Abstract:
PURPOSE: An organic light emitting display device and a driving method thereof are provided to display the images with various colors by the gray scale of various steps by inserting at least one additional bit signal for an additional sub frame. CONSTITUTION: A driving transistor(T2) switches the current supply to an OLED by an image signal. A current controller includes a plurality of current control transistors(T3,T4) controlling an amount of currents to the OLED. A driving transistor operates in a linear region. Current control transistors operate at a saturation region. A storage capacitor stores an image signal. A switching transistor stores the image signal in a storage capacitor.
Abstract:
PURPOSE: A manufacturing method of an oxide semiconductor TFT(Thin Film Transistor) which an oxide semiconductor is used for a channel is provided to improve the characteristic of a device by using an oxide semiconductor as a channel material. CONSTITUTION: A gate insulation film(110) is formed on a substrate in order to cover the gate after the gate is formed on the substrate. A channel layer(116) consisting of the transparent oxide semiconductor is formed on the gate insulating layer. Source and drain electrodes are respectively formed on both sides of the channel layer. A protective film(120) is formed in order to cover source, drain electrode, and the channel layer. The substrate in which the protective film is formed is heat-treated at a temperature of 100 degrees.
Abstract:
An etchant for the source of an oxide semiconductor thin film transistor and a drain electrode, and a method for preparing an oxide semiconductor thin film transistor by using the etchant are provided to prevent the back etching of an oxide semiconductor and the dissolution of an oxide semiconductor and to improve etching rate. An etchant for the source of an oxide semiconductor thin film transistor and a drain electrode comprises hydrogen peroxide, ammonium hydroxide, and water. A manufacturing method of an oxide semiconductor thin film transistor comprises the steps of forming a gate on a substrate(110), and forming a gate insulating layer(114) on the substrate so as to cover the gate; forming a channel layer(116) comprising an oxide semiconductor on the gate insulating layer; and forming a metal layer for the formation of a source and a drain electrode at on both surfaces of the channel layer, and pattering it by using the etchant to form a source and drain electrodes(118a,118b).
Abstract:
A plasma processing apparatus having linear antennas is provided to improve density uniformity of plasma by changing a thickness of a dielectric for surrounding the linear antenna. A plasma processing apparatus having linear antennas includes a reaction chamber(110), a substrate supporting plate(120), linear antennas(132), an RF power source(138), and a dielectric(142). The substrate supporting plate is installed in a lower side of the inside of the reaction chamber in order to support a substrate to be processed. The linear antennas are used for inducing electric field to generate electric field. The linear antennas are installed in parallel to each other at an upper side of the inside of the reaction chamber. The RF power source is connected to the linear antennas in order to supply RF power to the linear antennas. The dielectric is formed to surround each of the linear antennas. The thickness of the dielectric is gradually reduced from a RF power input terminal of each linear antenna to a grounding terminal(132b).
Abstract:
A method for manufacturing an oxide semiconductor thin film transistor is provided to improve stability and reliability of the semiconductor thin film transistor by using an oxide semiconductor made of a channel material. A gate insulating layer(114) is formed on a substrate with a gate(112). A channel layer(116) made of the oxide semiconductor is formed on a gate insulating layer. A source electrode(118a) and a drain electrode(118b) are formed in both sides of the channel layer. The plasma process is performed to supply the oxygen to the channel layer. The protection layer covering the source and drain electrodes, and the channel layer is formed. After forming the protection layer, the thermal process is performed.
Abstract:
A polycrystalline silicon thin film and a method of thin film transistor applying the same are provided to obtain medium quality of a poly-crystal silicon and a amorphous silicon in order to be used in a high quality electronic product. A silicon thin film(20) is formed with high density plasma chemical vapor deposition having plasma density more than 2.00E+11cm-3 on a substrate(10). Hydrogen gas is included to reaction gas. The gas forming the silicon thin film comprises one selected from the group of Ar and He. A polycrystalline silicon thin film and a method of thin film transistor applying the same comprises a step for forming a channel region and active layer having a source region and a drain region of the both sides of the channel regions.
Abstract:
A thin film transistor and a manufacturing method thereof are provided to change doping level for respective semiconductor layer regions by adjusting thickness and location of first, second, and third insulation layers. A thin film transistor comprises a lower structure(11), a semiconductor layer(12), first and second insulation layers(14a,14b), and a third insulation layer(16), and a gate electrode layer(17). The semiconductor layer includes a plurality of doped regions(12b,12c,12d) on the lower structure. The first and second insulation layers are formed on the semiconductor layer, separated from each other. The third insulation layer is formed on the first and second insulation layers. The gate electrode layer is formed on the third insulation layer between the first and second insulation layers. The width of the third insulation layer is longer than that between the first and second insulation layers and shorter than that between the left part of the first insulation layer and the right part of the second insulation layer.
Abstract:
An organic electro-luminescent display and a fabrication method thereof are provided to obtain an active layer with a low mobility and an active layer with a high mobility by obtaining different poly crystal silicon islands. An organic electro-luminescent display includes an amorphous silicon(2), a capping layer(3), a driving transistor, and a switching transistor. The capping layer is formed on the amorphous silicon and has two parts(3a,3b) having different thicknesses. The driving transistor is formed under a thick part of the capping layer and drives the organic electro-luminescent display. The switching transistor is formed under a thinner part of the capping layer and controls operation of the driving transistor.
Abstract:
박막 트랜지스터의 제조방법이 개시된다. 본 발명에 따른 박막 트랜지스터의 제조방법은 기판 상에 비정질 실리콘 층을 형성하는 단계, 상기 비정질 실리콘 층을 패턴닝하여 상기 기판 상에 소오스와 드레인 및 상기 소오스와 드레인 사이에 전기적으로 개재되는 복수의 채널 영역을 형성하는 단계, 상기 채널 영역을 어닐링하는 단계, 상기 채널 표면에 게이트 산화막 및 게이트 전극을 순차적으로 형성하는 단계 및 상기 소오스/드레인 영역에 소정의 원소 이온을 도핑하는 단계를 포함한다.
Abstract:
개시된 실리콘 박막트랜지스터는: 기판에 형성되는 실리콘 채널과; 상기 실리콘 채널 위에 형성되는 게이트 절연층과; 상기 게이트 절연층 위에 마련되는 게이트를; 구비하고, 상기 게이트 절연층은 상기 실리콘 채널의 플라즈마 저온산화에 의한 산화막 및 상기 채널에 별도로 증착된 산화막을 포함하는 구조를 가진다. 이러한 박막트랜지스터는 게이트절연층과 채널간의 개선된 인터페이스특성을 가지며, 특히 낮은 구동전압을 가진다. 다결정, 실리콘, 게이트 절연층, 플라즈마 산화, 저온산화