Abstract:
Interconnection elements (210) for electronic components, exhibiting desirable mechanical characteristics (such as resiliency, for making pressure contacts) are formed by shaping an elongate element (core) (216) of a soft material (such as gold) to have a springable shape (including cantilever beam, S-shape, U-shape), and overcoating the shaped elongate element with a hard material (220) (such as nickel and its alloys), to impart a desired spring (resilient) characteristic to the resulting composite interconnection element (210). A final overcoat of a material having superior electrical qualities (e.g., electrical conductivity and/or solderability) may be applied to the composite interconnection element (210). The elongate element (216) may be formed from a wire, or from a sheet (e.g., metal foil). The resulting interconnection elements may be mounted to a variety of electronic components, including directly to semiconductor dies and wafers (in which case the overcoat material anchors the composite interconnection element (210) to a terminal (or the like) on the electronic component), may be mounted to support substrates for use as interposers and may be mounted to substrates for use as probe cards or probe card inserts.
Abstract:
A method and an apparatus for providing a planar and compliant interface between a semiconductor chip (120) and its supporting substrate to accommodate for the thermal coefficient of expansion mismatch therebetween. The compliant interface is comprised of a plurality of compliant pads (110) defining channels (117) between adjacent pads. The pads are typically compressed between a flexible film chip carrier (100) and the chip. A compliant filler (170) is further disposed within the channels to form a uniform encapsulation layer having a controlled thickness.
Abstract:
The initial intention in the semi-finished product of the invention is to provide a functional separation between the requirement for mechanical strength and the previously concomitant requirement, for completing a circuit, in order to bring the pure circuit connection, especially for signals, "closer" to the electrical and technical properties of chips. To do this, the layout miniaturisation is optimised without regard for the mechanical strength of the substrate. Instead of a printed circuit board (MCM), a semi-finished product which can be developed into a printed circuit board is made. The semi-finished product of the invention consists of an extremely thin film (8) with a plurality of extremely small holes (14) made simultaneously by an etching process. The hole diameters can be reduced by almost an order of magnitude (down to 20 mu m), facilitating, for instance, definite sub-100 mu m technology. Such a semi-finished product (19) does not act as a mechanical support but is designed only for signal conduction. The semi-finished product (19) which carries the densely packed wiring pattern, is bonded to a not densely packed power supply plane (22) acting as the service plane and the printed circuit board thus made is finally secured to a mechanical support (20).
Abstract:
A multilayer structure (100) comprises a flexible substrate film (102) having a first side and opposite second side, a number of conductive traces (108), optionally defining contact pads and/or conductors, printed on the first side of the substrate film by printed electronics technology for establishing a desired predetermined circuit design, a plastic layer (104) molded onto the first side of the substrate film (102) so as to enclose the circuit between the plastic layer and the first side of the substrate film (102), and a connector (114) in a form of a flexible flap for providing external electrical connection to the embedded circuit from the second, opposite side of the substrate film (102), the connector being defined by a portion of the substrate film (102) accommodating at least part of one or more of the printed conductive traces (108) and cut partially loose from the surrounding substrate material so as to establish the flap, the loose end of which is bendable away from the molded plastic layer to facilitate the establishment of said electrical connection with external element (118), such as a wire or connector, via the associated gap. A related method of manufacture is presented.
Abstract:
Die Erfindung betrifft einen Schaltungsträger für eine elektronische Schaltung umfassend: mindestens eine Leiterbahn (12); sowie eine isolierende Matrix (44), mit der die mindestens eine Leiterbahn (12)unter Aussparung zumindest eines ersten Bereiches (48) zum Anschließen mindestens eines elektronischen Bauteils (50) der elektronischen Schaltung umspritzt ist; wobei der Schaltungsträger mindestens eine aus dem Material (42) für die isolierende Matrix (44) und/oder dem Material der mindestens einen Leiterbahn (12 )gebildete Befestigungshilfe (16, 18, 22, 26, 28, 34, 36) umfasst. Die Erfindung betrifft überdies ein Verfahren zum Herstellen eines entsprechenden Schaltungsträgers.
Abstract:
A single cell power unit for a motorized surgical power tool includes a single cell power unit enclosure. A high temperature battery cell is mechanically supported within and disposed at about a center of the single cell power unit enclosure. An electrical connector having a plurality of connector pins is configured to couple to a mating electrical connector of a tool part having a motor. A motorized surgical handpiece tool which prevents the motor from operating when the power unit is removed, a method to start a multi-phase brushless sensorless motor of a surgical hand piece tool in a controlled manner, a power unit for a motorized surgical power tool with a battery insulated by a flexible circuit boards, and a safety switch system for a motorized surgical power tool with a lever magnet motor speed control are also described.
Abstract:
An electrical stimulation lead includes a paddle body with micro-circuit assemblies having micro-circuits laminated between electrically-nonconductive substrates. The micro-circuits have first end portions and opposing second end portions. Electrodes are electrically coupled to the first end portions of the micro- circuits. Distal end portions of one or more lead bodies are coupled to the paddle body. Terminals are disposed along proximal end portions of the one or more lead bodies. Lead-body conductors are coupled to the terminals and extend along the one or more lead bodies to distal end portions of the one or more lead bodies. The lead-body conductors are attached to the second end portions of the micro-circuits to electrically couple the terminals to the electrodes.
Abstract:
The invention relates to an assembly, comprising a substrate made of an electrically insulating material, an SMD component, which has lateral contact surfaces, and a lead frame part made of metal, which is fastened to the substrate and is used to establish electrical connections between the lateral contact surfaces of the SMD component and further functional elements of the assembly, wherein the lead frame part has contact tongues, which resiliently lie against the lateral contact surfaces and are connected to the lateral contact surfaces in a bonded manner.