Abstract:
A multilayer substrate includes plural layers of circuit patterns. Each circuit pattern includes a ground conductor surrounding a wiring region provided with a conductive wiring pattern. Each ground conductor includes a slit connecting between the outside of the multilayer substrate and the wiring region. In the multilayer substrate, the slit of the ground conductor provided at one of adjacent two layers of the circuit patterns and the slit of the ground conductor provided at the other circuit pattern are formed at positions not overlapping with each other. That is, these slits are formed at such positions that a view in an upper-to-lower direction is blocked. The shape of the slit of each ground conductor is in such a shape that a view from an end side of the multilayer substrate to a wiring region side is blocked.
Abstract:
A structure that includes a board and a connector secured to an end portion of the board. The board has a first dielectric layer, a signal pattern that is provided on the top face of the first dielectric layer, a first ground layer that is provided under the first dielectric layer and forms part of a signal transmission circuit in conjunction with the signal pattern, and a plating film formed on an end face of the end portion of the board in an area located directly under the signal pattern and includes an end face of the first ground layer. The connector has a center conductor, an outer conductor, and securing portions that secure the connector to an end portion of the board. When the connector is secured, the center conductor comes in contact with the signal pattern and the plating film comes in contact with the outer conductor.
Abstract:
A microcomputer provided on a rectangular semiconductor board has memory interface circuits. The memory interface circuits are separately disposed in such positions as to extend along the peripheries of the semiconductor board on both sides from one corner as a reference position. In this case, limitations to size reduction imposed on the semiconductor board can be reduced compared with a semiconductor board having memory interface circuits only on one side. Respective partial circuits on each of the separated memory interface circuits have equal data units associated with data and data strobe signals. Thus, the microcomputer has simplified line design on a mother board and on a module board.
Abstract:
A printed circuit board is disclosed. The printed circuit board comprises a substrate having a top surface and a bottom surface. A ground plane is on the bottom surface. A signal trace is on the top surface along a first direction. At least two isolated power planes are on the top surface adjacent to opposite sides of the signal trace, respectively. A conductive connection along a second direction couples to the two power planes, across the signal trace without electrically connecting to the signal trace, wherein the signal trace doesn't directly pass over any split of the ground plane.
Abstract:
A multilayered circuit board having a metal-free region vertically extending through at least a portion of a conductive layer, which lies generally parallel to a horizontal plane, vertically spaced from an outer surface. Heat-emitting and heat-sensitive components are mounted on the outer surface. The heat-emitting component is vertically and laterally spaced from the metal-free region, whereas the heat-sensitive component is vertically spaced and laterally aligned within the metal-free region such that the metal-free region is a thermal barrier that shields heat-sensitive component from radial heat flowing from the heat-emitting component.
Abstract:
A light-emitting device having the quality of an image high inhomogeneity is provided. A printed wiring board (second substrate) (107) is provided facing a substrate (first substrate) (101) that has a luminous element (102) formed thereon. A PWB side wiring (second group of wirings) (110) on the printed wiring board (107) is electrically connected to element side wirings (first group of wirings) (103, 104) by anisotropic conductive films (105a, 105b). At this point, because a low resistant copper foil is'used to form the PWB side wiring (110), a voltage drop of the element side wirings (103, 104) and a delay of a signal can be reduced. Accordingly, the homogeneity of the quality of an image is improved, and the operating speed of a driver circuit portion is enhanced.
Abstract:
A microelectronic package can include a substrate and a microelectronic element. The substrate can include terminals comprising at least first power terminals and other terminals in an area array at a surface of the substrate. The substrate can also include a power plane element electrically coupled to the first power terminals. The area array can have a peripheral edge and a continuous gap between the terminals extending inwardly from the peripheral edge in a direction parallel to the surface. The terminals on opposite sides of the gap can be spaced from one another by at least 1.5 times a minimum pitch of the terminals. The power plane element can extend within the gap from at least the peripheral edge at least to the first power terminals. Each first power terminal can be separated from the peripheral edge by two or more of the other terminals.
Abstract:
A signal transmission system including: a first connector apparatus, and a second connector apparatus that is coupled with the first connector apparatus. The first connector apparatus and the second connector apparatus are coupled together to form an electromagnetic field coupling unit, and a transmission object signal is converted into a radio signal, which is then transmitted through the electromagnetic field coupling unit, between the first connector apparatus and the second connector apparatus.
Abstract:
Provided is a printed circuit board capable of increasing an inductance value of a power pattern and a ground pattern while keeping a low electric resistance value of the power pattern and the ground pattern. The printed circuit board includes a printed wiring board including: a power layer having a power pattern formed therein; and a ground layer having a ground pattern formed therein. On the printed wiring board, an LSI as a semiconductor device and an LSI as a power supply member are mounted. The ground pattern has a first ground region that overlaps the power pattern as viewed from the direction perpendicular to the surface of the printed wiring board. In the first ground region, at least one defect portion is formed. In the first ground region, the defect portion forms a region that is narrower than the power pattern.
Abstract:
A wiring board includes a first wiring layer formed on one surface of a core layer, a first insulating layer formed on the one surface of the core layer so as to cover the first wiring layer, a via wiring embedded in the first insulating layer, a second wiring layer formed on a first surface of the first insulating layer, and a second insulating layer thinner than the first insulating layer formed on the first surface of the first insulating layer so as to cover the second wiring layer. The first wiring layer comprises a pad and a plane layer provided around the pad. One end surface of the via wiring is exposed from the first surface of the first insulating layer and directly bonded to the second wiring layer. The other end surface of the via wiring is directly bonded to the pad in the first insulating layer.