Abstract:
A composition of matter and a structure fabricated using the composition. The composition comprising; a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
Abstract:
PROBLEM TO BE SOLVED: To provide a method of positioning microdomains of a block copolymer on a substrate and the structure assembled of it. SOLUTION: The method includes a step to provide a first block copolymer and a step to provide a substrate 101 having a surface layer 105. The surface layer has at least one recess 102 integrally disposed thereon. The recess has sidewalls 103 and 104. The method includes a step to form a first film formed of the first block copolymer inside the recess, a step to form line-forming microdomains, a step to remove at least one microdomain from the first film, a step to form a second film containing a second block copolymer, a step to assemble line-forming microdomains with the second block copolymer and form second self-assembled structures within the second film oriented normal to the orientation structure and parallel to the sidewalls. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
A method of forming a layered structure comprising a self-assembled material comprises: disposing a non-crosslinking photoresist layer on a substrate; pattern-wise exposing the photoresist layer to first radiation; optionally heating the exposed photoresist layer; developing the exposed photoresist layer in a first development process with an aqueous alkaline developer, forming an initial patterned photoresist layer; treating the initial patterned photoresist layer photochemically, thermally and/or chemically, thereby forming a treated patterned photoresist layer comprising non-crosslinked treated photoresist disposed on a first substrate surface; casting a solution of an orientation control material in a first solvent on the treated patterned photoresist layer, and removing the first solvent, forming an orientation control layer; heating the orientation control layer to effectively bind a portion of the orientation control material to a second substrate surface; removing at least a portion of the treated photoresist and, optionally, any non-bound orientation control material in a second development process, thereby forming a pre-pattern for self-assembly; optionally heating the pre-pattern; casting a solution of a material capable of self-assembly dissolved in a second solvent on the pre-pattern and removing the second solvent; and allowing the casted material to self-assemble with optional heating and/or annealing, thereby forming the layered structure comprising the self-assembled material.
Abstract:
A layered structure comprising a self-assembled material is formed by a method that includes forming a photochemically, thermally and/or chemically treated patterned photoresist layer disposed on a first surface of a substrate. The treated patterned photoresist layer comprises a non-crosslinked treated photoresist. An orientation control material is cast on the treated patterned photoresist layer, forming a layer containing orientation control material bound to a second surface of the substrate. The treated photoresist and, optionally, any non-bound orientation control material are removed by a development process, resulting in a pre-pattern for self-assembly. A material capable of self-assembly is cast on the pre-pattern. The casted material is allowed to self-assemble with optional heating and/or annealing to produce the layered structure.
Abstract:
Struktur, umfassend: eine erste Vielzahl von leitfähigen Linien, die einen ersten Rasterabstand aufweist und in wenigstens einer dielektrischen Schicht eingebettet ist, wobei jede aus der ersten Vielzahl von leitfähigen Linien ein Paar von Seitenwänden aufweist, die parallel zu einer ersten Vertikalebene sind, und eine Endwand, die dem Paar von Seitenwänden direkt angrenzt und in einer zweiten Vertikalebene liegt, wobei der Winkel zwischen der ersten Vertikalebene und der zweiten Vertikalebene weniger als 45 Grad beträgt; und eine Vielzahl von leitfähigen Durchkontaktierungen, wobei jede aus der Vielzahl von leitfähigen Durchkontaktierungen einen Endabschnitt von einer aus der Vielzahl von leitfähigen Linien kontaktiert und in der wenigstens einen dielektrischen Schicht eingebettet ist, und wobei die zweite Vertikalebene jede aus der Vielzahl von leitfähigen Durchkontaktierungen schneidet und ein Abschnitt von jeder aus der Vielzahl von leitfähigen Durchkontaktierungen auf einer Seite der zweiten Vertikalebene vorhanden ist und ein anderer Abschnitt von jeder aus der Vielzahl von leitfähigen Durchkontaktierungen auf der anderen Seite der zweiten Vertikalebene vorhanden ist.
Abstract:
Zweischichtige Systeme umfassen eine untere Schicht, welche aus Polydimethylglutarimid, einem säureempfindlichen Auflösungshemmer und einem Photosäurebildner gebildet ist. Das zweischichtige System kann in einem Verfahren mit einer einzigen Belichtung und einer einzigen Entwicklung belichtet und entwickelt werden.
Abstract:
A method of forming a layered structure comprising a domain pattern of a self-assembled material comprises: disposing on a substrate a photoresist layer comprising a non-crosslinking photoresist; optionally baking the photoresist layer; pattern- wise exposing the photoresist layer to first radiation; optionally baking the exposed photoresist layer; and developing the exposed photoresist layer with a non-alkaline developer to form a negative-tone patterned photoresist layer comprising non-crosslinked developed photoresist; wherein the developed photoresist is not soluble in a given organic solvent suitable for casting a given material capable of self-assembly, and the developed photoresist is soluble in an aqueous alkaline developer and/or a second organic solvent. A solution comprising the given material capable of self-assembly dissolved in the given organic solvent is casted on the patterned photoresist layer, and the given organic solvent is removed. The casted given material is allowed to self-assemble while optionally heating and/or annealing the casted given material, thereby forming the layered structure comprising the domain pattern of the self-assembled given material.
Abstract:
Eine Einheit beinhaltet eine Membran, die: (i) sauerstoffundurchlässig und (ii) in zumindest einem polaren Lösungsmittel unlöslich ist; und ionenleitende Teilchen in der Membran. Zumindest einige Teilchen erstrecken sich von einer ersten Seite der Membran zu einer gegenüberliegenden zweiten Seite der Membran. Die Dicke der Membran beträgt 15 μm bis 100 μm.