Abstract:
PROBLEM TO BE SOLVED: To provide methods of detecting micro-loading and process effects on metrology targets.SOLUTION: A structure has at least one feature which has an asymmetry in a printed profile which varies as a function of the focus of a lithographic apparatus on a substrate. A first image of the periodic structure is formed and detected while illuminating the structure with a first beam of radiation. The first image is formed using a first part of non-zero order diffracted radiation. A second image of the periodic structure is formed and detected while illuminating the structure with a second beam of radiation. The second image is formed using a second part of the non-zero order diffracted radiation which is symmetrically opposite to the first part in a diffraction spectrum. The ratio of the intensity of the measured first and second portions of the spectra is measured and used to measure the asymmetry in the profile of the periodic structure and/or to provide an indication of the focus on the substrate.
Abstract:
Method for determining lithographic quality of a structure produced by a lithographic process using a periodic pattern, such as a grating, detects lithographic process window edges and optimum process conditions. Method steps are: 602: printing a structure using a lithographic process using a grating pattern; 604: selecting a first characteristic, such as a polarization direction, for the illumination; 606: illuminating the structure with incident radiation with the first characteristic; 608: detecting scattered radiation; 610: selecting a second characteristic, such as a different polarization direction, for the illumination; 612: illuminating the structure with incident radiation with the second characteristic; 614: detecting scattered radiation; 616: rotating one or more angularly resolved spectrum to line up the polarizations, thus correcting for different orientations of the polarizations; 618: determining a difference between the measured angularly resolved spectra; and 620: determining a value of lithographic quality of the structure using the determined difference.
Abstract:
A lithographic system includes a lithographic apparatus comprising a projection system which projects a patterned radiation beam onto a target portion of a substrate and an alignment system which measures the position of a feature of the pattern on the substrate at a number of locations over the substrate. A controller compares the measured positions with points on a grid of values and extrapolates values for intermediate positions on the substrate based on values of corresponding intermediate points on the grid, so as to provide an indication of the intermediate positions on the substrate and their displacements relative to the grid. The grid is based on at least one orthogonal basis function, the measurement on the substrate being performed at positions corresponding to the root values of the at least one orthogonal basis function.
Abstract:
A system and method determine an approximate structure of an object on a substrate. This may be applied in model based metrology of microscopic structures to assess critical dimension or overlay performance of a lithographic apparatus. A scatterometer is used to determine approximate structure of an object, such as a grating on a stack, on a substrate. The wafer substrate has an upper layer and an underlying layer. The substrate has a first scatterometry target region, including the grating on a stack object. The grating on a stack is made up of the upper and underlying layers. The upper layer is patterned with a periodic grating. The substrate further has a neighboring second scatterometry target region, where the upper layer is absent. The second region has just the unpatterned underlying layers.