US07755843B2
A zoom lens includes a first lens unit having a negative optical power located closest to an enlargement side. In the zoom lens, a focal length of the zoom lens at a wide-angle end (fw) and a focal length of the first lens unit (f1) satisfy the following condition: −2.50
US07755838B2
An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.
US07755833B2
A corrective device for compensating disturbances of polarization distribution across the cross section of a light beam (10). The corrective device includes a corrective member (18; 118) encompassing two double refractive corrective elements (20, 22; 120a, 120b, 122; 220; 222; 320, 322) with two substantially parallel surfaces (24, 26; 126, 127). The thickness (d) of the corrective element (22; 122, 222) is essentially constant between the surfaces (26; 126, 127). At least one of the surfaces (24, 26; 126, 127) of at least one of the corrective elements (20, 22; 120a, 120b, 122; 220; 222; 320, 322) is refinished in such a way that local irregularities in thickness Δd are created, by which the disturbances of polarization distribution are at least nearly compensated. The arrangement, thickness (d), and double-refractive properties of the corrective elements (20, 22; 120a, 120b, 122; 220; 222; 320, 322) are selected such that the double-refractive effects thereof mutually cancel each other out if the local irregularities in thickness Δd are not taken into consideration. The corrective device influences polarization only at points where disturbances are to be compensated.
US07755830B2
The present invention provides a mirror device, comprising: an electrode placed on a substrate; a memory circuit connected to the electrode; an elastic hinge disposed near said electrode and extending from said substrate for supporting a mirror above said electrode wherein said elastic hinge having a negative temperature coefficient of resistance.
US07755828B2
A method and system for modifying the detected phase of a signal by driving a photodetector into saturation. This system and method differs from current manual and electrical microwave phase modification by using saturation means for modifying the phase. The system and method may use a plurality of the signal generators for saturating the photodetector.
US07755825B1
A method of fabricating an optical modulator on a silicon substrate, comprising: forming a silicon nitride layer on the silicon substrate; forming a first polycrystalline silicon layer (PSL) on the silicon nitride layer; patterning the first PSL; forming a first silicon dioxide layer (SDL) on the first patterned PSL; patterning the first SDL; forming a second PSL on the first patterned SDL; patterning the second PSL; forming a second SDL on the second patterned PSL; patterning the second SDL; forming a third PSL on the second patterned SDL; patterning the third PSL; forming a metal layer on the third patterned PSL; patterning the metal layer; removing the first and second SDLs to effect release of first and second side reflectors; forming an active layer on the metal layer; and patterning the active layer or stack to form a base reflector and associated conductive traces for biasing.
US07755819B2
A hologram recorder (A2) includes: a light source (10) for emitting a coherent beam; a spatial light modulator (20) provided with unit areas having a plurality of beam reflection elements (21) to reflect the beam from the light source (10) in a main direction as a signal beam or a cut-off direction; and a signal beam optical system (30, 31) for directing the signal beam to the hologram recording medium (B). The recorder (A2) further includes: a wavefront reshaper (40, 41, 42) for condensing the beams thinned out in the cut-off direction by the beam reflection element (21) of the modulator (20), and reshaping the wavefront of the condensed beams; and a reference beam optical system (50, 51) for directing the beam from the reshaper (40, 41, 42) to the recording medium (B) as a reference beam to be shone in an overlapping manner with the signal beam.
US07755814B2
An image reading apparatus includes a reading unit, a control unit, and a pattern region. The reading unit moves a linear reading range, which is provided in a main scanning direction, in a sub-scanning direction that intersects with the main scanning direction while reading an object that faces the reading range, and generates image data on the basis of a read result. The control unit controls the reading unit. The pattern region includes a predetermined pattern that defines a reference position for specifying a reading position that is read by the reading unit. The predetermined pattern has a characteristic portion that specifies a schematic position of the predetermined pattern in the sub-scanning direction. The control unit includes a first image acquisition unit, a pattern searching unit, a second image acquisition unit, a characteristic portion searching unit, a first reprocessing instruction unit, and a second reprocessing instruction unit.
US07755811B2
A document illuminator includes a light-transmissive element having an embedded source of illumination fitted in a cavity formed therein. The light-transmissive element preferably has one or more optical notches and preferably is encased in an opaque surround to promote total internal reflection of the light rays emanating from the LED. The one or more optical notches may include a dual-V notch or an elliptical notch. The reflected light rays are collected at an aperture which in turn transmit light at high power and highly uniform illumination profile to illuminate a document.
US07755799B2
A method of correcting periodic banding defects in a printing system is provided. The method comprises: determining a banding profile estimate; determining a compensation profile; adjusting the compensation profile based on the transfer function of a motion system and the transfer function of a printing system; waiting until a defect once-around signal returns; and applying the output of the adjustment step to a controller controlling the speed of an imaging surface.
US07755798B2
The invention relates to picture color tone control for a printing press. A target color mixture halftone density for each ink supplying unit width when a printing picture is divided with an ink supplying unit width of ink supplying apparatus 6, 7 is set, and an actual color mixture halftone density for each ink supplying unit width of an actually printed sheet obtained by printing is measured using an IRGB densitometer 1. The color mixture halftone densities are individually converted into tone values. A changing ratio for the converted target tone values is set suitably and is reflected on the target tone values and then converted into a monochromatic halftone density. Then, a solid density difference corresponding to a difference between the target monochromatic halftone density and an actual monochromatic halftone density is determined, and the ink supplying amount is adjusted for each ink supplying unit width in response to the solid density difference. The density of each ink can be changed freely to the target density set based on plate making data and so forth.
US07755795B2
A tincture adjustment value used to adjust a monochrome signal to a tincture desired by a user is set, and a tincture conversion table and chromaticity line table are generated based on that tincture adjustment value and the profile of an image output apparatus. Using the generated tables, a lightness signal L* corresponding to an input monochrome signal is converted into a distance signal l on a chromaticity line, and the distance signal l is converted into a chromaticity signal (a*, b*). The lightness signal L* and chromaticity signal (a*, b*) are converted into a color signal of the image output apparatus.
US07755794B2
A method of limiting access to a media tray, wherein the method includes defining a target pass code associated with a media tray. The method includes restricting access to the media tray to print jobs associated with job pass codes having a predefined relationship with the target pass code.
US07755787B2
A method for managing a plurality of printers shared among at least one user is provided. At least two of the plurality of printers are of the same model. The method includes configuring the at least two of the plurality of printers to report a common serial number by setting a serial number flag in a memory unit of the printer to a predefined value. When a computer is connected to the printer, the printer reports the common serial number to the computer.
US07755782B2
A consumable resource option control unit includes a consumable resource and an option key coupled to the consumable resource. The option key is configured to enable an optional mode of operation for an image-forming device and to cause a display associated with an image-forming device to indicate availability of the mode of operation.
US07755772B2
A tire shape measuring system measures a surface shape on the basis of an image of a line of light (a light section line) emitted to a surface of a relatively rotating tire using a light-section method. The shape measuring system includes a light projector for emitting a plurality of lines of light onto a tire surface in directions different from a direction in which the height of the surface is detected so as to form a plurality of separate light section lines and a camera for capturing images of the light section lines in directions in which chief rays of the lines of light are specularly reflected by the tire surface. The shape measuring system individually detects the coordinates of the light section lines from images of pre-defined independent image processing target areas for each captured image and calculates the distribution of the surface height using the detected coordinates.
US07755770B2
A method for inspecting a surface of an object, including scanning the surface using an array of opto-electronic sensors, obtaining a reflected light signal from a location on the surface, combining the light signals to form a representation of geometrical features of the surface, and processing the representation to obtain geometric quantities of the geometrical features. An apparatus for inspecting a well screen, including an array of a plurality of opto-electronic sensors, a motion control unit, and a processor for obtaining a geometric quantity of the well screen based on an image obtained by the sensor array and the location registered by the motion control unit.
US07755768B2
In respective measurement operations on a first sample surface area having a layer structure (81) and a characterized second sample surface area (82), light reflected by the region of the sample surface and the reference surface interfere and a sensing device (10) senses light intensity representing interference fringes at intervals during the relative movement along a measurement scan path to provide first intensity data in the form of a first series of intensity values resulting from a measurement operation on the first sample surface area and second intensity data in the form of a second series of intensity values resulting from a measurement operation on the second sample surface area. A layer structure determiner (100) determines a frequency transform ratio corresponding to a ratio between the first and second intensity data and fits a layer structure model having variable model parameters related to the layer thicknesses and refractive indices of the layers of a layer structure to the determined ratio by adjusting the model parameters, thereby obtaining for the model parameters values representing the layer thicknesses and refractive indices of the layers of the sample layer structure.
US07755760B2
A particle counter for measuring the number of floating particles contained in a sample to determine the particle concentration therein includes: a memory section for storing a relational expression between the direct current level output from a photoelectric converter when no particles exist and the frequency of occurrence of false counts; and a subtraction section for determining the frequency of occurrence of the false counts corresponding to the direct current level output from the photoelectric converter at the time of commencement of measurement with reference to the relational expression stored in the memory section and subtracting a value based on the frequency of occurrence of the false counts from a discrete value after commencement of measurement.
US07755755B2
A method is provided for identifying a contaminant in a gaseous space. The method includes: generating a broadband optical waveform; shaping the optical waveform to match an expected waveform for a known contaminant; and transmitting the shaped optical waveform towards an unknown contaminant. Upon receiving a reflected optical waveform from the unknown contaminant, determining whether the unknown contaminant correlates to the known contaminant based on the reflected waveform.
US07755751B2
In the conventional contaminant particle/defect inspection method, if the illuminance of the illumination beam is held at not more than a predetermined upper limit value not to give thermal damage to the sample, the detection sensitivity and the inspection speed being in the tradeoff relation with each other, it is very difficult to improve one of the detection sensitivity and the inspection speed without sacrificing the other or improve both at the same time. The invention provides an improved optical inspection method and an improved optical inspection apparatus, in which a pulse laser is used as a light source, and a laser beam flux is split into a plurality of laser beam fluxes which are given different time delay to form a plurality of illumination spots. The scattered light signal from each illumination spot is isolated and detected by using a light emission start timing signal for each illumination spot.
US07755735B2
A pixel structure of a liquid crystal display panel includes a scan line, a data line, a thin film transistor (TFT), a pixel electrode, a light-shielding pattern, and a common line. The data line includes a first data line section and a second data line section composed respectively of the first material layer and second material layer and electrically connected to each other through a plurality of contact plugs. In addition, the pixel electrode is electrically connected to a drain of the TFT, and the light-shielding pattern, which is a floating metal, is disposed over the first data line section. The common line, the light-shielding pattern, and the second data line section are composed of the same material layer.
US07755733B2
A liquid crystal display apparatus includes a first display substrate, a second display substrate and a liquid crystal layer disposed therebetween. The first and second display substrates include first and second vertical inorganic alignment layers, respectively, to vertically align liquid crystal molecules of the liquid crystal layer. The first and second vertical inorganic alignment layers each include a silicon carbide and are formed on the first and second display substrates, respectively, by a chemical vapor deposition method or a sputtering method. Thus, processes for the vertical inorganic alignment layer may be simplified, thereby improving manufacturing productivity of the liquid crystal display apparatus.
US07755728B2
An optically anisotropic film comprising a liquid crystal compound forming a nematic phase or smectic A phase, the liquid crystalline phase satisfying the following inequality: Δn(450 nm)/Δn(550 nm)<1.0 in which each Δn (λ) represents an intrinsic birefringence at a wavelength of λ, wherein the optically anisotropic film (A) has an absolute in-plane retardation (Re) of 40 nm or less and a retardation in the thickness direction (Rth) of −10 nm or less.
US07755727B2
Provided is a liquid crystal display module having a liquid crystal display element, an optically anisotropic optical sheet on a backside of the display element, and a backlight element on the backside of the optical sheet. The angle of the phase advancing axial orientation or the phase retarding axial orientation, measured with respect to the short side of the display, of the optical sheet is at least π/16 but not more than 3π/16.
US07755719B2
A color filter has a light-transmissive substrate, a reflecting layer formed on the back substrate and provided with openings, boundary layers and formed on the reflecting layer, and a plurality of coloring layers enclosed by the boundary layers. A transparent coat layer is provided between the reflecting layer and the boundary layers. A step is formed between the openings and the transparent coat layer. The coloring layers are formed by applying the droplets of colored fluid to the openings first, and then to the transparent coat layer. The difference in color saturation of the color filter in a reflective display mode and a transmissive display mode is reduced. Also, a liquid material is appropriately applied to the color filter, to enhance color balance.
US07755718B2
An optical element having a function of splitting incident light into polarized beams includes a substrate transparent for the incident light; a diffractive structure that includes a plurality of concave portions and a plurality of convex portions alternately arranged with each other, each of the plurality of concave portions and convex portions having a rectangular sectional shape and that is provided on a first surface of the substrate; and a grid that includes a plurality of fine lines extending in a single direction and that is provided across a top surface of the diffractive structure on the first surface of the substrate, wherein conditions: d<λ and λ/n<δ≦λ are satisfied when λ represents a wavelength of the incident light; d represents a distance between the neighboring fine lines; δ represents a distance between the convex portions; and n represents a refractive index of a material forming the substrate.
US07755717B2
A polarizing element manufacturing method includes (a) forming a plurality of fine metal wires by forming a metal film on a substrate and patterning the metal film, (b) applying, onto a base material, a glass precursor solution for forming a protective layer for protecting the fine metal wires, (c) placing the substrate on the base material so that ends of the fine metal wires are immersed in the glass precursor solution, and (d) forming the protective layer by drying the glass precursor solution, and bonding together the base material and the substrate with the protective layer therebetween.
US07755711B2
A liquid crystal device includes: a first scan line, a second scan line parallel to first scan line, a signal line intersecting the first scan line, a pixel arranged in a matrix; and a first light-shielding film. The pixel includes: a first transistor having a gate coupled to the first scan line, a source, and a drain, wherein either the source or drain is coupled to the signal line; a pixel electrode coupled to remaining source or drain of the first transistor; a common electrode disposed facing the pixel electrode; a liquid crystal layer disposed between the pixel electrode and common electrode; a second transistor having a gate coupled to the second scan line, wherein a source or drain of the second transistor is coupled to a source or drain of the first transistor, and the other source or drain is coupled to a power source line.
US07755709B2
Disclosed is a liquid crystal display (LCD) device having gate and data driving elements with improved heat dissipation properties. The driving elements each have the following: a source and a drain electrode, each with contact holes that provide electrical contact with an active area formed on the driving element's substrate; multiple separate channels between the source and the drain; and a gate electrode formed crossing the multiple channels. Also formed are dummy contact holes that allow the metal of the electrodes to penetrate to a layer below the active layer without contacting it. The dummy contact hole provides a thermally conductive channel whereby heat that would otherwise build up in the channels, and degrade the performance of the driving element, is conducted through the dummy contact hole and radiated away by the electrode metal.
US07755706B2
An image distortion correction method is provided which is capable of correcting for distortion of a projected image by designating an arbitrary correction point by using a simple and easy operation without independently providing a display device and/or a pointing device. The distortion correction method includes a first step of displaying first to eighth correction function indicating marks corresponding to first to eighth correction functions to make corrections to first to fourth correction points on a screen, a second step of displaying the first correction function indicating mark corresponding to the first correction function selected by an operator on the screen in a highlighted manner, a third step of moving the first correction point to be corrected by the selected first correction function and to be displayed on the screen according to an instruction of the operator and of calculating a correction parameter corresponding to a moved distance, and a fourth step of correcting for distortion of projected image based on the correction parameter.
US07755700B2
According to one embodiment, a motion-adaptive non-interlace conversion apparatus includes an interference elimination process circuit which executes a cross-color & dot interference elimination process, an intra-field interpolation process circuit which generates an intra-field interpolation signal using a signal that is obtained by delaying a processed signal, which is subjected to the interference elimination process, with a delay corresponding to 1 field, an inter-field interpolation process circuit which generates an inter-field interpolation signal by using the processed signal and a pre-process signal which is yet to be subjected to the cross-color & dot interference elimination process, a motion detection circuit which obtains a motion detection signal, a mixing circuit which mixes the intra-field interpolation signal and the inter-field interpolation signal with a mixing ratio corresponding to the motion detection signal and outputs a mixed signal, and a multiple-speed conversion circuit which executes a multiple-speed conversion process.
US07755698B2
According to the invention, a system for dynamically scaling bias current on an imaging system is disclosed. In the invention an image sensor capable of producing at least a two-dimensional image and capable of at least two modes of operation is equipped with a control unit. The control unit determines a digital output for each of the modes of operation of the imaging system and outputs the digital outputs to a converter. The converter converts the digital output from the control unit to a bias current and provides this output to an analog and or mixed signal circuit associated with the imaging system that has operating characteristics that may be varied by the application of different bias currents.
US07755697B2
A webcam with an optical lens that can manually be moved into a position in front of the camera lens. The lens may slide or be rotated to a position in front of the camera lens. The optical lens may be a zoom lens, such that, in combination with the lens of the camera, a fixed zoom or magnification function is provided. Alternately, at least a second lens may also be provided, such as to provide two fixed zoom positions. The two lenses could be moved together with a single mechanical structure, or separately with two different manual controls.
US07755695B2
A camera system is disclosed which allows different types of lens apparatuses to be used in combination with a single image-taking apparatus without requiring changes of focus control signals on the side of the image-taking apparatus depending on the type of a lens apparatus mounted on the image-taking apparatus. The camera system includes an image-taking apparatus which outputs a focus control signal and a lens apparatus which includes a focus lens and is mounted on the image-taking apparatus. The lens apparatus includes a controller which produces a drive signal according to a type of focus of the lens apparatus based on the focus control signal and controls drive of the focus lens based on the drive signal.
US07755692B2
An image pickup apparatus of the present invention can eliminate the trouble of starting up the image pickup apparatus once to change settings in order to turn off a start-up picture image and mute start-up sound or operation sound. A method of controlling the same, a program for the method and a storage medium having the program stored therein all can attain such technological advantages. Start-up sound, operation sound after the start-up and display of a start-up picture image of the image pickup apparatus are inhibited by depressing a predetermined button in starting up the image pickup apparatus.
US07755688B2
This invention discloses a photoelectric conversion device. The photoelectric conversion device includes a pixel array in which a plurality of pixels are arrayed in a row direction and a column direction, a plurality of readout circuits which read out signals from pixels for respective columns in the pixel array, and a control unit which controls the plurality of readout circuits, wherein each of the plurality of readout circuits includes a holding unit which holds a reference voltage supplied from an external power source, an operational amplification unit which amplifies the signals from the pixels for each column based on the reference voltage held in the holding unit, and a disconnection unit which electrically disconnects the external power source and the holding unit, and the control unit controls the disconnection unit to electrically disconnect the external power source and the holding unit when the operational amplification unit amplifies the signals from the pixels for each column.
US07755681B2
Provided are an apparatus and method of gamma correction, and more particularly, an apparatus and method for varying a gamma curve according to a brightness level of a detected image signal to adaptively perform gamma correction, in a digital image processor. The gamma correction apparatus in the digital image processor includes a brightness level detector detecting a brightness level from an image signal generated by capturing an image, a gamma curve calculator moving a start point and/or an end point of an existing gamma curve for correcting an input brightness level to a predetermined output brightness level, according to the detected brightness level, and calculating a new gamma curve, and a gamma corrector correcting an input brightness level of the image signal using the new gamma curve, and outputting the corrected brightness level.
US07755679B2
A method and apparatus for forming dummy pixels exhibiting electrical characteristics virtually identical to the clear pixels of the imaging array. Arrays of such dummy pixels are used to form regions that isolate the main imaging array and sub-arrays of optical black pixels while preventing edge effects. The dummy pixels are preferably clear but can also be covered with optical black. By setting quiescent operation in soft reset, the dummy pixels exhibit the diode ideality and RoA product that are typical of any of the pixels in the entire array.
US07755673B2
In the method of properly deleting music data in a music player or other equipment with audio reproduction function, and a camera with audio reproduction function, unnecessary audio file can be exactly deleted to keep a recording area of image data during image-capturing. The camera is a digital camera for recording electronic image data picked up via a CCD in a memory card. This camera contains an audio decoder circuit that can reproduce a music file stored in the memory card and can output audio from a speaker or a head phone. When the music file is deleted, a part of the file is reproduced to prompt an operator to make a confirmation. Also, when the memory card becomes full in an image-capturing mode, the music file can be reproduced if a photographer depresses a shutter button, thereby prompting the operator to confirm deletion.
US07755672B2
Techniques for modifying data of an image that can be implemented in a digital camera, video image capturing device and other optical systems are provided to correct for non-uniform illumination and/or effects of saturation appearing in data obtained using one or more artificial illumination sources. In an implementation, correction factors are derived using data from at least two images that have been captured with different illumination levels of the object scene and close in time to the capture of the image of interest. Typically, the image of interest is of higher resolution than at least one of the at least two images.
US07755666B2
An actuator that has a simple mechanism capable of locking a movable member, and a lens unit and a camera with the same. The actuator (10) includes a fixed member (12), a movable member (14) having a locking element (14a), a movable member supporting means (18) for supporting the movable member so as to permit the movable member to move to an arbitrary position in a plane in parallel with the fixed member, a drive mechanism (20a, 20b, 20c, 22) translating and rotating the movable member relative to the fixed member, and an engagement member (15) engaged with the locking element to lock the movable member when the movable member has been rotated to a predetermined position.
US07755660B2
A video inspection system and method for facilitating inspection of a rail component while traveling on the railroad track. The system includes a light source that provides illumination to a rail of the railroad track, a triggering device for automatically providing a trigger signal, a camera adapted to provide an image of the illuminated rail component, and a computing device adapted to capture the image provided by the camera based on the trigger signal. A method for inspecting rail components is also provided, the method including the steps of illuminating a rail of the railroad track, automatically providing a trigger signal, providing a camera adapted to provide an image of the rail component, and capturing the image of the rail component that is provided by the camera based on the trigger signal.
US07755659B2
A laser printer for Braille that obviates the need for embossing mechanisms and specialized paper. A laser printer for Braille according to the present teachings increases an amount of a toner that adheres to an area of a paper that corresponds to the Braille element. The increased amount of toner yields a printed Braille element that may be read by touch.
US07755657B2
The present invention includes a method to print patterns with improved edge acuity. The method for printing fine patterns comprises the actions of: providing an SLM and providing a pixel layout pattern with different categories of modulating elements, the categories differing in the phase of the complex amplitude.
US07755656B2
In one embodiment, a system and method pertains to detecting a position of a sheet of media that has been loaded onto the print surface, determining from the detected position a current loading error with which the media sheet has been loaded onto the print surface, and calculating a loading offset that can be used to adjust the position at which a future media sheet will be loaded onto the print surface.
US07755650B2
A technique includes pulse width modulating an illuminating beam of a light to establish a pixel intensity and modulating the illuminating beam to create different tonal resolution ranges for the pixel intensity.
US07755643B2
A system, including apparatuses, software and methods, is disclosed for capturing and delivering images as to which various interactive functions are enabled for a user. The images introduced to the system can come from any one of a variety of sources, including from a digital camera. A graphical user interface permits a user to customize a set of interactive functions to be enabled for a given set of images. The interactively enabled images can be delivered via a webpage to a user, for example, via email, the Internet or downloaded from a disk or from disk drive on a computer on which the webpage is stored. Each image is delivered to a user in its own layer of software, which permits complex sets of images of relatively high resolution to be delivered to users without any appreciable delay associated with the delivery or the need for the user to have additional software, such as a plug-in to receive images and enable interactive functions with respect to the images. Whenever an interactive function is being carried out, a viewer perceives only one image layer at a given time, but the currently viewable image layer can be changed rapidly, so that the user can perceive the illusion of motion, including virtual rotation of an object depicted in a set of images.
US07755641B2
A method and system are disclosed for decimating an indexed set of data elements to generate a decimated set of data elements. The indexed set of data elements are grouped into groups of at least two data elements per group. The indexes of the data elements in each group are used to address a look-up-table (LUT) that is pre-programmed to perform the decimation operation. For each group of data elements presented to address the LUT, a decimated data value is output from the LUT. The decimated data value is a function of the data values of the corresponding data elements addressing the LUT.
US07755640B2
The invention discloses a gamma image correction method and device that employs an improved interpolating operation, comprising receiving an original image data point; retrieving p conversion values (p is larger than 2) from a memory unit according to the original image data point; and arithmetically processing the p conversion values for generating a gamma corrected image parameter value from the original image data point wherein the original image data point is a N bits data, the memory unit contains 2k conversion values and N is lager than k.
US07755635B2
A system and method for combining computer generated 3D environments (virtual environments) with satellite images. In a specific application, the system enables users to see and communicate with each other as live avatars in the computer generated environment in real time.
US07755632B2
A GPU pipeline is synchronized by sending a fence command from a first module to an addressed synchronization register pair. Fence command associated data may be stored in a fence register of the addressed register pair. A second module sends a wait command with associated data to the addressed register pair, which may be compared to the data in the fence register. If the fence register data is greater than or equal to the wait command associated data, the second module may be acknowledged for sending the wait command and released for processing other graphics operations. If the fence register data is less than the wait command associated data, the second module is stalled until subsequent receipt of a fence command having data that is greater than or equal to the wait command associated data, which may be written to a wait register associated to the addressed register pair.
US07755629B2
A method of rendering an image described by a list of graphical objects includes the steps of assigning objects in the list to at least one of a first set of objects and a second set of objects, and rendering the first set of objects to an image store using a first rendering method that determines whether a portion of an object of the first set contributes to a rendered output of the first set of objects and, if so, the first rendering method renders each pixel of the portion in sequence. The second set of objects to the image store are rendered using a second rendering method that renders each object in the second set in sequence and independently of the other objects in the second set.
US07755628B2
A method, apparatus, and system related to thermal management. The method includes generating a beam including a group of rays; evaluating the beam against a spatially ordered geometrical database until the beam can no longer be evaluated as a whole in order to discard a portion of the spatially ordered geometrical database from further consideration; noting the location where the beam can no longer be evaluated as a whole; and traversing, starting at the noted location, the spatially ordered geometrical database for each of the rays by executing a query against the spatially ordered geometrical database not discarded by the evaluating.
US07755627B2
A method for a computer system includes determining a plurality of illumination modes associated with a plurality of scene descriptors, wherein the plurality of scene descriptors includes a first scene descriptor and a second scene descriptor, determining a first plurality of weights, wherein each weight from the first plurality of weights is associated with an illumination mode from the plurality of illumination modes, determining illumination data associated with the first scene descriptor in response to the first plurality of weights and in response to the plurality of illumination modes, determining a second plurality of weights, wherein each weight from the second plurality of weights is associated with an illumination mode from the plurality of illumination modes, and determining illumination data associated with the second scene descriptor in response to the second plurality of weights and in response to the plurality of illumination modes.
US07755626B2
Soft shadows in computer graphics images are created by rendering the scene from the camera viewpoint and at least one light viewpoint. The positions of scene fragments and light fragments in the scene are stored. For each scene fragment, a frustum is defined between the position of the scene fragment and the light source. Light fragments are evaluated with respect to the frustum to select light fragments blocking light between the light source and the scene fragment. A color or monochromatic shading value is determined for each scene fragment that indicates the amount of light blocked or transmitted by the light fragments. The shading values are then used to alter scene fragments accordingly. Computer graphics images with soft shadows can be created entirely by a graphics processing subsystem or by a graphics processing subsystem in conjunction with a central processing unit using a pipelined, deferred shading approach.
US07755622B2
A method and system are described that allow conversion of a three-dimensional representation of a wire harness to a two-dimensional representation. In one aspect, an optimal viewing angle of the three-dimensional representation is automatically computed such that overlap of nodes and/or branches is minimized. Using the optimal viewing angle, the three-dimensional representation is converted to two dimensions.In another aspect, the optimal viewing angle is obtained through rotation of the three-dimensional data. One technique for performing such a rotation is by determining a plane associated with the viewing angle, the plane being such that the average distance from nodes in the wire harness to the plane is a minimum.
US07755621B2
Methods, systems, and program products for detecting user manipulation of one or more elements of a presentation of a complex solid represented by a solid history tree. A reduced history representation of the complex solid is created. The reduced history tree is repeatedly evaluated to recreate the presentation of the complex solid in response to the user manipulation of the one or more elements.
US07755617B2
A method drives an electronic circuit for driving a driven element including a transistor which includes control, first, and second terminals, and in which a conduction state representing conduction between the first and second terminals changes depending on a potential of the control terminal, a first capacitive element that includes first and second electrodes, the first electrode being electrically connected to the control terminal, and a second capacitive element that includes third and fourth electrodes, the driven element being supplied with at least one of a driving voltage having a voltage level based on the conduction state in the transistor and a driving current having a current level based on the conduction state in the transistor. The method includes holding a threshold voltage of the transistor by the first capacitive element, with the second and third electrodes separated from each other, holding a data voltage by the second capacitive element, with the second and third electrodes separated from each other, and generating a sum voltage representing the sum of voltages of the first and second capacitive elements by electrically connecting the second and third electrodes, and supplying a potential based on the sum voltage to the control terminal of the transistor.
US07755610B2
A system and method for writing bistable media is described, wherein the media has at least one through hole that interacts with at least one protrusion on a writer to align the media with the writer.
US07755602B2
A man-machine interface which provides tactile feedback to various sensing body parts is disclosed. The device employs one or more vibrotactile units, where each unit comprises a mass and a mass-moving actuator. As the mass is accelerated by the mass-moving actuator, the entire vibrotactile unit vibrates. Thus, the vibrotactile unit transmits a vibratory stimulus to the sensing body part to which it is affixed. The vibrotactile unit may be used in conjunction with a spatial placement sensing device which measures the spatial placement of a measured body part. A computing device uses the spatial placement of the measured body part to determine the desired vibratory stimulus to be provided by the vibrotactile unit. In this manner, the computing device may control the level of vibratory feedback perceived by the corresponding sensing body part in response to the motion of the measured body part. The sensing body part and the measured body part may be separate or the same body part.
US07755601B2
The present invention is to provide a display unit for a vehicle. The display unit has an attractive and three dimensional appearance and is manufactured with low cost. A display unit for a vehicle includes a display screen having display areas displaying a plurality of informations about conditions of the vehicle, a first controller for controlling images displayed on the display screen, and a display partition member disposed on a part of the display areas and having an opening, wherein the first controller controls the display screen to display an image of a display design of a dial on a first display area surrounded by the opening of the display partition member and to rotate the image of the display design based on a prescribed display change specifier signal.
US07755600B2
In an information display device according to the first to third inventions of the present invention, when a particle movement type information display device of passive matrix drive and dynamic drive is driven, the particle movement type information display device configured to be driven by using a drive circuit having an output stage equivalent circuit capable of outputting only two values of a predetermined drive voltage value and ground level (0V). Moreover, in the forth and fifth inventions of the present invention, in the method for driving the information display device, wherein the display media are sealed between two opposed substrates, at least one of which is transparent, and wherein the display media, to which an electrostatic field is applied, are made to move so as to display information such as an image or the like, electrodes of the information display device are connected to predetermined potential in the driving voltage range with low impedance while information refresh (scan) is not performed.
US07755597B2
A liquid crystal display device is provided which is capable of reducing a number of components and fabricating processes and of realizing a bright display even at time of a transmissive display and of simplifying configurations of a data signal. Transistors are controlled ON/OFF based on selecting signals input to selecting signal lines and a one kind of data signal input from data lines distributed and supplied, as a sub-pixel data, to a data electrode selected based on selecting signals corresponding to a successive additive color mixture or juxtapositional additive color mixture process. At time of the transmissive display operation, data electrodes corresponding to three sub-pixels making up each pixel are simultaneously selected and, at time of the reflective display operation, data electrodes selected based on selecting signal corresponding to the juxtapositional additive color mixture.
US07755584B2
A voltage boosting circuit performs variable frequency control that gradually increases frequencies of clock signals from a low frequency to a high frequency during a boosting operation period for which a low output voltage of a DC-DC converter when the power is turned on is boosted up to a predetermined voltage. Thus, the frequencies of clock signals may be set according to the boosting operation of the DC-DC converter. Consequently, the operation of the DC-DC converter may be stabilized until the stable operation period is performed after the DC-DC converter starts to operate.
US07755580B2
A method for regulating the biasing voltage of column control circuits of an array screen formed of LEDs distributed in lines and columns, the column control circuits being adapted to turning on at least one LED of a line. The method includes increasing the biasing voltage when the current flowing through at least one activated LED is smaller than a determined luminance current and of decreasing the biasing voltage when the current flowing through each activated LED is equal to the determined luminance current.
US07755577B2
An electroluminescent device includes a first optical output part having a light-emitting layer emitting a light ray of a first color, a second optical output part having a light-emitting layer emitting a light ray of a second color, and a third optical output part having a light-emitting layer emitting a light ray of a third color, the colors being different from one another. Each of the optical output parts also has a resonator structure that resonates the light ray emitted from the light-emitting layer. In each optical output part, a resonant peak wavelength indicating a peak value of a transmission spectrum of light transmitted through the resonator structure in a direction perpendicular to a main surface of the light-emitting layer is on a longer or shorter wavelength side of an emission peak wavelength indicating a peak value of an emission spectrum of the light ray emitted by the light-emitting layer.
US07755569B2
A method is provided. The method includes displaying a first image pixel on a first display pixel of a plurality of display pixels of a monitor, and displaying a second image pixel following the first image pixel on a portion of sub-pixels of the first display pixel and a portion of sub-pixels of a second display pixel so as to avoid loss of image data when displaying the image pixels on a monitor of a small resolution.
US07755561B2
A rigid antenna support structure is designed and prefabricated to rest on two or more existing support foots normally found on a roof or similar structure. The antenna support structure, to which antennas are attached, possess mounting brackets associated with the exterior of the structure configured to accept a plurality of vertical support members composed of a substantially RF transparent material. Attached to the vertical support members are a number of horizontal support members thereafter forming a concealment assembly skeleton. A plurality of RF transparent panels are then connected to the horizontal support members so as to form a concealment assembly that conceals the antenna support structure and antennas. The concealment assembly is environmentally and aesthetically pleasing, and retains RF transparency so as to not to attenuate the RF signals being sent to or originating from the antennas housed within.
US07755559B2
A dual-band omnidirectional antenna is provided. The antenna comprises a vertically stacked antenna array, in the following order: a first dual-band dipole which resonates at a first frequency band and a second frequency band, a first single-band dipole which resonates only at the first frequency band, a second single-band dipole which resonates only at the first frequency band, and a second dual band dipole which resonates at the first frequency band and second frequency band. The first frequency band is of a higher frequency than the second frequency band.
US07755553B2
Antenna assembly 100 to be worn by a user includes a low-band dipole antenna (310) and at least one high band dipole antenna (312, 612). The high-band dipole antenna is comprised of a high-band dipole feed (102, 602) interposed at a location along a length of a low-band dipole element (105, 110). The high-band dipole feed divides the first low-band dipole element into a first high-band dipole element (128) and a second high-band dipole element (130). One of the high-band dipole elements (130) is formed as a flexible electrically conductive sleeve. An RF control device (308) is provided for selectively directing RF energy in a high-band to the high-band dipole feed (102), and for selectively directing RF energy in a low-band to the low-band dipole feed (202). A transmission line (113) extends from the RF control device (308) to the high-band dipole feed (102).
US07755551B2
The specification discloses various embodiments of modular antenna assemblies for automotive vehicles. In one exemplary embodiment, an antenna generally includes a base assembly that may be used on a variety of vehicle platforms. The antenna may also include a radome assembly that is specific to a particular vehicle platform. The radome assembly may snap-fit onto the base assembly, and be installed during or after vehicle assembly. A wide variety of radome assemblies of different shapes, styles, and colors may be used in conjunction with a single base assembly.
US07755545B2
A small antenna operating in multiple modes including three or more modes. There are provided an antenna that includes a ground conductor having a ground potential, a single feeding point whose one end is formed by a part of the ground conductor, and a plurality of transmission lines to which RF power supplied to the feeding point is input, the transmission lines each radiating electromagnetic waves of three frequencies of three modes into space. These transmission lines comprises a transmission line 41 that is connected to the feeding point at one end and to a branching point at the other end, a transmission line connected between branching points, and transmission lines connected to the branching points. The lengths of the respective transmission lines are set so that impedance matching is performed at the feeding point with respect to a plurality of frequencies. The antenna is formed from an integrated metal plate.
US07755542B2
Methods and apparatus for processing of data from a network of GNSS reference stations are presented. An ionosphere-free, federated geometry filter is employed so that computation time increases only linearly with the increase in number of reference stations, significantly reducing processing time as compared to a centralized filter approach.
US07755536B1
The present invention is a method of finding range and velocity of a target in a radar system using a time scale factor. Specifically, sending at least one signal from at least one transmitter to a target. A return signal is then received from the target at each transmitter and the elapsed time is recorded. The range to the target and velocity of the target are calculated based on a time scale factor of the recorded elapsed times. These values are appropriately output to the user.
US07755531B2
An analog reference voltage generator for generating a monotonously increasing or decreasing analog reference voltage includes a plurality of dump cells in front of an operational amplifier and controls the dump cells using a plurality of clock signals, respectively, which do not overlap each other in time, thereby increasing a ramping speed. The analog reference voltage generator including the plurality of dump cells controls the generation of an analog reference voltage using the plurality of clock signals obtained by dividing a master clock signal, thereby preventing the voltage level of the reference signal from decreasing due to an increase of the load.
US07755529B2
An AD converter comprising: a delta-sigma-modulation circuit to output an analog signal from a bridge circuit as a quantized signal; a switch circuit to switch between a first state, where a first level voltage is applied to one terminal of the bridge circuit and a second level voltage different in level from the first level voltage is applied to the other terminal thereof, and a second state, where voltages opposite in level to those in the first state are applied thereto, based on a logic level of a control signal; and an up-down counter to increase a count value based on a rate of the quantized signal being one logic level, during a predetermined period, in the first state, and decrease the count value based on the rate, during the predetermined period, in the second state, the count value representing a digital signal according to the physical quantity.
US07755527B2
A mixed signal integrated circuit device, e.g., digital-to-analog converter (DAC), has a serial interface communication protocol that accesses volatile and/or non-volatile memory and allows a preprogrammed output voltage whenever the mixed signal device is powered-up. However, unlike conventional DACs, DACs with non-volatile memory may need special interface communication protocols for effective operation of the DAC and communications between a system master controller unit (MCU). Interface communications protocols that do not violate standard serial bus communications protocols are provided for communicating between the volatile and non-volatile memories of the DAC so that the MCU may access the DAC's memories (non-volatile and/or volatile memories). The mixed signal integrated circuit device has a user programmable address.
US07755525B2
A power control system includes a delta sigma modulator to generate output values for use in controlling a switching power converter. In at least one embodiment, the delta sigma modulator includes two ranges of available output values and a range of one or more unavailable intermediate output values, wherein the range of one or more unavailable intermediate output values represent a gap in available output values. Each unavailable intermediate output value represents an output value that is not generated by the delta sigma modulator. In at least one embodiment, the delta sigma modulator includes a quantizer output remapping module that remaps quantizer output values within the range of one or more unavailable intermediate output values of the delta sigma modulator to new output values within one of the ranges of available output values.
US07755519B2
A vehicle traveling through an environmental media such as air experiences drag. The drag is actively modulated by energy beams which may either increase or decrease the drag. The energy beams may provide either a chemical, acoustic or electromagnetic energy at a transition region between turbulent and laminar flows or at the leading edge of a laminar flow or in the direction of a crosswind in order to facilitate the respective increase or decrease in drag. Where the energy beams are acoustic or ultrasonic, some or all of the beams may be used to generate an audible signal, in a directional manner, outside the vehicle.
US07755518B2
The dynamic, predictive information system and method assigns shipping assets (drivers-tractors-trailers) from carriers to transport orders by shippers. Computer databases hold shipping asset data. Specific transport orders are electronically joined to specific driver-tractor-trailer combinations. A search and sort routine produces resulting records based upon proximity, trailer type, proximity of the joined driver-trailer combination, carrier service region and pick-up and delivery date constraints. The sort is by price or performance indicators which are pre-selected shipper ranges matched to historical shipping data from carriers. The system books the carrier, the driver-tractor-trailer combination and the shipper to transport order with an electronic communications phase. In a truck lane scenario, the system joins a specific driver and a specific tractor and a non-specific trailer to a specific transport order. GPS data and electronic shipping document data from PDAs with the drivers is logged into the system and is viewable by the participants.
US07755513B2
A visual navigational aid for guiding the approach path of incoming aircrafts, ships or other vehicles. The visual navigational aid comprises high intensity light emitting diodes (LEDs) or LED arrays and optical beam shaping apparatus that produce multiple light beams with different colors or flash patterns to guide the incoming aircrafts, ships or other vehicles to a pre-determined approach path.
US07755511B2
In a parking assistance apparatus disclosed herein, a position and a yaw angle of a vehicle are acquired continuously from an initial stop position A, and a vehicle mark C2′ in moving the vehicle backwards with a steering angle maintained during a backward movement operation from a backward movement start position B in parking the vehicle in a target parking space S is displayed on a display. The vehicle mark C2′ is displayed in a shifting manner on the display such that the target parking space S is traced based on a momentary steering angle and a momentary yaw angle of the vehicle, which result from backward movement of the vehicle. When the vehicle mark C2′ deviates from the target parking space S during the backward movement operation, a driver adjusts the steering angle. The vehicle mark C2′ is shifted on the display based on a change in the steering angle to be turned into a vehicle mark C4 at a suitable position corresponding to the target parking space S.
US07755507B2
A control device that is used in a distributed control system and controlling a control target while serially transmitting data to a reception side control device by a pulse train signal, wherein when the control target is normal, state quantity data representing the state quantity of the control target is transmitted to the reception control device, and when abnormality occurs in the control target, the abnormality data representing the abnormality concerned and the state quantity data are transmitted to the reception control device in a predetermined order.
US07755506B1
An integrated controller for complete automation with the ability to control electrical devices through both RF transmission and IR transmissions. In one illustrative embodiment, the integrated controller comprises an antenna for two-way communication with stations located throughout a structure. Each station may control the power supply to an attached electrical device. The buttons on the station may control any electrical device on the system through RF transmission with the integrated controller. The integrated controller also may comprise an IR receiver and at least one IR output. The IR receiver may receive signals from a remote and pass them through to a device, such as a device used in a home theater system, with a built in IR receiver via the IR output. In this manner, the integrated controller is capable of providing complete in home automation.
US07755490B2
A method and system for identifying a lost or stolen device is disclosed herein. The system includes: a transmitter, coupled to said device, for transmitting identification information; a receiver for receiving the identification information transmitted by the transmitter, when the transmitter is within a defined distance from the receiver; and a computer, coupled to the receiver for receiving the information from the receiver, and having a database for storing data associated with lost or stolen devices; wherein the computer compares the information with the data, and generates an alarm if the information indicates that the device is lost or stolen. The method includes: receiving information transmitted by a radio frequency identification (RFID) device, coupled to an item, when the item comes within a defined range of a receiver which receives the information; storing data associated with lost or stolen goods in a database coupled to the receiver; comparing the information to the data and determining if the information matches the data associated with the lost or stolen goods; and generating an alarm, if the information matches the data.
US07755488B2
An access site disconnection system and method employ RFID sensors that are sensitive to moisture and their presence may not be detected if the sensor is wetted. When a patient receives dialysis treatment, wetness may arise from blood if the access needle becomes disconnected from the access site. At least one RFID sensor is mounted on or near gauze or other absorbent material placed adjacent the access site. After the sensors are placed, the dialysis machine and RFID control circuit may be initialized and dialysis treatment, such as hemodialysis, begun. If blood leaks from the access site, such as if the access needle is dislodged, the RFID sensor is wetted and sends a different or no response to periodic inquiries from an RFID reader. A signal is sent to a controller or to an output device to raise an alert or sound an alarm.
US07755478B2
The present invention relates to assisting patients in the taking of medication, and to assisting third parties in accumulating information regarding patient medication intake. The invention may be embodied a system including a portable medication monitor used in association with an instrumented medication package to provide intake data acquisition and patient support functions. The system may further be connected to a computer or computer network allowing information distribution between the medication monitor and third parties, such as physicians or pharmacists.
US07755460B2
A micro-switching device includes a movable electrode provided on a movable support having an end fixed to a fixing member. The switching device also includes first and second stationary electrodes. The movable electrode includes first and second contact portions. The first stationary electrode includes a third contact portion facing the first contact portion of the movable electrode. The second stationary electrode includes a fourth contact portion facing the second contact portion of the movable electrode. The distance between the first and the third contact portions is smaller than the distance between the second and the fourth contact portions. The switching device further includes a driving mechanism having a driving force generation region provided on the movable support. The center of gravity of the driving force generation region is closer to the second contact portion than to the first contact portion.
US07755459B2
A micro-switching device includes a fixing portion, a movable portion, a first electrode with first and second contacts, a second electrode with a third contact contacting the first contact, and a third electrode with a fourth contact opposing the second contact. In manufacturing the micro-switching device., the first electrode is formed on a substrate, and a sacrifice layer is formed on the substrate to cover the first electrode. Then, a first recess and a shallower second recess are formed in the sacrifice layer at a position corresponding to the first electrode. The second electrode is formed to have a portion opposing the first electrode via the sacrifice layer, and to fill the first recess. The third electrode is formed to have a portion opposing the first electrode via the sacrifice layer; and to fill the second recess. Thereafter the sacrifice layer is removed.
US07755457B2
The present invention provides a method and apparatus for design of low loss, size restricted high frequency circuits. In a preferred embodiment, an electronic device includes: a first circuit layer located above the main circuit board comprising a first stripline passive circuit; and a second circuit layer located above the first circuit, the second layer comprising a second stripline circuit. The two stripline circuits can be separately coupled to leads, or coupled to each other and other leads using vias through the ground layer(s) separating each stripline. The stacked stripline elements can be used together with other circuits, and the stacked circuit board can be conveniently joined together with other assemblies, e.g., by surface mounting to a main board. The utility of this topology can be extended by the use of n-circuit embodiment or embedding in a multilayered main circuit board.
US07755454B2
Provided is a micro-electromechanical device capable of processing an electric signal in the high frequency region by a simple device structure. The micro-electromechanical device is formed, including an oscillator element having a plurality of electrodes disposed on a substrate and a beam facing the electrodes to oscillate by electrostatic drive. An input/output of a high frequency signal is applied to one of the combinations of the electrodes and the beam.
US07755449B2
A printed circuit board (PCB) including an impedance-matched strip transmission line includes a strip transmission line including a main line and at least one pair of branch lines branching off from the main line. An upper ground layer is disposed over the strip transmission line and has upper opening parts corresponding in position to the branch lines. A lower ground layer is disposed under the strip transmission line and has lower opening parts corresponding in position to the branch lines. The upper and lower opening parts are symmetric about the branch lines of the strip transmission line.
US07755446B2
A waveguide comprises a connecting part, a main chamber and a buffer. The connecting part is connected to the main chamber via the buffer. The side length of the junction between the connecting part and the buffer is smaller than that of the junction between the buffer and the main chamber.
US07755443B2
An apparatus for providing an angle modulated signal includes a tunable oscillator circuit, a variable time delay circuit, and an optional scaling and delay control apparatus. The tunable oscillator circuit generates an oscillatory signal having a predetermined frequency. The variable time delay circuit operates to delay the oscillatory signal in accordance with time varying changes in an angle control signal, thereby producing the desired angle modulated signal. The scaling and delay control apparatus is configured to scale the angle control signal to account for frequency dependent phase delays of the oscillatory signal through the variable time delay circuit. The methods and apparatus of the present invention may be advantageously used in RF transmitters and receivers, such as in a polar transmitter, where the oscillatory signal generated by the tunable oscillator apparatus serves as a carrier signal, and the angle control signal used to control the delay of the variable time delay circuit comprises a phase modulation signal from the phase path of the polar transmitter.
US07755440B2
A voltage controlled oscillator (VCO) includes a VCO unit having multiple VCO unit output terminals and an amplifier having multiple amplifier output terminals respectively connected to the VCO unit output terminals. The VCO unit generates first output signals having an oscillation frequency corresponding to a supply voltage. The amplifier amplifies a value obtained by performing n-th differentiation on a transconductance component of each first output signal (n being a natural number). Second output signals, corresponding to the first output signals, are output through the amplifier output terminals. Each second output signal includes the amplified value of the corresponding first output signal.
US07755438B2
There is provided a PLL circuit 15, a voltage follower 19, and an output terminal 23, and a control voltage V1 of a voltage controlled oscillator circuit in the PLL circuit 15 is outputted to the output terminal 23 via the voltage follower 19.
US07755434B2
An electronic circuit includes a differential amplifier circuit, a first smoothing circuit, a second smoothing circuit and a first switch. The differential amplifier circuit receives a digital input signal and a reference signal. The first smoothing circuit smoothes the digital input signal with a first capacitance value. The second smoothing circuit smoothes the digital input signal with a second capacitance value larger than the first capacitance value. The first switch selects one of output signals from the first smoothing circuit and the second smoothing circuit as the reference signal.
US07755426B2
Various example embodiments are disclosed. According to one example embodiment, a high bandwidth, fine granularity variable gain amplifier (“VGA”) may comprise an attenuator, a gain block and a gain adjustment control. The attenuator may comprise at least one pair of attenuator differential input nodes and at least one pair of attenuator differential output nodes. The gain block may comprise at least one pair of gain block differential input nodes coupled to the at least one pair of attenuator differential output nodes and at least one pair of gain block differential output nodes. The gain adjustment control may be configured to adjust a gain of the gain block.
US07755419B2
A circuit (200) can include a reference circuit (202) and a start-up circuit (204). A start-up circuit (204) can include a low threshold voltage reference current device (N3) that can pull a start node (210) low in a start-up operation. This can enable activation device (P3), which can place reference circuit (202) in a stable operating mode. Operation of transistor (N3) can be essentially independent of a high power supply voltage and start-up circuit (204) can include no resistors.
US07755416B2
A temperature-sensor circuit includes: a transistor having an emitter that is grounded, a collector, and a base; a first resistor having a first end and a second end, the first end being coupled with the collector; and a second resistor having a third end and a fourth end, the third end being coupled with the second end of the first resistor. A junction joining the first resistor and the second resistor is coupled with the base.
US07755407B2
Provided is a variable delay circuit outputting an output signal delayed with respect to an input signal by a designated delay time, including: a delay controller outputting a control voltage according to the delay time; a MOS transistor receiving the control voltage at a gate, and outputs a drain current according to the control voltage; a correction section connected in parallel to a source and a drain of the current controlling MOS transistor, and outputs a correction current on a monotonic decrease as the drain current increases in a range larger than a predetermined boundary current within a normal usage range of the drain current; and a delay element running an output current resulting from adding the correction current to the drain current, between the delay element and an output terminal of the variable delay circuit, in changing a signal value of the output signal according to the input signal.
US07755406B2
A duty cycle correction circuit with wide-frequency working range utilizes a pulse generator having adjustable pulse width function to adjust the width of the pulse and outputs a clock signal with the duty cycle of 50%. The pulse generator includes a NAND gate, a modulation device, and an inverter. The inverter is coupled between the second input end of the NAND gate and the modulation device. The modulation device modulates the low-level status of the input clock signal and accordingly outputs to the inverter. The first input end of the NAND gate receives the input clock signal. The NAND gate operates NAND calculation to the signals received on the input ends of the NAND gate and accordingly outputs a periodic low-level pulse signal.
US07755401B2
A DLL circuit includes: a phase determining circuit that compares phases of respective rising edges of CK and LCLK to generate a determining signal R-U/D; a phase determining circuit that compares phases of respective falling edges of CK and LCLK to generate a determining signal F-U/D; a first adjusting circuit that adjusts a position of an active edge of LCLKR based on the determining signal R-U/D; a second adjusting circuit that adjusts a position of an active edge of LCLKF based on the determining signal F-U/D; a clock generating circuit that generates LCLK based on LCLKR and LCLKF; and a stop circuit that stops an adjusting operation by the second adjusting circuit in response to an adjusting direction of the active edge of LCLKR being opposite to each other to an adjusting direction of the active edge of LCLKF.
US07755394B2
A circuit (01) combining level shift function with gated reset is described, performing a simple logic function with inputs supplied from a lower voltage (VD) and a drive out at its output (05) with a higher voltage (VC). Said circuit (01) comprises a gated reset scheme plus devices (10, 30, 40) for logic function.
US07755392B1
A level shift circuit includes a high voltage circuit, a clamp circuit, an input circuit, and a bypass circuit. The high voltage circuit is electrically connected to a high voltage terminal. The clamp circuit can prevent the transistors of the high voltage circuit from high voltage stress when a voltage level of the high voltage terminal is greater than a voltage level of a voltage source. The bypass circuit is used to bypass the clamp circuit when a voltage level of the high voltage terminal is smaller than a voltage level of transistor breakdown voltages.
US07755391B2
There is provided a three-valued logic function circuit capable of remarkably reducing the kinds of basic circuits necessary for realizing all 33^2=19683 kinds of two-variable three-valued logic function circuits, remarkably reducing asymmetry of the switching time, and improving an operation speed and symmetry of waveform of the logic function circuit. In a three-valued logic function circuit, three transfer gates T1, T2, and T3 are turned on or off by one-variable three-valued logic function circuits C1, D1, C3 and D3, according to three logic values −1, 0, and 1 constituting a first input a, to select outputs of three one-variable three-valued logic function circuits B1, B2, and B3 connected to a second input b. The transfer gate T2 is configured by parallel connection of a switch pair of serial connection of two n-type MOS transistors and a switch pair of serial connection of two p-type MOS transistors.
US07755390B2
An XOR logic circuit includes a first transfer unit configured to transfer a logic high level data to an output terminal in response to data applied to first and second input terminals; a multiplexing unit configured to output a power voltage or a ground voltage in response to the data applied to the first and second input terminals; and a second transfer unit configured to transfer a logic low level data to the output terminal in response to an output signal of the multiplexing unit and the data applied to the first and second input terminals.
US07755380B2
Apparatus and methods for repairing display devices of a type that include a first substrate having a plurality of signal lines formed thereon and/or a second substrate having a plurality of color filters formed thereon include a laser that radiates laser light having a wavelength in a range of from about 750 to about 850 nm, or alternatively, of from about 1000 to about 1100 nm, and a pulse width of femtoseconds (10−15 seconds) to picoseconds (10−12 seconds) and arranged such that the laser light can be focused on selected ones of the signal lines and/or color filters. The apparatus enables repairs to be effected on the display device during any one of several manufacturing test processes using only a single laser apparatus, without the need for additional or different repair devices for each test process.
US07755379B2
This invention discloses a circuit for performing an unclamped inductive test on a metal oxide semiconductor field effect transistor (MOSFET) device driven by a gate driver. The circuit includes a current sense circuit for measuring an unclamped inductive testing (UIS) current that increases with an increase of a pulse width inputted from the gate driver to the MOSFET device wherein the current sensing circuit is provided to turn off the gate driver when a predefined UIS current is reached. The test circuit further includes a MOSFET failure detection circuit connected to a drain terminal of the MOSFET device for measuring a drain voltage change for detecting the MOSFET failure during the UIS test. The test circuit further includes a first switch for switching ON/OFF a power supply to the MOSFET device to and a second switch connected between a drain and source terminal of the MOSFET. Furthermore, the test circuit further includes a timing and make before break (MBB) circuit for receiving an MOSFET failure signal from the MOSFET failure detection circuit and for controlling the first and second switches for switching off a power supply to the MOSFET device upon a detection of an UIS failure under the UIS test to prevent damages to a probe.
US07755369B2
A capacitive fingerprint sensor comprises a fingerprint capacitor, a reference capacitor, a first transistor, a second transistor, a comparator and a multiplexer. The fingerprint capacitor has a capacitance that is either a valley capacitance CFV or a ridge capacitance CFR, wherein CFV is smaller than CFR. One end of the reference capacitor CS is connected to the fingerprint capacitor, and the other end is connected to a trigger signal, wherein the trigger signal is initiated only during a precharge phase. The first transistor is configured to control the fingerprint capacitor during a scan line period. The second transistor is configured to precharge the fingerprint and reference capacitors. One end of the comparator is connected to the second transistor. The multiplexer is connected to another input end of the comparator for providing a first voltage VA and a threshold voltage Vth.
US07755360B1
A portable self-standing electromagnetic (EM) field sensing locator system with attachments for finding and mapping buried objects such as utilities and with intuitive graphical user interface (GUI) displays. Accessories include a ground penetrating radar (GPR) system with a rotating Tx/Rx antenna assembly, a leak detection system, a multi-probe voltage mapping system, a man-portable laser-range finder system with embedded dipole beacon and other detachable accessory sensor systems are accepted for attachment to the locator system for simultaneous operation in cooperation with the basic locator system. The integration of the locator system with one or more additional devices, such as fault-finding, geophones and conductance sensors, facilitates the rapid detection and localization of many different types of buried objects.
US07755353B2
A three-axis fluxgate-type circuit having three fluxgate sensors for outputting three analog voltage values respectively. A controller normalizes three digital voltage values corresponding to said three analog voltage values, select a set of linear voltage values from the three normalized digital voltage values and calculate an azimuth based on the set of linear voltage values.
US07755346B2
A mounting structure for a current sensor is provided. The current sensor is arranged between a negative terminal of a battery and a grounding unit. The mounting structure includes a battery grounding cable which has one end connected with the negative terminal of the battery, and a fixing unit which is electrically conductive to electrically connect other end of the battery grounding cable with the grounding unit. The fixing unit and the battery grounding cable constructs a current path which connects the negative terminal with the grounding unit. The current sensor is fixed by the fixing unit to the grounding unit, and disposed to detect current flowing through the fixing unit.
US07755333B2
A SVC control section detects a bus voltage from an instrument transformer, and adjusts reactive power generated by a SVC according to the detected bus voltage. A cooperative control section generates a control command for controlling the interconnection and parallel-off of a phase lead capacitor and a phase lag reactor on the basis of the amount of reactive power generated by the SVC and the bus voltage detected by the instrument transformer and a voltage sensor. A voltage comparator compares the bus voltage with a predetermined threshold voltage set to a voltage lower than a lower limit value of a steady state fluctuation range of the bus voltage and outputs the comparison result to a circuit breaker control section. When the bus voltage is lower than the threshold voltage, the circuit breaker control section locks the control command from the cooperative control section.
US07755328B2
An exemplary charging circuit (200) includes for charging a load component (210) includes a power supply unit (220), a feedback circuit, and a sampling resistor (230). The power supply unit includes a pulse width modulation circuit (221) and a power output terminal (222) configured to output a direct current supply. The feedback circuit includes an amplifying comparator (241), a constant voltage circuit (242), a transistor (243), and an optoelectrical coupler (244). The constant voltage circuit is configured to generate a reference voltage and apply the reference voltage to a negative input terminal of the amplifier comparator. An output terminal of the amplifier comparator is connected to the pulse width modulation circuit via the transistor and the optoelectrical coupler. The sampling resistor includes a current sampling terminal connected to a positive input terminal of the amplifier comparator.
US07755321B2
The present invention relates to a method for battery removal detection in a portable communication device and also to a portable communication device comprising a detection circuit. During start-up of the portable communication device the detection circuit is powered on and a first input of the detection circuit is set to a first logical level and a second input of the detection circuit is set to a second logical level. An output from the detection circuit is fed to a third input of the detection circuit and a new output value for the detection circuit is generated based on the first, second and third input and the new value of the output is stored in a memory means.
US07755313B2
According to an example embodiment, a method is provided for limiting an operational temperature of a motor. The method includes generating a maximum allowable current I*S(max) for a motor based on a temperature difference between a temperature reference T* of a power inverter module and a semiconductor device temperature T of the power inverter module. The method further includes generating a maximum allowable torque T*e(max) based on the maximum allowable current I*S(max) and a maximum allowable flux Ψ*S(max), and using the maximum allowable torque T*e(max) to limit the torque command T*e in order to suppress the semiconductor device temperature T to below the temperature reference T*.
US07755311B2
When a fan drive current has become excessive, a fan drive device intercepts that current, waits for just a fixed time period T1, and thereafter flows that current for a second time. The fan power supply current flowed to the fan drive device is detected by a shunt resistor R. The value of the fan power supply current detected by the shunt resistor R is inputted to a controller, and the cause of any abnormality of the fan is decided upon by this controller, based upon the magnitude of the above described fan power supply current and the time period over which it has continued.
US07755305B2
A charged particle beam extraction system and method capable of shortening the irradiation time and increasing the number of patients treatable per unit time. The charged particle beam extraction system comprises a synchrotron for cyclically performing patterned operation including four steps of introducing, accelerating, extracting and decelerating an ion beam, an on/off switch for opening or closing connection between an RF knockout electrode and an RF power supply for applying RF power to the RF knockout electrode, and a timing controller for controlling on/off-timing of the on/off switch such that when extraction of the ion beam is stopped at least once during the extraction step of the synchrotron, an amount of the ion beam extracted from the synchrotron in one cycle is held substantially at a setting value.
US07755302B2
The present invention discloses a multi-modulation mode LED driving circuit, which controls an inverter to perform energy conversion to drive at least one LED. The driving circuit of the present invention is modulated by a timing control signal containing an on time and a standby time. In the present invention, a varying-amplitude modulation energy is added to the standby time. In the present invention, the start and end of the on time respectively have a gradually-ascending interval and a gradually-descending interval, and/or the start and end of the standby time respectively have a gradually-descending interval and a gradually-ascending interval. In the present invention, two or more different cycles are mixed to generate high-reliability and wide-dynamical range modulation modes, which can make an energy conversion unit and a rear-end LED group operate in reliable ranges of some performance characteristics.
US07755299B2
The invention relates to a transformer (10) for balancing the current in an AC circuit, comprising a primary winding (12), a secondary winding (14) and a main inductance (16). The transformer is characterized in that a capacitive component is connected in parallel to the primary winding (12) or to the secondary winding (14), whose capacitance value is determined such that the reactive current IL brought about by the main inductance (16) is substantially compensated. A transformer of this kind can preferably be employed in current balancing circuits as used, for example, in systems for backlighting LCD displays.
US07755296B2
The present invention provides a low-cost resonant inverter circuit for ballast. The resonant circuit includes a transformer connected in series with a lamp to operate the lamp. A first transistor and a second transistor are coupled to switch the resonant inverter circuit. A second winding and a third winding of the transformer are used for generating control signals in response to a switching current of the resonant inverter circuit. The transistor is turned on once the control signal is higher than a high-threshold. Next, the transistor is turned off once the control signal is lower than a low-threshold. Therefore, soft switching operation for the first transistor and the second transistor is achieved.
US07755291B2
An incandescent lamp that emits infrared light and a method of making the lamp includes a filament assembly inside a polycrystalline aluminum oxide (PCA) envelope, where the filament assembly preferably has a coiled tungsten filament, solid metal ends of tungsten or molybdenum attached to the coiled tungsten filament, and leads at distal ends of the solid metal ends. End caps are attached to ends of the envelope and have openings through which a respective one of the leads extends, where the leads are each made of an electrically conductive material having a coefficient of thermal expansion compatible with the end caps, such as niobium. The leads are attached to the end caps with glass-ceramic sealing frits. The end caps and sealing frits seal a suitable gas inside the envelope.
US07755286B2
Disclosed is a dense silicon oxide film having a high insulation resistance, which is a glass film having a certain level of thickness. Specifically, disclosed are a silicon oxide film, and a glass film comprising the silicon oxide film and silica particles incorporated in the silicon oxide film. The glass film can be produced by a process comprising the steps of: applying a paste comprising silica particles, an organic silicon compound which is in a liquid form at room temperature and water onto a substrate; and oxidizing the organic silicon compound in the paste.
US07755273B2
A field emission device and its method of manufacture includes: a substrate; a plurality of cathode electrodes formed on the substrate and having slot shaped cathode holes to expose the substrate; emitters formed on the substrate exposed through each of the cathode holes and separated from both side surfaces of the cathode holes, the emitters being formed along a lengthwise direction of the cathode holes; an insulating layer formed on the substrate to cover the cathode electrodes and having insulating layer holes communicating with the cathode holes; and a plurality of gate electrodes formed on the insulating layer and having gate holes communicating with the insulating layer holes.
US07755268B2
An electron emission display device includes first and second substrates facing each other with a non-active area and an active area having a plurality of pixel, a first pixel portion, e.g., an electron emission unit, formed on the first substrate, a second pixel portion, e.g., a light emission unit, formed on the second substrate, and one or more alignment marks formed in the non-active area of at least one of the first and the second substrates and having a pattern substantially similar to that of the plurality of pixels.
US07755255B2
A technique that can make a heat radiation effect higher and makes even a transmission voltage of an ultrasonic diagnostic apparatus higher and then makes a diagnostic depth deeper is disclosed. According to this technique, an ultrasonic probe has: a plurality of piezoelectric elements 1 which are long in an X-direction, are arrayed in a y-direction and transmit and receive ultrasonic waves in a z-direction (diagnostic depth direction); a plurality of ground electrodes 2 and signal electrodes 3 which are placed on the front surfaces and the rear surfaces of the individual piezoelectric elements, respectively; a plurality of signal electrodes 4 for extracting respective signals from the individual signal electrodes; a backing load member 5 which has a function for mechanically holding the piezoelectric elements through the signal electrodes and attenuating the unnecessary ultrasonic signal as necessary; a plurality of sheet-shaped heat conduction members 6 which are embedded inside the backing load member and positively transmit the heat generated from the piezoelectric elements; and a heat radiating block 7 which is linked to the heat conduction members on the rear side of the backing load member and radiates the heat transmitted through the heat conduction members.
US07755252B2
A driving device includes an electro-mechanical transducer having first and second end portions opposite to each other in an expansion/contraction direction, a stationary member coupled to the first end portion of the electro-mechanical transducer, a vibration friction portion mounted to the second end portion of the electro-mechanical transducer, and a rod-shaped moving portion frictionally coupled to the vibration friction portion, whereby moving the moving portion in the expansion/contraction direction of the electro-mechanical transducer. The stationary member consists essentially of a base alloy which consists of, by weight, 88 to 97% tungsten, 2 to 11% nickel as a binder, and, as the balance, 0.1 to 2% at least one metal having an ionization tendency which is higher than that of tungsten. The stationary member has a surface without nickel plating.
US07755249B2
An alternator has a rotor rotated on its own axis to generate electric power in a stator. The rotor has pole cores with claw portions arranged along the circumferential direction, and a holder unit is disposed between two adjacent claw portions in each pair. Each holder unit has a magnet accommodating holder and a magnet covering holder. Each holder has one bottom wall, four side walls and one opening. The magnet accommodating holder accommodates a magnet. The magnet covering holder is placed between the claw portions and accommodates the magnet accommodating holder while covering the magnet exposed to the opening of the magnet accommodating holder. The magnet accommodating holder has convex portions existing in the respective side and bottom walls and being in elastic contact with the magnet.
US07755248B2
Proposed is an integrated drive element (110) which is particularly suitable for use in an automatic shift transmission of a motor vehicle. The integrated drive element (110) has at least one electric motor (112), with preferably precisely two electric motors (112) being provided which can be used for example for a dual-clutch transmission. Also provided is at least one electronic engine control unit (114) which is designed for controlling the functionality of the at least one electric motor (112). Said electronic engine control unit (114) in turn has a housing (116). The at least one electric motor (112) spatially directly adjoins the housing (116) and/or is at least partially integrated into the at least one housing (116).
US07755245B2
A synchronous motor with permanent-magnet rotor, of the type comprising a stator with corresponding windings and a rotor arranged between pole shoes formed by the stator. The stator is constituted by two C-shaped ferromagnetic bodies whose ends form two pairs of pole shoes. Respective spools with windings are arranged along the ferromagnetic bodies. The two pairs of pole shoes are angularly mutually offset so that two pole shoes, each belonging to a distinct ferromagnetic body, are internal with respect to the angular configuration thus formed and the other two pole shoes are external with respect to the same angular configuration. The external pole shoes have a same axial height and wrap around a same axial portion of the rotor.
US07755243B2
A rotating electric motor includes a rotary shaft capable of rotation, a stator core formed in a cylindrical configuration, a rotor core fixed to the rotary shaft, a magnet set at the rotor core such that a pair of magnetic poles of different magnetism are aligned in the radial direction of the rotor core, a field yoke provided at the perimeter of the stator core, and a winding that can control the magnetic flux density across the rotor core and the stator core by forming a magnetic circuit across the field yoke and the rotor core.
US07755237B2
A motor for a plate of a labelling machine comprises a housing with a connecting portion for connecting the motor to a carousel of the labelling machine, a motor shaft pivotally supported within the housing, a coupling flange having a first end connected to the motor shaft and a second end that can be connected to the plate. The motor defines a through opening, which is substantially parallel to the motor shaft that allow alignment means to have access to the plate through the motor.
US07755234B2
A brushless motor includes a bottom base, a circuit board, a rotator, a big gear, a big driven gear, a driving gear and a lid. Positioned around a shaft base inside the bottom base are two stopping posts that form an included angle with the shaft base. A positioning plate is formed at the bottom of the driving gear, restricted to move between the two stopping posts to keep the driving gear rotated in a preset angle. And, a single injection mold can make various bottom bases with diverse rotating angles for being used in the brushless motor employed for different lamps, achieving the purpose of reducing manufacturing cost.
US07755233B2
An adjustment device for a motorized vehicle seat has an electric motor and a gear connected to the electric motor. The electric motor has a nominal speed of more than 12,000 rpm, in particular of more than 15,000 rpm at nominal voltage.
US07755232B2
A DC motor (1), in particular for a blower device of a motor vehicle, having a pole housing (10), a plurality of contact elements (13) effecting the bonding to a collector (12), a pole housing opening (16) making it possible to feed electrical connection lines (18) through into the pole housing (10), and an interference suppressor (28, 28.1) serving to reduce and/or eliminate line-conducted electrical interference signals, in which the interference suppressor (28, 28.1) has at least one leadthrough capacitor (48), which is located in an electrical path of at least one connection line (18). The invention further relates to an electrical interference suppressor (28, 28.1) for an electrical device located in a housing, in particular for a DC motor (1) in a pole housing (10), as well as to the use of a leadthrough capacitor (48, 48.1) for interference suppression in a DC motor (1).
US07755224B2
A system and method for producing electricity through the action of waves on floating platforms. The hydraulic force of the water in the waves causes the platform to create a series of reverse incline planes. The system adjusts or tunes the frequency of various components in relation to the natural frequency of the waves. The system has a mass carried on a track that moves relative to the track to create kinetic energy. One feature is to have the track and the mass tuned to the hull. Another feature is to tune the track and mass and the hull relative to the waves to increase power generated. In addition, the system has a microprocessor in one embodiment, that takes input related to waves, the mass, and the floating platforms and actively tunes parameters to increase the power generated. As a mass moves down the reverse incline planes, it gains mechanical energy, which is then converted into electrical energy.
US07755217B2
A method for controlling a pulse generator is provided. The method includes measuring a switch-on time difference for each cell and controlling the semiconductor switches of each cell for the voltage pulse as a function of the switch-on time difference. The switch-on time difference is measured between a switch-on signal for switching the respective semiconductor switch of the cell to a conducting state and a system response dependent on the switching to the conducting state. A second switch-on signal for each cell is generated in such a time-shifted manner that the system response of each cell occurs simultaneously. The system response is dependent on the switching to the conducting state.
US07755216B2
A Universal Power Supply (UPS) protects audio/visual (A/V) components from damage that may occur due to a sudden power loss by first, providing back up power via a battery, and then initiating the normal, that is powered, shut down of the protected component via an infrared control signal. The infrared control signal is learned from the A/V components remote control unit.
US07755211B2
A device for maintaining a plurality of ocean wave energy converters at a predetermined proximity. The device includes at least one deck having a plurality openings, each adapted to receive a portion of an ocean wave energy converter.
US07755205B2
The present invention is a method of manufacturing a semiconductor device, by forming a wiring on or above a wafer so that the wiring is electrically connected to a first electrode disposed on a first surface of the wafer, forming a first resin layer on or above the wafer such that the wiring is disposed between the wafer and the first resin layer, forming an opening in the first resin layer such that the opening overlaps the wiring, forming a conductive member in the opening such that the conductive member being electrically connected to the wiring, forming a second electrode on the conductive member such that the second electrode is electrically connected to the wiring via the conductive member, and separating the wafer into individual elements after the forming of the first resin layer.
US07755204B2
A technique for forming die stacks. Specifically, a stacking tip is provided to facilitate the stacking of die in a desired configuration. A first die is picked up by the stacking tip. The first die is coated with an adhesive on the underside of the die. The first die is brought in contact with a second die via the stacking tip. The second die is coupled to the first die via the adhesive on the underside of the first die. The second die is coated with an adhesive coating on the underside of the die. The second die is then brought in contact with a third die via the stacking tip. The third die is coupled to the second die via the adhesive on the underside of the second die, and so forth. Die stacks are formed without being coupled to a substrate. The die stacks may be functionally and/or environmentally tested before attaching the die stack to a substrate.
US07755201B2
A semiconductor device and method of fabricating the same reduce the likelihood of the occurrence of electrical defects. The device includes a first interlayer insulating film on a semiconductor substrate; a contact pad spacer on the first interlayer insulating film; and a contact pad in the first interlayer insulating film and the contact pad spacer. The cross-sectional area of an upper portion of the contact pad in the contact pad spacer in a direction horizontal to the substrate is equal to or less than a cross-sectional area of an intermediate portion at an interface between the contact pad spacer and the first interlayer insulating film in a direction horizontal to the substrate.
US07755200B2
The present invention relates to methods and arrangements for forming a solder joint connection. One embodiment involves an improved solder ball. The solder ball includes a perforated, metallic shell with an internal opening. Solder material encases the shell and fills its internal opening. The solder ball may be applied to an electrical device, such as an integrated circuit die, to form a solder bump on the device. The solder bump in turn can be used to form an improved solder joint connection between the device and a suitable substrate, such as a printed circuit board. In some applications, a solder joint connection is formed without requiring the application of additional solder material to the surface of the substrate. The present invention also includes different solder bump arrangements and methods for using such arrangements to form solder joint connections between devices and substrates.
US07755196B2
A method for production of an integrated circuit arrangement which contains a capacitor. A dielectric layer is structured with the aid of a two-stage etching process, and with the aid of a hard mask. In the case of an electrically insulating hard mask, the hard mask is removed again. In the case of an electrically conductive hard mask, parts of the hard mask may remain in the circuit arrangement.
US07755194B1
A composite α-Ta/graded tantalum nitride/TaN barrier layer is formed in Cu interconnects with a controlled surface roughness for improved adhesion, electromigration resistance and reliability. Embodiments include lining a damascene opening, such as a dual damascene opening in a low-k interlayer dielectric, with an initial layer of TaN, forming a graded tantalum nitride layer on the initial TaN layer and then forming an α-Ta layer on the graded TaN layer, the composite barrier layer having an average surface roughness (Ra) of about 25 Å to about 50 Å. Embodiments further include controlling the surface roughness of the composite barrier layer by varying the N2 flow rate and/or ratio of the thickness of the combined α-Ta and graded tantalum nitride layers to the thickness of the initial TaN layer.
US07755193B1
Non-rectilinear routing in a rectilinear mesh. In accordance with an embodiment of the present invention, an integrated circuit comprises a first substantially continuous metallization layer. The first substantially continuous metallization layer further comprises first and second portions electrically isolated from one another. The integrated circuit includes a trace disposed between and electrically isolated from the first and second portions of the first substantially continuous metallization layer. The trace is not parallel to an edge of the integrated circuit.
US07755191B2
A semiconductor device includes a first copper-containing conductive film formed on a substrate, insulating films formed on the first copper-containing conductive film with a concave portion reaching the first copper-containing conductive film, a second barrier insulating film formed to cover the side wall of the concave portion of these insulating films, a second adhesive alloy film made of copper and a dissimilar element other than copper, and coming in contact with the first copper-containing conductive film at the bottom surface of the concave portion and in contact with the second barrier insulating film at the side wall of the concave portion to cover the inside wall of the concave portion, and a second copper-containing conductive film containing copper as a main component, and formed on the second adhesive alloy film in contact with the second adhesive alloy film to fill the concave portion.
US07755189B2
An optical device with a CAN package is disclosed, where the cap is resistance-welded to the stem without causing failures due to fragments by the welding flying within the package. The cap of the invention has a flange portion to be welded to the stem. The flange portion provides a ringed groove in addition to the ringed projection for the welding. The fragment due to the welding may be captured in the ringed groove and is prevented from flying within the package. The ringed groove and the ringed projection are simultaneously formed in the stamping to form the body portion of the cap.
US07755186B2
Systems for cooling the backside of a semiconductor die located in a die-down integrated circuit (IC) package are described. The IC package is attached to the topside of a printed circuit board (PCB) with the backside of the die residing below the topside surface of the PCB. A cooling plate is attached to the backside of the die and thermally connected to a heat sink located above the topside surface of the PCB via conduits that pass through openings in the PCB.
US07755183B2
According to this invention, a wiring board includes a conductive pattern formed from leads each of which is formed on an organic layer and has a thickness t larger than a width W.
US07755178B2
A base semiconductor component for a semiconductor component stack is disclosed. In one embodiment, the base semiconductor component has a semiconductor chip arranged centrally on a stiff wiring substrate. The wiring substrate has, in its edge regions, contact pads which are electrically connected to external contacts and at the same time to contact areas of the semiconductor chip and also to stack contact areas. The stack contact areas simultaneously form the upper side of the base semiconductor component and have an arrangement pattern corresponding to an arrangement pattern of external contacts of a semiconductor component to be stacked.
US07755177B2
The present invention discloses a carrier structure of a System-on-Chip (SoC) with a custom interface. The carrier structure includes a substrate, at least one common die, at least one custom interface and a molding compound. The common die and the custom interface are disposed on the substrate. The molding compound is used to package the common die which electrically connects to the substrate and the custom interface respectively. The carrier structure which includes the common die can form a complete SoC by connecting to an expansive die through the custom interface. The carrier structure with the common die which can be tested and certified in advance allows reducing and simplifying the developing procedures of the SoC.
US07755176B1
A die-mounting substrate and method incorporating dummy traces for improving mounting film planarity makes the use of film attach possible with a simplified manufacturing process and in applications where film-attach was not previously practical. The die-mounting substrate includes dummy traces that are generated along with signal traces extending into the die mounting area of the substrate. The dummy traces are designed according to the same design rules as the signal traces and are disposed in otherwise empty regions between signal traces and vias within the die mounting area. The result is die mounting area without regions empty of signal traces that previously either lack conductor or are filled completely with conductor, either of which will result in surface variation that compromises the film bond.
US07755175B2
A stack-type semiconductor device according to the present invention includes a circuit board with bonding pads; a first semiconductor chip which includes first electrode pads and is mounted on the circuit board; a second semiconductor chip which includes second electrode pads and is mounted on the first semiconductor chip; a plurality of bonding wires sequentially connecting the bonding pads, the first electrodes and the second electrodes as a whole; and a sealing resin for sealing the first semiconductor chip, the second semiconductor chip and the bonding wires.
US07755168B2
A semiconductor device has a first conductivity-type first semiconductor region, a second conductivity-type second semiconductor region and a second conductivity-type third semiconductor region both located on or above the first semiconductor region, a second conductivity-type fourth semiconductor region between the second semiconductor region and the third semiconductor region, and a first conductivity-type fifth semiconductor region between the third semiconductor region and the fourth semiconductor region. The fourth semiconductor region and the fifth semiconductor region are electrically connected by a conductive member. A distance between the fourth semiconductor region and the third semiconductor region is larger than a width of the fourth semiconductor region.
US07755164B1
An anodic metal layer, e.g., a tantalum layer, is deposited. An anodization mask is formed, the anodization mask exposing first portions of the tantalum layer and covering second portion of the tantalum layer. The exposed first portions of the tantalum layer are anodized to form a tantalum pentoxide layer. The amount of the tantalum layer converted to the tantalum pentoxide layer is precisely controlled by the applied anodization potential. Accordingly, the thicknesses of the remaining tantalum layer and the formed tantalum pentoxide layer are precisely controlled allowing the values of passive devices, e.g., resistors and capacitors, formed with the tantalum layer and/or the tantalum pentoxide layer to be precisely set.
US07755160B2
A method for producing a layer arrangement is disclosed. A layer of oxygen material and nitrogen material is formed over a substrate that has a plurality of electrically conductive structures and/or over a part of a surface of the electrically conductive structures. The layer is formed using a plasma-enhanced chemical vapor deposition process with nitrogen material being supplied during the supply of silicon material and oxygen material by means of an organic silicon precursor material. The layer of oxygen material and nitrogen material is formed in such a manner that an area free of material remains between the electrically conductive structures. An intermediate layer including an electrically insulating material is formed over the layer of oxygen material and nitrogen material. A covering layer is selectively formed over the intermediate layer such that the area free of material between the electrically conductive structures is sealed from the environment and forms a cavity.
US07755157B2
Solar cells and methods of their manufacture are described that exhibit decreased or eliminated leak current, improved open voltage and improved fill factor characteristics. In an embodiment, a separate processed surface is interposed between a first and a second main surface of a crystal substrate, as prepared by laser irradiation and cut processing. The laser irradiation is applied to an amorphous semiconductor layer of the same conductive type as an underlying single crystal substrate, but does not penetrate an underlying amorphous opposite type layer. Details of lamination and laser characteristics for processing the layers are provided.
US07755152B2
A method for producing a micromechanical diaphragm sensor includes providing a semiconductor substrate having a first region, a diaphragm, and a cavity that is located at least partially below the diaphragm. Above at least one part of the first region, a second region is generated in or on the surface of the semiconductor substrate, with at least one part of the second region being provided as crosspieces. The diaphragm is formed by a deposited sealing layer, and includes at least a part of the crosspieces.
US07755148B2
Logic LSI includes first power domains PD1 to PD4, thick-film power switches SW1 to SW4, and power switch controllers PSWC1 to PSWC4. The thick-film power switches are formed by thick-film power transistors manufactured in a process common to external input/output circuits I/O. The first power domains include second power domains SPD11 to SPD42 including logic blocks, control circuit blocks SCB1 to SCB4, and thin-film power switches SWN11 to SWN42 that are connected to the thick-film power switches via virtual ground lines VSSM1 to VSSM4, and formed by thin-film power transistors manufactured in a process common to the logic blocks. In this way, power switches having different thickness of gate insulating films from one another are vertically stacked so as to be in a hierarchical structure, and each power switch is individually controlled by a power switch controller and a control circuit block correspondingly to each mode.
US07755140B2
A SOI device features a conductive pathway between active SOI devices and a bulk SOI substrate. The conductive pathway provides the ability to sink plasma-induced process charges into a bulk substrate in the event of process charging, such as interlayer dielectric deposition in a plasma environment, plasma etch deposition, or other fabrication provides. A method is also disclosed which includes dissipating electrostatic and process charges from a top of a SOI device to the bottom of the device. The top and bottom of the SOI device may characterize a region of active devices and a semiconductor method respectively. The method further includes a single masking step to create seed regions for an epitaxial-silicon pathway.
US07755139B2
A power device is formed by a thyristor and by a MOSFET transistor, series-connected between a first and a second current-conduction terminal. The power device moreover has a control terminal connected to an insulated-gate electrode of the MOSFET transistor and receiving a control voltage for turning on/off the device, and a third current-conduction terminal connected to the thyristor for fast extraction of charges during turning-off. Thereby, upon turning off, there are no current tails, and turning off is very fast. The power device does not have parasitic components and consequently has a very high reverse-bias safe-operating area.
US07755138B2
A semiconductor device of the invention includes: a super junction structure of an n-type pillar layer and a p-type pillar layer; a base layer provided on the p-type pillar layer; a source layer selectively provided on a surface of the base layer; a gate insulating film provided on a portion being in contact with the base layer, a portion being in contact with the source layer and a portion being in contact with the n-type pillar layer on a portion of a junction between the n-type pillar layer and the p-type pillar layer; a control electrode provided opposed to the base layer, the source layer and the n-type pillar layer through the gate insulating film; and a source electrode electrically connected to the base layer, the source layer and the n-type layer. The source electrode is contact with the surface of the n-type pillar layer located between the control electrodes to form a Schottky junction.
US07755136B2
A memory cell in a nonvolatile semiconductor memory device includes a tunneling insulating film, a floating gate electrode made of a Si containing conductive material, an inter-electrode insulating film made of rare-earth oxide, rare-earth nitride or rare-earth oxynitride, a control gate electrode, and a metal silicide film formed between the floating gate electrode and the inter-electrode insulating film.
US07755125B2
A semiconductor device includes a ferroelectric capacitor formed above the lower interlevel insulating film covering a MOS transistor formed on a semiconductor substrate, including lamination of a lower electrode, an oxide ferroelectric film, a first upper electrode made of conductive oxide having a stoichiometric composition AOx1 and an actual composition AOx2, a second upper electrode made of conductive oxide having a stoichiometric composition BOy1 and an actual composition BOy2, where y2/y1>x2/x1, and a third upper electrode having a composition containing metal of the platinum group; and a multilayer wiring structure formed above the lower ferroelectric capacitor, and including interlevel insulating films and wirings. Abnormal growth and oxygen vacancies can be prevented which may occur when the upper electrode of the ferroelectric capacitor is made of a conductive oxide film having a low oxidation degree and a conductive oxide film having a high oxidation degree.
US07755121B2
A pixel array resolution is doubled by adding a plurality of second photodiodes, but only a single, common transfer control line. By controlling a combination of the single, common transfer control line and a transfer control line unique to controlling first transfer transistors in pixels in a row, first and second photodiodes in a pixel can be separately readout.
US07755118B2
The present invention provides a solid-state image pick-up device without shading in the dark state, and capable of making a dynamic range and a S/N high. Reference numeral 505 denotes an N-type cathode of a photodiode, 506 denoting a surface P-type region for forming the photodiode into an embedded structure, 508a denoting an N-type high concentration region which forms a floating diffusion and which is also a drain region of a transfer MOS transistor. Reference character 508b denotes a polysilicon lead-out electrode brought into direct contact with the N-type high concentration region. Light incident from the surface passes through an aperture without a metal third layer 525 to enter into the photodiode. Among incident lights, light reflected by the top surface of a gate electrode 504 of the transfer MOS transistor is reflected by a first layer metal 521 right above the polysilicon, so as to repeats reflection a plurality of times to attenuate sufficiently before entering into the floating diffusion section, thereby making the aliasing extremely small.
US07755115B2
A field effect transistor according to the present invention includes a carbon nanotube of two or more walls having an inner wall and an outer wall, source and drain electrodes formed on both sides of the carbon nanotube, and a gate electrode formed in a gate formation region of the carbon nanotube, wherein the outer wall of the carbon nanotube is removed in the gate formation region to expose the inner wall, an insulation film is formed on the exposed inner wall, the gate electrode is formed on the exposed inner wall via the insulation film or via a Schottky junction, the source and drain electrodes are formed in contact with the outer wall and inner wall, and the carbon nanotube between the source and drain electrodes and the insulation film is covered by the outer wall.
US07755112B2
A field effect transistor includes a channel region fabricated on a compound semiconductor substrate, a gate electrode fabricated on the channel region, a source electrode and a drain electrode alternately arranged on the channel region with a gate electrode interposed between the source electrode and the drain electrode, a bonding pad to be connected with an external circuit; and an air-bridge connected with the bonding pad. The air-bridge includes an electrode contact terminal to be connected with the source electrode or the drain electrode and an aerial circuit line for connecting the electrode contact terminal with a contact terminal of the bonding pad, the widthwise cross sectional area of the electrode contact terminal being equal to or less than that of the aerial circuit line.
US07755111B2
Programmable power management using a nanotube structure is disclosed. In one embodiment, a method includes coupling a nanotube structure of an integrated circuit to a conductive surface when a command is processed, and enabling a group of transistors of the integrated circuit based on the coupling the nanotube structure to the conductive surface. A current may be applied to the nanotube structure to couple the nanotube structure to the conductive surface. The nanotube structure may be formed from a material chosen from one or more of a polymer, carbon, and a composite material. The group of transistors may be enabled during an activation sequence of the integrated circuit. In addition, one or more transistors of the group of transistors may be disengaged from the one or more power sources (e.g., to minimize leakage) when the nanotube structure is decoupled from the conductive surface.
US07755110B2
An integrated semiconductor circuit has a regular array of logic function blocks (L) and a regular array of wiring zones (X) corresponding thereto. The wiring lines in at least one wiring layer of a wiring zone (X) are realized as line segments that are continuous within the wiring zone and are interrupted at zone boundaries. Furthermore, the semiconductor circuit comprises driver cells that surround a logic cell of the logic function block in an L-shaped manner.
US07755109B2
Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600° C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.
US07755106B2
An integrated semiconductor structure includes a heterojunction bipolar transistor and a Schottky diode. The structure has a substrate, the heterojunction bipolar transistor overlying and contacting the substrate, wherein the heterojunction bipolar transistor includes a transistor collector layer, and a Schottky diode overlying the substrate and overlying the transistor collector layer. The Schottky diode includes a Schottky diode barrier layer structure that desirably is not of the same material, doping, and thickness as the transistor collector layer.
US07755097B2
A light emitting device having a light extraction structure, which is capable of achieving an enhancement in light extraction efficiency and reliability, and a method for manufacturing the same. The light emitting device includes a semiconductor layer having a multi-layered structure including a light emission layer; and a light extraction structure formed on the semiconductor layer in a pattern having unit structures. Further, the wall of each of the unit structures is sloped at an angle of −45° to +45° from a virtual vertical line being parallel to a main light emitting direction of the light emitting device.
US07755096B2
A single or multi-color light emitting diode (LED) with high extraction efficiency is comprised of a substrate, a buffer layer formed on the substrate, one or more patterned layers deposited on top of the buffer layer, and one or more active layers formed on or between the patterned layers, for example by Lateral Epitaxial Overgrowth (LEO), and including one or more light emitting species, such as quantum wells. The patterned layers include a patterned, perforated or pierced mask made of insulating, semiconducting or metallic material, and materials filling holes in the mask. The patterned layer acts as an optical confining layer due to a contrast of a refractive index with the active layer and/or as a buried diffraction grating due to variation of a refractive index between the mask and the material filling the holes in the mask.
US07755093B2
A nonvolatile semiconductor storage device is provided in which memory cells comprising PN junction diodes having satisfactory rectifying characteristics are arranged in three dimensions. The semiconductor storage device includes: a first wire which extends in one direction; a second wire which extends in a direction intersecting the first wire; and a memory cell which is positioned at a portion of intersection of the first wire with the second wire between the first wire and the second wire, the memory cell comprising a storage element and a PN junction diode connected thereto, positioned on a side of the second wire used in selecting the memory cell, and a P-type semiconductor forming the PN junction diode forms a portion of the second wire, wherein a plurality of structures, each structure comprising the first wire, the second wire, and the memory cell is provided three-dimensionally.
US07755089B2
A semiconductor device includes a semiconductor substrate, p-type first and n-type second semiconductor regions formed on the substrate so as to be insulated with each other, n-channel and p-channel MOS transistors formed on the first and second semiconductor regions, the n-channel transistor including a first pair of source/drain regions formed on the first semiconductor region, a first gate insulator formed in direct contact with the first semiconductor region and formed as an amorphous insulator containing at least La, and a first gate electrode formed on the first gate insulator, the p-channel MOS transistor including a second pair of source/drain regions formed opposite to each other on the second semiconductor region, a second gate insulator including a silicon oxide film and the amorphous insulating film formed thereon on the second semiconductor region, and a second gate electrode formed on the second gate insulator.
US07755083B2
A package module with an alignment structure is provided by this invention. The package module comprises a package substrate having a die region and a die disposed thereon. At least one pair of conductive alignment protrusions is disposed in the die region and is separated from each other by the die. A test pad is disposed on the package substrate opposing the die and electrically connected to the pair of conductive alignment protrusions. An electronic device with an alignment structure and an inspection method after mounting is also disclosed.
US07755081B2
A dielectric material prepared from a siloxy/metal oxide hybrid composition, and electronic devices such as thin film transistors comprising such dielectric material are provided herein. The siloxy/metal oxide hybrid composition comprises a siloxy component such as, for example, a siloxane or silsesquioxane. The siloxy/metal oxide hybrid composition is useful for the preparation of dielectric layers for thin film transistors using solution deposition techniques.
US07755057B2
A medical imaging system is provided including a positron emission tomography (PET) imaging apparatus and a computed tomography (CT) imaging apparatus. The CT imaging apparatus includes a rotatable gantry. A radioactive source loader is attached to the rotatable gantry to rotate therewith. The radioactive source loader further includes a radioactive source to calibrate the PET imaging apparatus.
US07755054B1
Lutetium gadolinium halide scintillators, devices and methods, including a composition having the formula LuxGd(1-x)Halide and a dopant.
US07755052B2
A passive infrared sensor has two detection members established by respective detectors and optical elements, with alternating spatial volumes being monitored by each detection member. No dead space need exist between volumes. The detection members are configured such that a moving object causes the members to output different frequencies, whereas a non-moving stimulus produces the same frequency from both detection members.
US07755044B2
The apparatus for working and observing samples comprises a sample plate on which a sample is to be placed; a first ion beam lens barrel capable of irradiating a first ion beam over a whole predetermined irradiation range at one time; a mask that can be arranged between the sample plate and the first ion beam lens barrel, and shields part of the first ion beam; mask-moving means capable of moving the mask; a charged particle beam lens barrel capable of scanning a focused beam of charged particles in the range irradiated with the first ion beam; and detection means capable of detecting a secondarily generated substance.
US07755031B2
A calibration phantom for quality assurance of an image-based radiotherapy apparatus The calibration phantom includes a body comprising a cylindrical acryl member having a predetermined diameter, the body having a center hole at a center axis thereof and a plurality of through-holes in outer circumferential portions thereof at a predetermined interval from the center hole; round stick-type density bars inserted into corresponding through-holes of the body and made of materials each with different densities; an acrylic cover detachably coupled with both ends of the body and having the same diameter as the body; and a plurality of bolts closely fastening the body with the cover by extending through the cover and the body and coupling with the nuts and each made of different materials. The cross-sectional shapes of the density bars and bolts appear on the image scanned by the CT apparatus and the radiotherapy apparatus.
US07755029B2
An optical navigator sensor for sensing an image of an object comprises a substrate, a laser diode, an optical sensor device and a housing. The optical sensor device and the laser diode are fixed on the base plate and covered by the housing. The housing guides the light emitted from the laser diode to the object and guides the light reflected from the object to the optical sensor device.
US07755028B2
An optical scanning device with a dustproof function includes a shell defining a first receiving room and a second receiving room communicating with the first receiving room through an open window defined on the shell for scanning light beams passing therethrough. An optical scanning module is mounted in the first receiving room. A glass platform is located on the second receiving room at a position facing the open window for insulating the first receiving room from the outside of the shell. A correcting plate is stuck on the bottom of the glass platform. Such structure of the optical scanning device enables the glass platform to be firstly assembled with the shell in a dustless chamber, which prevents the suspending dust from falling in the first receiving room and attaching to the optical scanning module during the subsequent assembly process and ensures the scanning quality of the optical scanning device.
US07755023B1
Electronically tunable and reconfigurable hyperspectral IR detectors and methods for making the same are presented. In one embodiment, a reconfigurable hyperspectral sensor (or detector) detects radiation from about 0.4 μm to about 2 μm and beyond. This sensor is configured to be compact, and lightweight and offers hyperspectral imaging capability while providing wavelength agility and tunability at the chip-level. That is, the sensor is used to rapidly image across diverse terrain to identify man-made objects and other anomalies in cluttered environments.
US07755022B2
The present invention provides systems and methods for attenuating the effect of ambient light on optical sensors and for measuring and compensating quantitatively for the ambient light.
US07755020B2
There is provided a light receiving circuit including, a light receiving element outputting electrical current corresponding to input light, and a current-voltage converter having current-voltage conversion characteristic, the current-voltage conversion characteristic becoming smaller at a low frequency side and larger at a high frequency side, the current-voltage converter converting the current to the voltage and outputting the voltage.
US07755017B2
A method of driving a solid-image-pickup device is provided. The driving method includes the steps of converting light incident on a plurality of pixels arranged in matrix form into an electric signal, selecting and controlling the pixels for each of rows and/or columns, and scanning the pixels in sequence, converting at least one analog signal obtained from at least one of the selected and controlled pixels into a first digital signal, the at least one pixel corresponding to a first group of rows and/or columns, and performing first counting for data on a result of the conversion, and converting at least one analog signal obtained from at least one of the selected and controlled pixels into a second digital signal, the at least one pixel corresponding to a second group of rows and/or columns, and performing second counting for data on a result of the conversion. A period where the first counting is performed is separate from a period where the second counting is performed.
US07755015B2
A neutron multi-detector array feeds pulses in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel. The word is read at regular intervals, all bits simultaneously, to minimize latency. The electronics then pass the word to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup.
US07755013B1
Disclosed is a laser guidance system for diamond wire stone cutting apparatus. The laser guidance system includes a targeting laser light source that is fitted to one of two wire guide wheels between which the cutting wire extends and travels. A photo sensor with laser beam detectors is attached to the other wire guide wheel. During ideal operation of the cutting apparatus, the laser beam shines through the kerf in the stone being cut. When the kerf is linearly straight, as intended, the laser beam will be clearly detected by the laser beam detectors. When the kerf is not straight, the laser beam will be at least partially obscured across the cutting span, and the laser beam detectors will detect the lack of full intensity and report this to a controller so as to indicate that adjustments are necessary to re-straighten the kerf.
US07755012B2
A control surface actuation system has the ability to move aerodynamic control surfaces using a rotational motion of a motor. In an arrangement, rotational motion of the motor enables the aerodynamic control surfaces of a rotating projectile to oscillate and thus vary the angle of the control surfaces as the projectile spins. The rotation of a motor in one direction in combination with a gear and a link and a crank arm attached to a shaft of the aerodynamic control surfaces allows the control surfaces to move in fluttering motion to induce the maneuvering of a projectile in the desired direction. A controller takes information regarding the current condition of the projectile and drives the motor to move the aerodynamic devices to maneuver the projectile.
US07755002B2
A panel gripping jig for gripping a panel, regardless of the size and shape of the panel, includes a welding unit for temporarily holding the panel. A separation unit releases the coupling state of the panel and the welding unit. A mounting arm has the welding unit mounted thereon, moves the welding unit in a longitudinal direction thereof, and has a connection part to connect the mounting arm to a working robot. A displacement unit adjusts the position of the welding unit on the mounting arm. A control board outputs control signals to operate the welding unit, the separation unit, and the displacement unit according to a user input.
US07754995B2
A plasma processing apparatus comprising at least a plasma processing chamber for plasma-processing an object; object-holding means for disposing the object in the plasma processing chamber; and plasma-generating means for generating a plasma in the plasma processing chamber. The inner wall of the plasma processing chamber is at least partially covered with an oxide film based on a pre-treating plasma. A plasma processing apparatus and a plasma processing method effectively prevent the spluttering and the etching of the inner wall of the plasma processing chamber while suppressing contamination to the object.
US07754994B2
Atmospheric gas discharge plasma is generated in a gas whirlpool cavity. Then the plasma is sprayed out in a gas flow to clean an object. The whole process is simple with merits of utility and cost savings. And objects can be cleaned one after one continuously.
US07754988B2
A keypad module including at least one key (30) is described. The key (30) includes a keycap (32), a base (34), a supporting member (36), a resisting member (40) and a dome (42). The base includes a pressed portion (341) and a carrier portion (342) connected to the pressed portion. The keycap is arranged on the pressed portion. The supporting member is located on the carrier portion to support the keycap. The resisting member is located between the pressed portion and the dome to press the dome into a position electrically connected to a circuit board (44).
US07754987B2
A switch includes a substrate including a main body and a cylindrical portion protruding upright from the main body and defining a transverse groove in the outer surface thereof, a light emitter fixed on the cylindrical portion to receive light beams from the light emitter and produce three electrical outputs respectively, and a dial member including a cylindrical dial and two arms protruding upright from the cylindrical dial and forming two engagement portions on the inner surfaces thereof respectively. The engagement portions are engaged in the groove so that the cylindrical dial is rotatable to a number of orientations in which the produced electrical outputs are coded into a number of different switch signals by selectively blocking the radiated light beams using the two arms.
US07754985B2
An electrical switch assembly comprises a generally planar substrate. A functional switch and at least one identification switch are mounted to the substrate. A switch body supports a switch actuator which is movable between multiple positions. An arrangement of one or more projecting members extends from the switch body. The switch body is mounted on or to the substrate such that the switch actuator operatively engages the functional switch, and the arrangement of projecting members operatively engages at least one of the identification switches to create a unique electronic identifier for the electrical switch assembly.
US07754981B2
A metal film 21 is laminated directly to or by means of an adhesive 13 to a transparent base sheet 11. A mesh metal film including lines defining apertures is formed by coating the metal film 21 with a mesh resist layer 109a patterned in a mesh, etching the metal film 21 through the mesh resist layer 109a, and removing the mesh resist layer 109a. The front surfaces and side surfaces of the lines of the mesh metal film are coated with a black coating layer 23.
US07754974B2
The present invention is to provide a metal-core substrate without mounting large size terminals and connectors. Hence, the metal-core substrate can be smaller and thinner. A metal-core substrate includes a metal plate, an insulating layer formed on a surface of the metal plate and a circuit pattern formed on a surface of the insulating layer, wherein a part of said metal plate is exposed to outside of the insulating layer and is utilized as connector terminals. The metal plate has a heat sink plate to heat sink a heat-generating device mounted on the metal-core substrate and connector terminal plates disposed separately from the heat sink plate and utilized for the connector terminals. The heat-generating device and a driving part thereof each are disposed on a different surface of the metal-core substrate.
US07754972B2
A transmission manifold for an automobile is molded of material with low electrical conductivity. Ports are formed on opposite faces of the manifold, with a passage between a port on one face of the manifold and a port on an opposite face of the manifold. Electrically conductive inserts extend into the passage from the ports on opposite faces of the body, and an electrically conductive spring is compressed between the inserts, to establish continuous electrical contact between the first insert and the second insert.
US07754971B2
A detectable pull tape comprising at least one elongated conductive wire extending longitudinally in the tape, wherein each elongated conductive wire has a coating of insulation, a woven outer cover formed from nonconductive warp and nonconductive weft yarns, the warp yarns extending longitudinally in the tape and the weft yarns extending transversely in the tape and weaving over and under the warp yarns, and a set of binder yarns extending longitudinally in the tape, the binder yarns weaving with the weft yarns on at least one side of the conductive wires to lock the warp yarns and the conductive wires in position relative to each other. A method of detecting the location of conduit using a detectable pull tape is also disclosed.
US07754964B2
An apparatus and method for solar conversion using nanocoax structures are disclosed herein. A nano-optics apparatus for use as a solar cell comprising a plurality of nano-coaxial structures comprising an internal conductor surrounded by a semiconducting material coated with an outer conductor; a film having the plurality of nano-coaxial structures; and a protruding portion of the an internal conductor extending beyond a surface of the film. A method of fabricating a solar cell comprising: coating a substrate with a catalytic material; growing a plurality of carbon nanotubes as internal cores of nanocoax units on the substrate; oxidizing the substrate; coating with a semiconducting film; and filling with a metallic medium that wets the semiconducting film of the nanocoax units.
US07754961B1
A video game controller includes: a string instrument-shaped housing comprising a body portion and a neck portion, said body portion including a opening; a console interface for coupling with a game console; and a strum interface coupled to the console interface. The strum interface includes: a pin having a central portion and distal end portions; a pin support structure for supporting the distal end portions of the pin; a strum bar comprising a body portion rotatably coupled to the central portion of the pin and a flange portion protruding from the opening in the housing; a compressible liner provided between at least a portion of the strum bar and the pin; an upper button positioned adjacent the strum bar so as to be depressed when the strum bar is rotated in a first direction; and a lower button positioned adjacent the strum bar so as to be depressed when the strum bar is rotated in a second direction.
US07754960B2
Electronic equipment includes a processing unit which controls light emission from LEDs by referring to music data described in a music file such as a MIDI file. The processing unit controls light emission from the LEDs by detecting the occurrence of sound described in the music file. Light emission from the LEDs may be controlled in accordance with tone data and/or a track number included in the music file. Alternatively, light emission from the LEDs may be controlled in accordance with volume data.
US07754958B2
A sound analysis apparatus stores sound source structure data defining a constraint on one or more of sounds that can be simultaneously generated by a sound source of an input audio signal. A form estimation part selects fundamental frequencies of one or more of sounds likely to be contained in the input audio signal with peaked weights from various fundamental frequencies during sequential updating and optimizing of weights of tone models corresponding to the various fundamental frequencies, so that the sounds of the selected fundamental frequencies satisfy the sound source structure data, and creates form data specifying the selected fundamental frequencies. A previous distribution imparting part imparts a previous distribution to the weights of the tone models corresponding to the various fundamental frequencies so as to emphasize weights corresponding to the fundamental frequencies specified by the form data created by the form estimation part.
US07754956B2
A programmable system for integrating signals in a musical instrument including a programmable device that is configured to create re-callable scenes, where the scenes are representations of audio signals generated by signal devices. The programmable system also includes a plurality of input/output modules to couple the signal devices and the musical instrument to the programmable device. Also included in the programmable system is a memory to store the scenes and a switch to change the combination of audio signals that go in and out of the signal path of the musical instrument by switching scenes.
US07754940B2
A sanitary absorbent article is disclosed which is intended to be worn against a pudendal region of a user. The sanitary absorbent article is thin, i.e. having a thickness equal to or less than 5 mm and comprises a body contacting surface with at least one protrusion on the body contacting surface. The protrusion has a height H of at least 0.5 mm, and an equivalent width W. The protrusion also includes a ratio W/H ranging from about 2 to about 10.
US07754938B2
An olfactory patch comprises a well formed by a reservoir layer, the well is sandwiched between a barrier layer and a permeable layer. The permeable layer defines a pathway for olfactory fluid flow from the well. The flow of the olfactory fluid may be commenced by an initiator mechanism. The olfactory patch may utilize any olfactory fluid or combination of fluids within the same patch. The patch may utilize olfactory fluid which provides aromas or masks odors or has deodorizing capability or the olfactory fluid may contain therapeutic or pest control agents which are released from the patch by aromatization or by direct skin absorption or by inhalation.
US07754932B2
Processes, methods and apparatus relating to olefin oligomerization include the use of Raman spectrometry to monitor the concentration of reactants, products or other chemical components. One or more oligomerization conditions are adjusted in response to those monitored concentrations. The present processes, methods and apparatus are capable of monitoring olefin oligomerization with the use of low resolution Raman spectrometry equipment, even where there is some degree of overlap between Raman spectral peaks. Apparatus for olefin oligomerization reactions have at least one Raman probe located in the oligomerization equipment, the Raman probe providing an output signal, and Raman spectrometry equipment located outside the oligomerization equipment and operatively connected to at least one Raman probe.
US07754919B2
The present invention provides for compounds useful for treating an HIV-1 infection, or preventing an HIV-1 infection, or treating AIDS or ARC. The compounds of the invention are of formula I wherein R1, R2, R3, R4, R5 and X are as herein defined. Also disclosed in the present invention are methods of treating an HIV infection with compounds defined herein and pharmaceutical compositions containing said compounds.
US07754913B2
Isotopically labeled alpha-keto acids and esters are disclosed herein. Also disclosed are methods of synthesizing isotopically labeled alpha-keto acids and esters.
US07754911B2
The invention relates to a process for isolating methylglycinenitrile-N,N-diacetonitrile (MGDN) from an aqueous emulsion which comprises MGDN and has an MGDN content of 3-50% by weight in a crystallizer, comprising the steps: (a) the aqueous emulsion is, starting from a temperature above the solidification point, cooled to a temperature below the solidification point, the cooling rate averaged over time not exceeding 5 K/h, until substantially the entirety of the emulsified MGDN has solidified, (b) the resulting aqueous suspension is cooled further and/or concentrated, and the cooling rate may be greater than in step (a).
US07754901B2
A fluorinated polymer comprising a unit represented by the following formula (1), a method for producing fluorinated compounds and the fluorinated polymers, and an optical/electrical material or coating material comprising the fluorinated polymer.
US07754899B2
This invention provides a method for producing an optically active aziridine compound or amine compound, which uses as a catalyst a Ru(salen)(CO) complex represented by the following formula (I) or its enantiomer having a high stability, in a high turnover number (TON) and a high enantioselectivity. In the formula (I), Ar is represented by the following formula (VI) or (VII), wherein in the formula (VI), Xs are independently a halogen or a halogenated alkyl group and R1 and R2s are independently hydrogen or an alkyl group or a trialkylsilyl group having a carbon number of 1-4, and in the formula (VII), R3 is a bulky group.
US07754896B2
The present invention relates to agonists of the S1P4 receptor, which are selective for the S1P4 receptor over one or more of the S1P1, S1P2, S1P3 or S1P5 receptors of at least 10 fold, in particular new indol-alanine derivatives of structure I, process for their production, their uses, in particular in transplantation, and pharmaceutical compositions containing them wherein R1 is phenyl or naphthyl, wherein phenyl is substituted by one or two of halogen, C1-6alkyl, C1-6alkoxy or phenylC1-6alkyl; and R2 is hydrogen or C1-6alkyl; in free or salt form.
US07754891B2
The present invention relates to a 5,5′-position linked 1,1′-biphenyl axis chiral ligand in chemical industry field. The present invention incorporates both the central chirality of oxazoline and the axial chirality of diphenyls. Such ligand can be used in various asymmetric reactions catalyzed by metal with high reactivity and stereoselectivity, and thus represents a good application outlook. The ligand of the present invention has the formula of: wherein: n=5, 6, 7, 8, 9, 10, 11 or 12; R1=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R2=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R3=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl; R4=hydrogen, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl.
US07754874B2
The present invention provides methods of producing libraries of compounds with enhanced desirable properties and diminished side effects as well as the compounds produced by the methods. In preferred embodiments, methods of the present invention use a universal chemical glycosylation method that employs reducing sugars and requires no protection or activation. In a preferred embodiment, the invention provides a library of neoglycoside digitoxin analogs that includes compounds with significantly enhanced cytotoxic potency toward human cancer cells and tumor-specificity, but are less potent Na+/K+-ATPase inhibitors in a human cell line than digitoxin.
US07754871B2
The present invention relates to novel nucleic acid and protein molecules and their use in neuroblastoma therapy and diagnosis.
US07754865B2
The present invention provides compositions, methods and kits for enhancing the amplification of PrPsc for use in increasing the sensitivity of identifying the presence of PrPsc in a sample.
US07754862B2
Disclosed is a compound comprising three or more moieties of the formula said moieties being bonded to a central atom, monomeric group of atoms, oligomer, or polymer. Also disclosed is a phase change ink composition comprising a phase change ink carrier and a colorant compound comprising three or more moieties of the formula said moieties being bonded to a central atom, monomeric group of atoms, oligomer, or polymer.
US07754861B2
The present invention provides methods and kits for purifying a target protein group. The method comprises the steps of contacting a sample comprising at least 95% of the target protein group and at most 5% of contaminating proteins with a library of binding moieties having different binding moieties, binding the contaminating proteins and a minority of the target protein group to the library of binding moieties, separating the unbound target protein group from the proteins bound to the library of binding moieties and collecting the unbound target protein. The collected target protein is more pure than the target protein group in the sample.
US07754859B2
Targeted binding agents directed to the antigen PDGFR-alpha and uses of such agents are disclosed herein. More specifically the invention relates to fully human monoclonal antibodies directed to the antigen PDGFR-alpha and uses of these antibodies. Aspects of the invention also relate to hybridomas or other cell lines expressing such antibodies. The described targeted binding agents and antibodies are useful as diagnostics and for the treatment of diseases associated with the activity and/or overexpression of PDGFR-alpha.
US07754858B2
The invention concerns antibodies to new tumor necrosis factor receptor associated factors, designated TRAF. The new factors are capable of specific association with the intracellular domain of the type 2 TNF receptor (TNF-R2), and are involved in the mediation of tumor necrosis factor (TNF) biological activities.
US07754857B2
Novel human genes falling within the category of family genes relating to p53 gene which is known as a cell proliferation regulatory gene, and gene products thereof. A human p51 gene characterized by containing a base sequence encoding an amino acid sequence represented by SEQ ID NO:1; a human p51 gene having a base sequence consisting of the 145- to 1488-bases in the sequence represented by SEQ ID NO:2; vectors containing these genes; host cells transformed with these vectors; a process for producing a p51 protein having the amino sequence represented by SEQ ID NO:1; which comprises culturing the above host cells and harvesting the protein from the thus obtained culture; and the p51 protein having the amino acid sequence represented by SEQ ID NO:1.
US07754856B2
A novel sodium-dependent bile acid transporter protein, an Na+/H+ exchange transporter protein, a P-type ATPase protein and a vanilloid receptor protein, and polynucleotides encoding these proteins are useful in screening preventives/remedies for hyperlipemia, arteriosclerosis, genital diseases or digestive diseases; respiratory diseases, renal diseases or digestive diseases; pancreatic diseases, central nerve diseases, digestive diseases or respiratory diseases; inflammatory diseases, rheumatoid diseases or diabetic neurosis; etc.
US07754841B2
The present invention relates to new semiconductive oligomers and polymers, a process for their manufacture and their use in thin film electronic and optical devices, such as organic light emitting diodes (OLED) and photovoltaic devices, eg. solar cells and photodetectors.
US07754838B2
A composition comprising a copolymer having repeating units in any sequence of Formula I wherein Rf is a straight or branched perfluoroalkyl group having from about 1 to about 20 carbon atoms, or a mixture thereof, which is optionally interrupted by at least one oxygen atom, X3 is oxygen or X1, each X1 is independently an organic divalent linking group having from about 1 to about 20 carbon atoms, optionally containing an oxygen, nitrogen, or sulfur, or a combination thereof, G is F or CF3, A is an amide, j is zero or positive integer, X2 is an organic linking group, Y is O, N or S, h is zero when Y is N, and h is one when Y is O or S, Z is H, a straight or branched alkyl group having from about 1 to about 4 carbon atoms, or halide, B is H or wherein Rf, X1, X3, G, A, and j are as defined above, provided that when B is H, j is a positive integer, m is a positive integer, q is zero or a positive integer when Y is O, and q is a positive integer when Y is N or S, p is zero or a positive integer when Y is O, and p is a positive integer when Y is N or S, each W is independently various copolymer units.
US07754833B2
Provided is a process for polymerization and copolymerization of ethylene, specifically comprising carrying out polymerization or copolymerization ethylene in the presence of (a) a solid complex titanium catalyst which is produced by the process comprising: (i) preparing a magnesium compound solution by contacting a halogenated magnesium compound and an alcohol for allowing a reaction; (ii) reacting the resulted magnesium compound solution with an ester compound having at least one hydroxyl group and a silicon compound having at least one alkoxy group; (iii) reacting the resulted solution with a mixture of a titanium compound and a silicon compound to obtain a solid titanium catalyst component; (iv) washing the resulted solid titanium catalyst component with a halogenated saturated hydrocarbon compound; and (v) further reacting the washed solid titanium catalyst component with a titanium compound to obtain a solid complex titanium catalyst, and (b) an organometallic compound from Group II or III of Periodic table of elements. According to the present invention, it is possible to provide a process for polymerization or copolymerization of ethylene in which the catalyst activity is improved and a polymer of high bulk density is provided, with the use of a catalyst prepared by a simple process.
US07754828B2
A two-component bonding agent composition. The composition contains: (a) an isocyanate component comprising a difunctional isocyanate-terminated prepolymer having polymerized residues of at least one difunctional aromatic isocyanate and at least one difunctional polymer of ethylene oxide, propylene oxide or a combination thereof; (b) a polyol component comprising a triglyceride having hydroxyl functional groups; and (c) an adhesion promoter.
US07754825B2
Ultraviolet light stabilized copolyetherester compositions that comprise at least one nanoparticulate mineral selected from titanium dioxide, cerium oxide, and zinc oxide and at least one organic ultraviolet light stabilizer. Articles formed from the compositions are also disclosed.
US07754816B2
A chlorinated rubber composition which is resistant to various fluids such as transmission fluids comprises a blend of a chlorinated polyethylene elastomer, an ethylene acrylic elastomer and/or polyacrylic rubbers, and optionally a chlorosulfonated polyethylene. The rubber composition has many uses such as a tube and generally contains various additives such as fillers, plasticizers, vulcanizing agents, and the like.A heat resistant rubber composition comprises a blend of a chlorinated polyethylene elastomer, an ethylene-acrylic elastomer and/or polyacrylic rubbers, an ethylene-octene copolymer, and an ethylene-propylene-diene terpolymer, and the same can be used as a cover or jacket as on the above chlorinated rubber tube.
US07754813B2
A resin modifier (C) obtained by reacting a polyolefin (A) having a group which reacts with a carbodiimide group, and a carbodiimide group-containing compound (B), wherein the content of the carbodiimide group is from 1 to 200 mmol per 100 g of the resin modifier, and a polar group-containing polymer composition (F) comprising from 1 to 30% by weight of the resin modifier (C), from 99 to 20% by weight of a polar group-containing polymer (D), and from 0 to 80% by weight of an olefin polymer (E). The modifier can provide improved low-temperature impact resistance of a polymer alloy including a polar group-containing polymer and an olefin polymer (such as polylactic acid and polypropylene), and can provide a molded article with smooth surface when the polymer alloy is molded. A polar group-containing polymer composition is also set forth.
US07754810B2
An emulsion polymerization process for the production of fluoropolymers is disclosed wherein a combination of at least two fluorosurfactants is employed as dispersants. At least one fluorosurfactant is a perfluoroalkyl or perfluoroalkoxy sulfinate. At least one other fluorosurfactant is a perfluoropolyether having at least one endgroup selected from the group consisting of carboxylic acid, a slat thereof, sulfonic acid and a salt thereof.
US07754795B2
A coating composition having (i) an aqueous dispersion of fluoropolymer particles comprising a non-melt processible polymer of tetrafluoroethylene, (ii) a fluorinated surfactant, (iii) a non-ionic non-fluorinated surfactant and (iv) a non-fluorinated polymer, wherein the fluorinated surfactant is selected from fluorinated carboxylic acids or salts thereof of the general formula (I): [Rf—O-L-COO−]iXi+ (I) wherein L represents a linear partially or fully fluorinated alkylene group or an aliphatic hydrocarbon group, Rf represents a linear partially or fully fluorinated aliphatic group or a linear partially or fully fluorinated aliphatic group interrupted with one or more oxygen atoms, Xi+ represents a cation having the valence i and i is 1, 2 or 3.
US07754787B2
Curable film-forming compositions comprising a film-forming resin and an organic sol of particles are provided. The sol of particles may be prepared by providing a suspension of particles in an aqueous medium; adding a first organic liquid compatible with the aqueous medium to form an admixture; reacting the particles with a first and a second modifying compound; adding a second organic liquid compatible with the liquid portion of the admixture wherein the second organic liquid is different from the first organic liquid; and maintaining the admixture at a temperature and pressure and for a time sufficient to substantially remove the water and the first organic liquid. The film-forming resin comprises an active hydrogen-functional polymer having low functionality; i.e., a functional group equivalent weight greater than 380 g/equivalent, and a crosslinking agent, yet surprisingly offers outstanding mar and scratch resistance.
US07754783B2
Disclosed herein is a resin-containing composition comprising a solvent, a coloring material insoluble in the solvent and a block polymer compound having a repeating structural unit represented by the following general formula (1): wherein X is a polyalkenyl group which may be substituted, A is a linear or branched alkylene group having 1 to 15 carbon atoms, which may be substituted, at least one CH2 of the alkylene group may be substituted by O, m is an integer of from 0 to 30, the respective A groups may be different from each other when m is plural, Y is at least one of S, O and Se with the proviso that Y contains at least one S and that S, O and Se are each linked via a single bond, and R is a linear or branched alkyl group which may be substituted, an aromatic ring which may be substituted, or a structure in which at most 3 fused rings or aromatic rings, which may be substituted, are bonded via a single bond.
US07754782B2
The present invention relates to novel, rapidly curing adhesives based on hydrophilic polyisocyanate prepolymers for use in surgery.
US07754777B2
The invention relates to a method for obtaining micro- and nanodisperse systems. In particular, it relates to a method that allows said systems, such as liposomes, emulsions and suspensions, to be obtained with a size of less than 50 μm, and preferably less than 1 μm, and with improved stability properties over time, which includes the stages of a) Dissolving or suspending a compound C in a fluid A, to obtain a mixture AC, in the form of a solution or dispersion; b) Thermostatising said mixture AC to a temperature of between −50° C. and 200° C.; c) Adding a fluid B to mixture AC until a pressure P is obtained; and it is characterised in that in said stage (c) formation of the solution AB occurs and because it includes, d) Reducing the pressure of solution AB to a pressure lower than or equal to 100 bars, and then e) Adding a fluid E, in which fluid A is miscible and in which compound C is partially or totally insoluble at atmospheric pressure, with said fluid E acting as a crystallisation interruption agent.
US07754771B2
The present invention provides methods for treating Acquired Immunodeficiency Syndrome (AIDS) and other viral diseases and Human Immunodeficiency Virus (HIV) related infections by administering one or more compounds of formula I: wherein: the dotted line represents a single or a double bond; and R1 and R2 are the same or different and independently of each other represent —CH2OH, —CH2OR4, —CH(OH)CH3, —CH(OR4)CH3 or a group represented by the formula: or salts or hydrates thereof in a carrier which minimizes micellar formation or van der Waals attraction of molecules of said compound. The invention also provides S enantiomeric forms of such compounds which possess the ability to inhibit cell growth whilst being of low toxicity to such cells and methods of making such compounds.
US07754769B2
The present invention relates to methods for modulating the inflammatory response of respiratory tract cells using an agent that increases ceramide levels in the cells of the respiratory tract.
US07754757B2
Novel bicycloester derivatives and pharmaceutically acceptable salts thereof have high DPP-IV inhibitory activity.The novel bicycloester derivatives are represented by the general formula (1): Pharmaceutically acceptable salts thereof are also included (Example: (2S,4S)-1-[[N-(4-ethoxycarbonylbicyclo[2.2.2]oct-1-yl)amino]acetyl]-4-fluoropyrrolidine-2-carbonitrile)).
US07754742B2
The present invention provides certain imidazole carboxamide derivatives, pharmaceutical compositions thereof, methods of using the same and processes for preparing the same.
US07754735B2
The present invention relates to substituted indoles of formula (I), useful as pharmaceutical compounds for treating respiratory disorders.
US07754734B2
The present invention relates to methods of alleviating and inhibiting a lymphoproliferative disorder in a mammal, the method comprising administering one or more rapamycin derivatives (including rapamycin) to the mammal. Further, the invention provides a method for identifying agents which are useful for alleviating and inhibiting a lymphoproliferative disorders, as well as a method for identifying agents which are capable of inhibiting metastasis of lymphatic tumors in a mammal.
US07754726B2
Benzamide combounds of Formula I: and their compositions for modulating the activity of p38 kinases are provided, including p38α, and p38β kinase. Methods for treating, preventing or ameliorating one or more symptoms of a p38 kinase mediated disease or disorder such as inflammatory diseases, autoimmune diseases, destructive bone disorders, proliferative disorders, angiogenic disorders, infectious diseases, neurodegenerative diseases, and viral diseases are also provided.
US07754720B2
A compound of formula (1) and its salts and solvates are provided for the treatment or prophylaxis of hepatitis C virus infections Methods of making and formulating compound (1) are provided.
US07754715B2
The present invention, which is applicable in the pharmaceutical industry, relates to the use of molsidomine or one of its pharmaceutically acceptable salts, especially in the form of a sustained-release solid oral composition effective over 24 hours, for the manufacture of a drug for preventing or reducing the development of atherosclerosis.
US07754713B2
Disclosed are compounds of the general formula (I), where the definition of the substituents A, B, D, E, R1 and R2 are detailed in the description, and the physiologically tolerated salts thereof, a process for the preparation of these compounds and their use as pharmaceuticals. These compounds are kinase inhibitors, in particular inhibitors of the kinase CDK2 (cyclin-dependent kinase 2).
US07754698B2
Disclosed herein are compounds, compositions and methods for modulating the expression of FR-alpha in a cell, tissue or animal. Also provided are methods of target validation. Also provided are uses of disclosed compounds and compositions in the manufacture of a medicament for treatment of diseases and disorders.
US07754695B2
The present invention provides lipase inhibitory agents comprising a gallotannin or ellagitannin component(s) isolated from teas or Tellima grandiflora as well as foods and beverages and medicines containing said inhibitory agents.The present invention provides lipase inhibitory agents comprising at least one of compounds represented by formula I below: wherein R1, R2 and R3 independently represent H or a gallic acid residue, and R4 and R5 represent H or a gallic acid residue, or R4 and R5 together form an HHDP group represented by the formula below: provided that at least two of R1 to R5 represent a gallic acid residue or when all of R1, R2 and R3 are H, R4 and R5 together form the HHDP group; as well as foods and beverages and medicines containing said lipase inhibitory agents.
US07754693B2
This invention provides compositions and methods for the treatment of cancer. An inhibitor cocktail buffer includes at least one sugar, a non-potassium containing buffer, and an inhibitor having the general formula: Such an inhibitor cocktail buffer allows for the efficacious and safe delivery of various compounds, including halopyruvates and derivatives thereof, to human cancer patients.
US07754689B2
Members of the TGF-β superfamily and peptide fragments based on member proteins are employed to purify solutions containing member proteins or as therapeutics.
US07754685B2
This invention relates to cyclosporin derivatives of general formula (I): wherein A, B, R1, R2 and X are as defined in the specification, and pharmaceutical compositions prepared from the same, for use in treatment of hepatitis C virus.
US07754678B2
The present invention is directed to membrane penetrating peptides useful as in vivo, ex vivo and in vitro intracellular delivery devices for compound of interest. More particularly, the invention involves identification of membrane penetrating peptides which may be used as protein carriers for delivery of a compound of interest to cells, to methods of delivering a compound of interest attached to membrane penetrating peptides to cells.
US07754674B2
A liquid and readily flowable composition includes (a) a room-temperature-solid solute, such as a nonionic surfactant, preferably having a hydrophile-lipophile balance from about 11.1 to about 18.4, a (ii) C8-C14 fatty acid, or combinations thereof; (b) an alkoxylated fatty alkanolamide; and (c) water, if needed. The alkoxylated fatty alkanolamide, which is substantially liquid at room temperature, solvates the solid solute to form a homogeneous composition which is liquid and readily flowable at room temperature. The select classes of nonionic surfactants include polyalkylene oxide carboxylic acid esters, ethoxylated fatty alcohols, poloxamers, alkyl polysaccharides, or combinations thereof. Useful alkoxylated fatty alkanolamides include propoxylated fatty ethanolamides.
US07754671B2
This invention relates to a aqueous liquid laundry composition which both cleans and conditions fabrics. The composition includes certain alcohol ethoxylates as a nonionic surfactant component, certain alkyl ether sulfates as an anionic component and a quaternary ammonium fabric softening agent. All of the foregoing are in specified proportions.
US07754656B2
The present invention relates to methods and apparatus for synthesizing combinatorial materials libraries using pyrolysis techniques. In certain embodiments, the methods involve varying the precursors and/or reactant gases in an operating pyrolysis unit to continuously vary the resulting nanoparticle composition and collecting different nanoparticles at different locations on a substrate using a spatially addressable particle collector.
US07754651B2
Disclosed is an Cu/Zn/Al-catalyst containing copper oxide and zinc oxide as catalytically active components and aluminium oxide as thermostabilising component. The catalyst is characterized in that the Cu/Zn atomic ratio is <2.8 and the aluminium oxide component is obtained from an aluminium hydroxide sol.
US07754650B2
The present invention relates to a trifunctional catalyst used in catalytic cracking device in petroleum refining industry and a method for preparing the same. The trifunctional catalyst of the invention comprises absorbent, cerium dioxide and vanadium pentoxide acting as oxidative catalyst and cerium oxyfluoride acting as structural promoter. The oxidative catalyst and structural promoter are dispersed over the absorbent. The absorbent is spinel-based composite oxides having a general formula of MgAl2-xFexO4.yMgO, where the x is 0.01-0.5 and y is 0.2-1.2. In the trifunctional catalyst, the raw material for forming the chemical compound containing rare-earth cerium is hamartite powder. The method for preparing the trifunctional catalyst of the invention is shown as follows: the components relating to the preparation of the finished product are dissolved or dispersed into liquid materials; then the trifunctional catalyst is obtained after the mixing, drying and calcining of such liquid materials. The trifunctional catalyst of the invention is used for highly efficient absorption and desorption of sulfoxides contained in the catalytic cracking flue gas regenerated in the process of petroleum refining, the combustion promoting of carbon monoxide and the reduction of nitrogen oxides. Furthermore, the method for preparing such trifunctional catalyst is featured for its lower cost.
US07754649B2
A structure having strong contact with solid particles comprising an assembly formed by secondary aggregation which is further aggregation of aggregates each formed by primary aggregation of primary particles each made of a metal and/or a metal oxide, wherein an average primary particle diameter of the primary particles is in a range from 1 to 100 μm, and, among void pores formed by the aggregates, a volume of void pores having pore diameters in a range within ±50% away from an average void pore diameter of the void pores is equal to or above 60% of a total volume of the void pores.
US07754642B2
Disclosed are a hydrophobic oil-adsorbent material that is capable of adsorbing oil and separating oil from water and methods for production and application of said material, suitable for collecting and removing hydrocarbons and other contaminations of oil content from solid surfaces and water.
US07754634B2
There is provided a low-loss microwave dielectric ceramic having a composition represented by xCaO.yLn2O3.zAl2O3.mTiO2 wherein Ln is Nd or Sm, 25.0 mole %≦x≦75.0 mole %, 10.0 mole %≦y≦30.0 mole %, 10.0 mole %≦z≦30.0 mole %, 0.8 mole %≦m≦20.0 mole %, x+y+z+m=100 mole %. It has a dielectric constant in the range from 18 to 25, an extremely large Qf value ranging from 80,000 to 200,000 GHz, and a temperature coefficient of resonant frequency tunable in the vicinity of 0. It can make the applications of dielectric resonators, filters, and antennas extended to higher frequency and larger power; it can also be applied to microwave capacitors, temperature-compensated capacitors, microwave substrates, et al.
US07754624B2
Fluoroalkyl amidoalkyl alcohols of the formula are disclosed and their corresponding (meth)acrylate esters. These fluoroalkyl amidoalkyl (meth)acrylate monomers can be copolymerized with a wide variety of conventional ethylenically unsaturated monomers. The resulting copolymers are useful as water, oil- and grease-proofing agents for paper, textiles and hard surfaces such as masonry and wood.
US07754620B2
A method of forming a metal silicate film on a silicon substrate in a processing container is disclosed that includes the steps of (a) forming a base oxide film on the silicon substrate by feeding an oxidation gas into the processing container; and (b) forming the metal silicate film on the base oxide film by continuing to feed the oxidation gas and by feeding a first gaseous phase material formed of an amidic organic hafnium compound and a second gaseous phase material formed of a silicon-containing material into the processing container.
US07754619B2
A method of forming a liquid coating on a substrate that reduces the amount of consumption of the coating liquid and achieves a more even distribution of the thickness of the liquid coating film. The method may include supplying a solvent to a surface of a substrate, starting a supply of a coating liquid to the surface of the substrate while rotating the substrate at a first rotation speed, stopping a rotation of the substrate by decelerating the rotation of the substrate at a deceleration larger than 30000 rpm/sec at a point of time when the supply of the coating liquid is stopped, and then rotating the substrate at a second rotation speed. Accordingly, the dispense amount of the coating liquid is reduced and the film thickness of the coating liquid is flatten.
US07754600B2
Various embodiments of the present invention are directed to methods of forming nanostructures on non-single crystal substrates, and resulting nanostructures and nanoscale functional devices. In one embodiment of the present invention, a method of forming nanostructures includes forming a multi-layer structure comprising a metallic layer and a silicon layer. The multi-layer structure is subjected to a thermal process to form metal-silicide crystallites. The nanostructures are grown on the metal-silicide crystallites. In another embodiment of the present invention, a structure includes a non-single-crystal substrate and a layer formed over the non-single-crystal substrate. The layer includes metal-silicide crystallites. A number of nanostructures may be formed on the metal-silicide crystallites. The disclosed structures may be used to form a number of different types of functional devices for use in electronics and/or optoelectronics devices.
US07754595B2
An insulating film on a semiconductor substrate has a first titanium nitride film, an aluminum film, and a second titanium nitride film formed thereon, and an insulating film is formed so as to cover a lower electrode wiring. Then, the insulating film is dry-etched anisotropically so that the insulating film on the lower electrode wiring is removed, and a portion of the insulating film on the lower electrode wiring is left as a sidewall. A deposit deposited during the etching of the insulating film on the lower electrode wiring is removed by radical etching without using ion bombardment. The deposit contains Ti that is a metal element forming the second titanium nitride film. Subsequently, the second titanium nitride film is nitrided through ammonium plasma, and an insulating film to cover the lower electrode wiring is formed.
US07754594B1
A metal gate and high-k dielectric device includes a substrate, an interfacial layer on top of the substrate, a high-k dielectric layer on top of the interfacial layer, a metal film on top of the high-k dielectric layer, a cap layer on top of the metal film and a metal gate layer on top of the cap layer. The thickness of the metal film and the thickness of the cap layer are tuned such that a target concentration of a cap layer material is present at an interface of the metal film and the high-k dielectric layer.
US07754592B2
A method for fabricating a semiconductor device includes forming an etch target layer over a substrate including a cell region and a peripheral region, forming a first mask pattern having a first portion and a second portion over the etch target layer in the cell region and forming a second mask pattern having a first portion and a second portion over the etch target layer in the peripheral region, forming a photoresist pattern over the cell region, trimming the first portion of the second mask pattern, removing the photoresist pattern and the second portion of the first mask pattern and the second portion of the second mask pattern, and etching the etch target layer to form a pattern in the cell region and a pattern in the peripheral region.
US07754591B2
A method for forming a fine pattern of a semiconductor device include forming a stack structure including a 1st layer hard mask film to a nth layer hard mask film (n is an integer ranging from 2 or more) over an underlying layer formed over a semiconductor substrate. The nth layer hard mask film, the top layer, is selectively etched to obtain a first hard mask pattern of the nth layer. A second hard mask pattern of the nth layer is formed between the first hard mask patterns of the nth layer. A (n−1)th layer hard mask film is etched using the first and the second hard mask pattern of the nth layer as etching masks. The (c) step to the (d) step repeat to form the first and the second hard mask patterns of the 1st layer over the underlying layer. And, the underlying layer is etched using the first and second hard mask patterns of the 1st layer as etching masks.
US07754588B2
Embodiments of methods for improving a copper/dielectric interface in semiconductor devices are generally described herein. Other embodiments may be described and claimed.
US07754584B2
In a semiconductor substrate 1, a plurality of semiconductor elements 2 having diaphragm structures are formed in the form of cells in the longitudinal direction and the lateral direction, and V-grooves 3 are formed by anisotropic etching continuously on only division lines 4 parallel formed in one direction, out of the division lines 4 which are orthogonal to each other and divide the respective semiconductor elements 2 individually.
US07754581B2
A method for manufacturing a semiconductor device includes the steps of forming first and second semiconductor wafers each including an array of chips and elongate electrodes, forming a groove on scribe lines separating the chips from one another; coating a surface of one of the semiconductor wafers with adhesive; bonding together the semiconductor wafers while allowing the groove to receive therein excessive adhesive; and heating the wafers to connect the elongate electrodes of both the semiconductor wafers.
US07754574B2
An RF structure that includes an optimum padset for wire bonding and a high performance inductor that contains relatively thick metal inductor wires, both of which are located atop the final interconnect level of an interconnect structure. Specifically, the RF structure includes a dielectric layer having metal inductor wires of a first thickness and a metal bond pad having a major area of a second thickness located on a surface thereof, wherein the first thickness is greater than the second thickness. In the inventive RF structure, the majority of the metal bond pad is thinned for wire bonding, while maintaining the full metal wire thickness in the other areas of the structure for inductor performance requirements, such as, for example, low resistivity. Methods for fabricating the aforementioned RF structure are also provided.
US07754573B2
A method for manufacturing a semiconductor device. In one example embodiment of the present invention, a method for manufacturing a semiconductor device includes various steps. First, a gate pattern is formed on a substrate. Next, a first oxide layer is formed on the gate pattern. Then, a second oxide layer, a first silicon nitride layer, and a second silicon nitride layer are sequentially formed over the substrate and the first oxide layer. Next, a first etching process is performed to remove horizontal portions of the first and second silicon nitride layers. Then, source/drain regions are formed in the substrate. Next, the vertical portions first and second silicon nitride layers are removed. Then, a third silicon nitride layer is formed over the second oxide layer. Finally, a second etching process is performed to remove horizontal portions of the third silicon nitride layer and the second oxide layer.
US07754572B2
A semiconductor device has a semiconductor substrate, a pair of diffusion layers formed in a predetermined regions of the semiconductor substrate, a gate insulation film formed on a region of the semiconductor substrate being interposed between the pair of the diffusion layers, a gate electrode formed on the gate insulation film, insulation films formed on the sides of the gate electrode, each of the insulation films being constructed from one or more layers, sidewall spacers formed on the sides of the gate electrode while the insulation films are interposed between the sidewall spacers and the gate electrode, and highly doped diffusion layers formed in the diffusion layers except for the parts under the insulation films and the sidewall spacers.
US07754570B2
Threshold voltage of a field effect transistor is successfully adjusted with a smaller dose of an impurity, as compared with a conventional adjustment of the threshold voltage only by doping an impurity into the channel region. A semiconductor device 100 has a silicon substrate 101 and a P-type MOSFET 103 comprising a SiON film 113 formed on the silicon substrate 101, and a polycrystalline silicon film 106. Any one of, or two or more of metals selected from the group consisting of Hf, Zr, Al, La, Pr, Y, Ti, Ta and W are allowed to reside at the interface 115 between the polycrystalline silicon film 106 and the SiON film 113, and concentration of the metal(s) at the interface 115 is adjusted to 5×1013 atoms/cm2 or more and less than 1.4×1015 atoms/cm2.
US07754567B2
A method for forming a field effect transistor (FET) includes the following steps. A well region of a first conductivity type is formed in a semiconductor region of a second conductivity type. A gate electrode is formed adjacent to but insulated from the well region. A source region of the second conductivity type is formed in the well region. A heavy body recess is formed extending into and terminating within the well region adjacent the source region. The heavy body recess is at least partially filled with a heavy body material having a lower energy gap than the well region.
US07754559B2
A capacitor structure is fabricated with only slight modifications to a conventional single-poly CMOS process. After front-end processing is completed, grooves are etched through the pre-metal dielectric layer to expose polysilicon structures, which may be salicided or non-salicided. A dielectric layer is formed over the exposed polysilicon structures. A conventional contact process module is then used to form contact openings through the pre-metal dielectric layer. The mask used to form the contact openings is then removed, and conventional contact metal deposition steps are performed, thereby simultaneously filling the contact openings and the grooves with the contact (electrode) metal stack. A planarization step removes the upper portion of the metal stack, thereby leaving metal contacts in the contact openings, and metal electrodes in the grooves. The metal electrodes may form, for example, transistor gates, EEPROM control gates or capacitor plates.
US07754552B2
A hard mask may be formed and maintained over a polysilicon gate structure in a metal gate replacement technology. The maintenance of the hard mask, such as a nitride hard mask, may protect the polysilicon gate structure 14 from the formation of silicide or etch byproducts. Either the silicide or the etch byproducts or their combination may block the ensuing polysilicon etch which is needed to remove the polysilicon gate structure and to thereafter replace it with an appropriate metal gate technology.
US07754546B2
Including a process for forming a fin 12a having a first height and a fin 12b having a second height lower than the first height, a process for forming a silicon oxide film on the upper and side faces of each of the fins 12a and 12b, a process for forming a conductive poly silicon film on the silicon oxide film, a process for forming a gate insulating film 15 and a gate electrode 16 on from the upper face to the side face of each of the fins 12a and 12b by patterning the silicon oxide film and the poly silicon film, and a process for forming a couple of diffusion regions 14 in two regions clipping a region underneath the gate electrode of each of the fins 12a and 12b. According to the present invention, a semiconductor device manufacturing method and a semiconductor device including a fin-type FET having capability of changing the design of the gate width corresponding to an application can be realized.
US07754542B2
An electronic device and/or component is manufactured using additive processing steps, including additive printing steps. A first layer is printed using additive printing techniques wherein a single first material is used to print the first layer in a single processing step. A second layer is printed in more than a single printing step where a first portion of the second layer is printed using a second material and a second portion of the second layer is printed using a third material, and the second and third materials are different from each other.
US07754541B2
In a thin film transistor using a polycrystalline semiconductor film, when a storage capacitor is formed, it is often that a polycrystalline semiconductor film is used also in one electrode of the capacity. In a display device having a storage capacitor and thin film transistor which have a polycrystalline semiconductor film, the storage capacitor exhibits a voltage dependency due to the semiconductor film, and hence a display failure is caused. In the display device of the invention, a metal conductive film 5 is stacked above a semiconductor layer 4d made of a polycrystalline semiconductor film which is used as a lower electrode of a storage capacitor 130.
US07754534B2
A method of manufacturing a semiconductor device using a wiring substrate is provided which can facilitate the handling of the wiring substrate. The method includes the steps of forming a peelable resin layer on a silicon substrate, forming the wiring substrate on the peelable resin layer, mounting semiconductor chips on the wiring substrate, forming semiconductor devices by sealing the plurality of semiconductor chips by a sealing resin, individualizing the semiconductor devices by dicing the semiconductor devices from the sealing resin side but leaving the silicon substrate, peeling each of the individualized semiconductor devices from the silicon substrate between the silicon substrate and the peelable resin layer, and exposing terminals on the wiring substrate by forming openings through the peelable resin layer or by removing the peelable resin layer.
US07754533B2
A method of manufacturing a semiconductor device. One embodiment provides a carrier. A semiconductor chip is provided with a first face and a second face opposite to the first face. The semiconductor chip is placed over the carrier with the first face facing the carrier. A voltage is applied between the second face of the semiconductor chip and the carrier for attaching the semiconductor chip to the carrier.
US07754530B2
A thermal enhanced low profile package structure and a method for fabricating the same are provided. The package structure typically includes a metallization layer with an electronic component thereon which is between two provided dielectric layers. The metallization layer as well as the electronic component is embedded and packaged while the substrates are laminated via a lamination process. The fabricated package structure performs not only a superior electric performance, but also an excellent enhancement in thermal dissipation.
US07754527B2
An LED can include a pair of electrode members, and an LED chip joined to a chip mount portion disposed at the extremity of one of the pair of electrode members. The LED chip can be electrically connected to the pair of electrode members. A transparent resin portion can include a wavelength conversion material mixed therein, the transparent resin portion formed in such a manner as to surround the LED chip, wherein the LED chip is positioned offset toward one side in the transparent resin portion, and wherein the wavelength conversion material mixed in the transparent resin portion has a higher density around the LED chip within the transparent resin portion.
US07754524B2
Methods and systems for depositing nanomaterials onto a receiving substrate and optionally for depositing those materials in a desired orientation, that comprise providing nanomaterials on a transfer substrate and contacting the nanomaterials with an adherent material disposed upon a surface or portions of a surface of a receiving substrate. Orientation is optionally provided by moving the transfer and receiving substrates relative to each other during the transfer process.
US07754523B2
A method for fabricating an organic thin film transistor includes forming a gate electrode on a substrate, forming a gate insulating layer on the substrate including the gate electrode, forming an organic active pattern on the gate insulating layer using a rear exposing process, and forming source and drain electrodes on the organic active pattern.
US07754521B2
An organic electroluminescent device includes first and second substrates facing each other and spaced apart from each other, each of the first and second substrates having a first region and a second region in a periphery of the first region; an array element on an inner surface of the first substrate, the array element having a thin film transistor; an organic electroluminescent diode on an inner surface of the second substrate in the first region; a connection electrode between the first and second substrates in the first region, the connection electrode connecting the first and second substrates electrically; a spacer on an inner surface of the first substrate in the second region, the spacer having a thickness corresponding to a height of the connection electrode; an absorbent layer on an inner surface of the second substrate in the second region; and a seal pattern attaching the first and second substrates, the seal pattern outside of the absorbent layer, wherein first laminate layers including the organic electroluminescent diode of the second substrate in the first region have a thickness substantially equal to a thickness of second laminate layers including the absorbent layer of the second substrate in the second region.
US07754508B2
A method of manufacturing a silicon optoelectronic device, a silicon optoelectronic device manufactured by the method, and an image input and/or output apparatus including the silicon optoelectronic device are provided. The method includes preparing an n- or p-type silicon-based substrate, forming a microdefect pattern along a surface of the substrate by etching, forming a control film with an opening on the microdefect pattern, and forming a doping region on the surface of the substrate having the microdefect pattern in such a way that a predetermined dopant of the opposite type to the substrate is injected onto the substrate through the opening of the control film to be doped to a depth so that a photoelectric conversion effect leading to light emission and/or reception by quantum confinement effect in the p-n junction occurs. The silicon optoelectronic device has superior light-emitting efficiency, can be used as at least one of a light-emitting device and a light-receiving device, and has high wavelength selectivity. In addition, the silicon optoelectronic device panel having the two-dimensional array of the silicon optoelectronic devices can be applied in the image input and/or output apparatus capable of directly displaying an image and/or inputting optical information in a screen.
US07754500B2
Asymmetrically branched polymers are combined with bioactive agents for a variety of purposes including drug delivery and conjugation to one member of a binding pair for use in an assay.
US07754491B2
An assembly and method for gas analysis. The assembly comprises a catalyst compartment for catalytically reacting a component of a gas sample, producing one or more gas species as products. A product compartment receives the gas species, and a sensing element within the compartment senses the amount of one or more of the gas species. This amount is compared to the amount of the same gas species present in a reference compartment containing a non-catalyzed gas sample, providing the amount of the gas species produced by catalysis. Using this value, the content of the gas component in the gas sample is calculated based upon the stoichiometry of the catalyzed reaction. In preferred embodiments, the gas for analysis is a process gas for fuel production, and the catalyst is a high temperature shift catalyst that catalyzes the reaction of carbon monoxide and water into hydrogen and carbon dioxide.
US07754488B2
The invention relates to a method to analyze the condition of a functional fluid comprising: (1) obtaining a sample of the used fluid; (2) placing the sample of the fluid to a test medium; (3) reacting the fluid with an indicator in the test medium; (4) analyzing visually the results of the reactor resulting in the determination of the condition of the fluid. Further an apparatus for analyzing functional fluids is disclosed in the form of a test medium consisting of an absorbent or nonabsorbent material which has been treated with a chemical indicator, marker substance or a developer or detector reagent upon which a sample of the fluid to be tested is placed. The components in the treated test medium react with components in the test fluid providing a visual indication, for example a color change, to judge the condition, the presence of a marker substance or another parameter of the fluid. The functional fluid may be a lubricant, fuel or other functional fluid of innumerable sources, including internal combustion engines, turbines, transmissions, differentials, pumps, metalworking operations, cooling systems, etc, and be either organic solvent or aqueous based.
US07754483B2
A number of human disorders are characterized by degeneration or loss of specific cells, resulting in pathology associated with reduction or absence of cell function. Such diseases include neurodegenerative diseases and diabetes. Methods are described for obtaining a substantially homogeneous population of undifferentiated human embryonic stem cells including incubating a population of human embryonic stem cells with an amount of a selection agent. The selection agent is effective to reduce or eliminate differentiated embryonic stem cells from the population of cells such that a substantially homogeneous population of undifferentiated human embryonic stem cells is obtained. The substantially homogeneous population of undifferentiated embryonic stem cells may be produced without use of feeder cells.
US07754474B2
Sample processing systems and methods of using those systems for processing sample materials located in sample processing devices are disclosed. The sample processing systems include a rotating base plate on which the sample processing devices are located during operation of the systems. The systems also include a cover and compression structure designed to force a sample processing device towards the base plate. The preferred result is that the sample processing device is forced into contact with a thermal structure on the base plate. The systems and methods of the present invention may include one or more of the following features to enhance thermal coupling between the thermal structure and the sample processing device: a shaped transfer surface, magnetic compression structure, and floating or resiliently mounted thermal structure. The methods may preferably involve deformation of a portion of a sample processing device to conform to a shaped transfer surface.
US07754473B2
A method for rapid thermal control of a reaction volume from a preceding temperature to a target temperature includes first bringing at least the reaction vessel's second wall, which has high thermal conductivity, into direct contact with a first thermal block at a temperature higher than the target temperature if the target temperature is higher than the preceding temperature, or at a temperature lower than the target temperature if the target temperature is lower than the preceding temperature, until the reaction volume temperature is at least close to the target temperature; and then bringing the second wall into direct contact with a second thermal block at the target temperature. Also disclosed is a system (20) for detecting and/or quantitating a biological and/or chemical analyte in a sample and a software product for the system.
US07754457B2
A continuous process for treating a lignocellulosic feedstock is provided. This method comprises pretreating the lignocellulosic feedstock under pressure in a pretreatment reactor at a pH between about 0.4 and about 2.0. One or more than one soluble base is added to this pressurized, pretreated feedstock after it exits the pretreatment reactor to adjust the pretreated lignocellulosic feedstock to an intermediate pH of between about pH 2.5 to about pH 3.5. This pressurized, partially-neutralized feedstock is then further processed at the intermediate pH. This may include flashing one or more than one time at the intermediate pH. The pH of the pressurized, partially-neutralized feedstock may then be adjusted with one or more than one base to produce a neutralized feedstock having a pH between about 4 and about 6. Prior to adjusting the pH to between about 2.5 and about 3.5, the pressurized, pretreated feedstock truly be partially depressurized.
US07754446B2
An isolated mutant of a coryneform bacterium comprising a gene coding for a polypeptide having GTP-pyrophosphate kinase activity, wherein said polypeptide comprises an amino acid sequence in which one of the proteinogenic amino acids other than L-proline is present in position 38 or a corresponding or comparable position. In addition, an isolated polynucleotide encoding a polypeptide having GTP-pyrophosphate kinase enzyme activity, a vector comprising the isolated polynucleotide, a recombinant microorganism comprising the vector, and a process for preparing the recombinant coryneform bacterium is described. A method for over-expressing a GTP-pyrophosphate kinase, a method of preparing an L-amino acid, an L-lysine comprising and L-tryptophan comprising feed is also described.
US07754445B2
The invention relates to a method for the enzymatic production of a curing agent in its fluid state, e.g. liquid, comprising, in free phase, at least one oxygenated chemical species. Said method consists in bringing into contact at least one enzymatic catalysts agent, comprising at lease one peroxidase-type enzyme; an oxidizable substrate in aqueous phase that can be oxidized by the action of an oxygen donor, by catalysis by said enzymatic catalysis agent, generating said oxygenated chemical species in free phase; and said oxygen donor. The inventive method is characterized in that: e) an aqueous reaction bath is formed comprising, in addition to the oxidizable substrate and the oxygen donor, said enzymatic catalysis agent in divided solid phase, but in free phase, distributed is said bath, which may be set in motion; f) the aqueous reaction bath is separated into a fraction enriched with the enzymatic catalysis agent in divided solid phase and a fraction free from said catalysis agent, from which the curing agent is obtained.