A plant for recovering and treating residues from crushing scrap is provided. The plant includes a first plant part and a second plant part. The first plant part is provided with crushing and separation means configured to extract ferrous materials, non-ferrous metals and plastic materials from the residues from crushing. The separation means are provided with a granulator system configured to reduce, in dry mode and without pre-screening stages, the residues from crushing into a stream of granular material. The second plant part is provided with means to treat and size the plastic materials configured to transform the plastic materials into additive material to be used, in particular, in iron and steel plants such as blast furnaces, electric arc furnaces or suchlike. The means to treat and size the plastic materials includes a dry system for cutting and/or grinding the plastic materials.
A comminution system for heterogeneous materials includes pumps, a source of liquid in fluid communication with the pumps, a source of heterogeneous material, a mixer to combine the heterogeneous material and the liquid, and nozzles in fluid communication with the pumps, respectively. The pumps are in straight-line alignment with the nozzles. The nozzles receiving the heterogeneous material combined with the liquid direct the combined slurry to an impact zone where the fractions of the heterogeneous material are disassociated.
Disclosed herein are cellular cassettes for the storage, collection, and analysis of biological samples. The cellular cassette can enable easy sample collection and sealing of microwell arrays with semi-permeable membrane for stable storage and future processing of single cells. Also disclosed herein are systems and kits comprising one or more described cassettes. The described cassettes, systems, and kits can be used to create barcoded, single-cell sequencing libraries. Further described herein are methods of using the cassettes, systems, and kits.
This disclosure provides devices and methods for the isolation of single cells or particles of interest from a solution comprising a plurality of cells or a solution composed of a homogenous population of particles. Specifically, the present disclosure is directed to microfluidic devices and methods for analyzing cells in a sample. More specifically, the present disclosure provides droplet microfluidic devices and methods for using the same to obtain (trap), encapsulate, and retrieve (isolate) single cells or particles from a sample with improved efficiency.
Example methods, apparatus, systems for diluting samples are disclosed. An example method includes depositing a first fluid droplet on a first electrode of a plurality of electrodes. The first electrode has a first area. The first fluid droplet has a first volume associated with the first area. The example method includes depositing a second fluid droplet on a second electrode of the plurality of electrodes. The second electrode has a second area. The second fluid droplet has a second volume associated with the second area. The second volume is different than the first volume. The example method includes forming a combined droplet by selectively activating at least one of the first electrode or the second electrode to cause one of the first fluid droplet or the second fluid droplet to merge with the other of the first fluid droplet or the second fluid droplet.
The present disclosure is directed to novel germanosilicate compositions and methods of producing and using the same. In particular, this disclosure describes new germanosilicates of CIT-14 topology. The disclosure also describes methods of preparing and using these new germanosilicate compositions as well as the compositions themselves.
The present disclosure is directed to novel germanosilicate compositions and methods of producing and using the same. Included among the new materials are the new germanosilicates of CIT-5 topology having Si:Ge ratios either in a range of from 3.8 to 5.4 or from 30 to 200, with and without added metal oxides. The disclosure also describes methods of preparing and using these new germanosilicate compositions as well as the compositions themselves.
Biomass combustion processes may be controlled to intentionally generate a carbon-containing ash, from which activated carbon is produced according to the methods disclosed. Some variations provide an economically attractive process for producing an activated carbon product, the process comprising combusting a carbon-containing feedstock to generate energy, combustion products, and ash, wherein the ash contains at least 10 wt % carbon; separating and recovering carbon contained in said ash; and further activating or treating the separated carbon, to generate an activated carbon product. Many process variations are disclosed, and uses for the activated carbon product are disclosed.
Methods and systems for solution polymerization. The method can include forming a first mixture stream consisting essentially of at least one catalyst and a process solvent, and forming a second mixture stream consisting essentially of at least one activator and the process solvent. The first mixture stream and the second mixture stream can be fed separately to at least one reaction zone comprising one or more monomers dissolved in the process solvent where the at least one monomers can be polymerized within the at least one reaction zone in the presence of the catalyst, activator and process solvent to produce a polymer product.
A reformer tube for producing synthesis gas by steam reforming of hydrocarbon-containing input gases is proposed where an outer shell tube is divided by means of a separating tray into a reaction chamber and an exit chamber, a dumped bed of a steam-reforming-active solid catalyst is arranged in the reaction chamber, at least one heat exchanger tube is arranged inside the reaction chamber and inside the dumped catalyst bed, whose entry end is in fluid connection with the dumped catalyst bed and whose exit end is in fluid connection with the exit chamber, the exit end of the heat exchanger tube is fed through the separating tray and opens out into a corrosion-protected inner tube which is disposed in the interior of the shell tube and is in fluid connection with a collection conduit for the synthesis gas product, and a gas-permeable thermal insulation layer is arranged between the inner wall of the shell tube and the outer wall of the inner tube.
A spiral-wound type gas separation membrane element includes a central tube and a laminate wound around the central tube. Laminate includes at least one structure where a feed-side flow path member, a gas separation membrane, and a permeate-side flow path member are superimposed in this order. Permeate-side flow path member has a thickness of 400 μm to 1300 μm. Gas separation membrane is a membrane where a hydrophilic resin composition layer, a porous layer, and a permeate-side surface layer are superimposed in this order. Permeate-side surface layer faces Permeate-side flow path member and has a Young's modulus of 20 MPa to 400 MPa.
An air filter medium includes a first porous PTFE membrane and a second porous PTFE membrane. The air filter medium (10) has a first main surface and a second main surface, and the first porous PTFE membrane and the second porous PTFE membrane are arranged so that an air flow moving from the first main surface to the second main surface passes through the first porous PTFE membrane and subsequently through the second porous PTFE membrane. A thickness of the first porous PTFE membrane is in the range of 4 to 40 μm and a specific surface area of the first porous PTFE membrane is 0.5 m2/g or less.
An air filter including a visually uniform filter life indicator (30), the air filter (1) comprising: a conformable, unframed air filter media (10) that is installable on at least a portion of an upstream face (11) of a filter-support layer of an air-handling system, wherein the conformable, unframed air filter media comprises at least one passivated area (20) that provides a visually uniform filter life indicator of the air filter. Filter life indicators are used in order that aspects of the filtration performance of an air filter can be monitored.
An apparatus to separate water droplets from an air stream includes an elongated tube having a first end and a second end. The elongated tube includes an opening at a first end of the elongated tube, the opening may be positioned to accept the air stream. A reservoir is positioned at a second end of the elongated tube. A helix structure is positioned within the elongated tube. The helix structure includes an upper surface, a lower surface arranged opposite the upper surface, an outer edge, and a variable pitch along a length of the elongated tube. The variable pitch may provide a variable interior angle between an inner wall of the elongated tube and the upper surface of the helix structure.
A method for rehabilitating alcohol, including placing a quantity of ethanol solution in a pressure-controllable environment, decreasing the pressure of the pressure-controllable environment to about 25 Torr, holding the pressure of the pressure-controllable environment at about 25 Torr for a first predetermined period of time, removing unwanted congeners, such as ethyl acetate, from the ethanol solution to yield a treated ethanol solution, and removing treated solution from the pressure-controllable environment.
A kid play tunnel comprises an elastic frame, a flexible tube coat, and sliding pipes. The elastic frame is in a spiral shape and comprises head sections and connecting sections connected with the head sections. Each head section of the elastic frame overlaps a respective portion of a corresponding connecting section of the elastic frame to form a frame ring. Each frame ring is closed and comprises a spiral end. The flexible tube coat is arranged on a whole section of the elastic frame. Two ends of the flexible tube coat are annular flexible sleeves. Each annular flexible sleeve is sleeved on a respective frame ring. The sliding pipes limit a circumferential sliding of the head sections with respect to the connecting section of the elastic frame. A diameter of each frame ring is reduced by a corresponding sliding pipe when the kid play tunnel is folded.
A customizable toy figure, including a body, and a toy book disposed on at least a portion of the body to entertain a user with at least one story, such that the toy book is oriented in a first direction toward at least a portion of the body.
Systems and methods for managing storage of video game content based on video game performance. A level is identified from among a sequence of playable levels of an active video game. A video of the performance of the identified level of the active video game is recorded. A video game performance metric for the identified level is determined. A greatest value of the video game performance metric stored in a database is received. In response to determining that a current value of the video game performance metric for the identified level of the active video game does not exceed the greatest value of the video game performance metric stored in a database, the recording of the video of the performance of the level of the video game is deleted.
Aspects of the subject disclosure may include, for example, obtaining portions of video content from a video game from video game server(s) associated with a video game provider, selecting a first portion of video content from the portions of the video content, and providing the first portion to device(s) associated with viewer(s). Each device presents the first portion of the video content. Further embodiments include obtaining popularity information from the device(s) according to feedback based on presenting the first portion of the video content to the device(s), determining that the popularity information satisfies a popularity threshold associated with the video content, determining a subject matter corresponding to the first portion of the video content, and identifying a second portion of the video content from the video game to be recorded according to the subject matter. Other embodiments are disclosed.
The present disclosure relates to an information processing apparatus, an information processing method, and a program making it possible to further enhance entertainability. A play state recognition unit recognizes a play state of a game. The effect rendering unit performs image processing for adding an effect to an image representing the state of the commentator that makes a gaming commentary on the basis of the play state of the game recognized by the play state recognition unit. For example, a game status indicating predetermined information is displayed at a predetermined location on the game screen of the game in accordance with the play state of the game. The play state recognition unit analyzes the game status to recognize the play state of the game. The present technology can be applied to a video distribution service that distributes a video of a game screen, for example.
The present specification describes systems and methods for efficiently generating scaled down versions of heatmaps that can be presented in real-time to a player. Data representative of events in a video game are recorded at occurring at one or more coordinates within a virtual geographical landscape of the video game. The virtual geographical landscape is divided into subsections to form a secondary map. Performance metrics are generated based on the data and assigned to at least one of the subsections based on the one or more coordinates. The heatmap is formed and displayed by generating a non-alphanumeric visual representation of the performance metrics and overlaying the non-alphanumeric visual representation of the performance metrics on the secondary map. Locations of the non-alphanumeric visual representation of the performance metrics is based on to which subsections the generated performance metrics was assigned.
A system and method for launching gameplay from streaming content is provided. Information regarding media content may be stormed in memory. Such media content may have at least one or more trigger points and each trigger point may be associated with a set of game data specific to a gameplay scene within an interactive title. The media content may be streamed to a user device over a communication network. A selection of one of the at least one or more trigger points may be received over the communication network from the user device. Identifying the set of game data associated with the selected trigger point may be identified and the interactive title for gameplay may be launched by the user device based on the identified set of game data associated with the selected trigger point.
A method of playing a board game includes a game board arranged as a grid. The board is set up before play where certain playing squares include first or second indicia such that respective numbered tiles with matching indicia may be randomly placed on the certain playing squares. Players may then perform a series turns placing tiles having a third indicia on the board in a single straight line using at least one of the numbered tiles already placed on the board. The tiles must create one or more linear sequences wherein the sum of the numbered tiles within each linear sequence equals a predetermined value. Points are awarded to the player based at least in part on the number of linear sequences created during the turn. The winner may be the player with the highest total awarded points at the end of the game. Other aspects are also provided.
A skateboard truck that is adjusted for different amounts of torsional stiffness. The axle of the truck is tensioned to change the torsional stiffness of the truck. The truck includes a fork shaped structural arm having tongs on the distal end. The ends of the tongs include mounting for the axle which supports the wheels. The tension in the axle determines the amount of torsional stiffness. Additionally, the distance between the wheels is adjustable to affect the torsional stiffness.
A figure skating boot has a monocoque structure formed of monocoque material including a sole portion to receive the foot thereon, inner and outer side wall portions, a heel cup portion about the heel, two ankle portions extending over the ankles, and front and rear mounting surfaces below the sole portion for connection to front and rear ends of a mounting frame, for example the mounting frame of a skate blade. A heel member is formed separately from the boot and is supported by the monocoque material to extend downwardly from the heel end of the sole portion so that the rear mounting surface is at the bottom of the heel member. Each ankle portion is joined to the respective side wall portion by a relief junction enabling the ankle portions of the monocoque structure to be flexed relative to the side wall portions of the monocoque structure.
A golf club head that is capable improving on the inertia properties of a golf club head all while also improving the Center of Gravity (CG) location is disclosed herein. More specifically, the golf club head in accordance with the present invention achieves a relative low Moment of Inertia (MOI) about the Z-axis (MOI-Z) as well as a relatively low MOI about the Shaft-axis (MOI-SA), all combined with a high MOI about the X and Y-axis (MOI-X and MOI-Y) and maintaining a consistently and relatively low CG location measured along a direction tangent to the hosel axis along the X-Y plane (CG-B).
A golf club head includes a cover member, and a club head main body comprising a crown portion, a sole portion and a back-side outer rim portion. The club head main body is made of a first material. The club head main body is provided with a crown opening and a cutout. The cutout is made up of a first opening on the crown portion side and a second opening on the sole portion side, and these opening are connected with each other in the back-side outer rim portion. The width of the cutout and the contour length of the back-side outer rim portion in the top view of the club head are relative with each other. The cover member is made of a second material having a specific gravity lower than the first material. The crown cover closes the crown opening and the first opening. The sole cover closes the second opening.
A golf club head includes a face portion, a crown portion, a sole portion and a hosel portion. The head includes a head body formed by a metallic material and a cover member formed by a material having a rigidity lower than that of the metallic material forming the head body. The head body includes an opening and a beam part that extends so as to intersect the opening. The opening is covered by the cover member. The beam part includes an inward bending portion that is bent so as to project inward of the head. The head body includes bent portions located at respective two end portions of the beam part.
The invention relates to a weightlifting device comprising a longitudinally extending bar, the bar comprising at least one weight bearing section adapted for accommodating one or more free weights comprising an opening adapted for surrounding the weight bearings section. The weight bearing section comprises an end stop for the one or more free weights at a first end of the weight bearing section, a recess at or adjacent to a second opposite end of the weight bearing section and a free weight locking member for locking the free weights and for preventing the free weights from unintentionally falling off from the second end. The free weight locking member is movable in a longitudinal direction of the weight bearing section between the recess and at least one free weight locking position located between the recess and the end stop. The free weight locking member is further movable in a second direction at the recess between an immersed position and an elevated position, the immersed position being a position where the free weight locking member is completely, or at least mainly, immersed into the recess, and the elevated position being a position where the free weight locking member is elevated with respect to the immersed position and extends at least partly outside the recess.
A device that can be used to insert a probe into a filtering facepiece for fit testing. The device preferably includes a holder for the probe; a handle to apply force directly or indirectly to the probe; magnets that assist with alignment of the holder and the handle during a process of inserting the probe into the filtering facepiece; and a spring that facilitates separation of the holder and the handle after insertion of the probe into the filtering facepiece. The holder may further include a puncturing device to facilitate insertion of the probe. The holder and the handle preferably are separate elements positioned opposite each other to apply force to the probe. In some aspects, the holder includes a piston for driving the probe into the filtering facepiece. The spring may surround the piston. The handle preferably includes a recess capable of holding a fastener for the probe. The magnet(s) may be of any shape and type, but preferably are torus shaped neodymium magnets. Also, associated techniques.
A mask for use at an operating pressure substantially equal to atmospheric pressure includes a body with a three-dimensional shaped chamber that is configured to receive a user's mouth and nares and operate at the operating pressure. The mask also includes a seal forming structure with a nose seal portion that extends around at least a portion of the user's nares on an inferior side of the user's nose inferior to the user's nasal ridge, and a mouth seal portion that forms a seal at least partially around the user's mouth and between the user's chin and lip inferior. The nose seal portion is directly connected to the mouth seal portion. The mask also includes a positioning and stabilising structure to provide a force to hold the seal forming structure in position against the user.
A brachytherapy afterloader device, comprises at least one transmit wire that is suitable for being inserted and driven in an advance or retract motion in an external first delivery channel and for delivering drive energy to a test field source, which is arranged at a distal end region of the transmit wire, for generating a magnetic test field; at least one receive wire that is suitable for being inserted and driven in an advance or retract motion in an external second delivery channel for a measurement of the magnetic test field, the receive wire having a transducer that is configured to detect magnetic-field changes in the magnetic test field; and a wire driving unit which is configured to controllably advance or retract the transmit wire and the receive wire in response to a corresponding test drive control signal.
A light source for eye therapy configured to emit light having a wavelength range from about 380 nm to about 780 nm, and has a spectrum area that overlaps at least about 55% of an area of a normalized solar spectrum, in which a peak wavelength of light has a deviation equal to or less than about 0.14 from the normalized solar spectrum in a wavelength range from about 380 nm to about 490 nm.
Systems and methods are provided for managing patient activated capture of transient data by an implantable medical device (IMD). The systems and methods collect transient data using the IMD. The collected transient data is stored in a temporary memory section of the IMD. The IMD receives a patient activated storage request including activation information related to a patient designated trigger point from an external device. The IMD transfers a segment of the transient data from the temporary memory section to a long-term memory, wherein the segment of transferred transient data is based on the trigger point. The activation information includes an elapsed time corresponding to a duration of time between entry of the trigger point and issuance of the patient activated storage request by an external activation device.
An implantable medical device delivery system includes a delivery catheter including an elongated body with a first portion defining a first lumen and a second portion defining a second lumen. An angle is defined between a first axis and a second axis defined by the first and second portions, respectively. The second axis points toward the left ventricular (LV) apex of the patient's heart when the first axis points into the CS. The first portion or an elongated element may extend into the CS to anchor the delivery catheter to the orientation of the CS.
A medical device lead connector includes electrically conducting contact rings spaced apart by an electrically insulating ring and in axial alignment. The electrically conducting contact ring and the insulating ring having an interface bond on an atomic level.
The set for the electrical stimulation of a patient, comprises a backing, at least one electrically active zone and a wire connected to said electrically active zone for connection to a stimulator. Said backing has the shape of a bandage or of a plaster.
Embodiments of the present invention provide an electroporation system comprising an electroporation probe having at least two contiguous electrodes configured to be inserted into biological tissue for electroporation treatment, and a pulse generator electrically connected to the probe and configured to drive the electroporation probe using a sequence of one or more electric pulses to cause current transmission through the probe and induce a non-uniform electric field in the biological tissue proximate the probe electrodes. Treatment tissue can be targeted by controlling the probe configuration, carrier solution characteristics and parameters of the electroporation pulse sequence to achieve predictable electroporation outcomes. This electroporation control method can also reduce potentially toxic effects of electroporation treatment.
A tube clamp closes a flexible tube by applying a pinching force to walls of the flexible tube. The clamp includes a housing connected to a circular flange, the circular flange including a tubular wall surrounding a central bore and including at least one slot in the tubular wall sized to accept the flexible tube. A pinching element is positioned inside the central bore and is rotatable about a central axis of the circular flange. The pinching element includes a pinching projection that has a cross-sectional shape bound by a partial circle, and the partial circle has a radius substantially same as an inner radius of the tubular wall.
A needleless connector includes a body having a fluid path, a vent path, and a male fitting. The needleless connector also includes a valve disposed within the male fitting. The valve is configured to move between a first configuration, in which the fluid path is blocked, and a second configuration, in which the fluid path is open. The needleless connector further includes a seal disposed around the valve. The seal is configured to separate the fluid path from the vent path in the first and second configurations. Moving the valve from the first configuration to the second configuration also opens the vent path. The seal maintains the separation between the fluid path and the vent path when the valve moves from the first configuration to the second configuration.
A microneedling device includes a microneedle cartridge that extends needles at a predetermined angle, rather than perpendicular to the centerline of the device.
The invention relates to trans-epithelial frictionally abrasive tissue sampling devices for performing biopsies and methods of inducing an immune response against a pathogen, wherein epithelial cells containing the pathogen are disrupted with the frictionally abrasive tissue sampling device to introduce the pathogen into the bloodstream of a patient.
Method for preventing biofilm formation on at least one luminal surface of a catheter system (1). The catheter system (1) comprises a collection vessel (4) and a tube (3) coupled to the collection vessel (4). The catheter system (1) comprises a catheter connector (2, 20, 200) coupled to the tube (3) and connectable to a catheter (6). The method comprises the consecutive steps of connecting the catheter connector (2, 20, 200) to the catheter (6) and supplying a silicon oil to an interior (25, 205) of the catheter connector. A catheter assembly comprising a catheter connector (20) comprising a port (24) providing access to the interior (25) of the connector and a dispensing unit (50) containing a silicon oil. A catheter connector (200) comprising a reservoir (207) containing a silicon oil and a releasing mechanism (208) releasing the silicone oil into the interior (205) of the connector.
A cushion member (10) is for use in a pressure support system (2) for delivering a flow of breathing gas to an airway of a patient. The cushion member includes an annular body (12) comprising a first end (14) and a second end (16) disposed opposite the first end, the body defining a passage (18) therethrough; a sealing portion (20) extending from the second end of the body into the passage, the sealing portion having an outer surface (21) structured to sealingly engage about the airway of the patient and an inner surface (23) disposed opposite the outer surface; and a support portion (22,24) extending from the second end of the body into the passage and terminating at a distal end (26,28). The distal end of the support portion engages a portion of the body at or about the second end.
A patient interface is disclosed which is comfortable for the user to wear and includes at least in part a moisture permeable or breathable area in the body of the patient interface. In another embodiment the patient interface is a strapless mask that is moulded to fit the contours of a user's face and maximise the mask-to-skin seal. An adhesive material is bonded to the mask cushion and is stamped in place to form substantially the same shape as the cushion such that it fits the facial contours of the user.
A cartomizer for a vapor provision system, the cartomizer including: a container for holding a reservoir of free liquid to be vaporized; an atomizing chamber; a porous wick extending from inside the container, through an aperture in a wall of the atomizing chamber, to inside the atomizing chamber in order to convey the liquid from the reservoir to the inside of the atomizing chamber for vaporization; and a resilient seal provided in the aperture to restrict the liquid from entering the atomizing chamber from the reservoir except by travelling along the wick.
There is provided a protected needle assembly. The assembly includes an outer barrel receiving a needle therethrough. The assembly includes an inner barrel resiliently biased to extend about the needle in a protected needle mode. The inner barrel is retractable into the outer barrel in a first instance to deploy the needle. The assembly includes a locking mechanism actuated upon the inner barrel moving towards the protected needle mode once more. The locking mechanism is configured to inhibit further retraction of the inner barrel thereafter.
The present invention relates to an injector for preventing accidental needle sticks comprising:—a cylinder extending along a longitudinal axis, an inner wall and an outer wall, the cylinder having an outlet at an outlet end opposite an actuating end and a finger grip on the outer wall, which finger grip is positioned between the outlet end and the actuating end,—a piston having a piston body and a deformable sealing element, which deformable sealing element abuts the inner wall of the cylinder at an abutting interface and seals an annular gap between the piston body and the inner wall of the cylinder when the piston is inserted in the cylinder,—a needle guard for mounting on the outside of the cylinder from the outlet end or the actuating end, which needle guard comprises a barrel with a mounting end opposite an operating end, the barrel having a slot for receiving the finger grip of the cylinder when the needle guard is mounted on the cylinder, which slot extends from the mounting end towards the operating end, wherein when the needle guard is mounted on the cylinder from the actuating end in a protective position, the barrel extends along the longitudinal axis and projects beyond the outlet end of the cylinder so that when a hypodermic needle is attached at the outlet end, the barrel protects a user from accidental needle sticks.
An optical decoding system including an optical sensor integral with or attachable to a housing of a drug delivery device and configured to be directed at first and second rotatable components of a dose setting and dispensing mechanism of the drug delivery device and a processor configured to: (i) cause the optical sensor to capture images of the first and second rotatable components at least at the beginning and end of a medicament dose dispensing process; (ii) determine a rotational position of both the first and second rotatable components in each of the captured images; and (iii) determine from the rotational positions of the first and second rotatable components an amount of medicament delivered by the dose setting and dispensing mechanism of the drug delivery device.
An autoinjector drug delivery device configured with a stall and endpoint detection algorithm is described that allows for variations in the fill of the drug, barrel, plunger, and other components. The stall or end point detection causes the autoinjector to stop an extrusion process.
Methods and systems for delaying alarms that include detecting an analyte level using an analyte sensor; and delaying the annunciation of an analyte alarm after the analyte level crosses an analyte threshold, wherein the delay is based on one or both of (1) a magnitude of difference between the analyte level and the analyte threshold and (2) a duration of time in which the analyte level has crossed the analyte threshold.
A medical device includes a housing, a power supply, a thermally conductive mounting clamp, a heat shield, and at least one fastener. The housing includes a handle. The power supply is disposed within the housing. The thermally conductive mounting clamp is attached to an outer surface of the housing. The heat shield is disposed within the housing adjacent to the power supply. The heat shield is disposed against at least one interior surface of the handle. The at least one fastener passes through at least one opening in the housing and is in thermally conductive contact with the thermally conductive mounting clamp. Heat generated by the power supply is configured to dissipate from the power supply, through the heat shield, through the at least one fastener, and into the thermally conductive mounting clamp.
Methods for treating a bioprosthetic tissue and treated bioprosthetic tissue are described. The methods comprise contacting the biological tissue with an anchor compound, the anchor compound comprising first and second functional groups. The first functional group is reactive with and couples a tissue functional group associated with the biological tissue. The second functional group is one of a bio-orthogonal binding pair. The biological tissue coupled to the anchor compound is then exposed to a linking compound. The linking compound comprises at least two functional groups, each comprising the other one of the bio-orthogonal binding pair. In a preferred embodiment, the bio-orthogonal binding pair is an azide and an acetylene. The method can be performed in the presence of a catalyst, preferably a copper catalyst. Alternatively, the method can be performed in the absence of a catalyst, wherein the acetylene is incorporated in a ring-strained cyclic compound, such as cyclooctyne.
Described herein are gelatin nanoparticles including their use in a composition. The composition may comprise a plurality of gelatin nanoparticles, at least one polymer, and water. In some embodiments, the composition comprises cells. The composition may be in the form of a hydrogel. Methods of using such gelatin nanoparticles and/or compositions are also described.
The invention provides a cell binding composition comprising a shear thinning gel wherein the shear thinning gel having attached to it one or more cell selective binding agents, or the shear thinning gel having dispersed therein a plurality of gel beads, the gel beads having attached to them one or more cell selective binding agents.
Methods of enriching cells using the compositions and using the cells to treat injury or disease are also provided.
An electric plug type fragrance liquid heating and diffusing device includes an aroma bottle with a carrier having capillary pores for absorbing an aroma liquid, and a heater for heating the aroma liquid in the capillary pores of the carrier to dissipate the aromatic molecules into the outside air. When the aroma liquid is used up, the aroma bottle can be easily and rapidly detached for replacement. The aroma liquid absorbed by the carrier will not flow out of the carrier even if the aroma bottle is tilted or dumped during use or movement, ensuring safe use.
An imaging contrast composition comprising an iodinated contrast agent and a ligand secured to the iodinated contrast agent is disclosed, the ligand comprising a reactive group capable of bonding to a capture substrate. A method of removing iodinated radiocontrast agents from a patient is disclosed, the method comprising providing an iodinated radiocontrast agent containing a reactive group; providing a capture substrate for insertion into a patient's bloodstream; administering the iodinated radiocontrast agent to the patient; conducting procedure CT scan or procedure using fluoroscopy; and sequestering the iodinated radiocontrast agent on the capture substrate.
Disclosed are compositions for delivering gene editing molecules to a cell. Exemplary compositions comprise a micelle assembled from a plurality of triblock copolymers, wherein each triblock copolymer having at least one hydrophobic block, at least one hydrophilic block, and at least one poly(L-histidine) block, wherein: the at least one poly(L-histidine) block complexes with the at least one gene editing molecule; and the at least one poly(L-histidine) block is capable of a pH dependent release of the at least one gene editing molecule.
Spherical nucleic acids (SNAs), consisting of densely packed, highly oriented polynucleotide strands attached to the surface of nanoparticles, are able to overcome the typical challenges of nucleic acid delivery. The present disclosure demonstrates that G-rich SNAs exhibit several-fold higher uptake into cells relative to SNAs rich in other nucleotides. This disclosure provides an effective strategy to maximize the intracellular delivery of SNAs, which is applicable to other nanoparticle systems, thus establishing an important design consideration for nanoparticle-based intracellular delivery of therapeutics.
Provided are a mutated HPV16 L1 protein (or a variant thereof), a sequence encoding the same and a method for preparing the same, as well as a virus-like particle comprising the same. The protein (or variant thereof) and the virus-like particle are capable of inducing neutralizing antibodies against at least two types of HPV (e.g., HPV16 and HPV35, or HPV16, HPV35, and HPV31), and therefore can be used to prevent infection by said at least two HPV types, and a disease caused by said infection, such as cervical cancer and condyloma acuminatum. Also provided are a use of the above protein and virus-like particle in the manufacture of a pharmaceutical composition or vaccine for preventing infection by said at least two HPV types, and a disease caused by said infection, such as cervical cancer and condyloma acuminatum.
The invention disclosed herein relates generally to immunotherapy and, more specifically, to the use of immunotherapy for treating tumors and pathogen infected tissues by first priming patients with allogeneic cells designed to be rejected by a Th1 mediated mechanism, then inducing necrosis or apoptosis in a tumor or pathogen infected lesion by methods such as cryotherapy, irreversible electroporation, chemotherapy, radiation therapy, ultrasound therapy, ethanol chemoablation, microwave thermal ablation, radiofrequency energy or a combination thereof applied against at least a portion of the tumor or pathogen infected tissue, and then delivering one or more doses of allogeneic cells (e.g., Th1 cells) within or proximate to the tumor or pathogen-infected tissue in the primed patient. The present invention provides an immunotherapeutic strategy to develop de-novo systemic (adaptive) immunity to a tumor or pathogen.
The present invention relates to cell-penetrating effector proteins of type III secretion system (T3SS)-containing bacteria of the genus Salmonella or Shigella and variants, fragments and immunomodulatory domains thereof, for use in immunotherapy. The present invention further relates to cell-penetrating effector proteins of type III secretion system (T3SS)-containing bacteria of the genus Salmonella or Shigella and variants, fragments and immunomodulatory domains thereof, for delivering cargo molecules into eukaryotic cells.
Disclosed is the hypolipidemic potential of Bacillus coagulans. More specifically the invention discloses the cholesterol lowering potential of Bacillus coagulans MTCC 5856 and therapeutic/biological indications thereof.
To provide a spheroid-containing cell preparation exhibiting a high therapeutic effect for a cartilage tissue-related disorder as a treatment target.
A prophylactic or therapeutic agent for a cartilage tissue-related disorder contains, as an effective ingredient, a spheroid including cultured mesenchymal stem cells.
The present disclosure includes compositions, methods, and uses for a subset of T cells, SP T (TSP) cells, which display a quiescent (G0) phenotype. Aspects of the disclosure include methods for obtaining and mobilizing TSP cells in a subject. Other aspects include methods of adoptive cell transfer in a subject utilizing TSP cells.
Methods are disclosed for inhibiting esophageal inflammation in a subject, that include administering to the esophagus of the subject with esophageal inflammation a therapeutically effective amount of an extracellular matrix (ECM) hydrogel. Methods are also disclosed for reducing esophageal stricture. Compositions are disclosed that include an esophageal extracellular matrix (ECM) hydrogel.
Lowering total cholesterol and improving of blood lipid spectrum composition as seen in a decrease of low and very low density lipoprotein levels, triglycerides and Lipoprotein a, and an increase in high density lipoproteins through taking fumarate and/or fumarates and B vitamins. The fumarate is any of fumaric acid, neutral or acidic sodium fumarate, potassium fumarate, ammonium fumarate, fumarate of a general formula Fum-Me-Fum.nH2O, where Fum—fumaric acid anion, Me—zinc, calcium or magnesium, n=0-8 or mixture of these. The B group can be B12, B6, B2, preferably, at least two of these. Preferably also including at least one amino acid from the following: glycine, L-glutamic acid and/or its salts, L-arginine and/or its salts, L-carnitine and/or its salts, asparagine and/or its salts. Preferably also succinic, citric or isocitric acid and/or their salts. Preferably also including other vitamins, fillers, ballast substances, flavors, colors, sugars, oils.
A salt of a substituted urea derivative of formula (I) and use thereof in the pharmaceutical field. Also, a pharmaceutical composition containing the salt or a combination thereof, and use of the salt or the pharmaceutical composition in the manufacture of a medicament for treating, remitting or preventing a disorder related to tyrosine kinase activity.
Compounds for use in the treatment of human immunodeficiency virus (HIV) infection are disclosed. The compounds have the following Formula (I): including stereoisomers and pharmaceutically acceptable salts thereof, wherein L, R1, R5, W, X, Y1, Y2, and Z are as defined herein. Methods associated with preparation and use of such compounds, as well as pharmaceutical compositions comprising such compounds, are also disclosed.
This invention provides a method of enhancing NMDAR-mediated neurotransmission in a disease associated with NMDAR antibody production, said method comprising administering an NMDAR agonist, an alanine-serine-cysteine transporter inhibitor, a D-amino acid oxidase inhibitor, a glycine transport inhibitor or a combination thereof to said subject. This invention also provides a method of mitigating the severity of, mitigating the pathogenesis of, lowering the incidence of or treating a disease associated with NMDAR antibody production, said method comprising administering an agent, which is an NMDAR agonist, an alanine-serine-cysteine transporter inhibitor, a D-amino acid oxidase inhibitor, a glycine transport inhibitor or a combination thereof to said subject.
Provided herein are methods of accelerating, promoting, or restoring hair growth, comprising administering to a subject in need thereof an effective amount of a compound of formula (I). Also provided are compositions comprising the compound of formula (I).
The present invention relates, in certain embodiments, to methods for preventing and/or treating neurodegenerative damage (e.g., secondary cascade of neurodegenerative damage) and improving functional outcomes (e.g., outcomes associated with cognitive, behavior and sensorimotor function) caused by traumatic brain injury using neuroprotective lipoyl compounds. The present invention also provides, in various embodiments, compositions for use in treating and/or preventing TBI in a subject in need thereof, compounds for use in the manufacture of a medicament for treating and/or preventing TBI in a subject in need thereof, and methods of preparing a pharmaceutical composition for treating and/or preventing secondary brain damage caused by TBI.
Provided is a darwinolide compound having a previously undescribed carbon skeleton and the crystalline form thereof. Also provided are processes of isolating darwinolide, compositions comprising darwinolide, and methods of treating infection, such as a methicillin-resistant Staphylococcus aureus biofilm infection.
The present invention relates to a combination therapy for tumours comprising the administration of an epoxytigliane compound and an immune checkpoint inhibitor. In particular embodiments, there is a method of treating a tumour and/or treating or preventing one or more bystander tumours with the therapy. Pharmaceutical compositions and kits containing epoxytigliane compounds and immune checkpoint inhibitors are also described.
The object of the present invention is a product obtainable by spray-drying an aqueous solution comprising iron bis-glycinate chelate and alginic acid and/or water-soluble salts thereof, preferably sodium alginate, potassium alginate and/or magnesium alginate, the use of said product for the prevention and/or treatment of anaemia, preferably sideropenic anaemia, in humans, the pharmaceutical formulations containing it, and the use of said formulations for the prevention and/or treatment of anaemia, preferably sideropenic anaemia, in humans.
A method of treating a pervasive development disorder in a subject includes administering to the subject a therapeutically effective amount of an NMDAR antagonist, with an intermittent dosing regimen.
This invention relates to a dilute, ready-to-use solution of phenylephrine hydrochloride having improved stability and utility. In a particular embodiment, the formulation consists of an injectable form of phenylephrine hydrochloride with edetate disodium chelating agent in place of any sodium metabisulfite antioxidants to improve the solution's ability to remain stable and active in a dilute state after prolonged storage. This invention also relates to a form for injection of the solution that includes packaging the solution in a single-use container, as well as a form for containing the ready-to-use solution in a sterile, sealed container. Lastly this invention relates to methods of making the injectable solution for use in a single-use container, as well as for containment in a sterile, sealed container.
The application describes a cosmetic agent for temporary deformation of keratinic fibers. The cosmetic agent includes, in a cosmetically acceptable carrier, a) at least one copolymer A formed from at least one monomer A1 selected from acrylic acid and/or methacrylic acid and at least one monomer A2 selected from acrylic acid esters and/or methacrylic acid esters, b) at least one cationic polymer B different from copolymer A selected from cationic guar derivatives, c) at least one polymer C different from copolymer A and polymer B, selected from cationic cellulose derivatives, and d) at least one propellant.
The disclosure relates to compositions for treating keratinous substrates, such as the hair, comprising at least one monoamine and at least one carboxylic acid, as well as systems and methods for treating keratinous substrates with the compositions.
An oil-in-water type emulsified cosmetic and a method of making can be prepared in a system not containing a silicone and is surprisingly produced without a wet-type dispersion apparatus by using a specific combination of the oil component constituting the oily phase and a hydrophobizing agent for a hydrophobized powder. The composition includes an aqueous phase; an oily phase dispersed in the aqueous phase; and a powder dispersed in the oily phase. The oily phase comprises (a) volatile hydrocarbon oil and (b) non-volatile hydrocarbon oil in a combined amount of 40% by mass or more with respect to the total oil content, wherein the blending ratio of (b) non-volatile hydrocarbon oil to (a) volatile hydrocarbon oil, [(b)/(a)], is within a range of 0 to 2.5, and the powder comprises a powder having a surface hydrophobized by a treatment with a metallic soap consisting of a higher fatty acid and a divalent metal or a composite treatment with a higher fatty acid and a divalent metal hydroxide.
A sealing device for a medication vial which is highly efficient and easy to use. The sealing device comprises a valve and a compressible stopper. Fitted vertically on top the valve and stopper is a coupling portion. When a syringe is coupled to the sealing device, the syringe compresses the stopper which in turn exposes an aperture defined in a central neck portion of the valve. As medication is withdrawn from the vial, the medication enters the valve and travels through the central neck where it then exits through its open apertures and subsequently into the syringe itself. As the syringe is withdrawn, the stopper is allowed to expand or relax which again closes the apertures defined within the central neck of the valve, thereby ceasing the flow of medication through the sealing device.
A method and a control panel are described for facilitating the control of a bathing unit system so that the bathing unit system is caused to transition between operating in accordance with a first operational mode to operating in accordance with a second operational mode. A control signal is generated in response to a unitary user input event performed by a user at a control panel of the bathing unit system, the control signal conveying an ambiance activation command associated with a specific ambience setting, the generation of the control signal comprising selecting the specific ambience setting from a set of ambience settings stored in a memory device. The control signal is then transmitted from the control panel to the controller over a communication link where it is processed to cause the bathing unit system to transition from being in the rest mode to operating in accordance with the specific ambience setting. The method and a control panel may allow simplifying the control of the bathing unit system in order to achieve a desired total effect by allowing a user to cause the bathing unit to operate in accordance with an ambience setting by way of a unitary user input event performed at the control panel.
A method to provide real-time feedback and coaching to augment cardiac rescue by a rescuer. The rescuer would typically be attempting cardiopulmonary resuscitation (CPR) or administering an electrical shock from a defibrillator. The method includes steps of providing a computer, a data-generation device, a cuing device, using the data-generation device, and activating the cuing device. Optional steps include: attaching an article to the rescuer, providing a stationary component, using the camera to provide data to the computer; recording data from the use of a defibrillator; and combining data from the use of a defibrillator and the data on a rate of cardio pulmonary resuscitation and depth of chest compression by the rescuer with video data from the camera to produce combined data, which will be available for after-action review.
The present invention relates to a mask having a massage function and a mask system including the same. According to the present invention, the mask having the massage function comprises: a mask body; and a massage unit coupled to the mask body, wherein the massage unit includes: a massage pad; and a pad driving part for allowing the massage pad to move in one direction while pressing the skin of a user.
Provided is a travel motion assist device capable of assisting a travel motion of a user without causing any discomfort, and has a high level of versatility. A travel motion assist device includes an assist drive unit configured to be worn on a prescribed joint of the user required for the travel motion of the user, and to be driven in a corresponding manner, a torso motion detection unit configured to be worn on a torso of the user, and to detect the displacement of a center of gravity C indicating the movement of the torso, and a control unit configured to control an operation of the assist drive unit, wherein the control unit estimates a phase of the travel motion of the user according to a detection result of the torso motion detection unit, and drives the assist drive unit at a prescribed phase.
Devices, systems, and methods for patient support include arrangement of a patient support top for rotation and a rotation lockout assembly for selectively blocking against rotation of the patient support top.
A patient positioning device including a pivot rod configured with a first portion extending in a first direction, and a second portion extending in a second direction substantially laterally from a top end of the first portion, a clamp portion configured to be coupled to a portion of a medical bed, and having a receiving portion configured to receive and clamp the first portion of the pivot rod in place such that the pivot rod is adjustable along and about an axis of the first direction when not clamped, and a swivel plate coupled to a distal end of the second portion of the pivot rod and configured such that the swivel plate is rotatable about another axis offset from, and substantially parallel to, the axis of the first direction, wherein the swivel plate is configured to provide support to maintain a patient in a desired position.
The present disclosure is directed to substrates or topsheets having repeating patterns of apertures for absorbent articles. Each of the repeat units comprises at least three apertures.
A process for deforming a web is disclosed. The steps include forming a plurality of microscopic aberrations in a first layer and/or second layer of a precursor web. The microscopic aberrations comprising sidewalls and an aperture disposed at a distal end of the sidewalls. The first layer extends laterally outboard more than the second layer. The precursor web is advanced to a forming unit. The plurality of macroscopic features is simultaneously formed in the precursor web, including first and second features; the first features are disposed in an area of overlap between the first and second layer; the second features are disposed in an area laterally outboard of the second layer; the microscopic aberrations extend in a first direction from the precursor web; the first and second features extend in a second direction from the precursor web; and wherein the first direction is opposite the second direction.
A brace for treating or preventing carpal tunnel injury includes a body having a proximal end and a distal end. The body includes a forearm support at the proximal end and a wrist support coupled to the forearm support by a neck portion. The wrist support includes a first palmar strap support. A first member and a second member extend from the wrist support towards the distal end. The body also includes a distal palmar support, a proximal palmar aperture, a palm band having a second palmar strap support, and a palmar strap. The palmar strap extends across a portion of the back of the hand and over a purlicue of the hand.
A magnetic positioning system and related method for automated or assisted eye-docking in ophthalmic surgery. The system includes a magnetic field sensing system on a laser head and a magnet on a patient interface to be mounted on the patient's eye. The magnetic field sensing system includes four magnetic field sensors located on a horizontal plane for detecting the magnetic field of the magnet, where one pair of sensors are located along the X direction at equal distances from the optical axis of the laser head and another pair are located along the Y direction at equal distances from the optical axis. Based on relative magnitudes of the magnetic field detected by each pair of sensors, the magnetic field sensing system determines whether the patient interface is centered on the optical axis. The system controls the laser head to move toward the patient interface until the latter is centered on the optical axis.
An intravascular temperature management catheter includes a shaft through which working fluid can circulate to and from a proximal location on the shaft. The catheter extends from a connector hub. At least one heat exchange member is supported by a distal part of the shaft or other part of the catheter to receive circulating working fluid from the proximal location. A temperature sensor is supported on the catheter for generating a temperature signal representative of blood temperature to a control system. The temperature sensor includes first and second conductive leads having respective first and second distal segments on or in the catheter shaft. The first and second distal segments are arranged to be in thermal contact with blood flowing past the catheter when the catheter is disposed in a blood vessel of a patient. Also, the temperature sensor includes a joining body connected to proximal segments of the first and second leads. The joining body may be supported in the hub or in another location proximal to the first and second conductive leads.
The invention relates to a revision prosthesis shaft of a revision joint endoprosthesis for anchoring in an elongate bone (9), in particular femur. The surface is designed for adhesive agent-free fastening in the proximal epimetaphysis (91) and the diaphysis (92) of the bone. According to the invention, a distal epimetaphyseal extension (2) is provided at the far end of the shaft (12), the tip of which extension reaches into the distal epimetaphysis (93) of the bone. The extension (2) is designed for fastening in the distal epimetaphysis (93) by means of an adhesive agent (3), in particular bone cement. The invention combines the advantages of cement-free fastening, namely of the shaft in itself in the diaphysis (92), with the advantages of cemented fastening, namely of the extension in the distal epimetaphysis (93). Even in difficult cases in which sufficient hold previously could not be achieved for lack of fastening distance in the diaphysis, stable anchoring can thus be achieved. This increases the safety and longevity of the revision. The invention further relates to a corresponding implantation method.
A modular variable blade augment including an augment component and a blade component. The blade component includes a buttress portion and a neck portion, with the neck portion having a body segment and a face segment that is contoured for mating engagement with an outer surface of the acetabular shell. The augment component has a first opening sized and shaped to receive insertion of the body segment, and which is also sized to accommodate selective adjustment of linear and angular orientations of the blade component relative to the augment component when the body segment is positioned in the first opening. Additionally, the body segment has a length that is sized to facilitate direct contact of the face segment with the acetabular shell when the modular variable blade augment is in an assembled configuration. Further, cement can be injected into the internal cavity to unitize the connection between the acetabular shell and the blade component.
Prosthetic heart valves described herein can be deployed using a transcatheter delivery system and technique to interface and anchor in cooperation with the anatomical structures of a native heart valve. Deployment systems and methods for using the deployment systems described herein facilitate implanting a two-part prosthetic heart valve that is arranged in a nested configuration during the transcatheter delivery and deployment processes.
A prosthetic aortic valve intended for native or valve-in-valve within bioprostheses includes an expandable support scaffold and valve leaflets disposed within an upper leaflet portion of the support scaffold. The valve leaflets within the upper portion may be located within the annulus (intravalvular), above the annulus, or above the native or prosthetic leaflets (supravalvular). The valve within a previously implanted degenerated heart valve such that a base or lower portion of the replacement valve is within the previously implanted valve and the upper portion is expanded within the aorta, the internal area of the valve can be increased and the hemodynamics of the valve improved. Alternatively, the valve may include separate upper and lower portions allowing the portions to be implanted sequentially and the length and other characteristics of the valve to be adjusted based on patient anatomy and condition.
An oral irrigator has a removable reservoir defining a reservoir cavity, a base unit housing a motor and a pump, and a handle for directing fluid flow from the pump removably connected to the base unit and fluidly coupled to the pump by a hose. The handle has a housing defining a slot formed in an outer wall of the housing. The slot is bounded by two opposing walls spaced apart from each other and a transverse wall at a terminal interior end of the opposing walls. The outer wall of the housing is open to the slot at lateral sides of the two opposing walls and at a base end of the opposing walls opposite the transverse wall.
The invention relates to a scan abutment (2) for determination of the position of the plane of the front face (1.1) of a dental endosseous implant (1), wherein the abutment (2) has a longish, hollow shaft (4) and a base (3) at the bottom side (4.2) of the shaft (4), and the base (3) with at least a part of its bottom side (8.2) is attachable onto the front face (1.1) of the implant (1), wherein the base (3) has a recess (9) extending from the upper side (8.1) to the lower side (8.2) of the base (3), wherein the longish, hollow shaft (4) has from a side wall (10) having at least one through hole (5a) at its outer periphery, wherein the through hole of the side wall (10) extends from the bottom side (4.2) of the shaft (4) to the upper side (4.1) of the shaft, thereby forming a planar surface (6) in the plane (12) between shaft (4) and base (3).
A computer-implemented method for modeling a complete tooth of a patient to facilitate dental and/or orthodontic treatment. The method includes generating a first set of digital data representing a clinical crown; generating a second set of digital data representing a plurality of digital tooth models of a particular tooth type each having a first parameterization; processing the second set of digital data to obtain a third set of digital data representing an average tooth model of the particular tooth type having a second parameterization which is less than the first parameterization; fitting the third set of digital data to the first set of digital data to create a set of digital data representing an interim tooth model; and morphing the set of digital data representing the interim tooth model to substantially mimic the anatomical shape of the clinical crown of the first set of digital data.
A image guided motion scaled surgical robotic system (160) employs a surgical robotic arm (168) and an image guided motion scaled surgical controller (162). In operation, responsive to an input signal indicative of a user defined motion of the surgical robotic arm (168) within an anatomical region, the image guided motion scaled surgical controller (162) controls an actuated motion of the surgical robotic arm (168) within the anatomical region based on a map (164) of a motion scale delineated within an imaging of the anatomical region.
Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include augmenting a Jacobian so that joint movements calculated from the Jacobian perform one or more auxiliary tasks and/or desired joint movements concurrent with commanded end effector movement, the one or more auxiliary tasks and/or desired joint movements extending into a null-space. The auxiliary tasks and desired joint movements include inhibiting movement of one or more joints, inhibiting collisions between adjacent manipulators or between a manipulator and a patient surface, commanded reconfiguration of one or more joints, or various other tasks or combinations thereof. Such joint movements may be provided using joint velocities calculated from the pseudo-inverse solution of the: augmented Jacobian. Various configurations for systems utilizing such methods are provided herein.
A system and a method are disclosed that allow for generation of a model or reconstruction of a model of a subject based upon acquired image data. The image data can be acquired in a substantially mobile system that can be moved relative to a subject to allow for image acquisition from a plurality of orientations relative to the subject. The plurality of orientations can include a first and final orientation and a predetermined path along which an image data collector or detector can move to acquire an appropriate image data set to allow for the model of construction.
A surgical laser system includes a first laser source, a second laser source, a beam combiner and a laser probe. The first laser source is configured to output a first laser pulse train comprising first laser pulses. The second laser source is configured to output a second laser pulse train comprising second laser pulses. The beam combiner is configured to combine the first and second laser pulse trains and output a combined laser pulse train comprising the first and second laser pulses. The laser probe is optically coupled to an output of the beam combiner and is configured to discharge the combined laser pulse train.
The present invention is directed to a system, a method and a catheter that provide improved ablation capabilities and improved energy efficiency by selectively energizing catheter electrodes on the basis of impedance measurements. In particular, the invention is directed to the selective energization of catheter radial electrodes that together with a tip electrode form a generally continuous tissue contact surface, wherein the selection is made on the basis of impedance measurement as an indication of the amount of tissue contact of each radial electrode.
An irrigated needle electrode ablation catheter has a distal tip section with a tip electrode, a needle electrode assembly longitudinal movable relative to the catheter, and a needle centering insert in a channel in the tip electrode. The assembly has a proximal tubing and a distal needle electrode, and the insert supports the needle electrode in the channel at a predetermined separation distance from the tip electrode while enabling irrigation to flow circumferentially around the needle electrode through the channel and exit at the distal end of the tip electrode. The catheter also provides a first dedicated fluid pathway through the assembly and exits at the distal end of the needle electrode, and a second dedicated fluid pathway to supply fluid to the channel in the tip electrode, wherein the second pathway is defined by a guide tube and directed by a plunger member.
A surgical instrument includes: a handpiece; a movable member configured to transmit a driving force to a treating member to treat a subject by moving relatively to the handpiece; and a connector arranged inside the handpiece, and including a strip to apply a pressing force to the movable member. The movable member includes a first conductive portion formed therein. The connector includes a second conductive portion formed on the strip. The second conductive portion abutting against the first conductive portion to connect the movable member and the handpiece electrically. The second conductive portion of the connector is a molded interconnect device constituting a three-dimensional circuit.
An adapter for an electrosurgical instrument includes a socket and a stabilizer extending from the socket. The socket includes a mounting surface having a geometry arranged and disposed to accept a distal end of the electrosurgical instrument, and at least one retaining surface, which arranged and disposed to interact with a conformation of the electrosurgical instrument when the socket is mounted onto the electrosurgical instrument such that the socket mounts non-rotatably.
Flexible apparatus for ablating unhealthy spinal tissue. A housing includes a distal end and a proximal end. Multiple thermocouples mounted on the housing measure spinal tissue temperatures at locations between the proximal end and the distal end. A sensor measures spinal tissue impedance. The measured spinal tissue impedance corresponds to various physical state data of the spinal tissue. The spinal tissue impedance and the spinal tissue temperatures are displayed to the surgeon, enabling the surgeon to determine with certainty the location of the unhealthy spinal tissue, and to exercise control over the ablation apparatus. Nerve stimulation by IMP/STM switch system to detect nerve responses before and after treatment.
A bone fixation device for treatment of a bone fracture includes a fixation screw defining a transverse opening, a fixation arm configured for inserting the fixation screw through a bone fracture, a set screw, and an aiming arm configured for inserting the set screw into the transverse opening and engagement with the fixation screw. The set screw stabilizes the fixation screw.
A uterine manipulator includes a handle and a central shaft that extends distally from the handle. The central shaft includes a distal end portion supporting a balloon. The central shaft also supports a cervical cup. An occluder shaft is slidably supported on the central shaft. A non-inflatable plug is secured to the occluder shaft and configured to move with the occluder shaft as the occluder shaft slides along the central shaft.
Trocar components and methods of use are described, wherein the trocar components are configured to provide access to intraperitoneal space via the rectouterine pouch to surgical tools, which optionally include one or more surgical robot members. The surgical tools are optionally 5 mm or more in diameter. In some embodiments, a cannula part has a lumen sized to provide to a plurality of the surgical tools simultaneous transvaginal access to the intraperitoneal space via the rectouterine pouch. In some embodiments, an incision sized to receive a distal aperture of the cannula is created, optionally using one or two dilators. The dilators are sized to create (optionally starting from a puncture by a needle 2 mm in diameter or less) an oblong aperture. In some embodiments, the oblong aperture is at least twice as wide across a long diameter as across a short diameter.
Medical guidance device capable of improving precision and accuracy of medical surgery by ensuring accurate and consistent placement of the medical guidance device, as well as communication with surgery planning software and/or three-dimensional spatial software to determine insertion of the needle into the patient.
Disclosed herein is a medical device. The medical device includes a blade tube section, a motor, and a mechanical arrangement. The blade tube section includes an outer blade tube, inner blade tube, and a cutting window at a distal end of the blade tube section. The motor is offset from a central axis of the blade tube section. The mechanical arrangement is between the inner blade tube and the motor.
The present disclosure generally relates to the field of medical devices for treatment and diagnosis of paranasal sinus conditions and methods of using same. There is disclosed a device having a hollow shaft configured to be inserted into a paranasal sinus through a natural opening thereof. The hollow shaft is shaped/configured to reach a treatment area within the paranasal sinus.
The devices and methods described herein relate to improved structures for removing obstructions from body lumens. Such devices have applicability in through-out the body, including clearing of blockages within the vasculature, by addressing the frictional resistance on the obstruction prior to attempting to translate and/or mobilize the obstruction within the body lumen.
A guide for placing a landmark(s) in a patient tissue comprises a central portion defining at least one guiding bore configured to receive and guide a tool for placing the at least one landmark in the patient tissue. Extended portions project away from the central portion, each of the extended portions having respective lower base surfaces contoured to mate with the patient tissue, at least the respective lower base surfaces being customized as a function of preoperative imaging of the patient tissue, whereby the guide is specific to the patient.
An apparatus for application of surgical clips to body tissue is provided and includes a handle assembly and a shaft assembly. The handle assembly includes a drive assembly; and a trigger operatively connected to the drive assembly. The shaft assembly extends from the handle assembly and includes an articulating neck assembly; and an end effector assembly supported on a distal end of the articulating neck assembly and being configured to form a surgical clip in place on the body tissue.
An atrial appendage occluder capable of entering a half-released state by means of pushing a head-end fiber comprises: an occlude body (1); a head-end control fiber (2); and a tail-end control fiber (3). A head end of the occluder body (1) is connected to one end of the head-end control fiber (2) by means of a head-end threaded bushing (4). A tail end of the occluder body (1) is connected to one end of the tail-end control fiber (3) by means of a tail-end threaded bushing (5). The tail-end control fiber (3) is in the form of a hollow column. The other end of the head-end control fiber (2) sequentially passes through the tail-end threaded bushing (5) and the tail-end control fiber (3). The occluder body (1) is in a woven-net support structure, and has a shape preconfigured to match the structure of an atrial appendage after the occluder body (1) has been fully released. The occluder body (1) is in the form of a strip and disposed in an outer sheath (6) before being released. The occluder body (1) is in a half-release state after being pushed out of the outer sheath (6). The diameter of the occluder body (1) is changed by pushing or pulling the head-end control fiber (2, 3). The atrial appendage occluder can adjust its location in the atrial appendage, such that the occluder can be released precisely in a preset location.
Veins and other blood vessels may be reshaped by introducing an implant through the vessel walls with anchors positioned on opposite sides of the wall. The anchors typically include an elongate body having coils or other anchors formed therein. The implants may be delivered percutaneously using a cannula which can hold the anchor externally or internally. The methods and devices are useful in treating a dorsal vein to reduce blood flow in patients suffering from erectile dysfunction.
In a method for providing a double loop stitch, a needle assembly having a first needle portion and a second needle portion that is removably connected to the first needle portion is provided. Opposing ends of a thread are connected to the needle portions, forming a loop that is placed around a sewing material. The needle assembly is inserted through the sewing material at an insertion point. The thread is then partially pulled through the sewing material at the insertion point such that a pair of loops of thread, separated by the insertion point, remain adjacent a first face of the sewing material. The needle portions are then separated and are passed around opposite sides of the sewing material from adjacent a second face back adjacent the first face. Each needle portion is then passed through one of the loops. The loops are then cinched and locked in place.
An intravascular delivery device is disclosed comprising a delivery wire having a proximal and a distal end and an interior lumen extending there between and wherein said distal end comprises a connection interface adapted to matingly interlock with a proximal end portion of a medical implantable device, wherein said delivery device comprises a locking unit arranged to secure said connection interface in a locking position in which said medical implant is pivotably locked before a controlled release.
A biopsy device includes a first cannula driver connected to a first cannula and a second cannula driver connected to a second cannula. The first cannula driver has a first rack member and a flange. The second cannula driver has a second rack member. A drive assembly has a linear motor drive, a transmission assembly, a switching motor drive, and an electrical controller circuit. The electrical controller circuit is configured to execute program instructions to selectively operate the linear motor drive and the switching motor drive. The transmission assembly has a gear assembly drivably coupled to the switching motor drive and configured to releasably engage at least one of the first rack member of the first cannula driver and the second rack member of the second cannula driver. A coupler member is connected to the linear motor drive, and is configured to engage the flange of the first cannula driver.
Devices and method are provided for ultrasound transmission without the need for external couplants, such as gels, which are typically used in conventional ultrasound procedures. In particular, ultrashields are provided for use with ultrasound probes, wherein the ultrashields have specialized layers to provide an uninterrupted pathway of acoustic conductance from the probe to the surface of the body throughout the procedure while introducing minimal to no attenuation of ultrasound wave transmission. In addition, combinations of ultrashields and probe covers are provided to provide additional features such as a microbial barrier.
A radiation imaging system, including: a radiation imaging unit configured to perform radiation imaging and generate radiation image data based on detected radiation; and an image processing unit configured to perform first image processing on the radiation image data to generate a first image and capable of transmitting the first image to an information terminal, wherein the radiation imaging unit is configured to subject the radiation image data to second image processing to generate a second image and transmit the second image to the information terminal.
A system can have an x-ray source that generates a series of individual x-ray pulses for multi-energy imaging. A first x-ray pulse can have a first energy level and a subsequent second x-ray pulse in the series can have a second energy level different from the first energy level. An x-ray imager can receive the x-rays from the x-ray source and can detect the received x-rays for image generation. A generator interface box (GIB) controls the x-ray source to provide the series of individual x-ray pulses and synchronizes detection by the x-ray imager with generation of the individual x-ray pulses. The GIB can control x-ray pulse generation and synchronization to optimize image generation while minimizing unnecessary x-ray irradiation.
A positron emission tomography (PET) assembly includes an annular housing and an annular scintillator disposed within the annular housing. The annular scintillator includes an annular, substantially continuous crystal scintillator tube configured to absorb ionizing radiation and to emit light energy. A plurality of photo detectors are annularly disposed around the annular scintillator within the annular housing and configured to detect the emitted light energy.
A medical imaging system includes a first collimator configured to filter radiation emitted from a subject, a first detector configured to detect radiation that has passed through the first collimator, a second collimator configured to filter radiation emitted from the subject, wherein the first collimator partially blocks a field of view (FOV) of the second collimator, and a second detector configured to detect radiation that has passed through the second collimator.
A disposable apparatus for electroencephalography measurement on a human subject is provided. The disposable apparatus for electroencephalography measurement may be securely attached to the subject's head without attachment gel contacting the subject' scalp. A transparent body is provided for easy placement of electrodes. Methods to use the apparatus for electroencephalography measurement are also provided.
An image processing system, comprising an input interface (IN) for receiving a plurality of input images acquired of test objects. The system further comprises a material type analyzer (MTA) configured to produce material type readings at corresponding locations across said input images (IM(CH)). A statistical module (SM) of the system is configured to determine based on said readings an estimate for a probability distribution of material type for said corresponding locations.
A system and method for assessing a patient's balancing ability in order to facilitate ascertaining the patient's current medical status. The system includes a balance plate for measuring the meter of gravity dynamic weight distribution in combination with a sensor for measuring the patient's fine motor skills.
A QRS complex detection method is provided. The method includes collecting an ECG signal and filtering the ECG signal by using at least one preset filter. The filtered ECG signal is processed using a dual-slope method. Once R wave peak is detected from the processed ECG signal, a position of a QRS complex is outputted based on the R wave peak.
Systems and methods for detecting atrial tachyarrhythmia are discussed. An exemplary atrial tachyarrhythmia detection system includes an arrhythmia detector circuit configured to receive physiologic information of a patient, generate a morphological similarity metric between the received physiologic information and a sinus rhythm (SR) template representing a morphology of conducted sinus beats during normal SR, and generate a morphological variability metric indicative of a variability in morphology between heart beats in the received physiologic information. The arrhythmia detector circuit may detect an atrial tachyarrhythmia episode the morphological similarity and morphological variability metrics.
A portable multi-lead electrocardiogram device includes a holding case, a signal processing module and three metal contacts. The signal processing module is located in the holding case. The metal contacts are located on an exterior surface of the holding case and are electrically connected to the signal processing module. The metal contacts are respectively a body contact, a left hand contact and a right hand contact. The device can measure the electrical activities of the heart beat from two different directions, which greatly improves detecting capability. Professional 12-lead electrocardiogram can also be performed by multiple times of measuring. This portable device allows patients with history of myocardial infarction to perform electrocardiogram test timely when feeling ill and to seek medical attention early.
Various embodiments of the present disclosure describe a diversion device that traps an initial flow of blood in a diversion chamber of the diversion device. The diversion chamber may be defined, in part, by a housing shell, a housing base, and a filter. The filter may be a porous material that allows air, but not blood, to flow through it. After the diversion chamber is filled, a subsequent flow of blood may be directed into a collection vessel through an internal conduit of the diversion device.
A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
An apparatus for obtaining bio-information may include a pulse wave sensor including a light source and a detector. The light source is configured to emit multi-wavelength light to an object of interest and the detector is configured to detect light reflected from the object. In addition, the apparatus may include a processor configured to obtain a change in volume of a blood vessel based on one or more of quantity of detected multi-wavelength light and absorbance coefficients of respective wavelengths of the multi-wavelength light and obtain bio-information based on the measured change in volume of the blood vessel.
An electronic blood pressure monitor of the present invention includes a blood pressure measurement cuff that is to be worn on a measurement site of a measurement subject. The electronic blood pressure monitor includes a blood pressure measurement unit that measures a blood pressure value of the measurement subject using the cuff. The electronic blood pressure monitor includes an external compression detection unit that detects whether or not there was external compression on the cuff during blood pressure measurement performed by the blood pressure measurement unit.
To obtain an absorption distribution from a detected signal with a practical device. Light is applied to a subject, and a photoacoustic signal generated in the subjectA photoacoustic is detected. From the detected photoacoustic signal, a light differential waveform, which is a differential waveform of a temporal waveform of the light applied to the subject, is deconvolved. As a result of this deconvolution, an absorption distribution is obtained.
An exemplary non-invasive measurement system includes a single-photon counting camera and a processor. The single-photon counting camera includes an array of SPAD detectors configured to detect, during a sequence of gated time intervals, coherent continuous light that exits a body after the light enters and scatters within the body, and output a plurality of electronic signals representative of the detected light. The processor is configured to generate, based on the electronic signals, a sequence of speckle pattern image frames corresponding to the gated time intervals. Other exemplary non-invasive measurement systems are also described.
A method includes collecting, for a pitch, per pitch data that includes a plurality of first arm orientation data points and a plurality of second arm orientation data points. The method further includes analyzing the per pitch data to determine a release point arm orientation and an effort level. The method further includes calculating a per pitch stress level based on the release point arm orientation and the effort level. The method further includes calculating, for a set of pitches, a fatigue level based on the per pitch stress level of each pitch of the set of pitches.
The present disclosure provides an artificial neural network system for identifying a lesion in a retinal fundus image that comprises a pre-processing module configured to separately pre-process a target retinal fundus image and a reference retinal fundus image taken from a same person; a first neural network (12) configured to generate a first advanced feature set from the target retinal fundus image; a second neural network (22) configured to generate a second advanced feature set from the reference retinal fundus image; a feature combination module (13) configured to combine the first advanced feature set and the second advanced feature set to form a feature combination set; and a third neural network (14) configured to generate, according to the feature combination set, a diagnosis result. By using a target retinal fundus image and a reference retinal fundus image as independent input information, the artificial neural network may simulate a doctor, determining lesions on the target retinal fundus image using other retinal fundus images from the same person as a reference, thereby enhancing the diagnosis accuracy.
Optical fiber waveguide for communicating electromagnetic radiation pulsed by an emitter in an endoscopic imaging system. A system includes an emitter for emitting pulses of electromagnetic radiation and an endoscope comprising an image sensor for sensing reflected electromagnetic radiation. The system includes a waveguide communicating the pulses of electromagnetic radiation from the emitter to the endoscope. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of a hyperspectral emission, a fluorescence emission, and/or a laser mapping pattern.
An endoscopic probe extending from a proximal end to a distal end thereof, and configured to be inserted in a tubular lumen to observe a sample is disclosed. The probe includes a first waveguide enclosed within an inner sheath and extending from the proximal end to the distal end along an axis of the inner sheath; and a plurality of second waveguides having at least the distal ends thereof arranged in one or more rings around the inner sheath to surround the distal end of the first waveguide. At the distal end, the axis of each of the second waveguides is tilted with respect to the axis of the first waveguide by a tilt angle which can be adjustable. This novel endoscopic probe has a resultant numerical aperture larger than the numerical aperture of each of the second waveguides, and it may be applicable to forward-viewing spectrally encoded endoscopes (SEE).
There is provided an endoscope from which excellent close contact feeling is obtained and which is easy to grip in a case in which an operator is to grip a grip portion.
A grip portion of an endoscope has a cross-sectional shape symmetric with respect to a second center line. The grip portion includes a first curved surface, second curved surfaces, and ridges. The first curved surface is a curved surface that is convex outward from a plane, which includes an intersection point between the second center line and the first curved surface and the ridge, and a plane, which includes an intersection point between the second center line and the first curved surface and the ridge. The second curved surfaces are concave inward from planes parallel to the second center line.
The endoscope apparatus includes an endoscope and a video processor. The endoscope apparatus has a voice coil motor provided in a distal end portion of an insertion portion of the endoscope and having a coil with a resistance component, and a signal wire inserted into the insertion portion and connected to both ends of the coil, detects at least one value of a current supplied to the signal wire and a voltage applied to the signal wire, calculates power consumption of the coil from the at least one value detected and resistance value information of the resistance component, and executes a predetermined process based on the calculated power consumption of the coil and power consumption threshold information.
Shelf for evacuating water from wet footwear, and a footwear rack equipped therewith. The shelf comprises a gutter for channeling water, a front longitudinal footwear depositing surface along one side of the gutter and a back longitudinal footwear depositing surface along another side of the gutter. The shelf also comprises an evacuation aperture in a lowermost section of the gutter. The evacuation aperture defines a channel through the shelf.
The present invention relates to the technical field of manufacturing of small appliances, and relates to a glass-wiping robot. The glass-wiping robot comprises a robot main body, a power cord and a safety buckle. The power cord is connected to the robot main body, and winds onto the safety buckle. The safety buckle is provided thereon with a suction cup. The safety buckle sucks on a glass via the suction cup. The glass-wiping robot of the present invention provides double protection and improved safety effects when the robot main body inadvertently falls off the window, allows for convenient fixing or moving of the safety buckle, and is convenient to carry.
An automatic lifting toilet seat apparatus for raising the toilet seat after use to prevent mess includes a pair of seat sprockets is coupled to a seat back side of a toilet seat. A hinge pin is coupled to the pair of seat sprockets. A pair of hinges coupled to a toilet receives the hinge pin. A pair of lifter tracks is toothed and in operational communication with the pair of seat sprockets to rotate the hinge pin and lift the toilet seat. A drive cylinder is coupled within a cover coupled to the toilet and is in operational communication with the pair of lifter tracks. A motor is coupled to the cover and is in operational communication with the drive cylinder. The motor is in operational communication with a motion sensor of the toilet to automatically lift the toilet seat after use and before flushing.
A device utilizes charcoal for cooking food, and is adapted for lighting the charcoal by placement on a conventional gas grill. The device includes a food-receiving plate/grill, a charcoal platform, and an ash platform/tray. The device is adapted so that, with the ash tray removed and the device resting on the gas grill, heat from the gas flames ignites the charcoal resting on the charcoal platform. Upon the ignition of the charcoal, the gas grill may be turned off, the ash tray may be inserted into the device underneath the charcoal platform to catch the charcoal ash, and the device may remain on the gas grill or be moved to another table/surface as the charcoal-only cooking proceeds. The charcoal platform may be stationary in one location, or movable to multiple locations, between the bottom extremity of the device and the food-receiving grill member(s) at the top of the device.
A radiation grill includes a housing and radiators which are arranged in the housing. A pullout which, in a position retracted into the housing, closes an opening on a front side of the housing. The pullout carries two glass plates arranged standing, which limit a cooking chamber in the retracted position of the pullout between them. Respectively, at least one of the radiators is arranged outside of the cooking chamber between each of the two glass plates and a side wall of the housing to irradiate grilled food in the cooking chamber. It is provided that movement of the pullout is limited by a stop.
A system for heating and frothing a beverage comprises a device for heating and frothing a beverage and a froth wand. The device for heating and frothing a beverage includes a steamer, a steam conduit connecting the steamer to a steam nozzle and a froth wand holder for removably holding a froth wand. The froth wand is a disposable froth wand and comprises a tubular wall having a steam inlet end comprising a steam inlet, a steam outlet end comprising a steam outlet separate from the steam inlet and a steam channel extending between the steam inlet and the steam outlet. The froth wand holder is arranged for holding the disposable froth wand at least in an operational position in the device for heating and frothing a beverage in which operational position the steam nozzle is in communication with the steam inlet of the disposable froth wand.
A beverage preparation apparatus including a platform section having a plurality of attachment points for additional components. The platform is adapted to releasably secure in a wide variety of target beverage vessels. The additional components include, but are not limited to, a large volume filter means, a temperature regulator, or a gravity-fed brewer. The platform may also be incorporated into a vacuum-insulated, stainless-steel beverage vessel.
A mailbox with a housing, a floor and a receptacle situated on top of a sliding rail assembly affixed to the floor. A first bracket is affixed to the inside surface of the door and connected to a first U-shaped bracket with a downwardly facing open part. The two legs of the first U-shaped bracket are pivotally attached to longitudinal rods extending underneath the mailbox. The distal end of each longitudinal rod is pivotally attached to a second U-shaped bracket with a downwardly facing open part. A first end of a traveling rod extends upwardly from the lateral part of the second U-shaped bracket, and a second end of the traveling rod is attached to a shaft. A wheel bearing is situated on either end of the shaft, and a receiving bracket is attached to the rear wall of the receptacle and configured to receive the wheel bearings and shaft.
An example disposable food service tray that can withstand high heat is disclosed. The disposable food tray includes a first layer comprising paper board, and a second layer comprising polyethylene terephthalate (PET) affixed to the first layer, wherein an adhesion between the first layer and the second layer is configured to withstand a temperature of up to 525 degrees Fahrenheit for up to six minutes without blistering.
A bedding for babies and infants includes two mattresses, wall-surface cushion materials, and handles. The two mattresses have mutually opposite sides that are coupled and have square shapes in planar views of the two mattresses. The wall-surface cushion materials are removably mounted on top surfaces of other three sides excluding the coupled sides of both the mattresses via coupling members. The handles removably mounted on both the mattresses or the wall-surface cushion materials. The wall-surface cushion materials are separably and mutually coupled between the adjacent wall-surface cushion materials via coupling members. The bedding for babies and infants is configured to be carried around with the handles in a state where both the mattresses are folded such that top surfaces of corresponding wall-surface cushion materials are abutted to be closed with a coupling member.
A composite mattress includes a base panel of a cover, a base layer, a pressurizable layer, an intermediate layer, a top layer, and a top panel of the cover. A foundation, or rail, laterally surrounds the pressurizable layer, the intermediate layer, and the top layer. A periphery of the cover laterally surrounds the foundation and, with the top panel and the base panel, encases the other components of the composite mattress. A coiled spring layer may also be included in the composite mattress. The composite mattress may include a separable top and bottom; these elements may be modular, enabling individuals or couples customize a mattress by selecting one or more tops from a plurality of available for use with one or more bases from a plurality of available bases.
A sunshaded swing seat includes a suspension frame including a main horizontal beam, and a pair of extension members mounted to the main horizontal beam. The pair of extension members forms four tips. Tension supports extend downwardly from the four tips, and each tension support extends downwardly from each tip. A swing seat has a rigid swing seat rim, and the swing seat has a fabric seat body attached to the swing seat rim and forming a seat hollow. A shade has a upper panel mounted over the swing seat. The shade optionally further includes a shade left side panel and a shade right side panel. The shade left side panel has a shade left arc on its lower edge.
The present invention relates to the furniture field, in particular outdoor furniture; even more particularly, it relates to a kit configuration of a sofa, armchair, chair or similar item of garden furniture or interior furniture and the relative mounting method.
A wobble base provides a curved floor-contacting surface with one or more alignment posts that align the wobble base to the bottom of a seating platform and one or more holes separate from the alignment posts through which one or more fasteners may be placed to attach the wobble base to the seating platform, thereby providing a wobble stool. The wobble base can be configured to convert an existing stool into a wobble stool by replacing one or more floor-contacting members with the wobble base. In a second embodiment, a seating platform, such as a stool, is provided with both traditional floor-contacting members, such as feet or casters, and with a wobble base that allows the traditional floor-contacting members to be removed and replaced with the wobble base, and allows the wobble base to be removed and replaced with the traditional floor-contacting members.
A motion furniture side mechanism includes a side plate and a pivotable swing arm pre-aligned with the side plate for insertion of a driver tube using an automated or manual assembly operation. The swing arm includes a pivotable driver arm, and a driver tube socket is defined on the driver arm. One or more bushings disposed between the side plate and the swing arm or driver arm provides a mechanical retainer to prevent the swing arm or driver arm from becoming inadvertently angularly misaligned prior to assembly. The pre-aligned side mechanism allows automated insertion of a driver tube without the need to identify a misaligned linkage or re-align a linkage prior to driver tube insertion. A method of assembly furniture includes providing a side mechanism with a pre-aligned linkage member such as a swing arm or driver arm positioned for driver tube insertion.
An animal call carrier for carrying bugle type animal calls comprises a clasp at one end spaced apart from a cap at the opposite end along two elastic rods. The clasp is configured to grasp one end of an animal call around the outer diameter of the call near the mouthpiece of the call while the cap fits into the opening at the other end of the animal call. The clasp and cap are spaced apart at a distance along the elastic rods so that when the call is stowed, the elastic rods create a compression force between the clasp and the cap to hold the animal call securely in place.
An inflatable hammock comprises a panel that has an air containing region and a bonded region. A plurality of tension members attached on both ends of the panel and having free ends that are configured to suspend the panel. An exemplary inflatable hammock may convert between a first configuration for use as a hammock and a second configuration as a sleeping pad as described herein.
A multi-unit cosmetic applicator comprising; a body have a first end and a second end, wherein the first end has a threaded opening to a first internal compartment and the second end has an opening to a second internal compartment, a threaded cap with a brush sized to interface with the threaded opening, a first cosmetic agent housed within the first internal compartment and designed to interface with the brush, a cosmetic agent, a mechanism integrated into the opening of the second internal compartment, wherein the mechanism is able to independently advance the second cosmetic agent, a first cap sized to fit over the opening and secure to the body, wherein the cap has a brush secured to a top, and a second cap sized to fit over the brush and secure to the first cap.
The present disclosure provides a detachable cosmetic bag including a cosmetic bag main body; a plurality of inner supporting plates respectively arranged on inner sidewalls of the cosmetic bag main body; and a plurality of partition plates. Each partition plate is formed by a plurality of connecting portions and a plurality of protruding portions, a plurality of strip grooves are formed on two sides of each partition plate, two ends of each partition plate are connecting portions to enable the partition plate to be connected with the supporting grooves on the inner supporting plates and/or the strip grooves on two sides of other partition plates. The cosmetic bag provided by the present disclosure is multi-functional with an inner space that can be freely changed in combination. The lower-layer bag body is foldable, improving user experience and making it easy to carry.
Provided is a gel nail sticker including: a lower laminated part which is a part directly attached to a nail or a toenail, and has a color or a pattern, and is formed of a flexible material to correspond to a curved surface of the nail or the toenail; and an upper laminated part which is a transparent coated layer positioned on the lower laminated part and providing glossiness to a color or a pattern of the lower laminated part, and is in a flexible semi-solid state to correspond to the curved surface of the nail or the toenail before being attached to the nail or the toenail, and is cured to a solid state while maintaining a form attached to the nail or the toenail when an ultraviolet ray is irradiated to the upper laminated part after the upper laminated part is attached to the nail or the toenail.
A helmet can include a helmet body comprising an energy-absorbing layer and an outer shell disposed over the energy-absorbing layer. An electronic device can be integrated with the helmet body. A first electrical contact can be formed at an exterior of the outer shell and adapted to be in electrical communication with the electronic device. A helmet visor can be coupled to the helmet body with at least one visor arm, the helmet visor comprising controls integrated within the visor. A second electrical contact can be formed at an inner surface of the at least one visor arm and adapted to be in electrical communication with the controls integrated within the visor. The second electrical contact can be adapted to mateably couple with the first electrical contact such that the electronic device and the controls are adapted to be in electrical contact.
A hard hat with symmetric front and back mounting ridges to support a headlamp is described. The hard hat provides mounting ridges to receive insertion slots of a rigid mounting bracket that fit around the ridges. The rigid mounting bracket includes channels to loop a strap through the channels and support a lamp on the bracket. The strap may include a hook and loop fastener system to enable attachment of a variety of lamps to the rigid support bracket. In this way, the hard hat can support a wide variety of headlamps attached to the rigid mounting bracket without destructive alterations to the hard hat. Clips may be added to the rigid mounting bracket to secure or lock the bracket in place during operation and prevent accidental knocks or jarring of the headlamp.
A multi-rider vehicle retention apparel system includes a jacket and one or more gloves. The jacket includes loop fasteners on the front face of the jacket, on both the left and right sides. The gloves have palms covered with hook fasteners able to releasably attach to the loop fasteners on the jacket. In use, the jacket may be worn by a vehicle operator, and the gloves may be worn by a rider seated behind the operator. Using the gloves, the rider may be able to very securely hold onto the operator while riding on the vehicle, reducing fear of losing grip.
A cartridge includes an air flow passageway defining a first airflow direction, a heating element having a longitudinal axis, the longitudinal axis perpendicular to the first airflow direction, and a jacket at least partially surrounding the heating element along the longitudinal axis of the heating element and defining a second airflow direction perpendicular to the first airflow direction.
A cigarette includes a tobacco rod, and a filter comprising a first filter plug on a tobacco rod side connected to an end of the tobacco rod, a second filter plug on a cigarette end side, and a flavor capsule arranged between the first and second filter plugs or in the second filter plug. The first filter plug has a ventilation hole, and ventilation resistance of the second filter plug is lower than that of the first filter plug.
A packaged food product with a seasoning disk is provided. The food product includes potatoes. The seasoning disk includes seasoning and fat that is in solid form at the food product's anticipated normal storage temperature. The fat includes milkfat.
The present inventors disclose new fermentate compositions that display antimicrobial activity against a variety of microorganisms in foods. The fermentate compositions may not only be active at acidic pHs, but also retain antimicrobial activity at elevated pHs including neutral pHs. In addition to new fermentate compositions, the present invention also relates to improved methods for making such fermentate compositions and using unpurified fermentate compositions to effectively preserve food products.
Processes for separating and isolating proteins and fats from biomass matter utilizes a pH adjustment of a slurry. The biomass feedstock is derived from commingled animal and/or plant-based streams with highly variable concentrations of fat, proteins and impurities present in the biomass. A wide range of pH adjustment spanning highly acid to highly basic has been shown to be effective at separating the commingled streams into their constituent products. The processes do not rely on the proteins being solubilized into the solution, but rather solubilizing the fat portion, physically separating the constituents and precipitating the fat in a downstream process, resulting in two value streams: a highly digestible protein component and a fat component. The protein component has nutritional value as companion pet, animal and aquaculture feed ingredient and the fat component has value as standalone or blended solid or liquid biofuels, greases or specialty chemicals.
The present invention provides a protein material and food ingredient from a sustainable and stable source. The sustainable and stable source of the food or food ingredient is biomass, for example an algal or microbial biomass. The invention discloses that the biomass can be subjected to a series of steps to derive the protein material and food or food ingredient, which has high nutritional content without the unacceptable organoleptic properties that typically accompany proteins and food ingredients from these sources.
A chiller bath includes a tank for holding a volume of chiller water; a dosing system for dosing a first solution and a second solution into the chiller water, arranged to create a plurality of zones within the volume of water, wherein each zone has a higher concentration of either the first or the second solution than surrounding portions of the volume of water; and a meat or poultry immersion arrangement for immersing and moving carcasses in the chiller water. A method for reducing bacterial load on meat or poultry includes generating a plurality of zones within a chiller bath containing water by dosing a source of alkalinity and antimicrobial into the water, wherein the plurality of zones comprises at least one alkaline zone with a pH above 8.5, and at least one antimicrobial zone with pH below 8.5; and submersing meat or poultry in the bath. The zones can also be generated using spray nozzles in a meat or poultry operation.
An apparatus for separating wing tips from poultry carcasses includes a suspended conveyor device and a support guide for guiding the neck and shoulder region. The guide extends in the transport direction and is arranged below the carcass, and has at least one support surface to support the neck and shoulder region. A lower arm guide is configured for guiding the poultry lower arm and wing tip and is arranged at the side of the support guide. A first hold-down guide holds down the poultry upper arm under pretension and is arranged stationarily. A second hold-down guide is arranged downstream of the first hold-down guide and has at least two guiding elements for holding down the upper arm. The guiding elements are movable in deflection against a return force. A separating device is configured for separating the wing tip and is arranged in the region of the second hold-down guide.
A separating device for separating first and second bones or cartilage parts comprises a first structure with a first elongated member and a stationary engaging member at one end of the first elongated member; a second structure with a second elongated member and a separation member at one end of the second elongated member; a moving device for moving the second structure relative to the stationary engaging member from a contracted position to a closed position. An angular position of the first and the second structures are adjusted, so the subsequent movement of the separation member towards the closing position intersects a separation area between the first and second bones or cartilage parts causing an immediate separation between the first and second bones or cartilage parts.
Compounds of formula (I) wherein the substituents are as defined in claim 1, and the agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds, and their uses as insecticides.
The present invention relates to tetrazolylpropyl derivatives of formula (I) wherein one of V1 and V2 represents CR3 and the other one of V1 and V2 represents N, Q represents a 6-membered aromatic cycle as defined in the specification, and R1, R2, R3, R4, and R5 are defined as disclosed in the specification, to compositions comprising such compounds, to the use of said compounds as fungicides, as well as to particular intermediates useful in the synthesis of said tetrazolylpropyl derivatives.
Disclosed are compounds of Formula 1, including all stereoisomers, N-oxides, and salts thereof, Formula (1) wherein W, R1, R2, R3, n, R4, R5, R6, L and G are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling undesired vegetation comprising contacting the undesired vegetation or its environment with an effective amount of a compound or a composition of the invention.
A volatile material dispensing system (100) includes a base (104) and a refill (102) attached to the base (104). The refill (102) includes a substrate (108) having a volatile material thereon. The dispensing system (100) further includes a cover (106). In an inactive state, the refill (102) is compressed within the cover (106) and the cover (106) is attached to the base (104) and in an active state, the cover (106) is removed from the base and the refill (102) automatically expands such that the volatile material is released from the substrate (108) and into the ambient environment.
Systems and methods for resisting intrusion by a pest include a reservoir extending between a proximal end and a distal end, and the reservoir defining an interior. A basin is mounted to the reservoir. The basin has a basin body and a basin surface. A sleeve assembly has a sleeve body and a port defined in the sleeve body. A tensioner translationally mounts the sleeve body relative to the basin body. The sleeve body translates distally from an accessible position to an occluded position when a weight applied to the sleeve assembly exceeds a weight threshold set by the tensioner. The accessible position includes bird food on the basin surface being accessible through the port. The occluded position includes the port being disposed distal to the basin surface such that the bird food on the basin surface is inaccessible through the port.
A feeder for pigs as they grow continually from weanling size to finisher pig size includes a trough and a shelf with a water pipe located underneath the shelf with a plurality of water dispensing nipples operable by the pigs to dispense water downwardly into the trough for mixing with feed in the trough. The shelf is fixed in height at a common height for use by the pigs both as weanling size and as they grow to finisher size so that it is not adjustable to accommodate growth. This is obtained by selecting the dimensions of the height of the shelf relative to the water nipples and the side walls and the shape of the shelf to allow the required access.
A pet feeding bowl assembly for inhibiting insects from accessing animal feed includes disk that is positionable on a support surface. A bowl is coupled to and extends upwardly from the disk and animal feed can be positioned in the bowl. The bowl is centrally positioned on the disk such that the disk defines a moat surrounding the bowl. In this way the moat inhibit insects from accessing the bowl when the moat is filled with a fluid. A spout is integrated into the bowl and the spout is directed toward the moat defined by the bowl and the disk. In this way the fluid can be poured into the spout for filling the moat.
A novel maize variety designated 1DLDA1080 and seed, plants and plant parts thereof are provided. Methods for producing a maize plant comprise crossing maize variety 1DLDA1080 with another maize plant are provided. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into 1DLDA1080 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby are provided. Hybrid maize seed, plants or plant parts are produced by crossing the variety 1DLDA1080 or a locus conversion of 1DLDA1080 with another maize variety.
A novel maize variety designated 1DLAX1066 and seed, plants and plant parts thereof are provided. Methods for producing a maize plant comprise crossing maize variety 1DLAX1066 with another maize plant are provided. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into 1DLAX1066 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby are provided. Hybrid maize seed, plants or plant parts are produced by crossing the variety 1DLAX1066 or a locus conversion of 1DLAX1066 with another maize variety.
A wheat variety designated 6PJBN05B, the plants and seeds of wheat variety 6PJBN05B, methods for producing a wheat plant produced by crossing the variety 6PJBN05B with another wheat plant, and hybrid wheat seeds and plants produced by crossing the variety 6PJBN05B with another wheat line or plant, and the creation of variants by backcrossing, mutagenesis or transformation of variety 6PJBN05B are disclosed. Methods for producing other wheat varieties or breeding lines derived from wheat variety 6PJBN05B and to wheat varieties or breeding lines produced by those methods are also provided.
A wheat variety designated 6PVEJ41B, the plants and seeds of wheat variety 6PVEJ41B, methods for producing a wheat plant produced by crossing the variety 6PVEJ41B with another wheat plant, and hybrid wheat seeds and plants produced by crossing the variety 6PVEJ41B with another wheat line or plant, and the creation of variants by backcrossing, mutagenesis or transformation of variety 6PVEJ41B are disclosed. Methods for producing other wheat varieties or breeding lines derived from wheat variety 6PVEJ41B and to wheat varieties or breeding lines produced by those methods are also provided.
A wheat variety designated 6PYMG52B, the plants and seeds of wheat variety 6PYMG52B, methods for producing a wheat plant produced by crossing the variety 6PYMG52B with another wheat plant, and hybrid wheat seeds and plants produced by crossing the variety 6PYMG52B with another wheat line or plant, and the creation of variants by backcrossing, mutagenesis or transformation of variety 6PYMG52B are disclosed. Methods for producing other wheat varieties or breeding lines derived from wheat variety 6PYMG52B and to wheat varieties or breeding lines produced by those methods are also provided.
The invention relates to a Canola hybrid variety designated 7CN0425, essentially derived variants of that Canola hybrid variety, to the cells, seeds, plants, and plant parts of this Canola hybrid variety 7CN0425. The invention also relates to methods for producing a canola plant containing in its genetic material one or more traits introgressed into 7CN0425 through backcross conversion and/or transformation, and to the Canola seed, plant and plant part produced thereby. The invention also relates to uses of 7CN0425.
The present invention discloses and claims methods and devices for the rapid mechanical isolation of monocot plant tissues suitable for transformation or tissue culture. The invention includes mechanical devices for substantially isolating target plant tissues for use as transformable explants, and propagation of transgenic plants and plant tissues.
The present invention relates to a device for growing mushrooms, including beds for holding compost and a shelving arranged for supporting the beds for holding compost. The beds are placed at a mutual distance above each other. The beds are movable between at least a first position, wherein a second bed supported above a first bed at least partially impedes the accessibility of the first bed in a direction perpendicular to the plane in which the first bed extends, and a second position in which at least a larger part of the first bed is free approachable from a direction perpendicular to the plane in which the first bed extends than in the first position. The shelving includes at least one portal. The portal includes at least two essentially vertical stands connected by at least one beam that extends from a first stand to the second stand. At least two beds are movably supported by the at least one beam.
A multi-level vertical farm comprises a lift apparatus configured to carry growth trays from a bottom to a top position adjacent to a conveyor. The conveyor is configured to transport trays downwardly to near the bottom position and normally is fully loaded with adjacent trays along the entire conveyor. A growth tray in the lowest, bottom position is discharged out of that position to an irrigation or harvesting station. The discharge of a tray from the bottom position causes preceding trays to move downward, thereby opening a space in the top position for another tray, which may be lifted there. A computer system may be connected to the apparatus and programmed to start a motor of the lift apparatus to move the growth trays. The apparatus enables simulating a day-night plant growth cycle, and using thermal convection to apply more warmth to higher positions, in a compact vertical arrangement.
A method is proposed for remotely growing plants in a planting zone that is divided into multiple planting areas. Via an electronic device that communicates with a remote automated planting sub-system in the planting zone, a user may select desired planting area(s) and desired type(s) of plant precursors on the electronic device, and remotely cause the remote automated planting sub-system to plant the selected type(s) of plant precursors into the selected planting area(s).
A precision pruner for selectively cutting twigs, branches, stalks and vines deep within a bush or shrub has an elongated tool portion with at least one notch. A first handle is stationarily disposed on the tool portion and a cutter portion is slidably disposed on the tool portion. A cutting edge is aligned with notch(es) in a normal position, and a second handle is pivotally disposed on the first handle portion such that squeezing the first and second handles together slides the cutter portion relative to the tool portion out of the normal position so that the cutting edge(s) and the notch(es) are moved towards each other, thereby cutting any material received within the notch(es).
A system for harvesting produce from a tree has a drone capable of hovering, a video camera gathering visual data of movement, a cutting implement, a remote control station with a display screen, wireless circuitry, and input mechanisms to control movement of the drone and operation of the cutting implement, and circuitry in the body of the drone enabling two-way communication with the remote control station, transmission of video data from the video camera, and response to commands from the remote control station. The video data from the camera on the drone is displayed on the display screen of the remote control station, and an operator viewing the display screen operates the input mechanisms, maneuvering the drone to position the cutting implement relative to produce in the tree, and triggers the cutting implement by command, severing a stem to separate the produce, causing the produce to fall from the tree.
A drive-over mower deck includes at least one retractable front roller which is pivotable between a lowered position extending forwardly and downwardly from a rim at a front and center of the drive-over mower deck, and a retractable position in which the front roller pivots freely between the lowered position and a retracted position when the drive-over mower deck lays flat on a ground surface.
Methods, apparatus, systems and articles of manufacture are disclosed for field operations based on historical field operation data. An example apparatus disclosed herein includes a guidance line generator to generate a guidance line for operation of a vehicle during a second operation on a field, the guidance line based on (1) a field map generated from location data collected during a first operation in the field, the field map including a plurality of crop rows and (2) an implement of the vehicle, the implement to perform the second operation on the field. The example apparatus further includes a drive commander to cause the vehicle to traverse the field along the guidance line, and an implement commander to cause the implement to perform the second operation as the vehicle traverses the field along the guidance line.
An electronic device and a power module are provided. The power module includes a power housing; a circuit board, connected to the power housing and arranged with a plurality of pads on a surface of the circuit board facing the power housing; an electronic component, arranged on the circuit board and comprising a plurality of pins; wherein the plurality of pins are soldered and connected to the plurality of pads; and a first sealant layer, arranged on the surface of the circuit board facing the power housing, and covering the plurality of pins and the plurality of pads.
A device for detecting a missing element on a circuit board comprising a positioning tray, a data processing assembly, a lifting control assembly, and a detecting assembly. The positioning tray supports and positions a circuit board to be tested. The data processing assembly is connected with the lifting control assembly and the detecting assembly, and sends a control signal to the lifting control assembly, receives detection data sent by the detecting assembly, and compares the detection data with preset reference data to obtain a detection result of a missing element. The detecting assembly moves up and down between an initial position and a preset position under the control of the lifting control assembly, and sends the detection data to the data processing assembly according to a contact state with elements on the circuit board to be tested at the preset position.
A laminated structure includes an interconnect structure including first and second product areas and a first interconnect layer, and a first insulating layer formed on the interconnect structure. The first product area includes an opening penetrating the first insulating layer, and the second product area includes an annular groove penetrating the first insulating layer. The laminated structure further includes an electronic component mounted inside the opening in the first product area with an annular gap formed between the electronic component and a wall surface defining the opening, an insulating member located inside the groove in the second product area, a second insulating layer that fills the annular gap and the groove, and covers the first insulating layer, the electronic component, and the insulating member, and a second interconnect layer formed on the second insulating layer, and electrically connected to the first interconnect layer.
A first conductive pattern according to the present disclosure includes a first land electrode and a second land electrode, in which at least a portion of the first land electrode is arranged in an inner portion of a first circle defined by a center point and a first radius, the second land electrode is arranged on a second circle defined by the center point and a second radius that is larger than the first radius to surround the first land electrode, the second land electrode is not arranged in the inner portion of the first circle, the first land electrode is not arranged on the second circle, and the first land electrode and the second land electrode are arranged on a third circle defined by the center point and a third radius that is larger than the first radius and is smaller than the second radius.
Method for providing an electrical connection, comprising connecting a first cable to a first conducting structure on a printed circuit board, connecting a second cable to a second conducting structure on the printed circuit board, comparing a propagation delay of a first signal path comprising the first cable and the first conducting structure on the printed circuit board, and a propagation delay of a second signal path comprising the second cable and the second conducting structure on the printed circuit board; and removing conductive material of the first conducting structure and/or of the second conducting structure, in order to modify an electrical length of the first conducting structure and/or of the second conducting structure, to obtain a first conducting path and a second conducting path, in dependence on a result of the comparison, in order to reduce a difference of the propagation delays between the first signal path and the second signal path.
A LED dimming method includes obtaining an illumination set according to a preset dimming curve and an initial dimming grayscale set; obtaining an excitation signal set comprising a voltage signal set or a current signal set according to the illumination set; obtaining a measured illumination curve according to the excitation signal set and the initial dimming grayscale set; collecting a subdivision dimming grayscale set according to the measured illumination curve and the preset dimming curve, so that a dimming curve corresponding to the subdivided dimming grayscale set and the illumination set coincides with the preset dimming curve; and adjusting the excitation signal set according to the subdivision dimming grayscale set. The method can achieve an ideal and undistorted optical curve effect to meet the demands of the user, and therefore achieving an efficient and accurate dimming.
The disclosure provides a display device driving method and a display device. In driving the display device in which any one of a first frequency drive and a second frequency drive can be selected as a specific frequency, for a scanning period at the specific frequency from a start of a quenching period for a first row forming a frame to an end of a quenching period for a last row forming the frame, the scanning period in the second frequency drive is shorter than the scanning period in the first frequency drive.
A fluid heating component including: a porous body made of ceramics and formed with through channels through which a fluid passes, and a conductive coating layer disposed on a through channel surface of at least a part of each through channel, wherein the conductive coating layer is electrically connected, and is continuous.
Devices, systems, and apparatuses for heating a liquid are disclosed herein. In one embodiment, a heater includes a base comprising a generally planar surface and at least two heater pillars and a sensor pillar configured on the base. The at least two heater pillars each comprise heating elements. The sensor pillar includes a thermal sensor. A mixing element is configured on the generally planar surface of the base and is coupled to a mixing motor. When powered, the heating elements of the heater pillars are configured to generate heat and the mixing motor is configured to cause the mixing element to rotate.
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. According to various embodiments, a method for operating a server may comprise the steps of: while at least one service is connected to a terminal, receiving, from another device, a request for providing a first service to the terminal; determining, in response to the request, whether it is possible to provide the first service to the terminal; when the first service cannot be provided, determining whether to terminate one of the at least one service; and, if the one of the at least one service is terminated, transmitting a setup message for the first service to the terminal in response to the termination.
The present disclosure provides a method used in user equipment (UE), the user equipment being provided with one or more signaling radio bearers (SRBs) comprising a master cell group (MCG) split SRB and/or one or more secondary cell group (SCG) SRBs, and the method comprising: detecting a radio link failure between the UE and an MCG base station; determining, in the configured one or more SRBs, one or more SRBs for transmitting a message related to the radio link failure; and transmitting the message by means of the determined one or more SRBs.
The present invention relates to a method and an electronic device for network connection. The electronic device according to various embodiments comprises: a communication module; a processor electrically connected to the communication module; and a memory electrically connected to the processor, wherein, upon execution, the memory may store instructions that enable the processor to connect to a first network, to request connection information of a second electronic device with respect to the first network from the second electronic device when the connection of the first network is interrupted, and to connect to the first network on the basis of received connection information of the second electronic device with respect to the first network upon reception of the connection information of the second electronic device with respect to the first network. Other embodiments are also possible.
Provided is a method and device for selectively transmitting a secondary cell group (SCG) failure information message to one of a master node (MN) and a secondary node (SN) in a wireless communication system. A user equipment (UE) detects a failure related to an SCG, and selectively transmits an SCG failure information message to one of an MN and an SN according to a reason for the failure related to the SCG. For example, if the reason for the failure related to the SCG is associated with the size of a hybrid automatic repeat request (HARQ) buffer, the UE ma transmit the SCG failure information message to the SN.
Enterprise and consumer billing allocation for wireless communication device service usage activities is provided. In some embodiments, enterprise and consumer billing allocation for wireless communication device service usage activities includes monitoring a service usage activity of a wireless communication device, and determining an enterprise and consumer billing allocation for the monitored service usage activity. In some embodiments, enterprise and consumer billing allocation for wireless communication device service usage activities includes monitoring a service usage activity of a wireless communication device, and reporting the monitored service usage activity to a network element, in which the network element determines an enterprise and consumer billing allocation for the monitored service usage activity. In some embodiments, enterprise and consumer billing allocation for wireless communication device service usage activities includes providing a service design center for configuring an enterprise and consumer billing allocation of monitored service usage activities for a plurality of wireless communication devices associated with an enterprise account, and implementing the configured enterprise and consumer billing allocation for monitored service usage activities for the plurality of wireless communication devices associated with the enterprise account.
A method and apparatus for random access procedure based on a channel access priority class in a wireless communication system is provided. A wireless device transmits a random access preamble including a random access preamble identifier (RAPID). A wireless device receives, from a network, a downlink message including the RAPID and a specific channel access priority class (CAPC) mapped to the RAPID. A wireless device performing LBT procedure based on the specific CAPC. A wireless device transmits, to a network, an uplink message based on the downlink message.
Disclosed, in the present invention, are a method for transmitting, by a base station, a downlink signal in a wireless communication system supporting an unlicensed band, and a device for supporting the same. More particularly, in accordance with one embodiment of the present invention, when acknowledgment timing of each terminal (for example, an interval length from a time point of receiving downlink data to a time point of transmitting acknowledgment information for the downlink data) is set flexibly (or independently), a base station may determine a reference downlink resource for contention window size (CWS) adjustment by considering the acknowledgement timing and perform downlink signal transmission by adjusting CWS on the basis of the acknowledgment information received for the reference downlink resource.
The present invention relates to a terminal for requesting and acquiring information relating to channel access in a wireless LAN, and to an apparatus for providing information relating to channel access in a wireless LAN. The terminal for requesting and acquiring information relating to channel access in a wireless LAN according to one embodiment of the invention verifies the reception of a beacon during a preset beacon interval, if it is verified that the beacon has not been received, transmits a group and slot information request signal, and receives, from an access point, a group and slot information response signal as a response to the group and slot information request signal.
A method of a terminal in a wireless communication system is provided. The method includes receiving, from at least one of transmission and reception points (TRPs), downlink control information (DCI) including first information on transmission configuration indication (TCI) states and second information for antenna ports, identifying whether each of the TRPs repeatedly transmits same data via a physical downlink shared channel (PDSCH) based on a number of code division multiplex (CDM) group indicated by the second information for antenna ports, and receiving data from the TRPs based on a result of the identifying.
Disclosed are a data transmission method and apparatus, which can improve the performance of a system. The method comprises: a terminal device receiving indication information sent by a network device, the indication information being used to indicate a first downlink scheduling time domain resource in a first time-frequency resource region, wherein frequency domain resources comprised in the first time-frequency resource region are a part of a system bandwidth; and the terminal device receiving, on a first downlink data time domain resource, data sent by the network device according to the indication information.
A method performed at a network node for scheduling DL transmissions and a corresponding network node is disclosed. The method includes determining, based on a number of TBs (TBs) scheduled in a DL transmission to be transmitted and a maximum number of CBGs dividable in the DL transmission, a maximum number of CBGs dividable in each TB of the DL transmission; determining a CBG configuration of CBGs scheduled in a corresponding TB based on a maximum number of CBGs dividable in each TB of the DL transmission; and transmitting DL control signaling indicating the CBG configuration. In addition, a method performed at a UE for feedback HARQ-ACK, and a corresponding UE, and a communication system including the network node and UE is also disclosed.
The present disclosure describes a method including accessing a cell operating in an unlicensed spectrum and configuring at least one physical shared channel in the cell; indicating, by DCI, the number of slots scheduled for a current physical shared channel if the number of aggregated slots for the at least one physical shared channel configured by RRC signaling is greater than 1; and indicating, by the DCI, at least one piece of time-domain resource allocation information. The time-domain resource allocation information includes: an offset value between a slot where the physical shared channel is located and a slot where a physical downlink control channel is transmitted; a starting symbol position of the physical shared channel; length information of symbols of the physical shared channel; and a mapping type of the physical shared channel.
Disclosed are a wireless communication method, and an access point and a station which perform the wireless communication method. A wireless communication method performed by an access point according to an embodiment may include performing channel sounding on a plurality of subchannels, identifying subchannels selected by stations among the subchannels, scheduling communications between the AP and the stations based on the selected subchannels, and transmitting a data frame to the stations through the subchannels based on a scheduling result.
A method and apparatus for deprioritizing duplicated packet transmission in a wireless communication system is provided. A user equipment (UE) generates a first packet, a second packet and a third packet. The third packet is duplication of the second packet. The UE deprioritizes the third packet under the first packet when the second packet is prioritized over the first packet. The first packet may be a packet for uplink transmission, and the second packet and the third packet may be packets for sidelink transmission.
Techniques for distributed network connectivity monitoring of provider network edge location resources from cellular networks are described. A central service transmits test suites of commands to agents executed by test devices, which can execute the commands to test network characteristics between the test devices and target locations via one or multiple cellular communications networks. Results of the testing are sent back to the central service for processing, and the resultant metrics can be used for intelligent latency-based routing of clients, latency-based placement of resources, and/or performance monitoring of deployed resources.
The present invention relates to a wireless communication system. More specifically, the present invention relates to a method and a device for performing a SPS activation in multiple SPS resources in wireless communication system, the method comprising: receiving an activation command for a first set of Semi-Persistent Scheduling (SPS) resources from a network, wherein a second set of SPS resources which is already activated on the UE; activating the first set of SPS resources and deactivating the second set of SPS resources based on the activation command for the first set of SPS resources; and transmitting a SPS confirmation Medium Access Control (MAC) Control Element (CE) which indicates that the UE successfully deactivates the second set of SPS resources and activates the first set of SPS resources, in a response to the activation command for the first set of SPS resources.
Aspects of the present disclosure describe receiving control data for a slot of a first wireless service, where the control data indicates one or more partial slots of the slot that are intended for communications of the first wireless service. An indicator indicating whether data of the first wireless service is transmitted over at least one of the one or more partial slots can be received at a different time than the control data. The data of the first wireless service over the at least one of the one or more partial slots can be decoded based at least in part on the indicator.
The present specification provides a method for transmitting and receiving an uplink channel in a wireless communication system, and a device therefor. Particularly, a method for transmitting an uplink channel by a terminal in a wireless communication system can comprise the steps of: receiving, from a base station, information indicating a first timing offset for channel state information (CSI) reporting and/or a second timing offset for transmitting uplink data; and transmitting an uplink data channel to the base station in a resource region configured in accordance with a specific timing offset value. The specific timing offset value can be set by applying the first timing offset and/or the second timing offset in accordance with the type of information allocated to the uplink data channel.
Methods and apparatus are provided for wireless communication in which a downlink control information (DCI) is transmitted in a physical downlink control channel (PDCCH) in a first bandwidth part (BWP). A UE is responsible for determining a starting resource block (RB) for a data transmission allocated by the DCI based on a value of a frequency domain resource allocation field in the DCI, a reference RB, and a reference size of a second BWP. The data transmission can then be transmitted, in the case of, for example, PUSCH, by a UE or received, in the case of, for example, PDSCH.
A network device sends configuration information to a terminal device, where the configuration information includes a scale factor corresponding to each aggregation level in a first aggregation level set; the network device sends DCI in a first DCI format to the terminal device, where an aggregation level corresponding to the DCI in the first DCI format is an aggregation level in the first aggregation level set. The terminal device receives the configuration information, determines, based on the scale factor corresponding to each aggregation level in the first aggregation level set, a quantity of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set; the terminal device receives the DCI in the first DCI format based on the quantity of candidate PDCCHs corresponding to each aggregation level in the first aggregation level set.
Certain aspects of the present disclosure provide techniques for service request (SR) prioritization for intra-UE (user equipment) ultra-reliable low-latency communication (URLLC) service and enhanced mobile broadband (eMBB) service multiplexing. Aspects provide a method for wireless communications by a UE. The method includes determining one or more transmission resources for one or more service requests (SRs) for a first type of service and/or a second type of service. The method includes determining one or more priority levels associated with the one or more transmission resources. The method includes transmitting the one or more SRs using the determined one or more transmission resources based on the associated priority levels.
A broadcast signalling method performed by a network device having a protocol stack of with first and second protocol layers where the second protocol layer is below the first protocol layer, the method including generating, by the network device, first information at the first protocol layer, generating, by the network device, second information at the second protocol layer, where the second information is used to determine a time-frequency resource corresponding to one or more synchronization signal blocks (SSBs), processing, by the network device, the first information and the second information at the second protocol layer, and sending, by the network device to a terminal device by using a physical broadcast channel (PBCH) in the one or more SSBs, data obtained after second protocol layer processing.
Disclosed is a method for transmitting a synchronization signal. The method for transmitting a synchronization signal according to the present application may comprise the step of transmitting a synchronization signal according to a first action or a second action previously configured on the basis of a command from a base station.
Disclosed in the present application are a radio link monitoring method and apparatus, the method comprising: when a UE performs radio link monitoring, the UE monitors a downlink signal of a primary serving cell to obtain monitoring results; and the UE compares the monitoring results with an required synchronization threshold to determine whether the UE is in a synchronized state; the synchronization threshold is determined on the basis of preset parameters. The present invention solves the problems in the prior art of the complexity of defining RLM performance requirements, and being unable to provide the needed flexibility for supporting different specific systems by means of adjusting thresholds.
A time synchronised network comprising a plurality of nodes, the plurality of nodes each comprising a receiver, a transmitter, a controller and memory storing program instructions. The plurality of nodes are suitable for participating in time synchronised data re-transmission within the network. The plurality of nodes comprise a plurality of source nodes, a plurality of destination nodes and at least one intermediate node. The plurality of source nodes transmitting data concurrently with the other source nodes via the respective transmitter in a first flooding round to a plurality of corresponding destination nodes. The plurality of destination nodes receiving data via the respective receiver from a plurality of corresponding source nodes. The intermediate node receiving, via the respective receiver, data from at least one of the plurality of source nodes, and re-transmitting the received data in the form it was received using the transmitter.
A communications device including an array antenna assembly including a plurality of transmit chains, each with a transmit power amplifier, synchronously captures transmit power measurements for each power amplifier. A baseband transmitter in the communications device determines when a predetermined symbol in a protocol, e.g. a PSS SSB symbol, is to be transmitted and sends, e.g. via a SPI, a capture command to command each of the ADCs corresponding to the power amplifiers to synchronously capture a power measurement. Power measurements are captured at the boundary of the predetermined symbol, and the power measurements represent average transmit power levels corresponding to the symbol. The power measurements are communicated to the baseband transmitter which processes the data using calibration tables and taper information. Processed power measurements are compared to desired transmitter target levels and errors are determined. Based on the errors the gains of one or more TX chains are adjusted.
Methods, apparatuses, and systems are described for wireless communications. A wireless device may determine a first transmission power for a first signal and a second transmission power for a second signal. Based on a calculated transmission power and an overlap of the signals, a power control mechanism may be employed.
Disclosed herein is a method for transmitting a wake-up signal in a wireless communication system supporting a wake-up radio (WUR). The method performed by a network entity comprises receiving WUR capability information from a terminal; assigning a category related to an operation of a WUR module to the terminal based on the received WUR capability information; transmitting information for the assigned category to the terminal; and transmitting a wake-up signal to the terminal according to an on-duration of each category.
According to an example aspect of the present invention, there is provided a method, comprising: establishing, via a main radio, a data link schedule comprising a plurality of communication resource periods for a data link between a first wireless device and a second wireless device, wherein at least a sub-set of the plurality of communication resource periods are scheduled to start periodically, pausing data transmission by transferring, via the main radio, a control message during a communication resource period of the data link schedule, entering the power save mode in response to transferring the control message, maintaining the power save mode over at least one further communication resource period of the data link schedule, and transmitting a wake-up frame, via a wake-up radio different from the main radio, in response to detecting need for further data transmission during the data link schedule.
A scanning method performed by a station (STA) in a wireless LAN system is provided. The method comprises: transmitting a probe request frame; and receiving a short probe response frame from an access point (AP) as a response to the probe request frame. The short probe response frame includes service set ID (SSID) information or compressed SSID information of the AP.
Disclosed is a method for communicating data of a V2X communication apparatus. The method for communicating data of a V2X communication apparatus according to an embodiment of the present invention includes receiving service advertisement information for announcing a service; and receiving service data based on the service advertisement information, the service advertisement information includes at least one of a header and a service information segment or a channel information segment.
Aspects of the subject disclosure may include, for example, a method including determining according to first information associated with a first wireless access network and second information associated with a second wireless access network, whether to facilitate communication in a geographic area between a first wireless communication device and a communication network via the second wireless access network, and, in turn, directing a second wireless access device of the second wireless access network to facilitate the communication between the first wireless communication device and the communication network, and directing a first wireless access device of the first wireless access network to stop facilitating second communication between the first wireless communication device and the communication network. Other embodiments are disclosed.
The present disclosure relates to a handover method and device. The method includes: receiving, by a network device, a measurement signal transmitted by a terminal device; and determining, by the network device, whether a handover is needed for the terminal device according to the measurement signal.
A base station switching method for a source base station includes: receiving a measurement report sent by the unmanned aerial vehicle, wherein the measurement report comprises information used for indicating a target base station to which the unmanned aerial vehicle requests to switch; when determined to switch to the target base station according to the measurement report, sending a switch request carrying first information to the target base station, wherein the first information is used to indicate that a terminal requesting the switch is an unmanned aerial vehicle; when receiving a handover request acknowledge returned by the target base station, performing a switching operation from the source base station to the target base station. As such, the source base station achieves a base station switch for an unmanned aerial vehicle, ensures continuity of service for the unmanned aerial vehicle, and broadens the application range of the unmanned aerial vehicle.
A method is performed in a wireless communication system (10). The method may comprise ranking a first cell (22A) and a second cell (22B) of the wireless communication system (10) according to one or more defined cell-ranking criteria. The method may also comprise evaluating that the second cell (22B) has met a reselection criterion for a wireless device (16), provided that the second cell (22B) is ranked better than the first cell (22A) by at least a margin. The value of the margin may depend on a coverage level of the wireless device (16) with respect to the first cell (22A) and a coverage level of the wireless device (16) with respect to the second cell (22B).
A wireless communication device (WCD) may receive resource utilization values indicating an amount of available resources of server devices that are capable of sharing resources to support a session of an application. The WCD may generate performance scores for base station-server device groupings that are candidates for being selected as a target base station and a target server device. The WCD may select the target base station and the target server device based on the set of performance scores. The WCD may cause the session to be established in a manner that allows resources of the target server device to support the session of the application.
There is provided a method in a node in a first access network, the method comprising sending (710) a first set of thresholds and/or conditions to a terminal, the first set of thresholds and/or conditions defining situations in which (a) the terminal should send a measurement report to the first access network with respect to a second access network, or (b) the terminal should connect to the second access network and/or steer at least some traffic to the second access network; and sending (720) a second set of thresholds and/or conditions to the terminal, the second set of thresholds and/or conditions defining situations in which, (c) the terminal should send a measurement report to the first access network regarding at least the second access network or (d) the terminal should disconnect from the second access network and/or connect to the first access network and/or steer at least some traffic to the first access network.
Apparatuses, systems, and methods for a wireless device to perform master cell group failure recovery in a dual connectivity cellular communication system. The wireless device may establish a first wireless link to a cellular network via a first cell group. The first cell group may be configured as a master cell group for the wireless device. The wireless device may establish a second wireless link to the cellular network via a second cell group. The second cell group may be configured as a secondary cell group for the wireless device. The wireless device may determine that link failure for the first wireless link has occurred. The wireless device may perform master cell group link failure recovery using the second wireless link based at least in part on the link failure for the first wireless link.
A method may include receiving, by a secondary node of a third radio access technology (RAT) that is operating as a secondary node for an inter-radio access technology (inter-RAT) dual connectivity connection with a user device from a master node of a first RAT that is operating as a master node for the inter-RAT dual connectivity connection with the user device, a release request including a forward without sequence number indication that instructs the secondary node of the third RAT to forward, without sequence numbers, data for the dual connectivity connection to a target node of a second RAT, wherein the second RAT is different than the first RAT; and forwarding, by the secondary node of the third RAT towards the target node of the second RAT, via a data forwarding path that omits the master node of the first RAT, data without sequence numbers to the target node.
Provided are a system for implementing multiple Radio Access Networks (RANs) convergence and a method thereof. The method includes: an anchor RAN establishes a connection with a User Equipment (UE); the anchor receives a RAB establishment request from a Core Network (CN); the anchor RAN selects an auxiliary RAN; the anchor RAN sends quality of service (QoS) parameters to the auxiliary RAN, so that the auxiliary RAN establishes a connection with the UE according to the QoS parameters, while the anchor RAN keep the connection with the UE. With the methods provided in embodiments for the present disclosure, multiple RANs convergence is implemented, and the UE establishes connections with the anchor RAN and the auxiliary RAN at the same time, so as to improve the peak rate of the UE.
A user terminal according to one aspect of the present disclosure includes: a receiving section that receives downlink control information on a downlink control channel, the downlink control information including information related to activation of a cell and information related to a trigger of channel state measurement; and a control section that controls the activation of the cell based on the information related to the activation, and controls the channel state measurement of the cell based on the information related to the trigger of the channel state measurement. According to the one aspect of the present disclosure, it is possible to control activation at a high speed.
A method and apparatus for performing communication in a wireless communication system are provided. The method includes identifying a transmission mode configured for a serving cell by a Base Station (BS), by a User Equipment (UE), identifying an antenna configuration of the BS by the UE, determining the number of bits for a Rank Indication (RI) representing the number of layers based on the transmission mode and the antenna configuration, and generating an RI using the determined number of bits and transmitting the RI in transmission resources of the serving cell to the BS by the.
A wireless communication network serves a wireless User Equipment (UE) and comprises a wireless access node and a support access node. The wireless access node determines a sector power ratio for the support access node. The wireless access node determines an add threshold for the support access node based on the sector power ratio for the support access node. The wireless access node determines an add value for the support access node and determines when the add value is greater than the add threshold. When the add value is greater than the add threshold, the wireless access node signals the support access node to serve the wireless UE and signals the wireless UE to attach to the support access node. In response, the support access node wirelessly transfers user data for a wireless communication service to the wireless UE.
A method for spectrum sensing for cognitive radio includes performing a process of local spectrum sensing using receive beamforming and energy detection at each of a plurality of secondary users included in a cognitive radio network, wherein the process of local spectrum sensing decides between two hypotheses corresponding to absence and presence of a primary user, the two hypotheses being formulated using a primary user signal, a plurality of co-channel interferences, and sensing noise, the primary user signal, the plurality of co-channel interferences, and the sensing noise being received at each of the plurality of secondary users, and a set of beamforming weights of the receive beamforming is determined by optimizing a probability of detection and constraining a probability of false alarm.
A user terminal is disclosed that includes a processor that determines a predetermined period based on information about a configuration of sensing. The user terminal further includes a receiver that performs a sensing before transmitting signals in the predetermined period. A radio communication method for a user terminal is also disclosed that includes determining a predetermined period based on information about the configuration of sensing and performing a sensing before transmitting signals in the predetermined period.
In various embodiments, a wireless device processor may determine a threat score for a first cell, determine whether the first cell threat score is below a first threat score threshold, update a good neighbor cell data structure using neighbor cell information from the first cell in response to determining that the first cell threat score is below the first threat score threshold, performing cell reselection to a second cell, determine whether the second cell transmits a system information block message indicating fake neighbor cell information, and increase a threat score for the second cell in response to determining that the second cell provides the SIB message indicating fake neighbor cell information and that a good neighbor cell data structure includes an indication of one or more good neighbor cells that are within the time threshold and the location threshold and doing countermeasures in a response to the determination.
Wireless communication between two electronic devices may be used to determine a distance between the two devices, even in the presence of an otherwise-disruptive attacker. A wireless receiver system of one device may receive a true wireless ranging signal from a first transmitting device and a false wireless ranging signal from an attacker. The wireless receiver system may correlate the wireless signals with a known preamble sequence and perform channel estimation using the result, obtaining a channel impulse response for the wireless signals. The wireless receiver system may filter the channel impulse response for the plurality of wireless signals by removing at least part of the channel impulse response due to the false wireless ranging signal while not removing at least part of the channel impulse response due to the true wireless ranging signal. The receiver system may perform a wireless ranging operation using the filtered channel impulse response.
A communication method and apparatus, where the method includes: a session management network element sending location area information; a mobility management network element receiving the location area information from the session management network element; obtaining location information of a terminal; determining, based on the location area information and the location information, that the terminal is located outside a service area indicated by the location area information; and in response to the determination, sending, to the session management network element, a message for triggering update of a session management information.
Particular embodiments described herein provide for an apparatus, such as a wireless electronic device, that includes a memory element configured to store electronic code, a processor operable to execute instructions associated with the electronic code, and at least one module. The at least one module is configured to receive first location information identifying a first location associated with an electronic device. The at least one module is further configured to receive first connection location information indicative of a second location of the electronic device at a time of connection with a first wireless device. The at least one module is further configured to evaluate for a presence of the first wireless device when the first location is within a predetermined distance of the second location.
A low-power mobile telephony alert system and an alert device. The alert device has a communication interface configured to establish a low-power communication link with a mobile device for transmitting status data to the mobile device, and a telephony-enabled communication linked with the mobile device for initiating telephony from the mobile device while in locked mode. The alert device can initiate a status check request to third party contact devices before escalating to connect to the mobile device from locked mode to initiate telephony to an emergency service. The alert device is compact and can be incorporated into an article of jewelry or a wearable loop member.
Systems and methods are provided for checking many users in to a location using a Bluetooth® low energy (BLE) beacon. The provided systems and methods may allow a BLE beacon to facilitate a check in with a remote server that processes check ins and then disconnect from the device used to check in. The device may be assigned a unique identifier that may be broadcast from the device during the check in so that the BLE beacon can quickly scan for the identifier and connect with the device based on the identifier to provide content and other information to the device.
An approach is provided that connects an information handling system, such as a media console included in an automobile, to a number of devices using Bluetooth connections. The approach connects the information handling system to the devices. Each of the devices is associated with a user and there may be multiple users with each user having one or more of the devices. A request is received from one of the users and a device is identified that is associated with the user from whom the request was received. The request is then fulfilled by utilizing one of the devices.
An adaptive early warning method based on Vehicle-To-Everything (V2X) and a system thereof, wherein through a mobile communication and a short-range wireless communication technology, connection between a vehicle and a target is achieved, the adaptive early warning method for vehicles comprises steps of: establishing a first monitoring list, determining whether there is a key target among the connectible surrounding targets that reaches a collision early warning threshold, and if any, then establishing a second monitoring list to exclusively receive and monitor the vehicle location and the speed information of the key target; calculating an estimated collision time and a communication delay value; determining a warning level according to the communication delay value and the estimated collision time, and providing an early warning.
A vehicle-to-X communications system for a vehicle, includes first antenna, a second antenna, a first transceiver for transmitting and receiving a signal, the first transceiver electrically connectable to the first antenna via a first antenna interface, a second transceiver for transmitting and receiving a signal, the second transceiver electrically connectable to the second antenna via a second antenna interface, a control device connectable to the first transceiver via a first communications interface and to the second transceiver via a second communications interface. The first transceiver and the second transceiver are configured to communicate with the control device independently of one another and, further, to transmit and receive a signal independently of one another via their first antenna and the second antenna.
A method for managing an unmanned aerial vehicle (UAV) is described. The method may include transmitting a request to monitor a location of the UAV to a location services system provided by a network operator that provides location information of the UAV based on wireless communications of the UAV in a network operated by the network operator, wherein the request to monitor the location of the UAV indicates an area of interest; receiving, from the location services system, a message that indicates a current location of the UAV as a result of the location services system detecting the UAV in the area of interest; and causing one or more remedial actions to be performed responsive to receipt of the message.
The disclosure describes systems and methods for controlling a geo-fence. Through the use of the geo-fence and through monitoring of connections between mobile devices and the vehicle, a geo-fence is dynamically enabled and disabled for a user of a vehicle and the geo-fence control system provides notifications to users of the vehicle.
A wireless transmission system logs and communicates a location of an object. The wireless transmission system includes a wireless antenna configured to transmit a first beacon signal and a second advertising beacon signal. The system also includes a processor and a memory that stores instructions executable by the processor. The instructions cause the wireless antenna to repeatedly transmit the first beacon signal through a first number of transmission repetitions spaced at a first repeat interval. After completing the first number of transmission repetitions, the wireless antenna withholds transmission during a transition interval. After the transition interval, the wireless antenna repeatedly transmits the second advertising beacon signal through a second number of transmission repetitions at a second repeat interval. The wireless antenna, memory, and processor may be integrated in to a mountable housing and attached to an object or integrated with the tool.
Systems and methods are disclosed for modelling of individual acoustic transfer functions relative to the audition of an individual in three-dimensional space. A method is provided for modelling sets of acoustic transfer functions specific to an individual according to a multiplicity of directions in space, where a set of acoustic transfer functions specific to the individual in a given direction is determined depending on the result of a statistical analysis of a plurality of distinct stimuli emitted in the direction of the individual. A stimulus can be dependent on at least one set of predetermined acoustic transfer functions that are associated with the given direction, and on responses received from the individual to each emitted stimulus.
Determination of an acoustic filter for incorporating local effects of room modes within a target area is presented herein. A model of the target area is determined based in part on a three-dimensional virtual representation of the target area. In some embodiments, the model is selected from a group of candidate models. Room modes of the target area are determined based on a shape and/or dimensions of the model. The room mode parameters are determined based on at least one of the room modes and the position of a user within the target area. The room mode parameters describe an acoustic filter that as applied to audio content, simulates acoustic distortion at the position of the user and at frequencies associated with the at least one room mode. The acoustic filter is generated at a headset based on the room mode parameter and is used to present audio content.
A method of operating a hearing aid system in order to provide improved performance of a directional system (100) and a hearing aid system for carrying out the method.
A system and method in an audio signal electrical circuit including a feedback loop with a digital filter coupled to a current digital to analog converter (IDAC) includes providing an output signal from the IDAC to analog elements of the audio signal electrical circuit, the output signal from the IDAC based upon a reference signal input to the IDAC when an output of the digital filter is not input to the IDAC. The system and method also include comparing an output signal of the audio signal electrical circuit to a reference, and calibrating the audio signal electrical circuit to correspond the output signal of the audio signal electrical circuit to the reference. Calibration of the audio signal electrical circuit enables more precise control of a cut-off frequency of a microphone signal when the output of the digital filter is input to the IDAC.
The wireless power receiver includes at least one wire of a sound-producing device. The at least one wire configured for both conveying sound signals or securing at least part of the sound-producing device to a user, and receiving power waves. The wireless power receiver also includes power harvesting circuitry coupled with the at least one wire and a power source of an electronic device, like a battery. The power harvesting circuitry is configured to isolate the received power waves from the conveyed sound signals, convert the received power waves to usable energy, and provide the usable energy to the power source of the electronic device.
A headphone includes: a headband; a sound emitter having a sound-emitting unit therein; and a connector connecting the sound emitter to the headband. The connector includes: a support for supporting the sound emitter so that the sound emitter is rotatable in a predetermined rotation range including a reference position; a restoring portion for applying a restoring force on the sound emitter for urging the sound emitter to return to the reference position; and a switcher for switching a state in which the restoring force acts on the sound emitter and a state in which the restoring force does not act on the sound emitter.
The technology disclosed herein enables retention of a speaker on a mounting surface using a clip and a flange. In a particular embodiment, an apparatus includes a speaker comprising a substantially elliptic speaker frame. The apparatus further includes a mounting surface comprising a substantially cylindrical flange into which the speaker frame is positioned. Also, the apparatus includes a substantially elliptic clip positioned in the flange between the speaker frame and a retaining rim of the flange.
An extendable telecommunications patch panel (10) is disclosed. In one aspect, the patch panel can include a plurality of interconnectable connection parts (100) for holding telecommunications connectors (12), such as adapters. Each connection part (100) may be provided with features that allow the connection parts (100) to be interlocked with each other to form the extendable patch panel (10). In one aspect, a first connection feature (122) can be located on a connection part first side (102) and a second connection feature (124) can be located on a connection part second side (104). The first connection feature (122) can be configured to interlock with the second connection feature (124) of an adjacent connection part (100). The connection part (100) may also be provided with an adapter (150) that allows the connection parts (100) to be connected in a staggered formation to result in a staggered patch panel (10).
A system, method and computer readable media automatically highlights an unhealthy condition of a viewer. A set-top-box operatively connects to a network and a television display. The set-top-box is adapted to output a program to a viewer watching the television display. The set-top-box operatively connects through a wireless protocol to one or more wearable health monitoring devices that monitor one or more health readings associated with the viewer. The set-top-box outputs an alert to the viewer during the program if a health reading falls within a dangerous range. Advantageously, the alert is delivered through an EPG and may comprise pausing/stopping the program, and/or highlighting the alert on the television display for the viewer's safety.
The disclosure relates to a method of delivering a video frame. One implementation may involve spatially partitioning a video frame into a plurality of blocks, encoding at least one of the plurality of blocks of the video frame, and transmitting the at least one of the plurality of blocks of the video frame.
The present disclosure relates to an information processing device, an information processing method, and a program enabling an enhanced sense of unity between a performer and a viewer. The information processing device includes a viewer information acquisition unit that acquires specific viewer information input from a viewer who views a distributed moving image, a performer information acquisition unit that acquires specific performer information input from a performer who performs in the moving image, an emotion recognition unit that recognizes an emotion on a basis of at least one of the viewer information and the performer information, and a control unit that controls an addition of an effect based on the emotion. The present technology is applicable to a distribution system that distributes moving images, for example.
Aspects of the subject disclosure may include, for example, a method comprising sending a first list of formats associated with media content to a client device via a network, and receiving from the client device a selection of a format from a second list of formats filtered from the first list using filtering criteria. The second list includes formats compatible with the client device. The filtering criteria can be based on performance metrics of the network and on capabilities of the client device. During presentation of the content at the client device in the selected format, transmission of the content item can be dynamically altered in response to a message that the presentation be continued in a different format. Other embodiments are disclosed.
System and methods for determining second-by-second viewing activity and viewing metrics associated with video assets output by a plurality of video-viewing devices. The viewing activity may include a viewing mode by which one or more video viewing devices output a segment of a video asset. The viewing metrics may include a viewing count for a segment of the video asset that is associated with a viewing mode by which the one or more video viewing devices output the video segment. These metrics provide detailed information on customer viewing behavior which can be used to drive business decisions for service providers, advertisers, and content producers.
The present disclosure provides a live video broadcast method and apparatus, and a storage medium. The method includes: receiving a live broadcast command, and creating a video buffer based on the live broadcast command; binding the video buffer with a picture drawing module, the picture drawing module being configured to detect and extract a video picture frame; detecting and extracting the video picture frame by using the picture drawing module, and storing all extracted video picture frames in the video buffer; collecting an external voice by using a microphone, and synchronously synthesize the external voice and the video picture frames stored in the video buffer into a video streaming media file; and uploading the video streaming media file to a live broadcast server, so that the live broadcast server performs live broadcasting.
A video coder may determine contexts for entropy coding bins of a last significant coefficient position syntax element. For example, a video coder may determine a respective context for each of one or more bins of a syntax element indicating the position of the last significant coefficient in a transform block using a function of a size of the transform block, wherein the function outputs the respective context such that the same context is not used for transform blocks of differing sizes.
An image decoding method performed by means of a decoding device according to the present invention comprises the steps of: deriving quantized transform coefficients with respect to a target block from a bitstream; performing inverse quantization with respect to the quantized transform coefficients with respect to the target block and deriving transform coefficients; deriving residual samples with respect to the target block on the basis of reduced inverse transform with respect to the transform coefficients; and generating a reconstructed picture on the basis of the residual samples with respect to the target block and prediction samples with respect to the target block. The reduced inverse transform is performed on the basis of a reduced inverse transform matrix. The reduced inverse transform matrix is a non-square matrix of which the number of columns is smaller than the number of rows.
A video coder may determine a motion vector of a non-adjacent block of a current picture of the video data. The non-adjacent block is non-adjacent to a current block of the current picture. Furthermore, the video coder determines, based on the motion vector of the non-adjacent block, a motion vector predictor (MVP) for the current block. The video coder may determine a motion vector of the current block. The video coder may also determine a predictive block based on the motion vector of the current block.
A method for video processing is disclosed to include: determining, for a conversion between a coded representation of a current block of a video and the current block, a motion vector difference (MVD) precision to be used for the conversion from a set of allowed multiple MVD precisions applicable to a video region containing the current video block; and performing the conversion based on the MVD precision.
A video decoding method includes the steps of: generating a merge candidate list for a first block; selecting one among merge candidates included in the merge candidate list; and performing motion compensation for the first block based on motion information of the selected merge candidate. At this point, an inter-region merge candidate included in an inter-region motion information list may be added to the merge candidate list based on the number of spatial merge candidates and temporal merge candidates included in the merge candidate list.
The present disclosure provides systems and methods for video coding. The systems include, for example, an image encoder comprising: circuitry; and a memory coupled to the circuitry, wherein the circuitry, in operation, performs the following: predicting a first block of prediction samples for a current block of a picture, wherein predicting the first block of prediction samples includes at least a prediction process with a motion vector from a different picture; padding the first block of prediction samples to form a second block of prediction samples, wherein the second block is larger than the first block; calculating at least a gradient using the second block of prediction samples; and encoding the current block using at least the calculated gradient.
The techniques described herein relate to methods, apparatus, and computer readable media configured to encode and/or decode video data. Immersive media data includes a first patch track comprising first encoded immersive media data that corresponds to a first spatial portion of immersive media content, a second patch track comprising second encoded immersive media data that corresponds to a second spatial portion of the immersive media content that is different than the first spatial portion, an elementary data track comprising first immersive media elementary data, wherein the first patch track and/or the second patch track reference the elementary data track, and grouping data that specifies a spatial relationship between the first patch track and the second patch track in the immersive media content. An encoding and/or decoding operation is performed based on the first patch track, the second patch track, the elementary data track and the grouping data to generate decoded immersive media data.
The present disclosure relates to an image decoding device capable of recognizing performance necessary for decoding more accurately and a method. Coded data of image data and decoding load definition information for defining a magnitude of a load of a decoding process of a partial region of an image of the image data are acquired; decoding of the acquired coded data is controlled based on the acquired decoding load definition information; and the acquired coded data is decoded according to the controlling. The present disclosure can be applied to an information processing device such as an image coding device that scalably codes image data or an image decoding device that decodes encoded data obtained by scalably coding image data.
This disclosure describes techniques for performing semi-global matching (SGM) path cost compression. In some examples, the techniques may perform disparity-dependent sub-sampling of a set of SGM path costs where the sub-sampling ratio is determined based on a candidate disparity level. The sub-sampled SGM path costs may be stored in a memory. When retrieved from memory, the sub-sampled SGM path costs may be interpolated to reconstruct the other path costs not stored in the memory. The reconstructed path costs may be used for further SGM processing. In further examples, the techniques may perform disparity-dependent quantization on the SGM path costs or the sub-sampled SGM path costs, and store the quantized SGM path costs in memory. The techniques of this disclosure may reduce bandwidth as well as reduce the memory footprint needed to implement an SGM algorithm.
Disclosed herein is video encoding or decoding for efficiently encoding video. The techniques of the present disclosure are related to various split shapes of a block, syntaxes representing various split types of blocks, and syntax elements represented at a high level therefor.
Provided is in-loop filtering technology using a trained deep neural network (DNN) filter model. An image decoding method according to an embodiment includes receiving a bitstream of an encoded image, generating reconstructed data by reconstructing the encoded image, obtaining information about a content type of the encoded image from the bitstream, determining a deep neural network (DNN) filter model trained to perform in-loop filtering by using at least one computer, based on the information about the content type, and performing the in-loop filtering by applying the reconstructed data to the determined DNN filter model.
A method includes obtaining a spatial configuration of a plurality of imaging devices relative to one another and to a movable object. The imaging devices are coupled to the movable object and comprise a first imaging device configured to operate in a multi-ocular mode and a second imaging device configured to operate in a monocular mode. The method further includes determining at least one of a distance of the movable object to an object or surface lying within a field-of-view of at least one of the imaging devices, a disparity between matched points in stereoscopic images acquired by the first imaging device, or an environment in which the plurality of imaging devices are operated. The distance is determined based in part on the spatial configuration. The method also includes selecting either the first imaging device or the second imaging device to acquire image data based on the determination.
The invention relates to a solution wherein a bitstream defining a presentation is generated, the presentation comprising an omnidirectional visual media content and a visual overlay. A first relative distance of the omnidirectional visual media content and a second relative distance of the visual overlay are indicated in the bitstream. Metadata indicative of a scale applicable to convert the first relative distance and the second relative distance to real-world distance units is also associated with the generated bitstream, wherein the scale is for deriving a binocular disparity for the visual overlay. The invention also concerns a solution for decoding the bitstream to obtain data for deriving binocular disparity for the visual overlay.
The present technology relates to an image processing device, an image processing method, and an imaging device that enable high-precision image processing. The image processing device generates a high-resolution image obtained from a spectral component of a wavelength band of invisible light, the high-resolution image resolution of which is higher than resolution of an image of a subject obtained from a spectral component of a wavelength band of visible light on the basis of a projection image obtained by projecting light of the wavelength band of the invisible light to the subject. The present technology may be applied to, for example, an image processing device that processes images for viewing purposes and sensing purposes.
A projection system for projecting an image comprises: a visible light projector that projects the image with visible light; an invisible light projector that projects an invisible light image onto the object with invisible light; an imaging device that captures the invisible light image projected from the invisible light projector; and a controller that obtains information regarding reflected light from the object while obtaining three-dimensional measurements of the object to control the image, based on a capture image. The invisible light image includes a bright region and a dark region having a light amount less than the light amount of the bright region. The invisible light projector emits the invisible light to cause the light amount of the dark region in the invisible light image to be more than or equal to an offset value.
A projection-type display apparatus synthesizes and emits light emitted from a plurality of liquid crystal devices with a projection optical system. Provided that a liquid crystal at an inner side of a seal material in the plurality of liquid crystal devices is V1 in volume and a liquid crystal in a display region is V2 in volume in the plurality of liquid crystal devices, in a second liquid crystal device (a liquid crystal device for blue light) on which light having a wavelength shorter than the wavelength of light being incident on a first liquid crystal device (a liquid crystal device for green light) is incident on the display region, a liquid crystal volume ratio V1/V2 is greater than that of the first liquid crystal device, among the plurality of liquid crystal devices.
In a system for video data capture and sharing client devices may include one or more video cameras and sensors to capture video data and to generate associated metadata. A cloud-based component may receive metadata from the client devices and requests for sharing video data captured by other client devices. Client devices with requested video data are identified by matching their provided metadata to the sharing request and by their response to an image search query for an object of interest specified in the request.
A system for extracting and transplanting live video avatar images including a depth sensor for creating a depth map based first live video avatar of a user or object disposed in a heterogeneous first environment with an arbitrary background; a processor coupled to the depth sensor; code fixed in a tangible medium for execution by the processor for extracting the depth map from the first environment to provide an extracted depth map based live video avatar; and a display system coupled to the processor for showing the extracted depth map based live video avatar in a second environment diverse from the first environment. In a second embodiment, the system includes a camera coupled to the processor to provide live video images of the user in the first environment and code for spatially filtering the images to provide a spatially filtered extracted second live video avatar. This embodiment further includes code for combining the first live video avatar with the second live video avatar to provide an enhanced extracted depth map based third live video avatar. Images from multiple cameras and or depth sensors are combined simultaneously to provide the third live video avatar using the spatially enhanced extracted depth map. A routing server is included for receiving streams from multiple users and sending to each user the live video avatar images from other users based on their locations in a shared space or for use in a local user's AR environment.
One variation of a method for video conferencing includes, during a setup period: accessing a test video feed; and generating a face model, representing facial characteristics of a first user depicted in the test video feed, based on features detected in the test video feed. The method also includes, during an operating period: accessing a video feed; representing constellations of facial landmarks, detected in frames in the video feed, in a feed of facial landmark containers; representing sets of facial muscle actions, detected in frames in the video feed, in a feed of facial expression containers; and transforming the feed of facial landmark containers, the feed of facial expression containers, and the face model into a feed of synthetic face images according to the synthetic face generator.
A scalable dual mode monitoring system according to the present invention is configured to communicate using RF communication channels wherever possible for better range and less battery power consumption. When the system uses 2.4 GHz FHSS RF technology, the system coverage could reach a range of 250 meters line of sight; standby current goes down significantly as compared to that of solely using Wi-Fi communication channel; time to get video streaming is reduced when compared to systems that solely use Wi-Fi communication channel because RF communication channels allow for better and faster synchronization; system set-up via RF link is easy without pairing or any setup and requires simply plug and play when using RJ45 cable connecting to router from the hub.
The present technology relates to an image processing device, an image processing method, a program, and a projection system that facilitate the adjustment of the position and tilt of a camera. An image processing device according to one aspect of the present technology estimates, on the basis of a taken image taken by a camera installed at a predetermined tilt, the tilt of the camera, the camera being configured to photograph a projection surface of a screen on which a pattern image that is an image having a predetermined pattern has been projected from a projector, and performs control to display the taken image rotated depending on the tilt of the camera. The present technology is applicable to computers configured to control a plurality of projectors to project video.
A compressive/transform imager comprising a lens array positioned above input ports for collecting light into the input ports, waveguides routing the light from the input port to waveguide mixing regions (e.g. multi-mode interference couplers), and detectors for receiving outputs of the waveguide mixing regions.
An image sensor may include an array of image sensor pixels. Each pixel in the array may be a global shutter pixel having a first charge storage node configured to capture scenery information and a second charge storage node configured to capture background information generated as a result of parasitic light and dark noise signals. The first and/or second charge storage nodes may each be provided with an overflow charge storage to provide high dynamic range (HDR) functionality. The background information may be subtracted from the scenery information to cancel out the desired background signal contribution and to obtain an HDR signal with high global shutter efficiency. The charge storage nodes may be implemented as storage diode or storage gate devices. The pixels may be backside illuminated pixels with optical diffracting structures and multiple microlenses formed at the backside to distribute light equally between the two charge storage nodes.
The present invention provides a video sticker processing method and device. The method comprises: performing face recognition and speech recognition on video to be processed separately to obtain face position data when face recognition is successful, and speech recognition text when speech recognition is successful; matching speech recognition text with description text of each sticker in sticker library to obtain a target sticker, and obtaining a target video frame according to speech recognition text; adding target sticker to default position or target position of target video frame; wherein, target position is calculated according to the face position data. The present invention can automatically determine the target sticker and its added position according to the face recognition result and the speech recognition result of the video to be processed, realize the intelligent selection and placement of the target sticker, and improve the processing efficiency of the video sticker.
An imaging apparatus includes: an imager configured to capture a subject image formed via an optical system including a focus lens to generate image data; a focusing driver configured to adjust a focus lens position at which the focus lens is positioned along an optical axis in the optical system; and a controller configured to perform image processing for scaling an image indicated by the image data based on the focus lens position, wherein the focusing driver moves the focus lens position back and forth in predetermined wobbling period, and wherein the controller controls a correction factor to follow a change in which the focus lens position swings in a period longer than the wobbling period, the correction factor defining the scaling of the image in the image processing.
Systems, methods, and devices for fluorescence imaging with increased dynamic range are disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation, wherein the pixel array comprises a plurality of pixels each configurable as a short exposure pixel or a long exposure pixel. The system includes a controller comprising a processor in electrical communication with the image sensor and the emitter. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises electromagnetic radiation having a wavelength from about 795 nm to about 815 nm.
In aspects of telephoto camera viewfinder, a multi-camera device has a digital camera to capture a digital image of a camera scene as viewable with the digital camera in a wide view. The multi-camera device also has a telephoto camera to capture digital content of the camera scene as viewable with the telephoto camera in a zoom view. The multi-camera device has a display screen to display a viewfinder user interface that includes the zoom view displayed as a zoom preview image captured by the telephoto camera, and the wide view displayed as a camera preview image captured by the digital camera. The viewfinder user interface also includes, displayed over the camera preview image, a bordered outline of a region of the camera scene that indicates the zoom view relative to the wide view of the camera scene.
An imaging control apparatus includes a setting unit configured to set, in accordance with user operation, whether transparent display at a first transparency level is performed for a display element that is superimposed and displayed on a captured image captured by an imaging unit; a display control unit configured to superimpose and display a plurality of display elements including a specific display element on the captured image, and to control so that in a case where the setting unit sets the transparent display to be performed, the plurality of display elements other than the specific display element are transparently superimposed and displayed on the captured image at the first transparency level, and the specific display element is superimposed and displayed on the captured image at a second transparency level lower than the first transparency level.
An image capture apparatus having a correction function that corrects image burring by controlling a position of an image sensor is disclosed. The apparatus controls the correction function in accordance with one of a plurality of modes including a first and second modes. In the first mode, the image sensor can move in a first direction perpendicular to an optical axis of an imaging optical system within a first distance. In the second mode, when an aperture size of a diaphragm in the imaging optical system is greater than or equal to a predetermined value, the image sensor can move in the first direction within a second distance shorter than the first distance.
A method of focusing dual cameras including receiving a fixed focus image from a fixed focus camera module, receiving an auto focus image from an auto focus camera module, calibrating a lens distortion of the auto focus camera module, calibrating a geometric relation of the auto focus camera module and the fixed focus camera module, calculating a depth of focus difference between the fixed focus image and the auto focus image, estimating an auto focus position based on the depth of focus difference and setting the auto focus position based on the estimation.
A camera system includes a camera housing having a ball-shaped structure and a camera lens disposed within the ball-shaped structure. The camera system also includes a mount including a receptacle to hold the camera housing and at least one element configured to selectively engage and disengage the camera housing to fix a rotational position of the camera housing relative to the mount. The camera housing is configured to rotate relative to the mount.
An image capturing apparatus includes an electronic viewfinder unit that can shift between a retracted state where the electronic viewfinder unit is retracted in a main body portion of the image capturing apparatus and an extended state where the electronic viewfinder unit is extended from the main body portion. The electronic viewfinder unit includes a holding cover that holds a pivoting unit where the pivoting unit can be rotated centering on a pivot shaft, and a pivot latch member that latches in a pivoting unit pivoting operation. The pivoting unit includes an electronic display unit, an eyepiece portion, an eyepiece window to cover the eyepiece portion, and a lens holder to hold a finder lens that guides light emitted from the electronic display unit to the eyepiece portion. When the pivoting unit is being rotated, the pivot latch member regulates shifting of the electronic viewfinder unit to the retracted state.
An image reading apparatus to read a sheet being conveyed includes a memory and a reading device to read one side of the sheet in units of a line area orthogonal to a conveyance direction of the sheet. A read image of a first region corresponding to a leading edge side of the sheet in the conveyance direction is stored into the memory. A read image of a second region subsequent to the first region is not stored. A read image of a third region subsequent to the second region and corresponding to a trailing edge side of the sheet in the conveyance direction is stored in the memory. Each read image is an image read by the reading device. Predetermined processing is performed based on the read image of the first region and the read image of the third region stored in the memory.
Systems, methods, and computer program products for provisioning a temporary disposable number are described. A user can be provided with a pool of available temporary disposable numbers that have a limited shelf life. The user can select one of the available temporary disposable numbers while submitting a permanent phone number associated with a communications device (e.g., mobile phone, home phone, business phone, etc.). Prior to activating the selected temporary disposable number, the temporary disposable number is linked to the permanent phone number. After activation, when an incoming call to the temporary disposable number is received, the permanent phone number is identified to be associated with the temporary disposable number being called. The incoming call is then forwarded to the communications device on which the permanent phone number is established.
Systems and methods forecast inbound telecommunications, and more particularly, analyze real-time and historical call center data, and apply a forecasting model to the data in order to predict inbound call volume. These systems and methods employ tools that manipulate call center data and generate visual representations of metrics pertaining to forecasting call center data via a dashboard.
An electronic device according to various embodiments of the present invention can comprise: a housing including a first plate, a second plate, and a side member surrounding the space between the first plate and the second plate; a processor arranged in the space; a display exposed through a part of the first plate; a communication circuit arranged in the space; a piezoelectric actuator arranged in the space and providing vibration to the first plate; a speaker arranged in the space near the edge of the first plate; an audio processing circuit arranged in the space and electrically connected to the piezoelectric actuator and the speaker; and a memory arranged in the space and electrically connected to the processor. According to various embodiments, when instructions, which can be included by the memory, are executed, the processor wirelessly connects to an external device by using the communication circuit, receives an audio signal through the communication circuit, and provides the audio signal to the audio processing circuit. According to various embodiments, the side member can be separated from or integrated with the second plate. According to various embodiments, the audio processing circuit can provide, to the piezoelectric actuator, a first signal having a first frequency band and can provide, to the speaker, a second frequency band lower than the first frequency band, on the basis of at least a part of the audio signal. Additional various embodiments are possible.
A communication method and a communications device, so that both a location and a length of information carried in a data packet header are flexible and variable, the length does not need to be fixed, and the location does not need to be specified. Compared with a conventional protocol, the communication method has stronger flexibility and higher scalability. The method includes: obtaining, by a first device, a data packet, where the data packet includes a first packet header, the first packet header includes first indication information and a value of first packet header information, the first indication information is used to indicate a location of the value of the first packet header information, and the first packet header information is device identification information; and processing, by the first device, the data packet.
This disclosure describes techniques that include representing, traversing, and processing directed graphs using one or more content-addressable memory devices. In one example, this disclosure describes a method that includes presenting query data to one or more ternary content-addressable memory (TCAM) devices, wherein the query data includes state data and key data; receiving, from the TCAM devices, information about a matching address identified by the TCAM devices; accessing, based on the information about the matching address, information in one or more storage devices; performing, based on the information in the one or more storage devices, at least one operation on data included within the one or more storage devices to generate processed data; outputting the processed data; determining, based on the information in the one or more storage devices, new state data and a new key value; and presenting new query data to the TCAM devices.
An example apparatus includes a data parser to extract an identifier and a cookie identifier from a message received at a first server of a first Internet domain from a client device, the cookie identifier associated with the first Internet domain, the identifier identifying at least one of the client device or a user of the client device to a second server in a second Internet domain outside the first Internet domain, a memory to store the identifier in association with the cookie identifier in an identifier-to-cookie map, a processor to associate demographic information corresponding to the identifier with an impression logged at the first server in association with the cookie identifier, the associating based on accessing the memory to identify that the cookie map stores the identifier with the cookie identifier, and a report generator to send the demographic information to the second server.
An operation method of a first communication node in a communication network identifies a number of second communication nodes receiving messages in a first reception mode and a number of third communication nodes receiving messages in a second reception mode. A transmission mode is determined for transmitting a wireless access in vehicular environments service advertisement (WSA) message based on the identified numbers. A transmission period is then determined for transmitting the WSA message based on the transmission mode. The WSA message is transmitted based on the transmission mode and the transmission period. A protocol used for the first reception mode is different from a protocol used for the second reception mode.
One or more techniques and/or computing devices are provided for implementing synchronous replication. For example, a synchronous replication relationship may be established between a first storage controller hosting local storage and a second storage controller hosting remote storage (e.g., replication may be specified at a file, logical unit number (LUN), or any other level of granularity). Data operations and offloaded operations may be implemented in parallel upon the local storage and the remote storage. Error handling operations may be implemented upon the local storage and implement in parallel as a best effort on the remote storage, and a reconciliation may be performed to identify any data divergence from the best effort parallel implementation. Storage area network (SAN) operations may be implemented upon the local storage, and upon local completion may be remotely implemented upon the remote storage.
A system for managing compositions of software components or applications is disclosed. In particular, systems in which the software components or applications communicate with one another using message-oriented middleware are considered. Each component processing a data feed item adds an annotation to the data feed item, so that the cumulative annotation which is seen in the processed feed for an application provides a history of the processing carried out on the input data feed(s). Each software component or application in the processing system is arranged to store a log of each message it inputs, the process(es) it carries out on that message, and the output message generated. The software component or application further includes a reference to a log interface (e.g. a Uniform Resource Locator) in the entry it makes to the message annotation. A downstream node is then able to use that interface reference to extract (192) the more detailed information to be found in the log. Because the more detailed information is only sent when the downstream node determines that such information is of use, the burden placed by the management function on the communication resources of the distributed system is reduced.
A content providing apparatus for providing an audio streaming service includes a communication modem configured to communicate with a content receiving apparatus through a wired/wireless network, and a processor configured to determine target audio content, determine an audio packet generating rule, transmit the audio packet generating rule to the content receiving apparatus through the communication modem, generate an audio packet from audio data corresponding to the target audio content based on the audio packet generating rule, and transmit the audio packet to the content receiving apparatus through the communication modem.
A system that is distinct from a remote server and distinct from a client device receives, over a first communications channel, a first data stream for a first media item. The system receives, over a second communications channel, from an application at the client device, a second data stream for audio data that includes vocals provided by a user as the first media item plays. The system measures a latency of the second communications channel and overlays, with the first media item, the vocals provided by the user as the first media item plays to generate a composite data stream. The overlaying comprises offsetting the first data stream from the second data stream in accordance with the measured latency of the second communications channel and combining the first and second data streams in accordance with the offset of the data streams.
In accordance with an embodiment, described herein is a system and method for client-initiated playlist shuffle in a media content environment. A shuffle logic is configured to provide a shuffle order for a plurality of media content items, including associating each media content item with a placement interval within which the media content item can be placed, and a weight that determines the average position of the placement interval; associating each media content item with a random value that indicates a random offset or position within its placement interval; calculating an ordering score for each media content item based on its weight plus its random offset into its placement interval; collecting indications for the plurality of media content item that reflect their ordering scores; and placing the plurality of media content items into the shuffle order, for subsequent playback by a media device.
An information processing apparatus, an information processing system, and an information processing method. The information processing apparatus detects a user, acquires schedule information of the user based on the detected user, and suggests one or more shared sites to use according to the schedule information.
A method of securing media across an IP Multimedia Subsystem, IMS, network where the media transits via first and second media gateway functions of the IMS network which are controlled by respective first and second media gateway controllers acting as back-to-back Session Initiation Protocol, SIP, user agents. The method comprises sending from the first media gateway controller to the second media gateway controller, or to anode upstream of the second media gateway controller, security information of the first media gateway function, and using the sent information to secure media between the first and second media gateway functions or between the first media gateway function and said upstream node.
A few-shot learning based intrusion detection method of an industrial control system, including: dividing an original data set extracted from a data flow of the industrial control system into a detection model training set and a basic model training set; using principal component analysis method to reduce dimension of a continuous data matrix M in the two training sets; using one-hot encoding method to process a discrete data matrix V in the two training sets; using processed basic model training set to construct few-shot training tasks required for basic model training; training a basic model based on convolutional neural networks with help of constructed few-shot training tasks; based on trained basic model, using processed detection model training set for further training to obtain the detection model; effectively detecting attacks in real-time data streams with help of center vectors of three different types of samples in the detection model.
Case management systems and techniques are disclosed. In various embodiments, a hierarchical document permission model is received, the model describing a document hierarchy comprising a plurality of hierarchically related document nodes and defining for each of at least a subset of said document nodes one or more document roles and for each such role one or more document permissions with respect to that document node. The hierarchical document permission model is used to determine and enforce permissions with respect to case management instances to which the hierarchical document permission model applies.
In one embodiment, a request may be received from a first cloud network of a hybrid cloud environment to transmit data to a second cloud network of the hybrid cloud environment, wherein the request can include a security profile related to the data. The security profile may be automatically analyzed to determine access permissions related to the data. Based at least in part on the access permissions, data can be allowed to access to the second cloud network.
An authentication broker apparatus includes an extracting unit and a transmitting unit. In response to an authentication request from a service providing apparatus that provides a service, the extracting unit extracts, from identification managing apparatuses that manage user ID codes used by users to access a service, at least one ID managing apparatus that fulfills an authentication condition relating to authentication of the service providing apparatus that has requested authentication. The transmitting unit transmits, to the service providing apparatus, link information to access the at least one ID managing apparatus extracted by the extracting unit.
Disclosed herein is a method to facilitate establishing a connection between an access-seeking device and an access granting device. The method may include receiving, using a communication device, a Quantum Level Security (QLS) code from the access-seeking device. Further, the QLS code may be generated by the access-seeking device based on at least one QLS function and at least one parameter. Further, the method may include receiving, using the communication device, an independent QLS code generated by an access granting device based on the at least one QLS function and the at least one parameter. Further, the method may include comparing, using a processing device, the QLS code and the independent QLS code. Further, the method may include establishing, using the communication device, the connection between the access-seeking device and the access granting device based on a result of the comparing.
A plurality of system nodes coupled via a dedicated private network is described herein. The nodes offer an end-to-end solution for protecting against network-based attacks. The nodes can include network gateways that allow remote systems, such as servers located at an entity's place of operation or a data center accessible by the entity, to securely transmit data between the nodes and the remote systems. For example, the network gateways can transmit split data into different portions, and transmit each portion over a different path through a public network to mitigate the effects of man-in-the-middle attacks. Once data reaches a node, transmission of the data from one node to another can pass through multiple intermediary nodes via the dedicated private network. The nodes and/or remote systems may also include cross-domain guard devices that control whether data can pass from one security domain to another.
A method of managing electronic media content items starts with a server system receiving a first electronic communication from a first client device in communication with the server system over a network. The server system then generates a first media content item based on the first electronic communication and causes the first media content item to be displayed on a display screen of a second client device. The server system receives a request from the second client device to store the first media content item and stores the first media content item in a storage that is associated with the first user and the second user. The server system then generates a notification to be displayed on a display screen of the first client device that indicates the first media content item is stored in the storage. Other embodiments are disclosed herein.
Inquiry data from one or more sources (e.g., client devices) may be analyzed to determine if key terms, date terms, and locality terms are indicative of an event to occur at a locality during one or more dates. Events that are detected may be communicated (e.g., via an electronic message(s)). An owner of a property may receive the electronic message(s) that are communicated for detected events and the owner may act to garner interest in stays at their property. Travelers searching for a property to stay at during the event may receive the electronic message(s) in the form of an offer (e.g., an email, a text message, a Tweet, a newsletter, etc.). The inquiry data may be received in real time and/or may be accessed from a data store. The Inquiry data may be curated to remove non-essential information and/or to include edited key terms, date terms, and locality terms.
A processor-based system for routing data on a collaboration platform over a network is provided. The system has a web layer in communication with at least a server and at least a user interface associated with a user, a user presence module residing on the server and in communication with the web layer, a threaded discussion module residing on the server and in communication with the web layer, a document editor module residing on the server and in communication with the web layer, and an audio-visual module residing on the server and in communication with the web layer, wherein the audio-visual module allows the users to share the at least one user interface for viewing content, each other, or both.
An integrated router is provided. The integrated router includes at least one network interface, a power supply input, a power supply output, and a power cycling switch. The at least one network interface is operative to place a first network device in electronical communication with a second network device. The power supply input is operative to receive electrical power from a power supply. The power supply output is operative to provide the electrical power to the second network device. The power cycling switch electrically connects the power supply input to the power supply output and is operative to be toggled by a remote network device via the at least one network interface so as to power cycle the second network device.
In general, techniques are described for network connectivity for non-colocated customers of a cloud exchange. A programmable network platform for the cloud exchange comprises processing circuitry configured to: configure a virtual network device in the data center to run a network service for a customer; receive, from the customer, a request for a remote port and network information for a network service provider connectivity service for the customer; assign, in response to receiving the request for the remote port, a remote port of the cloud exchange to the customer; and configure, in response to receiving the request for the remote port using the network information, the cloud exchange to connect the network service provider connectivity service to the virtual network device via the remote port of the cloud exchange.
Embodiments provide a method, which can implement establishment of a network function virtualization (NFV) network service chain. The method includes obtaining, by a first communications unit, a service chain rule, where the service chain rule is used to indicate service processing that needs to be performed. The method also includes obtaining, according to the service chain rule, information about a service chain through which a service route passes, where the information about the service chain is used to indicate information about a virtualized network function (VNF) through which the service route passes, and the VNF is configured for the service processing; and sending a route and resource configuration request message, where the route and resource configuration request message carries the information about the service chain, to request to perform, according to the information about the service chain, route and resource configuration for the VNF included in the service chain.
A scalable multi-cluster resource sharing facility. A global witness process runs on a first computing platform that communicates over one or more networks to any number of nodes situated over two or more clusters. The global witness process listens on the network for occurrences of leadership and/or resource requests from nodes of different clusters. The global witness processes a request by retrieving a resource request and a respective last known state value, comparing the last known state value to a global stored state value, then storing a new state value when the respective last known state value is equal to the stored state value. Any number of contemporaneous requests can be processed by the global witness process, however only one request can be granted. The other requestors each receive a rejection of their resource request when their proffered last known state value is not equal to the stored state value.
A network element includes multiple ports and forwarding circuitry. The ports are configured to serve as network interfaces for exchanging packets with a communication network. The forwarding circuitry is configured to receive a multicast packet that is to be forwarded via a plurality of the ports over a plurality of paths through the communication network to a plurality of destinations, to identify a path having a highest latency among the multiple paths over which the multicast packet is to be forwarded, to forward the multicast packet to one or more of the paths other than the identified path, using a normal scheduling process having a first forwarding latency, and to forward the multicast packet to at least the identified path, using an accelerated scheduling process having a second forwarding latency, smaller than the first forwarding latency.
A technique comprising a Just-In-Time (JIT) marking element and a JIT agent is disclosed. The JIT-marking element and the JIT agent are configured to deliver one or more packets in the direction toward a first MD just-in-time (JIT) prior to the time in which an application, at the first MD, needs to handle the content that is carried over the certain one or more packets. The JIT-marking element is configured to add a JIT indication that indicates when to deliver the marked one or more packets toward the first MD and transmit the marked one or more packets toward the JIT agent. The JIT agent is configured to process the JIT indication, remove it and accordingly deliver the one or more packets toward the first MD.
Embodiments of the present invention are directed to a wildcard matching solution that uses a combination of static random access memories (SRAMs) and ternary content addressable memories (TCAMs) in a hybrid solution. In particular, the wildcard matching solution uses a plurality of SRAM pools for lookup and a spillover TCAM pool for unresolved hash conflicts.
A network device comprises time measurement units configured to measure receipt times and transmit times of packets received/transmitted via network interfaces. One or more memories store configuration information that indicates certain network interface pairs and/or certain packet flows that are enabled for latency measurement. A packet processor includes a latency monitoring trigger unit configured to select, using the configuration information, packets that are forwarded between the certain network interface pairs and/or that belong to the certain packet flows for latency monitoring. One or more latency measurement units determine respective latencies for packets selected by the latency monitoring trigger unit using respective receipt times and respective transmit times for the packets selected by the latency monitoring trigger unit, calculates latency statistics for the certain network interface pairs and/or the certain packet flows using the respective latencies, and stores the latency statistics in the one or more memories.
A Tenant request to subscribe to an Application is received. A Service that the Application consumes is determined. The Tenant is determined to be new to the Service. In response to determining the Tenant is new, a subscription of the Tenant is provided in the Service, and the Application is added to the subscription.
The present disclosure relates generally to facilitating routing of communications across external systems. More specifically, techniques are provided to dynamically route issue tracking tickets to disparate endpoints based on the content of the ticket.
A method is performed to provide assurance for a service enabled on a network. A definition of the service is received. The definition includes a service type, a service instance, and configuration information used to enable the service. From the service type and the service instance, a service tag that is unique to the service is generated so as to distinguish the service from other services on the network. Based on the definition, the service is decomposed into a subservice dependency graph of subservices and dependencies between the subservices. Based on the subservice dependency graph, the subservices are configured to record and report subservice metrics indicative of health states of the subservices. The subservice metrics are obtained from the subservices. The service tag is applied to the subservice metrics to produce service-tagged subservice metrics. The service-tagged subservice metrics are analyzed to determine a health state of the service.
In one aspect, an apparatus includes at least one processor and storage accessible to the at least one processor. The storage may include instructions executable by the at least one processor to predict that a device will not have a network connection during a period of time. Based on the prediction, the instructions may also be executable to recommend content to cache at the device in advance of the period of time and/or to automatically cache the content.
Provided herein are devices, systems, methods and various means, including those related to providing a community internet drive that may utilize a centrally-managed hub as well as storage devices distributed among various networked machines. In some embodiments, the community internet drive can also include features to enable its users to promote and utilize the user's trusted personal relationships while also enabling an open platform for peer-to-peer and/or other types of sharing schemes.
The present disclosure is directed to mapping indoor user movement using a combination of Wi-Fi and 60 GHz sensing. The methods include detecting, via a Wi-Fi access point, a wireless device associated with a first user, wherein the Wi-Fi access point is configured to determine location information and a device signature associated with the wireless device; transmitting the location information of the wireless device to a 11ay sensor; detecting the first user, via the 11ay sensor, based on the location information of the wireless device; creating a user signature associated with the first user, wherein the user signature is based on one or more physical characteristics of the first user detected by the 11ay sensor; and using the device signature associated with the wireless device and the user signature associated with the first user to subsequently identify the first user.
According to one aspect of the present disclosure, there is provided a device that includes: a first quadrature modulator configured to receive an in-phase portion of a baseband signal and a quadrature portion of the baseband signal, and to produce a first portion of an output signal according to the in-phase and quadrature portions of the baseband signal; a second quadrature modulator configured to receive a first modified signal and a second modified signal, and to produce a second portion of the output signal according to the first and second modified signals; an output circuit configured to sum the first and second portions of the output signal, and to transmit the output signal to an antenna; and a mode selection circuit configured to turn on the first quadrature modulator, to receive a control signal, and to determine whether to turn on the second quadrature modulator according to the control signal.
An Ethernet link is disclosed. The link includes a first Ethernet transceiver and a second Ethernet transceiver configured as a link partner to the first Ethernet transceiver. A shielded twisted quad (STQ) cable is interposed between the first Ethernet transceiver and the second Ethernet transceiver. The STQ cable includes four conductors, each conductor having a first end interfaced with a corresponding input/output (I/O) circuit of the first Ethernet transceiver in a single-ended configuration, and a second end interfaced with a corresponding input/output (I/O) circuit of the second Ethernet transceiver in a single-ended configuration.
Method of detecting a change in a lighting system comprising a plurality of devices each comprising a luminaire and/or a sensor, wherein each respective one of the devices has a respective location recorded in a commissioning database in association with data reported by the respective device; the method comprising: identifying a subset of said devices located within a predetermined spatial demarcation; automatically monitoring a respective value of a characteristic of each of the devices in said subset, thereby forming a data cluster comprising the values of said characteristic for the subset; automatically detecting that one of one of the devices in the subset has been moved by detecting a shift in one of the cluster values relative to the rest of the values in the data cluster; and in response to said detection, automatically outputting an indication that the commissioning database is likely to require updating to reflect said change.
Implementations of the present disclosure provide techniques to improve security in blockchain networks. In some implementations, a linking request is received from a node. The node requests to be linked to a blockchain network. The linking request includes a digital code. One or more consensus verification messages are received from one or more blockchain nodes of the blockchain network. Each consensus verification message indicates whether a respective blockchain node approves or denies the linking request. A consensus verification result is determined based on the one or more consensus verification messages. In response to determining that the linking request is approved by the one or more blockchain nodes, the digital code is stored into the blockchain network as a digital certificate of the node.
A system for authenticating a requesting device using verified evaluators includes an authenticating device. The authenticating device is designed and configured to receive at least a first digitally signed assertion from a requesting device, the at least a first digitally signed assertion linked to at least a verification datum, evaluate at least a second digitally signed assertion, signed by at least a cryptographic evaluator, conferring a credential to the requesting device, validate the credential, as a function of the at least a second digitally signed assertion, and authenticate the requesting device based on the credential.
Techniques for employing a secure enclave to enhance the security of a system that makes use of a remote server that proxies cryptographic keys. In one technique, a proxy server receives a request for a cryptographic operation that is initiated by a client device. The request includes a key name of a cryptographic key and an authentication code. In response, the proxy server sends the authentication code and the request to a secure enclave that is associated with a cryptographic device that stores the cryptographic key. The secure enclave validates the authentication code based on a local key and sends, to the cryptographic device, (1) data associated with the secure enclave and (2) the cryptographic request. The proxy server receives result data that was generated by the cryptographic device that performs the cryptographic operation. The proxy server sends the result data to the client device.
A network function service invocation method includes sending, by a first network function network element, a first request message to an authorization network element, wherein the first request message is used to request permission to invoke a first network function service provided by a second network function network element, performing, by the authorization network element, identity authentication on the first network function network element; generating, by the authorization network element, a token when determining that the identity authentication succeeds, wherein the token is used to indicate that the first network function network element has the permission to invoke the first network function service of the second network function network element, and sending, by the authorization network element, a token to the first network function network element.
A trusted device is positioned within a private consensus network. The trusted device includes a memory and processing circuitry in communication with the memory. The processing circuitry is configured to obtain, from a private distributed ledger associated with the private consensus network, rules associated with the private consensus network, the private distributed ledger being accessible only to devices positioned within the private consensus network, to identify one or more other trusted devices positioned within the private consensus network, to receive, from an unidentified device positioned within the private consensus network, an identity verification request to identify the unidentified device within the private consensus network, to determine, based on the obtained rules, whether to approve or deny the identity verification request, and to communicate, to the one or more other trusted devices, a vote indicative of the determination of whether to approve or deny the identity verification request.
Method for encoding/decoding a signal at a first and second communication node (N1; N2) in a road vehicle. A signal (1) from an on-board sensor (10) is encoded using a first encoding scheme (a), encoding the formed single encoded sensor signal (1a) using a second encoding scheme (b), decoding this double encoded sensor signal (1ab) in the second communication node (N2) based on the second encoding scheme (b), forming a decoded single encoded sensor signal (1a′). In the first communication node (N2), performing a comparison analysis, comprising at least one of the following: comparing the decoded single encoded sensor signal (1a′) with a stored single encoded sensor signal (1a), or after encoding the decoded single encoded sensor signal (1a′) with the second encoding scheme (b) comparing (110) the thus formed double encoded sensor signal (1a′b) with a stored double encoded sensor signal (1ab). If the compared sensor signals (1a′,1a; 1 ab,1a′b) match, then sending (111) a signal to the second communication node (N2) validating the sensor signal (1), and if they do not match, then initiating (112) a corrective action.
An onboard device transfers an encrypted message encrypted outside a vehicle to one or more vehicle controllers connected to a vehicle network. When the encrypted message is an individual message to one of the vehicle controllers, the onboard device transmits the encrypted message to the one of the vehicle controllers via the vehicle network. When the encrypted message is a common message to the one or more vehicle controllers, the onboard device decrypts the encrypted message using an encryption key owned by the onboard device and then transmits the decrypted message to the one or more vehicle controllers via the vehicle network.
In a post-quantum asymmetric key generation method and system, a processing unit generates, based on a prime and an arithmetic function or a classical string, a prime vector which has an infinite number of components; generates a prime array based on the prime vector; generates an associated matrix based on the prime array; obtains, based on the associated matrix and a first reference prime, a first reference inverse prime array that serves as a private key; and obtains a public key that is paired with the private key based on a second reference inverse prime array. The second reference inverse prime array is obtained based on the associated matrix, the first reference prime, a second reference prime, and a randomization array.
Some embodiments are directed to an electronic cryptographic device arranged to determine a cryptographic key. The cryptographic device can include a physically unclonable function (PUF) arranged to produce a first noisy bit string during the enrollment phase and a second noisy bit string during the reconstruction phase, and a statistical unit arranged to execute a statistical test for verifying correct functioning of the physical unclonable function. The statistical test computes a statistical parameter for the physical unclonable function using helper data. The statistical test determines correct functioning if the statistical parameter satisfies a criterion of the statistical test.
Systems, apparatuses, methods, and computer program products are disclosed for PQC. An example method includes transmitting a first portion of an electronic communication to a client device over a non-PQC communications channel. The example method further includes transmitting a second portion of the electronic communication to a PQC add-on device over a PQC communications channel, wherein the PQC add-on device is communicatively coupled to the client device. In some instances, the first portion of the electronic communication may comprise overhead data, and the second portion of the electronic communication may comprise payload data.
Disclosed below are representative embodiments of methods, apparatus, and systems for managing one or more cybersecurity tools that are deployed to help protect electronic assets in an IT infrastructure—including, for example, one or more security configuration management tools, vulnerability management tools, event logging tools, or other IT infrastructure security or monitoring tools that are used to monitor, secure, and/or control assets in an IT infrastructure. In one example, a request to install local software for access to a remote security control service is received from a remote user at a remote device; and data for installing the local software is transmitted to the remote user. In certain implementations, the data for installing the local software further includes a public cryptographic certificate.
A key ceremony application creates bundles for custodians encrypted with their passphrases. Each bundle includes master key share. The master key shares are combined to store an operational master key. The operational master key is used for private key encryption during a checkout process. The operational private key is used for private key decryption for transaction signing in a payment process. The bundles further include TLS keys for authenticated requests to create an API key for a web application to communicate with a service and to unfreeze the system after it has been frozen by an administrator.
A method for secure transmission of a data stream between at least one sender and at least one recipient comprises packetizing the data stream into a plurality of data packets of data bits. Each data packet is split into at least two subpackets and the subpackets are encrypted with a one-time pad stored at the sender. The encrypted subpackets are transmitted to the receiver by transmitting one of the two encrypted subpackets over a first transmission path and transmitting another one of the two encrypted subpackets over a second transmission path wherein the first transmission path is different from the second transmission path. At the receiver, the encrypted subpackets are decrypted using an identical copy of the one-time pad stored at the receiver and the information of the data packet is restored from the at least two subpackets. Furthermore, a system for secure transmission is provided.
A cryptographic circuit performs a substitution operation of a cryptographic algorithm. For each substitution operation of the cryptographic algorithm, a series of substitution operations are performed by the cryptographic circuit. One of the substitution operations of the series is a real substitution operation corresponding to the substitution operation of the cryptographic algorithm. One or more other substitution operations of the series are dummy substitution operations. A position of the real substitution operation in said series is selected randomly.
A signal transmission method is applied to a terminal, and includes: acquiring a first PUCCH signal and a second PUCCH signal, wherein the transmission duration of the first PUCCH signal is one designated symbol, and the transmission duration of the second PUCCH signal is greater than one designated symbol; replacing the DMRS of at S least one designated symbol in the second PUCCH signal with the first PUCCH signal to obtain a third PUCCH signal; and transmitting the third PUCCH signal to a base station, so that the base station recovers the first PUCCH signal from the third PUCCH signal, and demodulates the second PUCCH signal by taking the first PUCCH signal as the DMRS of the second PUCCH signal so as to obtain UCI carried by the second PUCCH signal.
An example terminal device receives resource scheduling information sent by a network device, where the resource scheduling information is used to indicate a second resource set allocated by the network device, where the second resource set includes at least one resource block which is from a first resource set, and where the first resource set is an integer quantity of resource blocks that are evenly distributed in frequency domain. The terminal device can then perform uplink transmission on a detected idle frequency domain resource based on the resource scheduling information, where the uplink transmission occupies a plurality of time units, where a resource structure of a resource block used for the uplink transmission in each time unit is the same as a resource structure of the second resource set, and where frequency locations of resource blocks used for the uplink transmission in adjacent time units are different.
Embodiments of the present disclosure provide an information transmission method and an apparatus, where the information transmission method includes: determining, by a base station, a first transmission resource; sending, by the base station, first information using the first transmission resource, where the first information includes at least one of system information or control information for scheduling system information; determining, by the base station, at least one second transmission resource; and sending, by the base station, second information to UE by using the second transmission resource, where the second information includes at least one of: a paging message, a random access response message, a contention resolution message, control information for scheduling a paging message, control information for scheduling a random access response message, or control information for scheduling a contention resolution message.
It is recognized herein that current LTE reference signals may be inadequate for future cellular (e.g., New Radio) systems. Configurable reference signals are described herein. The configurable reference signals can support mixed numerologies and different reference signal (RS) functions. Further, reference signals can be configured so as to support beam sweeping and beamforming training.
Provided is a user terminal to be used in a future wireless communication system which bundles a plurality of slots (sub-frames) in a time direction. When applying bundling, a Front-loaded DMRS (Demodulation Reference Signal) is mapped to the rear of a control channel in a leading slot, and in second and subsequent slots, mapping is carried out on the basis of a rule to prevent conflict between the Front-loaded DMRS and the control channel. A control unit (203) of a user terminal (20) stipulates, in second and subsequent slots, the mapping configuration of the Front-loaded DMRS (the existence of mapping and/or the mapping position) on the basis of the aforementioned rules.
Methods, systems, and devices for wireless communication are described, which may be employed for wireless communication in contention-based (e.g., unlicensed or shared) spectrum. An aperiodic channel state information (CSI) reference signals (RS) may be used for channel quality indicator (CQI) measurements, for example. A user equipment (UE) may receive signaling to indicate the presence of CSI RS and may receive the CSI RS according to the signaling. The UE may then compute a CQI based on CSI RS, and transmit the CQI in a report to a base station. In some examples, a quasi-periodic CSI RS is used. For instance, the UE may determine a different location for the CSI RS. For example, the UE may identify a periodic anchor subframe, and locate the CSI RS based on constant offset from the anchor subframe. Periodic or a clear-channel-assessment-exempt transmission based CSI RS examples are also described.
A base station, which is a transmission device according to the present invention, includes a space-time block coding unit that performs space-time block coding on a transmission symbol to generate a transmission block, a differential unit that performs a differential operation on the transmission block, a code multiplication unit that multiplies the transmission block by a code, a selection unit that selects one of the transmission block after the differential operation and the transmission block after the code multiplication, and wireless transmission units that transmit the transmission block selected.
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating an Enhanced Directional Multi-Gigabit (DMG) (EDMG) Orthogonal Frequency-Division Multiplexing (OFDM) Physical layer (PHY) Protocol Data Unit (PPDU). For example, an EDMG station (STA) may be configured to generate an EDMG OFDM PPDU including at least a non-EDMG header (L-Header), an EDMG header, and a data field, the EDMG header including a spoofing error length indicator field configured to indicate whether or not a spoofing error of the EDMG OFDM PPDU is less than one OFDM symbol duration; and to transmit the EDMG OFDM PPDU over a channel bandwidth in a frequency band above 45 Gigahertz (GHz).
An information adding method and apparatus, to increase a quantity of terminals that can be represented by an identifier sequence. The method includes: performing, by a transmit end, polar code encoding on a first bit sequence to generate an encoded second bit sequence; adding, by the transmit end, a part or all of an identifier sequence to the second bit sequence to generate a third bit sequence, where the identifier sequence is used to identify a terminal; and sending, by the transmit end, the third bit sequence.
For example, a wireless communication device may be configured to determine a count of one or more unreliable data symbols in a received wireless communication packet having a valid Cyclic Redundancy Check (CRC) result; based on the count of the unreliable data symbols, to determine whether to classify the valid CRC result as a false-positive CRC result; and, based on classification of the valid CRC result as a false-positive CRC result, to handle the received wireless communication packet as having a non-valid CRC result.
The described technology is generally directed towards reporting channel quality information from a wireless user equipment to the network, in a channel state information report that includes channel quality information based on a block error rate threshold value that corresponds to an ultra-reliable low latency communication when the user equipment is in the ultra-reliable low latency communication mode. The channel quality information corresponding to the ultra-reliable low latency communication mode block error rate threshold and the channel quality information corresponding to the enhanced mobile broadband mode block error rate threshold can be included in the same report. Alternatively, the user equipment is instructed to report either the channel quality information for-reliable low latency communication or for enhanced mobile broadband in the channel state information report.
The present disclosure relates to a communication method and system for converging a 5th Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
A method of a terminal in a wireless communication system is provided. The method includes identifying demodulation reference signal (DMRS) type information and DMRS symbol length information, identifying port number information for receiving a DMRS and receiving the DMRS based on the DMRS type information, the DMRS symbol length information and port number information, wherein the port number information indicates a port number for the terminal in DMRS information including parameters for code division multiplexing (CDM) group information, offset information, frequency-domain orthogonal cover code (OCC) information, and time-domain OCC information corresponding respectively to multiple port numbers, and wherein the DMRS information is defined per DMRS type.
An approach for determining link transmission quality identifiers is provided. For this purpose, a two-step approach is applied. In a first step, quality indicators are obtained from a black-box device and related signal are obtained and recorded. Based on the recorded data, a model can be established or a neural network can be trained. The generated model or the trained network may be used for determining further quality indicators at any arbitrary point in time.
The present invention provides a method of operating a user equipment, UE device in communication with a non-terrestrial communication system comprising a plurality of transmission points, the method comprising in the UE device triggering a transmission of a measurement report dependent on a measurement by the UE device of a received signal parameter (1) of a signal received from a transmission point of the system and a comparison of the measured parameter with a threshold (2), the threshold varying according to a predetermined function dependent on an expected position of the UE device with respect to the transmission point.
Multi-beam multiplexing in mobile radio communication networks, specifically for initial network access transmissions, such as Random Access Channel (RACH) transmissions and other initial network access signals that affect the operation of the Random Access operation. A network node is configured to distribute, simultaneously, a plurality of beams across a predetermined coverage area. Each of the beams are associated with a different coverage area. In addition, a plurality of sub-carriers are precoded in an OFDM modulated signal, which includes control information, for the purpose of shaping (i.e., beamforming) each of the plurality of beams. In this regard, one or more sub-carriers are mapped to a beam.
A precoding process is performed on a first baseband signal and a second baseband signal to generate a first precoding signal and a second precoding signal. A pilot signal is inserted into the first precoding signal and phase change is performed on the second precoding signal. A pilot signal is inserted into the phase changed second precoding signal, and phase change is further performed on the phase-changed second precoding signal with the pilot signal inserted.
An electrical meter (M) installed at a facility (F) supplied electrical power by a utility's (U) electrical distribution system (EDS) utilizes a two-way automatic communications system (TWACS) for receiving messages from the utility sent over the electrical distribution system using the TWACS. An improvement to the meter comprises reconfiguring existing components installed in the meter to function as an analog-to-digital (ADC) converter so to facilitate processing of powerline waveforms (WF) propagated through the electrical distribution system by application of a signal based detection algorithm. This improves detection of signal elements comprising a message sent via the TWACS and by other means and incorporated in the electrical waveforms thereby reducing occurrence of a false synchronization with the message elements so a content of a message is readily ascertained by the meter.
A radio frequency circuit includes: a first filter having a passband corresponding to a first frequency band of at least 5 gigahertz and less than a predetermined frequency; a second filter having a passband corresponding to a second frequency band of at least the predetermined frequency; a switch configured to switch connection of the first filter between a first transfer circuit and a third transfer circuit. The first filter is connected between a first antenna connector terminal and the first transfer circuit and between the first antenna connector terminal and the third transfer circuit. The second filter is connected between a second antenna connector terminal and a second transfer circuit. A first communication system or a second communication system is a wireless local area network (WLAN) system.
In one embodiment an apparatus includes: a mixer to downconvert a radio frequency (RF) spectrum including at least a first RF signal of a first channel of interest and a second RF signal of a second channel of interest to at least a first second frequency signal and a second second frequency signal; a first digitizer to digitize the first second frequency signal to a first digitized signal, the first digitizer configured to operate as a low-pass analog-to-digital converter (ADC); a second digitizer to digitize the second second frequency signal to a second digitized signal, the second digitizer configured to operate as a band-pass ADC; and a digital processor to digitally process the first digitized signal and the second digitized signal.
A method performed by a first communication device is disclosed herein. The first communication device operates in a communications network. The first communication device selects a first method to decode a physical broadcast channel from a plurality of methods to decode the physical broadcast channel. The plurality of methods to decode the physical broadcast channel comprises: a) single-shot decoding only, b) soft-combining decoding only, and c) both single-shot decoding and soft-combining decoding simultaneously. The selecting is based on whether or not a time index of a synchronization signal and physical broadcast channel block, SS/PBCH block, for transmitting primary and secondary synchronization signals and a physical broadcast channel is known by the first communication device. The first communication device then decodes the received physical broadcast channel based on the selected first method.
The present technology relates to a transmission method and a reception device for securing favorable communication quality in data transmission using an LDPC code.
In group-wise interleaving, the LDPC code with a code length N of 17280 bits is interleaved in units of 360-bit bit groups 0 to 47. In group-wise deinterleaving, a sequence of the LDPC code after group-wise interleaving is returned to an original sequence. The present technology can be applied, for example, in a case of performing data transmission using an LDPC code, and the like.
Various examples are provided related to diode clamped solid-state circuit breakers (SSCBs). Their configuration allows operation of the SSCB without dynamic voltage balancing issues. In one example, a diode clamped SSCB includes source-side switches and line-side switches connected between a DC source connection and a line-side connection. Clamping capacitors are connected at a common connection point between the source-side and line side switches and source-side and line-side clamping diodes are connected between the source-side switches and line-side switches and the clamping capacitors. Sequential switching of the source-side switches or line-side switches can avoid dynamic voltage balancing issues.
Semiconductor device with multiple independent gates. A gate-controlled semiconductor device includes a first plurality of cells of the semiconductor device configured to be controlled by a primary gate, and a second plurality of cells of the semiconductor device configured to be controlled by an auxiliary gate. The primary gate is electrically isolated from the auxiliary gate, and sources and drains of the semiconductor device are electrically coupled in parallel. The first and second pluralities of cells may be substantially identical in structure.
A drive circuit Dr for a switch that reduces a surge voltage caused when a switch SW is switched to an off state. The drive circuit Dr detects, as an on voltage Von, a collector-emitter voltage of the switch SW while the switch SW is in an on state. When the detected on voltage Von is large, the drive circuit Dr sets a resistance value Rd of a discharging resistor 53 when the switch SW is switched to an off state to be larger than the resistance value Rd when the detected on voltage Von is small. More specifically, the drive circuit Dr sets the resistance value Rd to a larger value as the detected on voltage Von is increased.
An electronic device includes a multiplexer (MUX), a switching array and logic circuitry. The MUX includes multiple input ports and an output port, and is configured to receive, via the input ports, multiple input signals, and to output, via the output port, a selected signal among the input signals. The switching array is coupled to the input ports of the MUX and is configured to receive the input signals and to connect or disconnect between each input signal and a respective input port. The logic circuitry is electrically coupled to the switching array and to the MUX, and is configured to control the switching array to connect at least the selected signal that the MUX is outputting, and to disconnect all the input signals other than the at least selected signal.
An impedance matching device includes: a variable capacitor; a calculation unit that calculates a reflection coefficient on the load side; a storage unit that stores the reflection coefficient calculated within a predetermined period so as to be associated with ON/OFF states of the semiconductor switches; a determination unit that determines ON/OFF states to be taken by the semiconductor switches using a calculation result within the predetermined period; a control unit that turns on or off the semiconductor switches based on the determined ON/OFF states; and a counting unit that counts the number of times the determined ON/OFF states have changed. In a case where the counted number of times is larger than a predetermined number of times, the control unit turns on or off the semiconductor switches so as to match ON/OFF states associated with a reflection coefficient closer to 0, among the stored reflection coefficients, and then prohibits ON/OFF switching.
An acoustic resonator includes a piezoelectric stack including a piezoelectric layer having a top surface and a bottom surface, a top electrode layer disposed above the top surface, and a bottom electrode layer disposed below the bottom surface. A number of acoustic wave reflectors are disposed on a side of the bottom electrode layer opposite the piezoelectric layer. Each acoustic wave reflector includes a high acoustic impedance layer and may include a low acoustic impedance layer. The acoustic resonator may include a tether that extends laterally to a stacking direction of the layers of the piezoelectric stack. A supporting structure may be coupled to the tether opposite the acoustic resonator for anchoring the acoustic resonator. A mirror, one or more phononic crystals, or both may be positioned on proximate the tether opposite the acoustic resonator to avoid resonant waves from exiting the acoustic resonator in use.
Volume leveler controller and controlling method are disclosed. In one embodiment, A volume leveler controller includes an audio content classifier for identifying the content type of an audio signal in real time; and an adjusting unit for adjusting a volume leveler in a continuous manner based on the content type as identified. The adjusting unit may configured to positively correlate the dynamic gain of the volume leveler with informative content types of the audio signal, and negatively correlate the dynamic gain of the volume leveler with interfering content types of the audio signal.
A circuit for increasing an output direct-current level of a transimpedance amplification stage in a TIA (Trans-Impedance Amplifier) includes a transimpedance amplification stage, a differential amplification stage, a level boosting unit, and a DC-restore loop. An input terminal of the transimpedance amplification stage is used for inputting a photocurrent signal. An output terminal of the transimpedance amplification stage is directly connected to an input terminal of the differential amplification stage.
A supply modulator is provided, having a first amplifier circuit configured to generate a first electrical signal, a second amplifier circuit configured to generate a second electrical signal, the first and second electrical signals being for driving an electrical load, and a control circuit electrically coupled to the first and second amplifier circuits wherein the control circuit is configured to generate a pulsed electrical signal and to supply an output control signal to the second amplifier circuit for controlling generation of the second electrical output signal, wherein the supply modulator is configured to operate in two modes of operation, for the first amplifier circuit to generate the first electrical signals in response to quiescent current of the first amplifier circuit, for the control circuit to generate a modulated electrical signal in accordance with a clock signal in one mode, and, for the second amplifier circuit to operate.
A circuit for generating a radio frequency signal is provided. The circuit includes an amplifier configured to generate a radio frequency signal based on a baseband signal. Further, the circuit includes a power supply configured to generate a variable supply voltage based on a control signal indicating a desired supply voltage, and to supply the variable supply voltage to the amplifier. The circuit further includes an envelope tracking circuit configured to generate the control signal based on a bandwidth of the baseband signal, and to supply the control signal to the power supply.
An apparatus for inspecting a surface includes a housing and a probe. The housing includes a light source to direct light along a longitudinal axis and a shutter to selectively allow light to pass through to the probe. The probe includes a body portion and a head portion. The head portion of the probe includes a collector to detect photoelectrons emitted from the surface in response to light from the light source impinging on the surface. A proximal portion of the head portion moves relative to a distal portion of the head portion to allow for variations in angle relative to the surface.
An energy or water storage system can comprise a storage reservoir, a discharge reservoir, a pump for charging the storage reservoir, and a turbine or similar discharge device. The storage reservoir can comprise a flexible bag covered by overburden that creates pressure inside the bag. Energy is stored by raising the overburden. The bag can comprise a shaped internal filler piece to prevent formation of a crease at the bag edge. Solar panels can be mounted above any bag to make additional use of the land. Solar panels mounted on overburden can have tracking mechanisms and controls suitable to achieve desired orientation regardless of the slope of overburden. Elevation difference between the storage reservoir and discharge reservoir can be used, including an underground cavity. The bag can have internal tethers to influence bag shape.
In a motor control device in one embodiment, an initial position estimation unit estimates an initial position of a magnetic pole of a rotor of a motor in an inductive sensing scheme. At each of energization angles, the initial position estimation unit multiplies a γ-axis current component Iγ corresponding to a peak value of a current flowing through a stator winding by each of a cosine value and a sine value of a correction angle obtained by correcting each of the energization angles. The initial position estimation unit estimates the initial position of the magnetic pole of the rotor based on a ratio between an integrated value of a multiplication result about the cosine value and an integrated value of a multiplication result about the sine value.
Disclosed is a piezoelectric inertial drive stage including a piezoelectric inertial driver, a slider and a holder. The driver includes a mounting portion for the mounting on the holder, a friction portion coupling to the slider, a flexure portion between the mounting portion and friction portion, a piezoelectric element with a first end bonded to the mounting portion and a second end bonded to a movement portion, the movement portion transferring the motion of the piezoelectric element to the friction portion to drive the slider.
Provided is a technique for reducing the size and cost of a semiconductor device. A semiconductor device includes an IGBT module having an IGBT, and a MOSFET module having a MOSFET whose operational property is different from that of the IGBT, the MOSFET module being connected to the IGBT module in parallel. The semiconductor device is capable of selectively executing an operation mode in which switching timing in the IGBT module and switching timing in the MOSFET module are non-identical.
Current flowing through an inductor on a primary side of a voltage converter is sensed and compared to a threshold peak current value to determine when to end an ON portion of the voltage converter. The secondary side of the voltage converter supplies an indication of output voltage for use in determining the threshold peak current value. On start-up the primary side detects when the indication of output voltage is supplied by the secondary side across on isolation channel. Prior to detecting the indicating is being supplied, the primary side uses an increasing threshold peak current as the threshold peak current value. After detection that the indication of output voltage is being provided by the secondary side, the threshold peak current value is based on the indication of the output voltage.
This present invention is an invented high-performance error amplifier concept and unique circuitry architecture for controller of switching mode power supply (SMPS). The invented error amplifier comprises a front-end buffer circuit, an embedded differential amplifier, an N-MOSFET based output driving stage and coupled passive RC network. The embedded error amplifier is constructed with two differential pair inputs and an output amplification stage. N-MOSFET output stage coupled to the output of the embedded differential amplifier enhances the load driving capability of proposed error amplifier. The clamp voltage can be configured by another passive network and an output stage with two current sources. This invention allows user to arbitrarily configure the clamp voltage level regardless of the error amplifier's bias voltage. In addition, the highly accurate clamp voltage level can be achieved without temperature drift issue.
Modulating a gate drive current supplied to an output drive switch coupled to an electric motor by performing at least the following: obtain a gate drive current modulation profile, supply, based on the gate drive current modulation profile, a first gate drive current level as the gate drive current when the output drive switch is operating within a first region, drop the first gate drive current level to a second gate drive current level when the output drive switch transitions from the first region to operating within a Miller region, increase the second gate drive current level to a third gate drive current level within the Miller region, and set the gate drive current to a fourth gate drive current level when the output drive switch transitions from the Miller region to operating within a third region.
A first bearing box has, in one end face perpendicular to a direction along a rotor shaft and farther from a fan, an air outlet for air taken in through an air inlet to exit. A flow channel is defined between an outer peripheral surface of a cylindrical portion of the first bearing box continuous with the end face and a frame. A value obtained by dividing a distance between an outer periphery of blades in the fan and the air outlet by an outer radius of the blades is greater than or equal to a threshold.
A motor stator includes a plurality of stacked annular stator laminates defining a stator core having a plurality of stator teeth on an inner diameter thereof, at least some of the plurality of stator laminates including a plurality of coolant openings therethrough. The plurality of coolant openings of adjacent stator laminates communicate with one another in order to define cooling channels inside the stator core. At least some of the plurality of stator laminates include the plurality of coolant openings including a plurality of generally circumferentially extending slots.
Provided is a motor rotor having a magnet attachment structure that can be used in a severe environment, for example. A motor rotor comprises: a rotary shaft; an annular magnetic body; a metal member; and an annular magnet that surrounds the magnetic body. The magnetic body has two surfaces that face each other in the rotary shaft direction, and a protruding part that protrudes from one surface of the two surfaces in the rotary shaft direction. The protruding part surrounds the rotary shaft. The magnet has two surfaces that face each other in the rotary shaft direction. The metal member is disposed on one surface of the magnet. The metal member surrounds the protruding part. The metal member is interposed between the protruding part and the one surface of the magnetic body.
A motor rotor equipped with a cylindrical rotor core formed by stacking multiple electromagnetic steel plates, end plates and balance weights stacked at both ends of the rotor core, and multiple headed swaging pins penetrating and integrally connecting the rotor core, the end plates, and the balance weights, wherein spacers or washers formed of a harder material than the swaging pins are interposed between the seating surface of the balance weights and the heads of the swaging pins. Thus, resistance of the motor rotor to excessive excitation force can be increased and a decrease in fastening strength can easily be prevented without changing the structure integrally fastened together by the swaging pins.
An internal rotor for an electric machine includes a rotational axis, an outer circumferential face which delimits the internal rotor, a pole arrangement comprising a centroid, and an actuating mechanism for moving the pole arrangement towards the rotational axis or away from the rotational axis to set a first spacing between the outer circumferential face and the centroid. In an example embodiment, the actuating mechanism has an actuator for moving the pole arrangement. The actuator has a hydraulically operable piston, a pneumatically operable piston, an electric motor actuator, or converts an axial force to a radial force. In an example embodiment, the actuating mechanism is operatively connected to the pole arrangement. The actuating mechanism is arranged between the rotational axis and the pole arrangement, or the actuating mechanism is arranged between the outer circumferential face and the pole arrangement.
A rotating electrical machine having holding surfaces on a pair of housings which firmly holds a stator core made of a core stack. The holding surfaces have a small-diameter first annular surface and a large-diameter second annular surface arranged at different locations in the axial direction. The surfaces in contact with inner and outer circumferential regions of a yoke hold the core. Two contacts between the housing and core are in different locations on a radial and axial direction. An outer peripheral side of the yoke where plate thickness is smaller and an inner peripheral side where plate thickness is larger are pressed individually in the axial direction. A firm holding feature suitable for configuration of the yoke is ensured to setting a difference in level between the contacts Eliminating problems about gaps created between layers of the core stack without any changes to the structure of the core stack.
The present disclosure relates to a wireless power transmitter device, a wireless power receiver device, and a system for transferring power wirelessly. A wireless power transmitter device according to an embodiment of the present disclosure can include: a driving coil configured to transmit power wirelessly; a magnetic coupler mutually inductively coupled with the driving coil; and a resonance frequency adjuster part configured to adjust the resonance frequency of the magnetic coupler, where the magnetic coupler can include a plurality of coils arranged in a region opposite one side of the driving coil.
The present disclosure relates to a wireless power receiving apparatus capable of receiving multi-level power transmitted by a wireless power transmitting apparatus. According to an embodiment of the present disclosure, the wireless power receiving apparatus includes a first receiving coil in which induced current is generated by electromagnetic induction, a second receiving coil connected in series with the first receiving coil by a switch, and a processor that is driven based on the induced current generated by the first receiving coil and controls the switch based on power information included in the induction current to selectively connect the first receiving coil and the second receiving coil.
Disclosed is a charge protection circuit including: a switch that switches between allowing and not allowing power supply from an external power source to a charging circuit that supplies power for charging a rechargeable battery; a detector that detects at least one of a current flowing from the charging circuit to the rechargeable battery and a voltage between two electrodes of the rechargeable battery; a determiner that determines whether a detection result of the detector is abnormal; and a controller that, in response to the determiner determining that the detection result of the detector is abnormal, causes the switch to switch to an interrupting state so as to interrupt power supply to the charging circuit.
A power supply system includes a plurality of battery modules and a control unit, and supplies electric power from the battery modules in an uppermost stage and a lowermost stage to a load. The control unit is configured to perform ON/OFF control for setting the battery modules to an ON state in an active time, setting the battery modules to an OFF state in a non-active time, and alternately repeating the active time and the non-active time. The control unit is configured to delay an ON/OFF control timing for the battery module in a lower stage adjacent to the battery module in a higher stage by a control delay time in comparison with the battery module in the higher stage. The control unit is configured to randomly determine the control delay times for the battery modules in lower stages than the battery module in the uppermost stage.
A power supply device includes a battery and processing circuitry. The processing circuitry is configured to estimate a tendency of consumption of the battery and put the power supply device into one of a first state in which the power supply device can supply electric power to another device and a second state in which the power supply device can receive electric power from said another device, in accordance with the tendency of consumption of the battery estimated.
A control unit for a battery system includes a plurality of battery cells is provided. The control unit includes: an input node configured to receive a sensor signal indicative of a state of at least one of the plurality of battery cells; a microcontroller connected to the input node and configured to generate a first control signal based on the sensor signal; and a switch control circuit configured to control a power switch of the battery system by: receiving the sensor signal, the first control signal, and a fault signal indicative of an operational state of the microcontroller; generating a second control signal based on the sensor signal; and transmitting one of the first control signal and the second control signal to an output node of the control unit based on the received fault signal.
A method and system for AC battery operation. In one embodiment, the method comprises determining, at a battery management unit (BMU) coupled to an AC battery comprising a power converter and a battery that is rechargeable, a bias control voltage that indicates a state of a charge process of the AC battery; and coupling, by a bias control module of the BMU, the bias control voltage to the power converting for communicating the state of the charge process to and from the BMU and the power converter.
An arrangement having a multifunctional connection for energy storage cells or energy consumers provides at least one device for charge equalization and/or a measuring device for measuring an electrical voltage of energy storage cells or energy consumers; an electrical bridging element between two electrically insulated conductors; and a trigger circuit for activating the bridging element. One of the two electrical conductors is connected or is connectable to a first pole in an electrically conductive manner, and the other electrical conductor is connected or connectable in an electrically conductive manner to a second pole of the energy storage cell or of the energy consumer. The device for charge equalization and/or the measuring device is connected to the electrical connection of the bridging element. The electrical connection can thus be used simultaneously for triggering the bridging element and for the charge measurement and/or the charge equalization.
The present disclosure provides a power supply system method for an AC load. The system includes a power supply device and a DC/AC converter. An AC side of the DC/AC converter is coupled to an AC grid and the AC load through an AC bus. The power supply device outputs DC electric energy and is coupled to a DC side of the DC/AC converter through a DC bus. The power supply device includes an energy storage circuit and a controller. The energy storage circuit includes a first energy storage circuitry and a second energy storage circuitry. The controller is configured to control a conversion operation of the first energy storage circuitry to output a low-frequency power to the DC bus, and a conversion operation of the second energy storage circuitry to output a high-frequency power to the DC bus.
An electric vehicle fast charger and methods thereof are described, adapted for re-use of magnetic components of an electric vehicle having traction converters when the electric vehicle is stationary and connected to a power grid. A switching stage provided by one or more sets of switches is controlled complementarily with the switches of the traction converters to (i) provide inversion of a grid voltage and (ii) shape current of the grid current between the electric vehicle and the power grid to track a waveshape of the grid voltage. A single switching stage and a dual switching stage circuit are contemplated, along with switch controller circuits, and instruction sets for switch control. Variants provide for energy transfer to accommodate for energy imbalances between storage devices.
A system for allocating power includes a plurality of receptacles and a power delivery controller communicatively coupled to the plurality of receptacles. The power delivery controller is to: detect a new connection to a first receptacle of the plurality of receptacles; receive a request from the first receptacle which would exceed an amount of uncommitted available power; request a device attached to a second receptacle of the plurality of receptacles reduce an amount of power being received from the second receptacle; and in response to detecting a reduction of power to the second receptacle, provide power to the first receptacle as indicated in the request.
Provided are an overcurrent and overvoltage protection circuit, an electromagnetic induction type wireless power supply system and a cooking appliance. The overcurrent and overvoltage protection circuit includes a current detecting unit that outputs a current detection value by detecting a resonance current of a resonant transmitting unit a voltage detecting unit that outputs a voltage detection value by detecting a resonance voltage of the resonant transmitting unit and a main control unit including a current detecting end and a voltage detecting end, and the current detecting end is connected to an output end of the current detecting unit, the voltage detecting end is connected to an output end of the voltage detecting unit, and when the current detection value exceeds a preset current limit and/or the voltage detection value exceeds a preset voltage limit.
A grommet includes a body portion defining a first aperture and a second aperture. A hollow channel extends between the first aperture and the second aperture. The channel is defined by an interior surface of the body portion. One or more engagement structures are defined by the interior surface of the grommet body portion, and are configured to engage one or more corresponding engagement structures provided about an exterior surface of a mounting structure engaged about and elongated member that is positioned within the hollow channel of the grommet.
This installation has at least one electric cable (12) having three conductors. At least one cable duct contains at least one section of the cable (12) and at least one connection chamber (10) in which two sections of the cable (12) are connected by means of a connection joint (14). The cable (12) is a helical assembly of the three conductors which comprises neither armouring nor sheath around this assembly.
Gallium and nitrogen containing optical devices operable as laser diodes and methods of forming the same are disclosed. The devices include a gallium and nitrogen containing substrate member, which may be semipolar or non-polar. The devices include a chip formed from the gallium and nitrogen substrate member. The chip has a width and a length, a dimension of less than 150 microns characterizing the width of the chip. The devices have a cavity oriented substantially parallel to the length of the chip.
A laser system includes: A. a solid-state laser apparatus configured to output a pulse laser beam having light intensity distribution in a Gaussian shape that is rotationally symmetric about an optical path axis; B. an amplifier including a pair of discharge electrodes and configured to amplify the pulse laser beam in a discharge space between the pair of discharge electrodes; and C. a conversion optical system configured to convert the light intensity distribution of the pulse laser beam output from the amplifier into a top hat shape in each of a discharge direction of the pair of discharge electrodes and a direction orthogonal to the discharge direction.
A diamond Raman laser may include a diamond Raman oscillator (DRO) with a first diamond gain medium, a seed laser providing a seed beam at a seed wavelength, and a cavity configured to resonate at a first-Stokes wavelength, the first-Stokes wavelength corresponding to first-Stokes emission in diamond when pumped with the seed wavelength, and where the DRO outputs a first-Stokes beam at the first-Stokes wavelength. The diamond Raman laser may further include a diamond Raman amplifier (DRA) to amplify the first-Stokes beam and generate an amplified first-Stokes beam, where the DRA includes two or more diamond Raman amplification stages, each including one or more second diamond gain media, and one or more optical filters to filter light with a second-Stokes wavelength generated in at least one of the one or more second gain media.
A connector for a coaxial cable includes a coupler portion configured to engage an interface port, a housing portion having a forward end configured to be disposed at least partially within the coupler portion, and an outer conductor engager portion made of a conductive material disposed within the housing portion. The housing portion includes a rearward end configured to receive the coaxial cable and is configured to move axially relative to a post that engages the outer conductor of the cable. An interior surface of the housing portion is configured to compress an insert of the post when the housing portion is moved axially relative to the post such that the outer conductor is compressed radially inward against an exterior surface of the insert of the post.
A header assembly includes a header housing having a header cavity. The header assembly includes header signal contacts received in corresponding signal contact channels having mating ends arranged in the header cavity for mating with the receptacle assembly. The header assembly includes header ground contacts received in corresponding ground contact channels. Each header ground contact includes shield walls forming a shield cavity receiving header signal contacts to provide electrical shielding for the header signal contacts. The shield walls include an end wall extending between first and second side walls. Each header ground contact includes a mating protrusion that extends outward relative to the shield cavity from the corresponding shield wall. The mating protrusion is configured to engage a conductive insert of the receptacle assembly used to electrically common each of the header ground contacts.
The present disclosure relates to strain relief devices for communication connectors. The strain relief devices are configured to couple to the communication connectors via existing fastener components (e.g., screw receivers), and support optic fiber and/or other cables that extend from the communication connectors at a desired position. The strain relief devices prevent the cables from being damaged by a lack of sufficient support during installation, removal, use, repair, and/or transport.
A seal cover (1) is provided for closing an opening portion (10) in a device in which a standby connector (11) is disposed. The standby connector (11) includes male terminals 11B for switching a state of an energizing circuit between a conductive state and a non-conductive state. Female terminals (23B), a shaft seal (25) and an O-ring (23D) are arranged in such a positional relationship that a time point when the shaft seal (25) is compressed maximally, a time point when the O-ring (23D) is compressed maximally and a time point when the female terminals (23B) are resiliently deformed maximally do not overlap with each other when the seal cover (1) is mounted on the opening portion (10).
A female terminal (10) includes a rectangular tubular body (24) extending in a front-rear direction. A first resilient piece (26A) is folded from a bottom wall (16) into the body (24) via a first base end (40), and a second resilient piece (26B) is folded from the bottom wall (16) into the body (24) via a second base end (42) in the same folding direction as the first resilient piece (26A). The second base end (42) is displaced from the first base end (40) in the front-rear direction. The second resilient piece (26B) is closer to the bottom wall (16) than the first resilient piece (26A). The second resilient piece (26B) is pressed by the first resilient piece (26A) and resiliently displaced toward the bottom wall (16) with the second base end (42) as a fulcrum when the first resilient piece (26A) is displaced toward the bottom wall (16).
A movable housing has a fitting recess into which a fitting protrusion of a mating connector is fitted. The fitting recess has a pair of side wall portions facing each other, a pair of connecting wall portions connecting both end portions of the pair of side wall portions, and a bottom wall portion connecting the pair of side wall portions and the pair of connecting wall portions. A plurality of terminals is held by the pair of side wall portions and the bottom wall portion. A second fixing portion of the terminal has a first and second linear shaped portion, and a first bent portion connecting the first second linear shaped portions. At least a part of the first linear shaped portion is exposed from the movable housing on an inner wall surface of the bottom wall portion.
An electrical connector assembly includes a first connector. The first connector has a main body. The main body has a first end wall and a second end wall opposite to each other. Multiple first terminals are provided on the main body. The first connector is used to be mated with a circuit board. The circuit board has multiple first conductive portions, multiple second conductive portions and multiple first wires electrically connecting the first conductive portions and the second conductive portions correspondingly. The second conductive portion is correspondingly electrically connected to the first terminal. The first end wall is located closer to the first conductive portion relative to the second end wall. A top surface of the first end wall is lower than a corresponding first conductive portion adjacent to the first end wall.
It is aimed to make a ground terminal easily broken even if forces are applied to the ground terminal from various directions. A ground terminal (10) to be attached to a body (11) includes a body fixing portion (12) to be fixed to the body 11 and a wire connecting portion (14) to be connected to a wire (13). The body fixing portion (12) is plate-like and includes a through hole (19) through which a fixing member is inserted. The body fixing portion (12) is formed with an arc groove having an arc shape along a peripheral edge of the through hole (19). The body fixing portion (12) is formed with an oblique groove connected to the arc groove and extending to intersect an extending direction of the wire connected to the wire connecting portion (14).
Disclosed are a wire joint and a manufacturing method thereof. The wire joint includes a wire and a joint; the wire includes a plurality of strands of core wires and a first wire skin, each strand of the core wires is wrapped by the first wire skin, the first wire skin outside the each strand of the core wires is stripped within a threshold interval, the each strand of the core wires in the threshold interval is subjected to a tin-impregnation treatment, and an insulating wire fastener is provided between the each strand of the core wires in the threshold interval; the joint includes a connection section and an extraposition section, the insulating wire fastener is wrapped in the extraposition section, and the connection section is connected at one end of the extraposition section and wraps outside the first wire skin of the plurality of strands of core wires.
A terminal clamp including a contact cage including a cage floor, a cage ceiling and two cage side walls that are arranged opposite to each other and respectively connect the cage floor with the cage ceiling, wherein the cage floor, the cage ceiling and the two cage side walls form an inner enveloping surface in combination and envelop a conductor receiving cavity; a clamping device formed by at least one spring element and a reaction bearing, the clamping device configured to support and electrically contact an electrical conductor in the conductor receiving cavity; a frontal conductor insertion opening that is enveloped by the two cage side walls, the cage ceiling and the cage floor, wherein the electrical conductor is insertable through the conductor insertion opening into the conductor receiving cavity and feedable to the clamping device; a contact cage longitudinal axis oriented in the conductor insertion direction.
A disk having at least one electric connecting element is described. The disk has a substrate, and electrically conductive structure on a region of the substrate, a connecting element containing at least chromium-containing steel, and a layer of a soldering compound that electrically connects the connecting element to sub-regions of the electrically conductive structure.
Examples disclosed herein relate to an analog beamforming antenna for millimeter wavelength applications. The analog beamforming antenna includes a superelement antenna array layer comprising an array of superelements, in which each superelement includes a coupling aperture oriented at a predetermined non-orthogonal angle relative to a plurality of radiating slots for radiating a transmission signal. The analog beamforming antenna also includes a power division layer configured to serve as a feed to the superelement antenna array layer, in which the power division layer comprising a plurality of phase control elements configured to apply different phase shifts to transmission signals propagating to the superelement antenna array layer. The analog beamforming antenna also includes a top layer disposed on the superelement antenna array layer. The top layer may include a superstrate or a metamaterial antenna array. Other examples disclosed herein include a radar system for use in an autonomous driving vehicle.
A continuous antenna array includes a plurality of antenna elements whose opposing electrodes create an electric field that excites polarization currents in an enclosed dielectric. Each of the antenna elements comprises one or more stripline feeds configured to provide a flat form factor and apply a signal with controlled phase differences between the plurality of antenna elements.
An antenna structure includes a housing, a first feed source, and a second feed source. The first feed source is electrically coupled to a first radiating portion of the housing and adapted to provide an electric current to the first radiating portion. The second feed source is electrically coupled to one of a second radiating portion or a third radiating portion of the housing. The other one of the second radiating portion or the third radiating portion is electrically coupled to the first radiating portion.
A method and apparatus for DC offset correction in an antenna aperture are described. In one embodiment, the antenna comprises: an array of antenna elements having liquid crystal (LC); drive circuitry coupled to the array and having a plurality of drivers, each driver of the plurality of drivers coupled to an antenna element of the array and operable to apply a drive voltage to the antenna element; and voltage correction logic coupled to the drive circuitry adjust drive voltages to compensate for an offset between a first magnitude of a first voltage applied to the LC of each antenna element during a first interval of drive polarity and a second magnitude of a second voltage applied to the LC of said each antenna element during a second interval of drive polarity opposite the drive polarity of the first interval.
A floor system uses interlocking elements to form a surface raised above a floor surface for the distribution of electrical power and data throughout the floor of a building. The base units of the interlocking elements define channels which receive cables for data and power transmission. Channel and corner covers overlie the channels and interlock with the base units to form the raised surface. Fused electrical feed modules within channels provide electrical power to bus bars which distribute the power to fused terminal boxes and radio frequency sensors and beacons mounted in the base units.
A wireless device includes a shell and an array antenna. The shell is configured with a low reflection structure. The array antenna disposed inside the shell, and the low reflection structure is located within a radiation range of the array antenna after beam scanning. The low reflection structure includes a plurality of slots arranged periodically.
An antenna includes a first helical arm and a second helical arm. The first helical arm is wound clockwise along a longitudinal direction of an axis of the antenna, and the second helical arm is wound counterclockwise along the longitudinal direction of the axis of the antenna. The second helical arm and the first helical arm form at least one intersecting point, a first feeding point is disposed on the first helical arm, a second feeding point is disposed on the second helical arm, the first feeding point and the second feeding point are two points symmetrical relative to the axis of the antenna, and any intersecting point of the at least one intersecting point further forms a third feeding point, where the first feeding point and the second feeding point are connected to a first feeding port, and the third feeding point is connected to a second feeding port.
A receiving device is provided. The receiving device is adapted to receive a plurality of objects, wherein each object includes an RFID. The receiving device includes a device housing, a plurality of spacing shelves and a plurality of reading antenna modules. The spacing shelves are disposed in the device housing, wherein the spacing shelves define a plurality of receiving spaces in the device housing, and at least some of the receiving spaces overlap each other. The reading antenna modules are respectively disposed in the receiving spaces, and are adapted to read the RFIDs of the objects. The device housing includes an inner wall and an opening. The inner wall includes a first wall, a second wall and a third wall. The first wall faces the third wall. The second wall faces the opening. The reading antenna modules are disposed on the inner wall.
An electronic device includes a cover glass, a display exposed through the cover glass, a housing for mounting the display, a first printed circuit board (PCB) and a second PCB that are disposed inside the housing, a back cover coupled to the housing, a first antenna element electrically connected to a ground area through the first PCB, and a communication circuit feeding the first antenna element and transmitting or receiving a signal through the first antenna element. A spaced distance between the first PCB and the display is longer than a spaced distance between the second PCB and the display.
A digital high-speed load pull tuner comprises a slide screw automatic tuner in a traditional reflection configuration and an active forward injection loop using a digital tuner in a transmission configuration. The forward active injection loop comprises two compact signal couplers of which at least one is adjustable, a digital tuner, circulator, feedback power amplifier; the passive tuner comprises one or more remotely controlled mobile carriages sliding along the slabline and carrying metallic tuning probes, used to create passive reflection factors. The incoming signal is sampled, modulated in amplitude and phase by the digital tuner and fed back into the slabline synchronizing with the passive reflected signal, to create a partially virtual load presented to the DUT.
An object is to prevent deterioration of a battery or to prevent decrease in capacity in storage so as to maximize the charge and discharge performance of the battery and maintain the charge and discharge performance of the battery for a long time. A third electrode or a fourth electrode is provided between a positive electrode and a negative electrode of a secondary battery and a signal (current, voltage, or the like) for inhibiting self-discharge is applied to the third electrode or the fourth electrode, whereby a potential difference between the third electrode and the positive electrode or a potential difference between the third electrode and the negative electrode is adjusted and a chemical reaction in the secondary battery is controlled.
A battery module is provided. The battery module includes pouch-type battery cells stacked on each other and electrically connected in series and/or in parallel. Toward an electrode lead of one pouch-type battery cell, electrode leads of other pouch-type battery cells are biased to allow ends of the electrode leads to be overlapped. In particular, each of the pouch-type battery cells has an R bending portion at which a boundary region between a terrace of a pouch case and the electrode leads is bent toward a direction in which the electrode leads are biased.
Disclosed is a battery pack comprising multiple secondary batteries and allowing a reduction in the number of components and an increase in cooling efficiency. Disclosed as an embodiment is a battery pack comprising: multiple battery cells, each comprising a first electrode and a second electrode formed opposite the first electrode; first tabs coupled to the first electrodes; second tabs connected to the second electrodes of the battery cells and formed so as to extend towards the areas in which the first tabs are positioned; and a cover which accommodates the battery cells, first tabs, and second tabs and from one side of which the first tabs and second tabs protrude, and bus bars electrically connected to the battery cells at the one side of the cover from which the first tabs and second tabs protrude.
A battery unit for a traction battery of a motor vehicle is provided. The battery unit includes at least two battery cells arranged adjacent to one another, which each include at least one venting unit for venting the cell housing thereof. The venting units are arranged on sides of the battery cells that are facing each other, and at least two shield units are arranged between the sides of the battery cells that face each other and at a distance from one another. Each shield unit includes a shield wall having at least one opening and at least one closure element. The opening of each shield wall is arranged aligned with the venting unit of the battery cell arranged closest to this shield wall in each case. The closure element, in a closing position, in which the closure element closes the opening, is arranged fully against the shield wall and in an open position, in which the closure element at least partially reveals the opening, is at least partially separated from the shield wall. The closure element can be transferred from the closing position into the open position by the action thereon of a force directed in the direction of the other shield unit.
A rechargeable lithium ion button cell includes a first metal conductor electrically connected to a positive electrode and a housing component, and a second metal conductor electrically connected to the positive electrode and another housing component, wherein the positive electrode and a negative electrode each include a strip-shaped current collector, at least one of the strip-shaped current collectors includes sections coated with an active electrode material and an uncoated section between two coated sections, and either the first or the second metal conductor is attached by welding to the uncoated section and one of planar bottom and planar top regions, thereby electrically connecting either the positive or negative electrode to the housing component.
A management system for a commercial electric vehicle (EV), comprising: a controller area network (CAN) comprising a plurality of CAN buses connected to a plurality of components of the EV; and a vehicle controller connected to the CAN and configured to monitor and/or control the plurality of components of the EV based on CAN signals; wherein the plurality of CAN buses and their respective components comprise: a drive CAN bus connected to a motor controller system; a battery CAN bus connected to a battery system; and a telematics CAN bus connected to a telematics system.
Various embodiments of a technique to estimate and monitor a self-discharge rate for use as a measure of battery health are described herein. In some embodiments, the technique includes a system including a processor and a memory coupled with the processor. The memory is configured to provide the processor with instructions that when executed cause the processor to receive a plurality of snapshots obtained by monitoring a battery system in a quiescent state at a plurality of times. Each snapshot includes a plurality of cell state values at one of the plurality of times. The memory is further configured to provide the processor with instructions that when executed cause the processor to estimate a self-discharge indicator using at least one snapshot in the plurality of snapshots, compare the self-discharge indicator to a threshold, and recommend a remedy for the battery system in response to the self-discharge indicator exceeding the threshold.
A secondary battery and a control section are included. An electrode of the secondary battery has a singular point at which a variation in an output voltage with respect to a capacity is singularly changed. The control section includes a detection section and a calculation setting section. The detection section changes the capacity of the secondary battery, and detects a singular point capacity which is the capacity at which the singular point appears. When the secondary battery is deteriorated, the calculation setting section calculates and sets at least one of an upper limit value and a lower limit value of the capacity by using a detection value of the singular point capacity after the deterioration so that a potential of the electrode does not deviate from a predetermined range.
A battery pack is provided which includes a battery, a circuit board equipped with load feed lines, bus bars connecting with the battery and the circuit board, first and second switches, and third to sixth switches. The first and second switches are disposed in a housing which is higher in capacity of heat dissipation than the circuit board. The third to sixth switches are disposed on the circuit board. The first and second switches are larger in amount of electrical current flowing therethrough than the third to sixth switches on time average. This enables the size of the battery pack to be reduced without sacrificing the dissipation of heat from the switches.
A method of making the sulfide-impregnated solid-state battery is provided. The method comprises providing a cell core that is constructed by cell unit. The cell core is partially sealed into the packaging such as the Al laminated film and metal can. The method further comprises introducing a sulfide solid-state electrolyte (S-SSE) precursor solution in the cell core, the S-SSE precursor solution comprises a sulfide solid electrolyte and a solvent. The method further comprises evaporating the solvent from the cell core to dry the cell core to solidify the sulfide-based solid-state electrolyte within the cell core and pressurizing the cell core to densify the solid sulfide-base electrolyte within the cell core. The cell core is then fully sealed.
An all-solid-state battery includes an all-solid-state battery laminate including at least one all-solid-state unit cell in which a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer are laminated in this order, and a resin layer covering a side surface of the all-solid-state battery laminate, wherein the resin layer has a multi-layer structure including a first resin layer and a second resin layer in this order from the side in the vicinity of the side surface of the all-solid-state battery laminate, and wherein the elastic modulus of the first resin layer is lower than the elastic modulus of the second resin layer.
The present disclosure relates to a sodium-ion storage material and an electrode material for a sodium-ion battery, an electrode material for a seawater battery, an electrode for a sodium-ion battery, an electrode for a seawater battery, a sodium-ion battery, and a seawater battery, which include the sodium-ion storage material. Specifically, the sodium-ion storage material may include one or more materials selected from the group consisting of CuxS, FeS, FeS2, Ni3S, NbS2, SbOx, SbSx, SnS and SnS2, wherein 0
A power storage device includes: a power storage stack which includes a plurality of power storage cells; a heating member that heats the power storage stack; a cooling member that cools the power storage stack; a first pressing member that presses the heating member against the power storage stack; a second pressing member that presses the cooling member against the power storage stack; and a sheet member covering the bottom of the power storage stack so that an enclosed space is formed between the sheet member and the power storage stack in a cross section of the power storage stack, wherein the sheet member has a first surface and a second surface, the cooling member is disposed on the first surface, within the enclosed space, and the heating member is disposed on the second surface, on an outer side of the enclosed space.
A raw material of an electrolyte solution that is to be dissolved in a solvent to form an electrolyte solution, and the raw material of an electrolyte solution is a raw material of an electrolyte solution that is a solid or semisolid that contains Ti in an amount of 2 mass % to 83 mass % inclusive, Mn in an amount of 3 mass % to 86 mass % inclusive, and S in an amount of 6 mass % to 91 mass % inclusive.
The present invention is directed to novel membrane electrode assemblies, and devices and systems incorporating them. Representative membrane electrode assemblies comprise (a) a first, porous electrode; (b) a buffer layer optionally comprising an aqueous solution comprising a pH buffer; (c) a membrane; and (d) a second, porous electrode comprising a catalyst for the generation of oxygen (O2); wherein the membrane is interposed between the first electrode and the second electrode, and the buffer layer is interposed between the membrane and the first electrode.
A vehicle is provided having a vehicle front end in which a fuel cell system which has a fuel cell stack is arranged, which full cell system is, at a cathode side, connected at least directly to an exhaust-gas line through which a fluid emerging from the fuel cell stack can be discharged from the vehicle front end. The exhaust-gas system comprises a sorption system for the adsorption of a liquid of the fluid emerging from the fuel cell stack. The invention furthermore relates to a method for treating a fluid of a fuel cell system, which has a fuel cell stack, in a vehicle.
The invention relates to a cooling system (10) for fuel cell stacks (22, 26), comprising a first cooling module (14) and a second cooling module (18). The first cooling module (14) comprises a fuel cell stack (22, 26), a supply line connection (30, 34) for connecting a supply line (38, 42) for supplying coolant to the fuel cell stack (22, 26), a discharge line connection (46, 50) for connecting a discharge line (54, 58) for discharging coolant from the fuel cell stack (22, 26), and a venting line connection (94, 98) for connecting a venting line (102, 106).
An aqueous lithium-ion battery and an electrode used therein are provided, wherein the electrode includes a current collector, a coating layer, and a composite layer. The coating layer is disposed on at least one surface of the current collector, and the coating layer contains an active material. The composite layer is disposed on a surface of the coating layer. The composite layer includes a first film and a second film, wherein the first film is between the second film and the surface of the coating layer, and the water contact angle of the first film is greater than the water contact angle of the second film.
A composite cathode active material including: a core particle; a first coating layer; and a second coating layer; wherein the core particle includes a cathode active material, the first and second coating layers cover a surface of the core particle, the first coating layer includes a first lithium-containing compound, wherein the first lithium-containing compound includes zirconium, niobium, titanium, aluminum, or a combination thereof, the second coating layer includes a second lithium-containing compound, wherein the second lithium-containing compound includes germanium, niobium, gallium, or a combination thereof, and the first lithium-containing compound is different from the second lithium-containing compound.
Provided is a positive electrode structure for a secondary battery. This positive electrode structure includes: a positive electrode current collector composed of a tabular nickel foam and having a tabular coated portion and an uncoated portion extending from an outer peripheral portion of the coated portion; and a positive electrode active material containing nickel hydroxide and/or nickel oxyhydroxide incorporated into the coated portion of the positive electrode current collector. The positive electrode active material is not present in the uncoated portion of the positive electrode current collector, and the nickel foam constituting the uncoated portion is compressed so as to have a thickness of 0.10 times or more and less than 0.8 times a thickness of the nickel foam constituting the coated portion.
An energy storage device includes a positive electrode having a positive active material layer containing an active material in the form of particles. The positive active material layer contains primary particles of the active material and secondary particles formed by aggregation of a plurality of primary particles. The proportion of primary particles relative to all particles of the active material in the positive active material layer is 5% or more and 40% or less. An method for producing an energy storage device includes preparing a positive electrode having a positive active material layer by forming a positive active material layer from a composite containing at least secondary particles of an active material, and assembling an energy storage device using the prepared positive electrode. In the preparation of the positive electrode, the positive active material layer is pressed to deagglomerate some of the secondary particles into primary particles, and the proportion of primary particles relative to all particles of the active material in the positive active material layer is adjusted to 5% or more and 40% or less.
The present disclosure provides an organic light-emitting display panel, a method for making the same, and a display device including the same. The organic light-emitting display panel comprises an active region and a pixel spacer located within the active region, and the pixel spacer is provided with a buffer chamber.
A display cover substrate according to an embodiment includes: a flexible substrate including one surface and the other surface opposite to the one surface; a surface reinforcing layer disposed on the one surface; and a functional layer disposed on the surface reinforcing layer, wherein the functional layer includes a plurality of layers having different refractive indexes, and an average light transmittance is 90% or more in a light wavelength band of 388 nm to 700 nm, and an average light transmittance is less than 90% and a minimum light transmittance is 60% or less in a light wavelength band of 250 nm to 388 nm.
The present disclosure relates to the field of display technologies, and relates to a display substrate, a fabricating method of a display substrate, and a display device. The display substrate includes a base. The display substrate is divided into a display area and a non-display area located at a periphery of the display area. The display area has a plurality of pixel regions. Each of pixel regions is provided with a pixel structure. The pixel structure includes a plurality of organic film layers and inorganic film layers disposed in a stacked manner. An area of the non-display area near an edge thereof is an anti-cracking reinforcing area, which is only provided with the organic film layer. The organic film layer at least covers an outer edge surface of the inorganic film layer adjacent to the anti-cracking reinforcing area in the non-display area.
By introducing new concepts into a structure of a conventional organic semiconductor element and without using a conventional ultra thin film, an organic semiconductor element is provided which is more reliable and has higher yield. Further, efficiency is improved particularly in a photoelectronic device using an organic semiconductor. Between an anode and a cathode, there is provided an organic structure including alternately laminated organic thin film layer (functional organic thin film layer) realizing various functions by making an SCLC flow, and a conductive thin film layer (ohmic conductive thin film layer) imbued with a dark conductivity by doping it with an acceptor and a donor, or by the like method.
Devices and techniques are provided for achieving OLED devices that include one or more plasmonic material exhibiting surface plasmon resonance and one or more outcoupling layers.
A polymer includes repeating unit(s) of the formula (I). a, b, c, d, e and f are 0, 1, 2, or 3. Ar1 and Ar1′ are independently of each other a group of formula (AR1). Ar2, Ar2′, Ar3, Ar3′, Ar4 and Ar4′ are independently of each other a group of formula (AR2). The polymer is preferably a co-polymer.
A metal layer and first dielectric hard mask are deposited on a bottom electrode. These are patterned and etched to a first pattern size. The patterned metal layer is trimmed using IBE at an angle of 70-90 degrees wherein the metal layer is reduced to a second pattern size smaller than the first pattern size. A dielectric layer is deposited surrounding the patterned metal layer and polished to expose a top surface of the patterned metal layer to form a via connection to the bottom electrode. A MTJ stack is deposited on the dielectric layer and via connection. The MTJ stack is etched to a pattern size larger than the via size wherein an over etching is performed. Re-deposition material is formed on sidewalls of the dielectric layer underlying the MTJ device and not on sidewalls of a barrier layer of the MTJ device.
The present invention concerns a structure or device comprising a rare earth nitride material, and a removable capping for passivating the rare earth nitride material.
The present invention provides a white light LED package structure and a white light source system, which includes a substrate, an LED chip, and a wavelength conversion material layer. The peak emission wavelength of the LED chip is between 400 nm and 425 nm; the peak emission wavelength of the wavelength conversion material layer is between 440 nm and 700 nm, and the wavelength conversion material layer absorbs light emitted from the LED chip and emits a white light source; and the emission spectrum of the white light source is set as P(λ), the emission spectrum of a blackbody radiation having the same color temperature as the white light source is S(λ), P(λmax) is the maximum light intensity within 380-780 nm, S(λmax) is the maximum light intensity of the blackbody radiation within 380-780 nm, D(λ) is a difference between the spectrum of the white light LED and the spectrum of the blackbody radiation, and within 510-610 nm, the white light source satisfies: D(λ)=P(λ)/P(λmax)−S(W)/S(λmax), −0.15
An adhesive layer is disclosed and may include a plurality of short chain molecules, each of the plurality of the short chain molecules including a first end and a second end such that the distance between the first end and second end is less than 100 nm and such that first end is configured to attach to a first surface and the second end is configured to attach to a second surface.
Provided is a light-emitting device that includes a first electrode layer, a first conduction type layer, a second conduction type layer, an active layer, and a second electrode layer. The first conduction type layer includes a current injection region formed by the first electrode layer and a current non-injection region. A waveguide structure included in the first conduction type layer, the active layer, and the second conduction type layer includes a first region and a second region. The first region has a first waveguide that is the current injection region and the current non-injection region and has a first refractive index difference. The second region has a second waveguide arranged to be extended from the first waveguide to the first end and has a second refractive index difference greater than the first refractive index difference. The second waveguide has a region narrowing toward the first end.
The present embodiment provide a method for evaluating anion permeability of a graphene-containing membrane and also to provide a photoelectric conversion device employing a graphene-containing membrane having controlled anion permeability. The method comprises:
preparing a measuring apparatus comprising an aqueous solution containing anions, a working electrode containing silver-metal, a counter electrode and a reference electrode;
measuring the reaction current I0 between the silver-metal and the anions while the electrode potential of the working electrode to the counter electrode is being periodically changed and driven under the condition that the electrodes are in contact with the aqueous solution; measuring the reaction current I1 under the condition that, instead of the working electrode, the graphene-containing membrane electrically connecting to the working electrode is in contact with the aqueous solution; and comparing the currents I0 and I1 to evaluate anion-permeability of the graphene-containing membrane.
A minute transistor is provided that includes a first insulator, a second insulator, a first, conductor, a second conductor, and third conductor, in which an angle is formed between a side surface of the first insulator and a top surface of the first conductor, and a length between the first conductor and a surface of the second conductor closest to the first conductor is at least greater than a length between the first conductor and the third conductor.
Disclosed is a field-effect transistor and a method for manufacturing a field-effect transistor. The method comprises: forming an NMOSFET region and a PMOSFET region on a substrate; forming a hard mask on the NMOSFET region and the PMOSFET region, and patterning through the hard mask; forming a multiple of stacked nanowires in the NMOSFET region and a multiple of stacked nanowires in the PMOSFET region; forming a first array of nanowires in the NMOSFET region and a second array of nanowires in the PMOSFET region; and forming an interfacial oxide layer, a ferroelectric layer, and a stacked metal gate in sequence around each of the nanowires included in the first array and the second array. Wherein the NMOSFET region and the PMOSFET region are separated by shallow trench isolation.
A high-voltage semiconductor device includes a semiconductor substrate having a first conductivity type. A first well region is disposed on the semiconductor substrate and has the first conductivity type. A second well region is adjacent to the first well region and has a second conductivity type opposite to the first conductivity type. A first source region and a first drain region is respectively disposed in the first well region and the second well region, wherein the first source region and the first drain region has the second conductivity type. A first gate structure is disposed on the first well region and the second well region, and a buried layer is disposed in the semiconductor substrate and has the first conductivity type, wherein the buried layer is overlapped with the first well region and the second well region, and the buried layer is directly below the first source region.
A semiconductor device according to an embodiment including: a semiconductor layer having a first plane and a second plane, the semiconductor layer including: a first trench on the first plane; a second trench on the second plane; a first conductivity first semiconductor region; a second conductivity type second semiconductor region between the first semiconductor region and the first plane; a first conductivity type third semiconductor region between the second semiconductor region and the first plane; a second conductivity type fourth semiconductor region between the third semiconductor region and the first plane; and a first conductivity type fifth semiconductor region provided between the second trench and the third semiconductor region in contact with the second trench; a first gate electrode in the first trench; a second gate electrode in the second trench; a first electrode on the first plane; and a second electrode on the second plane.
In an embodiment, a structure includes: a semiconductor substrate; a fin extending from the semiconductor substrate; a gate stack over the fin; an epitaxial source/drain region in the fin adjacent the gate stack; and a gate spacer disposed between the epitaxial source/drain region and the gate stack, the gate spacer including a plurality of silicon oxycarbonitride layers, each of the plurality of silicon oxycarbonitride layers having a different concentration of silicon, a different concentration of oxygen, a different concentration of carbon, and a different concentration of nitrogen.
A gate-all-around field effect transistor may be provided by forming a sacrificial gate structure and a dielectric gate spacer around a middle portion of a semiconductor plate stack. A source region and a drain region may be formed on end portions of semiconductor plates within the semiconductor plate stack. The sacrificial gate structure and other sacrificial material portions may be replaced with a combination of a gate dielectric layer and a gate electrode. The gate dielectric layer and the gate electrode may be vertically recessed selective to the dielectric gate spacer. A first anisotropic etch process recesses the gate electrode and the gate dielectric layer at about the same etch rate. A second anisotropic etch process with a higher selectivity may be subsequently used. Protruding remaining portions of the gate dielectric layer are minimized to reduce leakage current between adjacent transistors.
A semiconductor device and manufacturing method includes a well structure, a gate stack structure spaced apart from the well structure, the gate stack structure being disposed over the well structure, and a source contact structure facing a sidewall of the gate stack structure. The semiconductor device further includes a channel pattern having pillar parts penetrating the gate stack structure, a first connecting part extending along a bottom surface of the gate stack structure from the pillar parts, and a second connecting part extending from the first connecting part to contact a first surface of the source contact structure facing the well structure.
The present disclosure provides a semiconductor device with a porous dielectric structure for reducing capacitive coupling between conductive features. The semiconductor device includes a substrate; a gate structure positioned above the substrate; two source/drain regions positioned adjacent to two sides of the gate structure; two porous spacers positioned between the source/drain regions and the gate structure, wherein a porosity of the two porous spacers is between about 25% and about 100%; a porous capping layer positioned on the gate structure and between the two porous spacers, wherein a porosity of the porous capping layer is between about 25% and about 100%; and an insulating layer disposed over the two porous spacers and the porous capping layer.
A display unit includes a substrate, a first electrode, a second electrode, an organic layer, and an auxiliary electrically-conductive layer. The substrate includes a pixel region including a plurality of pixels and a peripheral region outside the pixel region. The first electrode is provided for each of the plurality of pixels in the pixel region on the substrate. The second electrode is opposed to the first electrode, and is provided common for the plurality of pixels. The organic layer is provided between the second electrode and the first electrode, and includes a light-emitting layer. The auxiliary electrically-conductive layer includes an organic electrically-conductive material, and the auxiliary electrically-conductive layer is disposed in the pixel region on the substrate and is electrically coupled to the second electrode.
A method for testing and analyzing a display panel, comprising: providing a display panel including a circuitry and a pixel connected to the circuitry, wherein the pixel includes a capacitor, a transistor and an electrode electrically connected to the capacitor and the transistor; measuring a first parameter of the display panel; disabling the pixel; measuring a second parameter of the display panel; and deriving a third parameter of the pixel by subtracting the second parameter from the first parameter.
An OLED display includes: a color resistor layer, a buffer layer covering the color resistor layer, a transistor having a transparent conductive layer, a gate metal layer, and an output electrode, a pixel electrode, and a storage capacitor having a first transparent electrode and a second transparent electrode. The pixel electrode is the second transparent electrode, a projected area of the first transparent electrode on the substrate is larger than or equal to a projected area of the color resistor layer on the substrate. The upper electrode and lower electrode of the storage capacitor are replaced with a transparent material to raise the aperture rate. The gate insulating layer is used in the capacitor area to increase the capacitance. The storage capacitor adopts the transparent electrodes to solve the issues of low capacitance of the storage capacitor and the unstable components caused by the reflected light.
A flexible display panel is provided, comprising: a substrate provided with a bendable region and an unbendable region; a pixel control array layer corresponding to the unbendable region; a flexible layer corresponding to the bendable region; and a pixel unit; the pixel unit corresponding to the bendable region is connected to the first thin film transistor in the pixel control array layer; alternatively, a pixel control array unit is provided at intervals in the flexible layer, the pixel unit corresponding to the bendable region is connected to the second thin film transistor in the pixel control array unit.
A display unit includes multiple pixels, a first electrode, a partition wall, a light emission layer, and a second electrode. The multiple pixels each have a light emission region and a non-light emission region along a first direction. The first electrode is provided in the light emission region in each of the multiple pixels. The partition wall is provided between each two of the pixels that are adjacent to each other in a second direction. The second direction intersects the first direction. The light emission layer covers the first electrode and is provided in the light emission region and the non-light emission region in a continuous manner. The second electrode faces the first electrode across the light emission layer.
The present disclosure is related to a display substrate. The display substrate having a display area comprises a first electrode layer on a base substrate; a second electrode layer on a side of the first electrode layer far away from the base substrate; a light emitting layer between the first electrode layer and the second electrode layer; a pixel definition layer defining a plurality of sub-pixel regions with each of the plurality of sub-pixel regions containing the light emitting layer and the first electrode layer; and a signal line coupled to the second electrode layer. The signal line is substantially within the display area and at a different layer from the second electrode layer.