Abstract:
PROBLEM TO BE SOLVED: To provide an MIM capacitor device and a method for manufacturing it. SOLUTION: This device includes: an upper plate which comprises one or more conductive layers and has an upper surface, a lower surface and a side wall; a spreader plate which comprises one or more conductive layers and has an upper surface, a lower surface and a side wall; and a dielectric block which comprises one or more dielectric layers and has an upper surface, a lower surface and a side wall. The upper surface of the dielectric block is physically in contact with the lower surface of the upper plate. The lower surface of the dielectric block is above the upper surface of the spreader plate. The side wall of the upper plate and the dielectric block is essentially coplanar. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a resistor that has a heat sink with excellent heat conduction. SOLUTION: This heat sink includes a conduction path that has a high-thermal conductivity metal and other thermal conductors. In order that an electrical resistor may not be short-circuited to earth by this thermal resistor, a thin layer with a high-thermal conductivity electric insulator is interposed between the thermal conductor and the resistor's body. Accordingly, since heat is conducted to the heat sink in a direction in which the thermal conductor with high thermal conductivity moves away from the resistor, the resistor can pass a large amount of current. In addition to the fact that a parasitic capacitance and other electric parasitic actions that help reduce high-frequency responses from the electric resistor are lowered, various structures of a thermal conductor and heat sink are achieved through which favorable thermal conduction characteristics are obtained. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
A method and structure for a MIM capacitor, the structure including: an electronic device, comprising: an interievel dielectric layer formed on a semiconductor substrate; a copper bottom electrode formed in the interievel dielectric layer, atop surface of the bottom electrode co-planer with a top surface of the interievel dielectric layer; a conductive diffusion barrier in direct contact with the top surface of the bottom electrode; a MIM dielectric in direct contact with a top surface of the conductive diffusion barrier; and a top electrode in direct contact with a top surface of the MIM dielectric. The conductive diffusion barrier may be recessed into the copper bottom electrode or an additional recessed conductive diffusion barrier provided. Compatible resistor and alignment mark structures are also disclosed.
Abstract:
A semiconductor structure and a method for fabricating the semiconductor structure provide a field effect device located and formed upon an active region of a semiconductor substrate and at least one of a fuse structure, an anti-fuse structure and a resistor structure located and formed at least in part simultaneously upon an isolation region laterally separated from the active region within the semiconductor substrate. The field effect device includes a gate dielectric comprising a high dielectric constant dielectric material and a gate electrode comprising a metal material. The at least one of the fuse structure, anti-fuse structure and resistor structure includes a pad dielectric comprising the same material as the gate dielectric, and optionally, also a fuse, anti-fuse or resistor that may comprise the same metal material as the gate electrode.
Abstract:
Eine verflochtene Struktur kann mindestens eine erste Metallleitung, mindestens eine zweite Metallleitung, die parallel zu der mindestens einen ersten Metallleitung verläuft und von der mindestens einen ersten Metallleitung getrennt ist, und eine dritte Metallleitung umfassen, die mit Enden der mindestens einen ersten Metallleitung in Kontakt steht und von der mindestens einen zweiten Metallleitung getrennt ist. Die mindestens eine erste Metallleitung steht vertikal mit keiner Metalldurchkontaktierung in Kontakt, und mindestens eine zweite Metallleitung kann vertikal mit mindestens einer Metalldurchkontaktierung in Kontakt stehen. Mehrere Schichten verflochtener Strukturen können vertikal gestapelt sein. Alternativ kann eine verflochtene Struktur mehrere erste Metallleitungen und mehrere zweite Metallleitungen umfassen, wobei keine Metallleitung vertikal mit einer Metalldurchkontaktierung in Kontakt steht. Mehrere Einheiten einer verflochtenen Struktur können sich seitlich wiederholen und einander benachbart sein, mit oder ohne Drehung, und/oder vertikal gestapelt sein, um einen Kondensator zu bilden.