, the printing unit starts the printing process for the print job regardless of whether the restriction is imposed.
US10802772B2

A non-transitory computer-readable storage medium stores computer-readable instructions for an information processing apparatus including: a processor; a display; and a memory storing at least one set of printer information. First and second type printers transmit status information to the information processing apparatus. The status information from the first type printer includes first information. The status information from the second type printer includes second information. The computer-readable instructions, when executed by the processor, cause the information processing apparatus to perform: setting target printer information to one of the at least one set of printer information; receiving the status information from a printer specified by the target printer information; and displaying, when the received status information includes the first information, a first screen on the display; and displaying, when the received status information includes the second information and does not include the first information, a second screen on the display.
US10802769B2

A printing apparatus includes a reception unit configured to receive a print job, and an execution unit configured to execute printing the print job received by the reception unit, wherein the execution unit is configured to execute cancellation for automatically cancelling printing of the print job received by the reception unit based on a state in which a predetermined interruption of printing the print job remains unsolved continues for a predetermined time or longer; and a notification unit configured to notify at least a user or an external apparatus communicating with the printing apparatus of information indicating that the printing apparatus is currently in a state in which a print job to be newly received by the reception unit is automatically cancelled by the cancellation.
US10802766B2

A shared storage architecture persistently stores database files in non-volatile random access memories (NVRAMs) of computing nodes of a multi-node DBMS. The computing nodes of the multi-node DBMS not only collectively store database data on NVRAMs of the computing nodes, but also host database server instances that process queries in parallel, host database sessions and database processes, and together manage access to a database stored on the NVRAMs of the computing nodes. To perform a data block read operation from persistent storage, a data block may be transferred directly over a network between NVRAM of a computing node that persistently stores the data block to a database buffer in non-volatile RAM of another computing node that requests the data block. The transfer is accomplished using remote direct memory access (“RDMA).
US10802765B2

Detecting and remediating memory leaks associated with an application environment can include monitoring allocations of memory from a managed memory space to respective operations to produce memory allocation data and monitoring deallocations of memory to at least some of the respective operations to produce memory deallocation data. A trend in memory leakage can be determined based on samples of the memory allocation or deallocation data. A projection of future memory usage by operations associated with the trend can be determined using binned sets of the memory allocation data and the memory deallocation data. A predicted time at which memory usage by the operations associated with the trend is expected to exceed a threshold can be determined using the projection of future memory usage. A remediation action can be performed before the predicted time to prevent a memory constraint from occurring with respect to the application environment. The application environment can be configured to automatically allocate unallocated portions of memory to execute operations and periodically deallocate unused allocated memory.
US10802764B2

Storage virtualization techniques allow directories to be stored remotely, for example, by a cloud storage provider, but in a manner that appears to a user or application running on a local computing device as if the directories are stored locally—even though the data of those directories may not be resident on the local computing device. That is, the contents of directories that may exist in the cloud look and behave as if they were stored locally on a computing device.
US10802763B2

A method for execution by one or more processing modules of one or more computing devices of a dispersed storage network (DSN), the method begins by determining a slice name of an encoded data slice to verify, obtaining the encoded data slice and compressing the encoded data slice to produce a compressed encoded data slice, determining a storage set of DS units associated with the slice name, sending compressed encoded data slice partial request messages to the storage set of DS units, and receiving at least a decode threshold number of compressed encoded data slice partial response messages to produce compressed encoded data slice partials. The method continues by determining whether a sum of the compressed encoded data slice partials compares favorably to the compressed encoded data slice and indicating a failed test when the comparison is not favorable and indicating a passed test when the comparison is favorable.
US10802756B1

Systems and methods are disclosed for command status polling at a flash queue of a non-volatile memory device. The flash queue may be configured to perform polling on the status of flash operations without direct oversight from the data storage controller or firmware. In certain embodiments, a flash queue circuit may be configured to receive, from a data storage controller of a nonvolatile solid state memory (NVSSM) data storage device, one or more commands to access a flash memory of the NVSSM data storage device, each command of the one or more commands including one or more instructions. The flash queue circuit may execute the one or more commands to access the flash memory, evaluate a status response from the flash memory at the flash queue circuit, and re-execute a sequence of instructions of the one or more commands based on the status response.
US10802744B2

Disclosed herein are related to a controller, a method, and a system for updating mapping information between a logical address and a physical address of a corresponding region of a memory device. In one aspect, the controller generates a plurality of entries, where each entry indicates an update in the mapping information associated with the corresponding region. The controller generates a plurality of headers, where each header is associated with one or more entries in the corresponding region. The controller receives an instruction to synchronize the mapping information stored on the memory device with the update in the mapping information. The controller generates a copy of the plurality of headers in response to receiving the instruction to synchronize. The controller synchronizes the mapping information stored on the memory device according to the copy of the plurality of headers and the plurality of entries.
US10802743B2

A control plane for controlling transfer of data to a data plane is disclosed. In one aspect, the control plane comprises memory cells for storing a digitally coded parameter value and having a data input electrode, a data output electrode and a control electrode, n data input terminals that receive a data input value and apply it to the data input electrode of an associated memory cell, and n data output terminals coupled to a data output electrode of an associated memory cell. The control plane further comprise a first delay line having delay elements and arranged for receiving a stream of control bit values, and a second delay line having delay elements and arranged for receiving a signal for enabling the control bit values in the first delay line, wherein data is transferred in a controlled and synchronized fashion to an output electrode.
US10802739B1

A data storage device includes a disk and a plurality of actuators for reading and writing data on the disk in different physical realms. Each physical realm is associated with at least one logical zone domain including at least one logical zone. The at least one logical zone domain corresponds to an actuator of a plurality of actuators that accesses the physical realms associated with the at least one logical zone domain. In one aspect, reading and writing of data is enabled in one or more logical zones in response to a SATA zone activate command. In another aspect, a SATA read or write command is received indicating at least one logical address for data to read or written on the disk. Data is read or written in a physical realm using the actuator corresponding to a logical zone domain including the at least one logical address.
US10802711B2

Systems and methods are described that include generating a virtual environment for display in a head-mounted display device. The virtual environment may include at least one three-dimensional virtual object having a plurality of volumetric zones configured to receive virtual contact. The method may also include detecting a plurality of inputs corresponding to a plurality of actions performed in the virtual environment on the at least one three-dimensional virtual object. Each action corresponds to a plurality of positions and orientations associated with at least one tracked input device. The method may include generating, for each action and while detecting the plurality of inputs, a plurality of prediction models and determining based on the plurality of prediction models in which of the plurality of volumetric zones the at least one tracked input device is predicted to virtually collide.
US10802708B2

An electronic device and a method are provided. The electronic device includes a communication module, a touch screen display, a processor electrically connected with the communication module and the touch screen display, and a memory electrically connected with the processor. The memory is configured to stores an application program configured to transmit and receive data to/from an external electronic device using the communication module, and instructions to enable the processor to display a user interface of the application program in the touch screen display when the application program is executed. The user interface includes a first area that displays at least one of an image and text that is associated with a user who is related to the external electronic device, and a second area that displays data that is shared with the external electronic device, and the first area overlaps at least a part of the second area.
US10802700B2

Provided is an information processing apparatus that includes a processing policy information control unit that controls processing policy information that includes identification information of a user associated with an actual object on a body surface on which a display object is displayed and that indicates a processing policy for the actual object in accordance with a user operation performed on the actual object. The information processing apparatus further includes a display control unit that controls display of the display object on a basis of the processing policy information for the actual object.
US10802699B2

A service mode selection system for a service vehicle is provided for simplifying a control for setting the vehicle in a desired service mode. The system includes a control system for receiving an operator's selection of service mode via a service mode selection device and controlling vehicle components to automatically set the vehicle in a selected service mode. The service mode selection device can be arranged in a cab of the vehicle and allows the operator to conveniently select a desired service mode, thereby achieving a work-ready machine with as few operator inputs as possible.
US10802695B2

An augmented reality (AR) platform for the Internet of Things (IoT) is disclosed. The AR platform enables a user to associate AR objects with IoT devices. These associations may further enable a user to direct a control input to a particular IoT device and receive outputs such as sensor measurements or state information from the IoT device via interaction with an associated AR object. These AR objects may be perceived by the user via a client device, such as via an AR viewer or other human interface. The AR platform further enables users to create shareable objects that define an association among or between multiple AR objects and their IoT devices that can be shared with and modified by other users.
US10802693B2

An operating system for a container handling machine, including an operating device for the container handling machine having a screen and a data transmitter for transmitting information and at least one separate additional screen having a data receiver for receiving information, with the operating device designed for selecting the information and the additional screen designed for displaying the selected information.
US10802677B2

Some embodiments of the disclosed systems and methods include displaying a graphical user interface comprising a first section and a second section, wherein the first section includes a first media icon corresponding to a first media item, and wherein the second section includes a first zone icon corresponding to a first zone comprising a first set of one or more playback devices; and in response to detecting a drag of the first media icon to the first zone icon, instructing at least one playback device in the first set of one or more playback devices to play the first media item corresponding to the first media icon.
US10802676B2

A method for setting a parameter includes the steps of: selecting, by a touch or click, one point on an electronic map displayed on an electronic device; displaying a parameter input area around the selected one point on the electronic map; detecting, by the electronic device, panning or drag performed along a direction in which the displayed parameter input area is formed; adjusting a value of the parameter according to the detected panning or drag; detecting, by the electronic device, panning or drag performed in a direction toward the one point; and setting the parameter to the adjusted value, wherein the touch or click is maintained while the steps of setting the one point through setting the parameter is performed.
US10802675B2

An information processing apparatus includes a connection unit that connects second mounts related to plural tags to each other in accordance with a relationship between the plural tags, on a first mount to which the tags related to the second mounts are attachable.
US10802663B2

There is provided an information processing apparatus, including a display control section which causes a prescribed pattern to be displayed on a screen in a state where a device having a camera is arranged so that the camera faces the screen, and a position acquisition section which acquires a relative position of the camera with respect to the screen determined based on an image of the pattern captured by the camera.
US10802660B1

The disclosed embodiments provide a system that facilitates use of an application on an electronic device. During operation, the system obtains a first metadata definition containing a mapping of view components in a user interface of the application to a set of attribute-specific types associated with an attribute of the electronic device, and a second metadata definition containing a set of rules for binding the attribute-specific types to a set of platform-specific user-interface elements for a platform of the electronic device. Next, the system generates a view for display in the user interface by applying, based on the attribute and the platform, the first and second metadata definitions to content describing the view to select one or more platform-specific user-interface elements for rendering one or more of the view components in the content. The system then instantiates the platform-specific user-interface element(s) to render the view component(s).
US10802657B1

The disclosed computer-implemented method for determining a proximity status between electrodes may include detecting an amount of electrical charge an electrode among other electrodes that are communicatively coupled to an artificial reality device. The method may further include determining, based on the detected amount of electrical charge at the electrode, a mutual capacitance measurement that indicates an amount of mutual capacitance between the other electrodes. The method may also include determining, based on the mutual capacitance measurement, a relative proximity status between the electrodes, where the relative proximity status indicates a degree to which the electrodes are in proximity with each other. The method may further include providing the determined relative proximity status between the electrodes as an input to the artificial reality device. Various other methods, systems, and computer-readable media are also disclosed.
US10802653B2

A touch type display device includes a display panel which includes a first touch electrode, and a second touch electrode including a plurality of sensing pads located outside the display panel, wherein an area of each of the plurality of sensing pads is proportional to an interval between the first touch electrode and each of the plurality of sensing pads.
US10802649B2

Various configurations and arrangements for touchscreens are disclosed to accommodate for one or more optical discontinuities that can be present within these touchscreens. When the one or more optical discontinuities are present, these configurations and arrangements of the touchscreens present a single layer of transparent conductive material that can be difficult to perceive by a human eye when viewing the touchscreens. Additionally, various edge correction techniques are disclosed to adjust mutual capacitances along a perimeter of the touchscreens. These edge correction techniques adjust mutual capacitances such that the values of the mutual capacitances are substantially uniform throughout.
US10802646B2

The present invention comprises: a first region, having a display area for outputting images, for receiving touch input or acquiring fingerprint data by means of a touch entered on the display area; a touchscreen comprising a second region for receiving touch input; and a control unit for switching the first region from a touch receiving mode, which receives touch input, to a fingerprint sensing mode when a touch input is entered in the first region, wherein the touchscreen is provided with a touch sensor layer for receiving touch input at a first sense resolution in the touch receiving mode, and the control unit which, in the fingerprint sensing mode, switches the first region from the first sense resolution to a second sense resolution, which is higher than the former, so as to acquire fingerprint data, and maintains the second region at the first sense resolution so that the former receives touch input.
US10802644B2

A touch-screen/gesture based keyboard using gestures on defined zones for providing keyboard input that is simplified to accommodate a small area, doesn't require eye-hand coordination, and can be used with as few as one finger on the same hand holding the device, without looking or employed in Virtual or Augmented applications. The inventive device includes a software application running on a position and movement detection device to provide keyboard operations. The app is a code that runs on a computer device and provides for zones that are monitored for movement, applying that movement to a prescribed chart and delivering the resulting feedback as keystrokes.
US10802643B2

An electronic device is provided. The electronic device includes a display including a touch sensor and a display panel, a fingerprint sensor included in the display or disposed on a rear surface of the display, and at least one processor electrically connected with the display and the fingerprint sensor. The at least one processor controls an operation of the touch sensor or lowers a frequency of an operating signal of the touch sensor in response to a specified event, activates the fingerprint sensor, and captures a fingerprint image from the fingerprint sensor.
US10802642B2

The present disclosure discloses a wearable device and method of controlling the same, the wearable device including a thermal sensing acquisition module for receiving a touch operation by a user and acquiring a thermal sensing distribution curve of the touch operation as a current thermal sensing distribution curve, a thermal sensing processing module for determining a function corresponding to the current thermal sensing distribution curve as a current function based on the current thermal sensing distribution curve and preset corresponding relationships between thermal sensing distribution curves and functions, an instruction generating module for generating an invoking control instruction corresponding to the current function according to the current function, and an execution module for executing the invoking control instruction to perform the current function. The wearable device and method of controlling the same provided by the present disclosure may be applied to a wearable device where touch operations are used.
US10802639B2

According to one embodiment, a sensor-equipped display device includes first electrodes and a detection electrode. The first electrodes constitute sensor drive electrodes by being supplied with sensor drive signals separately and sequentially or sensor drive electrodes by simultaneously supplying the sensor drive signals to the first electrodes adjacent to each other. A width of the sensor drive electrode including the first electrode on the edge is smaller than a width of the other sensor drive electrode not including the first electrode on the edge.
US10802633B2

The present invention makes it possible to recognize proximity of a coil without an increase in material cost and production cost. A liquid crystal display panel includes a TFT substrate (6) and a CF substrate (7). A touch panel (2) includes (i) a plurality of touch sensing electrodes (3) which are provided on the TFT substrate (6) so as to detect an electric capacitance between the touch panel (2) and a subject of a touch or a change in the electric capacitance and (ii) a proximity sensing electrode (4) which is provided on the CF substrate (7) so as to detect proximity of a coil (10).
US10802631B2

A display control device according to the present invention includes an illuminance value obtaining unit for obtaining an illuminance value of a display screen, a display image controlling unit for controlling a display image on the display screen on the basis of the illuminance value obtained, a distance determining unit for determining whether a distance between an object present around the display screen and the display screen is equal to or shorter than a threshold, and an illuminance value obtaining method determining unit for causing the illuminance value obtaining unit to apply a first obtaining method of the illuminance value when it is determined that the distance is not equal to or shorter than the threshold and causing the illuminance value obtaining unit to apply a second obtaining method of the illuminance value when it is determined that the distance is equal to or shorter than the threshold.
US10802630B2

The disclosure discloses an array substrate, a method for fabricating the same, a display panel, and a display device, and the array substrate includes: a base substrate, a pressure-sensitive component, a plurality of dual-gate transistors, and a plurality of pixel transistors, where the pressure-sensitive component includes a first electrode layer, a pressure-sensitive layer, and a second electrode layer which are arranged on the base substrate in that order, and the second electrode layer includes a plurality of second electrodes arranged corresponding to the respective dual-gate transistors in a one-to-one manner; and the dual-gate transistors and the pixel transistors are arranged above the second electrode layer, and each of the plurality of second electrodes is electrically connected with a bottom-gate electrode in a corresponding dual-gate transistor, so that a pressure can be detected.
US10802629B2

A display device includes a display module, a touch member, and a first driving substrate. The display module includes a display panel. The touch member is disposed on the display module. The first driving substrate is attached on substrate attachment portions of the touch member, the substrate attachment portions being provided near a first edge of the touch member near a first side of the display device. The first driving substrate is bent in a downward direction with respect to the display module. The display module includes a bending support structure disposed on a first edge of the display module near the first side, the bending support structure protruding outwardly beyond the substrate attachment portions of the touch member.
US10802623B2

An electronic device includes a communicator configured to perform communication with an external device, a display configured to display a UI (User Interface) element in a screen, and a processor. The processor receives through the communicator, touch panel information of the external device and first data according to a first input of a user detected on the touch panel of the external device, and changes a location of the UI element displayed on the screen based on the touch panel information and the first data.
US10802622B2

An electronic device is provided that includes a touch screen display; a pressure sensor; at least one processor configured to receive a user input for performing a function for a selected period of time after execution of at least one application program, to detect a pressure regarding the touch screen display for the selected period of time using the pressure sensor, and to execute at least one selected from pausing the execution of the function, resuming the same, and restarting the same at least partially on the basis of the detected pressure when a selected pressure level is detected by the pressure sensor for the selected period of time.
US10802619B2

The invention relates to an operating element (4) for an electrically controlled machine (2), having an operating element body (7) and a rotating wheel (10) for inputting a command into a controller (3) of the machine (2), wherein the rotating wheel (10) is arranged on the operating element body (7) in a rotatable manner about a rotational axis (12) and is surrounded by a lateral surface (11) that has local diameter mean value (13) specified in the perpendicular direction to the rotational axis (12), on which lateral surface (11) the rotating wheel (10) may be gripped and rotated by a machine operator (5), wherein the lateral surface (11) of the rotating wheel (10) has at least two actuation portions (14, 15) with different surface structures (17), wherein a sensor region (18, 19) of a sensor element (21, 22) is associated with at least one of the actuation portions (14, 15), and wherein different machine functions for inputting at least one command into the controller (3) are associated with at least one of the actuation portions (14, 15), and wherein the at least two actuation portions (14, 15) are arranged on the lateral surface (11) of the rotating wheel (10) in such a way that the machine operator (5) may grip them with a hand (6) and/or fingers of the hand.
US10802617B2

A number of systems and devices for stylus connectors are described herein. In one example, a stylus connector can include a first end to couple the stylus connector to a universal serial bus (USB) of a computing device and a second end to electrically couple a stylus to the USB of the computing device and structurally couple the stylus to the stylus connector.
US10802614B2

An electronic circuit of an electronic pen includes an integrated circuit, and a resonant circuit that is formed of a parallel circuit of a coil and a first capacitor and is externally connected to the integrated circuit. The integrated circuit includes a variable-capacitance circuit which, in operation, adjusts a frequency of the resonant circuit, and has a connection pin connecting the variable-capacitance circuit to outside of the integrated circuit. A first end of the parallel circuit is grounded and a second end of the parallel circuit is connected to a first end of a second capacitor externally connected to the integrated circuit. A second end of the second capacitor is connected to the connection pin of the integrated circuit and is connected to a diode which, in operation, clamps a potential of the second end of the second capacitor to a predetermined value.
US10802578B2

An electronic device is provided. The electronic device includes a display, and a processor functionally connected to the display and configured to, when a first input is received while a first partial image, which corresponds to a first direction, in an image taken by at least one camera is displayed on the display, control the display to display a second partial image, which corresponds to a second direction different from the first direction, in the image in response to the first input.
US10802573B2

A power management system and a power management method are provided. The power management system includes a host manager and at least one server. The server communicates with the host manager. The server includes at least one processor, at least one voltage regulator, and a voltage regulator controller. The voltage regulator provides an actual power to the corresponding processor. The voltage regulator controller adjusts the actual power provided by the voltage regulator. The host manager controls the voltage regulator controller in the server and uses the voltage regulator controller to adjust the actual power provided by the voltage regulator for managing a power of the processor.
US10802568B2

This application relates to techniques that adjust the sleep states of a computing device based on proximity detection and predicted user activity. Proximity detection procedures can be used to determine a proximity between the computing device and a remote computing device coupled to the user. Based on these proximity detection procedures, the computing device can either correspondingly increase or decrease the amount power supplied to the various components during either a low-power sleep state or a high-power sleep state. Additionally, historical user activity data gathered on the computing device can be used to predict when the user will likely use the computing device. Based on the gathered historical user activity, deep sleep signals and light sleep signals can be issued at a time when the computing device is placed within a sleep state which can cause it to immediately enter either a low-power sleep state or a high-power sleep state.
US10802566B1

A two-part interface PHY configuration includes a low-voltage PHY portion configured for instantiation on an SoC device fabricated using a cutting-edge technology node, and a high-voltage PHY portion configured for instantiation on a power management device (PMD) fabricated using a high-voltage technology node. The low-voltage PHY portion includes interface control and low-voltage I/O circuitry configured to transfer outgoing 3.3V data signals to the high-voltage PHY portion at low voltage levels, and the high-voltage PHY portion includes a driver circuit that retransmits the low-voltage data signals onto a bus at the required 3.3V level. Incoming 3.3V data signals pass through an attenuator circuit before being processed using a receiver circuit provided on the low-voltage PHY portion. In USB applications, outgoing USB High Speed data signals are generated by a driver circuit provided on a low-voltage USB PHY portion.
US10802557B2

Systems, apparatuses and methods may provide for technology that supplements a battery coupled to a processor configuration with stored energy from a charger input, wherein the battery is supplemented with the stored energy in response to an increased power demand on the battery. The technology may also initiate one or more throttle operations in the processor configuration if the increased power demand does not end before the stored energy is depleted. If the increased power demand ends before the stored energy is depleted, the one or more throttle operations may be bypassed. The increased power demand may correspond to a system voltage being below a voltage threshold, a battery current being above a current threshold, and so forth.
US10802549B2

Embodiments of a multi-form factor Information Handling System (IHS) with a multi-layered hinge are described. In some embodiments, an IHS may include a first display and a second display coupled to the first display via a hinge, where the hinge comprises a middle plate disposed between a bottom plate and a top plate, where the top plate is fixed with respect to the bottom plate, and where the middle plate slides with respect to the bottom plate in response to the hinge being rotated.
US10802530B2

An input device includes: an operating unit that is operated by a user; a detent pin that is displaceable along with an operation of the operating unit; a columnar detent member where a spiral groove about a predetermined axis A is formed on an outer peripheral surface of the detent member that is contact with the detent pin; and a motor (rotary driving part) that rotates the detent member about axis A.
US10802513B1

An improved comfort control system for controlling an environment regulation system includes a processing unit, a video interface, an input subsystem, a hierarchy of switching mechanisms and a special computer program. The hierarchy of switching mechanisms includes an electronic switching mechanism having a jumper and a second tier switching mechanism implemented by the special computer program and including a key combination. When the control device is in an operation mode and the jumper is in an enabled position, entering the key combination causes the special computer program to switch the comfort control system to the configuration mode. When the comfort control system is in an operation mode and the jumper is in a disabled position, the special computer program does not switch the control device to the configuration mode from the operation mode.
US10802512B2

A building management system network interface device is provided. The network interface device includes a processing circuit with a device interface module and a network interface module. The device interface module is communicably coupled to a refrigeration equipment controller and includes an equipment object configured to receive data values and to populate attributes of the equipment object with the data values. The network interface module is communicably coupled to the device interface module and an external network, and is configured to map the attributes of the equipment object to individual data objects and to write the attributes of the equipment object to the mapped individual data objects. The processing circuit is also configured to execute control logic to control the operation of the refrigeration equipment controller based on the data values received from the refrigeration equipment controller and commands received from the external network.
US10802510B2

A relay valve configured according to the various embodiments as described herein advantageously provides consistent, reliable start point pressures for both supply and exhaust functionalities. To achieve this, the relay valves described herein utilize a plurality of diaphragms to neutralize any variable forces due to pressure in an actuator and, optionally, a supply connected to the relay valve.
US10802507B2

A method for turning an aerial vehicle such as a drone-type vehicle is provided, according to one embodiment. The method provides for receiving a turning input and detecting a current momentum of the aerial vehicle. The method provides for converting the turning input into a yaw command and calculating a change in yaw associated with the turning input. The method provides for calculating a roll command based on the current momentum of the aerial vehicle and based on the change in yaw associated with the turning input. Further, the method provides for executing the yaw command and the roll command in synchrony, wherein the executing the yaw command and the roll command in synchrony causes the aerial vehicle to perform a turn.
US10802506B2

In a method for operating a production plant, and a production plant, the production plant includes a control device, workstations and vehicles, at least two workstations having a similar configuration. The respective processor of a vehicle determines a driving path that is as short as possible and is a function of the position of the other vehicles, and in an effort to avoid congestion or to shorten the production time, the driving path is determined such that, instead of leading to a first workstation, the driving path leads to an identical second workstation.
US10802503B2

A control system of a transporter vehicle includes a target position data calculation unit configured to calculate target position data of a target point of the transporter vehicle based on positional relationship between a target object whose position data has been identified, and the target point of the transporter vehicle that is input by an input device, and a course data generation unit configured to generate course data of the transporter vehicle at least based on the target position data.
US10802492B2

A target location from a set of points that define a road can be selected. A path, from a plurality of candidate paths, to the target location, from a current vehicle location outside the set of points, based on a path length, a collision risk, a curvature of the path, and a traffic condition on the road can be selected. The vehicle can be navigated according to the selected path.
US10802481B1

An electronic vertical takeoff and landing (eVTOL) multicopter which includes a communications interface configured to establish a communication channel between a site local server and the eVTOL multicopter and send a vehicle identifier and vehicle state information from the eVTOL multicopter to the site local server. The eVTOL multicopter also includes a processor configured to perform a management operation received from the site local server, wherein the site local server is configured to determine the management operation based at least in part on the vehicle identifier and the vehicle state information.
US10802474B2

To simplify determination of drive parameters upon driving a motor for which circuit constants are unknown, and shorten the time required in determination. A parameter determination support device includes: an automatic measurement part which applies initial parameters, and automatically measures a revolution speed (rpm) of a synchronous motor, as well as a DC link voltage (V) and Q-phase voltage command (%) of a motor drive device, as operating information upon driving the synchronous motor at substantially constant speed based on a base speed, according to a test-run program; an estimation part which estimates a reverse voltage constant (V/krpm) and torque constant (Nm/Arms) as circuit constants of the synchronous motor based on the operating information; and a calculation part which performs calculation of optimum parameters tailored to the output specification of the synchronous motor based on the circuit constants.
US10802472B2

The present disclosure relates to the technical field of electronic devices, and discloses a method and an apparatus for controlling motor vibration. The method includes: obtaining an input signal based on an expected motor vibration curve, inputting a digital signal sequence of the input signal to an equalizer, and obtaining an output signal after processing by the equalizer, and inputting the output signal to a motor to control vibration of the motor, where the equalizer is a digital filter constructed based on a damping factor ζ and a resonance frequency ωn of the motor, and a preset system sampling frequency fs, a preset damping factor ζd, and a preset cut-off frequency ωd. The method and apparatus provided in embodiments of the present disclosure have an advantage that an actual vibration effect of the motor can be consistent with an expected motor vibration curve.
US10802467B2

The present disclosure provides methods of defining internal secondary structures of an object to be formed at least in part by additive manufacturing. The object may include a primary structure having a volume. The methods may include applying a balancing parameter within an axis-aligned bounding box that encompasses the primary structure. The methods may further include refining the balancing parameter until the volume is delimited into a plurality of the internal structures. The plurality of internal structures may be oriented at an angle to a global z-axis that is substantially parallel to a build direction, such as angled in a range of 40 degrees to 70 degrees to the z-axis.
US10802462B2

A machining condition selecting device includes a machining condition contribution data management unit configured to manage machining condition contribution data in which each of a plurality of machining conditions is associated with a 3-dimensional surface roughness parameter and degrees of contribution to each item of a required condition related to productivity of a target product; a matter of priority acquisition unit configured to acquire a combination of the 3-dimensional surface roughness parameter and at least one item of the required condition as a matter of priority; and a machining condition selection data management unit configured to manage, for each of the plurality of machining conditions, machining condition selection data in which a combination pattern of the matters of priority is associated with a sum of the degrees of contribution to each item in the combination pattern.
Patent Agency Ranking