A method for allocating workloads based on a total cost of ownership (TCO) model includes receiving a workload; estimating a cost for allocating the workload to each disk of disks in a disk pool based on a TCO model; determining a disk among the disks in the disk pool that minimizes a TCO; and allocating the workload to the disk. The TCO model incorporates a plurality of cost factors for estimating costs for each disk in the disk pool for allocating the workload.
A memory device, includes a non-volatile semiconductor memory including a plurality of first areas, each corresponding to an erasing unit, each of the first areas including a plurality of second areas, each corresponding to a writing unit; and a controller circuitry configured to erase data stored in a first area of the non-volatile semiconductor memory, track amount of time elapsed since the erasing data from the first area, write first data into one or more unwritten second areas of the first area before the tracked amount of time reaches a particular time period, and write second data into one or more unwritten second areas of the first area in response to the tracked amount of time reaching the particular time period, each of the writing of the first data and the writing of the second data being carried out independently of an instruction from a host.
The present application provides methods and devices for writing data and acquiring data in a distributed storage system. According to an exemplary method, in a process of writing data, a data file is not overwritten but is instead updated by making a copy in a newly allocated storage block and an updated description file is persisted by using an atomic operation. This way, in a process of appending data, it can be ensured that a data file is not damaged, and the readability and consistency of data are maintained, facilitating the use by a user. Further, writing data according to some embodiments of the present application supports a write in which a user specifies a write position of to-be-written data, and also supports a write in which the user does not specify a write position of to-be-written data, thereby improving the flexibility of writing data.
A storage device includes a nonvolatile semiconductor memory device, and a controller configured to access the nonvolatile semiconductor memory device. When the controller receives a write command including a logical address, the controller determines a physical location of the memory device in which data are written and stores a mapping from the logical address to the physical location. When the controller receives a write command without a logical address, the controller determines a physical location of the memory device in which data are written and returns the physical location.
A terminal device and a locking or unlocking method for the terminal device are provided. The locking or unlocking method is used for locking or unlocking a virtual key area of a terminal device when a touch panel of the terminal device is in an unlocked state, and the method includes: receiving multiple reported virtual key press events; and determining that the received virtual key press events meet a preset locking or unlocking condition, and setting a state of the virtual key area of the terminal device to a locked state or the unlocked state.
In an example implementation, a method of providing multi-gesture input on a touchscreen device includes sensing a finger gesture at a touchscreen initiation area. In response to sensing the finger gesture, images of a user's eye are captured and an eye-tracking function is initiated to determine eye motion and an end gaze point of the user's eye from the images. The method includes sensing a release of the finger gesture and activating a device function associated with the end gaze point of the user's eye.
An electronic apparatus is provided. The electronic apparatus includes a display comprising a screen for displaying an image. The electronic apparatus includes a touch sensor configured to sense touches of a user on the screen. The electronic apparatus includes a controller configured to identify moving paths corresponding to the touches, determine whether the touches correspond to individual touches on a plurality of respective regions of the screen or a collective touch on a single region comprising the plurality of respective regions of the display based on the identified moving paths, and perform either at least one first function according to the individual touches on the plurality of respective regions, or a second function according to the collective touch on the single region based on the determination.
A display control system displays content on a display screen visible to the user, the display screen is located separately from a terminal operated by a user, and the system includes an acquisition means configured to acquire posture information including the orientation and the tilt of the terminal operated by the user, a calculation means configured to calculate a display position of content-related information related to the content based on the posture information and the orientation of the display screen, and a display control means configured to display the content-related information at the display position calculated by the calculation means on the display screen.
Systems and methods are for enabling a group of individuals, each using an individual computing device, to collaboratively answer questions or otherwise express a collaborative will/intent in real-time. The collaboration system comprises a plurality of computing devices, each of the devices being used by an individual user, each of the computing devices enabling its user to contribute to the emerging real-time group-wise intent. A collaboration server is disclosed that communicates remotely to the plurality of individual computing devices. Herein, a variety of inventive methods are disclosed for interfacing users in a real-time synchronized group-wise experience, and for deriving a convergent group intent from the collective user input.
Apparatus and method are provided that are capable of controlling a display in response to reliable detection of a sliding movement operation of a pointer (e.g., a user's finger) that passes through an end of a display region. The apparatus and method utilize a position detection sensor, which is superposed on the display and configured to detect the pointer's position discretely and successively at a predetermined time interval. Based on a first position detected by the position detection sensor and a second position detected, at the predetermined time interval since the detection of the first position, by the position detection sensor, which together indicate a moving operation of the pointer, it is determined whether the moving operation of the pointer has crossed an end of the display region. If it is so determined, a passed end position of the display region is calculated based on the first and second positions.
An electronic device which can easily access information associated with an item displayed in a notification bar and a method for operating a notification bar thereof are provided. The electronic device includes a touch screen for detecting a selection of an item displayed in the notification bar, and a controller for controlling the touch screen so as to display an information providing window which provides information associated with the selected item, in response to selection of the item.
A remote location monitoring system, for example, a home monitoring or weather monitoring system may include one or more sensors and/or receivers at a remote location such as a residence or business to be monitored. The sensors and receivers may communicate with a central server via a gateway device, and may be controlled by users locally or remotely via the server. Users may register to receive remote notifications of weather events and other home monitoring events. Users may also access remotely sensors and receivers to configure alerts, notifications, and automatic responses for the devices and integrated appliances at the remote location.
Provided are systems and methods for progressively providing content of an electronic book (e-book) to members of a book reading group. An example method includes: determining a reading group associated with content, the reading group comprising a first user profile associated with a first user device, a second user profile associated with a second user device, an indication that the first user profile is designated as a group administrator; determining a first stop-position indicative of a first position in the content; determining a second stop-position indicative of a second position in the content; and sending, to the first user device and the second user device, a message comprising at least the first stop-position, and instructions to enable access to a first section, wherein the first section comprises a portion of the content preceding the first stop-position.
An interactive flyer system is disclosed. The system includes a flyer image tiler for creating a flyer image tile set, the set including multiple copies of a flyer image segmented into a plurality of flyer image tiles with each copy representing the flyer image at one of a plurality of zoom levels, wherein a copy of the multiple copies is configured to fit within a viewport having a resolution, and a flyer image tile store for storing the flyer image tile set. There is also disclosed a method for displaying the interactive digital flyer.
According to one embodiment, a plurality of spatial publishing objects (SPOs) is provided in a multidimensional space in a user interface. Each of the plurality of spatial publishing objects is associated with digital media data from at least one digital media source. The user interface has a field for the digital media data. A user is provided via the user interface with a user presence that is optionally capable of being represented in the user interface relative to the plurality of spatial publishing objects. The digital media data associated with the at least one spatial publishing object are combined to generate a media output corresponding to the combined digital media data.
In some examples, a computing device may include a first and a second touchscreen display device. A first document may be displayed on the first touchscreen and a second document may be displayed on the second touchscreen. A stylus may be used to select and copy content from the first document to a clipboard application. After receiving a preview command, the computing device may determine a first location of a tip of the stylus and display a preview of the content near the first location. The computing device may determine that the tip of the stylus has moved from the first location to a second location and move the preview of the content to be near the second location. After receiving a paste instruction from the stylus, the computing device may paste the content near the second location.
The present disclosure provides an ultrasonic touch device and a display device. The ultrasonic touch device includes a touch layer, having a plurality of probes fixedly disposed on a first side thereof, the plurality of probes being perpendicular to the touch layer; an interlayer disposed on the first side of the touch layer, the plurality of probes penetrating the interlayer and extend from the first side of the touch layer to a second side of the interlayer; a dielectric layer disposed on the second side of the interlayer, and an ultrasonic transceiver disposed at a periphery of the dielectric layer, configured to transmit a detecting ultrasonic wave to the dielectric layer and receive the reflected ultrasonic wave after the detecting ultrasonic wave is reflected.
A method for processing signals from a touchscreen panel includes obtaining a partial frame by sampling parts of a frame from a touch panel which comprises an array of sensor areas (step S1). The method also includes generating, based on the partial frame, a new frame which comprises estimates of the un-sampled parts (step S2). The method also includes determining whether at least one touch event is present in the new frame (step S3), and upon a positive determination, for each touch event, determining a location of the touch event in the new frame and obtaining a sub-frame by sampling a region of a subsequent frame from the touch panel frame at and around the location (step S4). The method also includes outputting touch information based on one or more sub-frames (step S7).
Examples relate to improving unintended touch rejection. In this manner, the examples disclosed herein enable recognizing a touch on a touch-sensitive surface, capturing a set of data related to the touch, wherein the set of data comprises a set of spatial features relating to a shape of the touch over a set of time intervals, and determining whether the recognized touch was intended based on a comparison of a first shape of the touch at a first time interval of the set of time intervals and a second shape of the touch at a second time interval of the set of time intervals.
An inspection device for a touch panel inspects the touch panel which is provided in a display unit. The inspection device is equipped with an operation position display control unit configured to display on the display unit an operation position that is touched by a user, a detection unit configured to detect a detection position depending on a touch operation made by the user with respect to the touch panel, and a positional relationship display control unit configured to display on the display unit positional relationship information indicating a positional relationship between the operation position and the detection position.
Embodiments include apparatuses, methods, and systems for computing. An apparatus may include a display screen of a computing device, and an on-screen input interface controller co-located with the display screen. The apparatus may also include a receiver co-located with the display screen to wirelessly receive an off-screen input from an off-screen input support device of the computing device. The off-screen input support device may be separately located from the display screen. The on-screen input interface controller may process an on-screen input provided via an interaction between an on-screen input device and the display screen. In addition, the on-screen input interface controller may further process the off-screen input received by the receiver. Other embodiments may also be described and claimed.
A system for presenting an electronic device on a display table is disclosed. The system includes a table, a processor, an electronic device, and a cable. The table includes a display screen, and the display screen is operably connected to the processor. The electronic device is disposed on the table and includes a touch screen. The cable connects the electronic device to the processor. The touch screen of the electronic device is configured to display an image that changes in response to an input to the touch screen. The display screen of the table is configured to display an image that changes in response to the input to the touch screen of the electronic device. A change in the display screen image comprises a graphical continuation of a change in the touch screen image.
The present disclosure provides a touch panel and a method for manufacturing the same, and a display apparatus. The display panel includes a substrate, a touch electrode provided in a touch region of the substrate, and a plurality of signal transmission lines provided in a non-touch wiring region of the substrate, the non-touch wiring region of the substrate is located in a bezel of the touch panel, the signal transmission lines are coupled to the touch electrode for transmitting a touch signal, the signal transmission lines in the non-touch wiring region are arranged in at least two layers overlapping with each other, and the signal transmission lines of adjacent layers are insulated from each other.
According to various embodiments, a trackpad may be provided. The trackpad may include: a sensor configured to sense a position of a plurality of fingers; and a mode determination circuit configured to select in which mode of a plurality of modes to operate the trackpad based on an output of the sensor. The plurality of modes may include at least two of the following modes: a cursor mode; a steering mode; and a virtual mouse mode.
A tilt command system for input peripherals is disclosed which allows for enhanced functionality for a peripheral device based on the peripheral's degree of tilt and direction of tilt.
Techniques for providing a virtual touch screen are described. An example of a computing device with a virtual touch screen includes a projector to project a user interface image onto a touch surface, and a depth camera to generate a depth image representing objects in a vicinity of the user interface image, and a touch mask generator. The computing device also includes a touch detection module to analyze the touch mask to detect touch events. The touch detection module is configured to identify a finger in the touch mask, identify a centroid region of the finger and compute a distance of the centroid region from a touch surface, and compare the distance to a threshold distance to identify a touch event.
Haptic feedback can be provided by receiving an input character from a first user device, converting the input character to a haptic instruction comprising a plurality of tactile pulses, and outputting the haptic instruction on a second user device to cause the haptic motor of the second user device to vibrate according to the plurality of tactile pulses.
A system is provided that converts an input into one or more haptic effects using frequency shifting. The system receives an input signal. The system further performs a fast Fourier transform of the input signal. The system further shifts one or more frequencies of the transformed input signal to one or more frequencies within a shift-to frequency range. The system further performs an inverse fast Fourier transform of the frequency-shifted signal, where the inversely transformed signal forms a haptic signal. The system further generates the one or more haptic effects based on the haptic signal.
Examples include techniques to change a mode of operation for a memory device. Examples include using information stored at a memory array of the memory device to program mode registers at the memory device to change the mode of operation to a first mode of operation that corresponds to a frequency set point associated with dynamic voltage and frequency scaling for a processor coupled with the memory device.
A computer device may include a memory configured to store instructions and a processor configured to execute the instructions to determine a device status associated with the wireless communication device and determine that a machine learning process is to be performed based on the determined device status. The processor may be further configured to execute the instructions to select a machine learning model based on the determined device status; select one or more data inputs based on the determined device status; and perform the machine learning process using the selected machine learning model and the selected one or more data inputs.
This application relates to a portable electronic device including a first sensing module and a second sensing module that are both in communication with a processor. The portable electronic device can include access ports that are formed in the housing, where the first and second sensing modules are capable of receiving an external stimulus by way of the access ports. A plate is positioned in the housing between a wall of the housing and the sensing modules. The plate and the wall define non-linear flow paths between the access ports to the first and second sensing modules. The non-linear flow paths can transmit the external stimulus to cause at least one of the first or second sensing modules to provide a detection signal to the processor that causes a display unit to present a notification that corresponds to the external stimulus.
Provided is an image display device which includes an image pickup camera and makes it possible to prevent an image pickup window part from reducing a display area. The image display device which includes the image pickup camera is configured such that: the image pickup window part for the image pickup camera is disposed in an image display region; and a diameter φp of the image pickup window part is set so as to satisfy a specific condition which is based on an angle of view θ of the image pickup camera.
The present disclosure provides a rollable flexible display device. The rollable flexible display device including a display panel that displays an image and rolls or unrolls like a scroll, a sensing circuit that performs sensing to detect rolled and unrolled portions of the display panel and outputs sensed values, and a device adjusting part that adjusts the operating conditions of the display panel based on the sensed values sent from the sensing circuit.
Particular embodiments described herein provide for an electronic device, such as a notebook computer or laptop, that includes a circuit board coupled to a plurality of electronic components (which includes any type of components, elements, circuitry, etc.). The electronic device may also include a base portion and a lid portion coupled to the base portion at a hinge configured such that the base portion and the lid portion can rotate between an open configuration of the electronic device and a closed configuration of the electronic device. The lid portion can include at least one segment that is to raise at least a portion of the base portion in response to a rotation toward the open configuration (e.g., opening the lid portion to access a touchpad or a keyboard of the electronic device, or to see a display of the electronic device).
A load control system for controlling an electrical load in a space of a building occupied by an occupant may include a controller configured to determine the location of the occupant, and a load control device configured to automatically control the electrical load in response to the location of the occupant. The load control system may include a mobile device adapted to be located on or immediately adjacent the occupant and configured to transmit and receive wireless signals. The load control device may be configured to automatically control the electrical load when the mobile device is located in the space. The load control system may further comprise an occupancy sensor and the load control device may automatically control the electrical load when the occupancy sensor indicates that the space is occupied and the mobile device is located in the space.
An electronic circuit includes parallel linear regulator circuits that support a range of different load currents. The electronic circuit includes a first linear regulator circuit coupled to an output node, a second linear regulator circuit coupled in parallel with the first linear regulator circuit and the output node, and a control circuit. The control circuit is configured to monitor the output node and to suppress or inhibit the second linear regulator circuit from supplying the output node when a representation of load power consumption is below a specified threshold. The first linear regulator circuit is configured to continue to supply a portion of the load power when the representation of load power consumption is above the specified threshold, and the control circuit may disable the second linear regulator circuit when the representation of load power consumption is below the specified threshold.
A system and method of optimizing Carbon Dioxide (CO2) delivery to crops during high-temperature periods. The method of facilitating plant growth includes the steps of (a) determining the wilting temperature of a set of plants; (b) measuring the ambient temperature of the plants; (c) supplying CO2 gas to the plants when the ambient temperature reaches a predetermined temperature point prior to the wilting temperature of the set of plants; and (d) continuing to supply CO2 gas to the plants until the ambient temperature of the set of plants falls below the predetermined temperature point, and then discontinuing supplying CO2 gas to the plants. Temperature of the plants is measured by a temperature sensor continuously monitoring the ambient temperature of the plants. A CO2 gas applicator disposed near the plants supplies CO2. The CO2 gas applicator is connected to a controller that is connected to a CO2 gas source.
An oven having multiple oven cavity temperature sensors that provide improved monitoring of oven temperature and that permit improved oven temperature control is provided. Multiple temperature values from the different sensors may be combined or analyzed to provide a more consistent and accurate measurement of the temperature of the food being cooked. Patterns of temperature as a function of location in the oven cavity may be analyzed to detect abnormal but correctable temperature inhomogeneities (for example, cold spots or stratification) and used to adjust parameters of the oven control, (for example, by fan speed/direction adjustment, cycle control of the fan and heater elements) to provide more even temperature distributions.
A navigation control system for an autonomous vehicle comprises a transmitter and an autonomous vehicle. The transmitter comprises an emitter for emitting at least one signal, a power source for powering the emitter, a device for capturing wireless energy to charge the power source, and a printed circuit board for converting the captured wireless energy to a form for charging the power source. The autonomous vehicle operates within a working area and comprises a receiver for detecting the at least one signal emitted by the emitter, and a processor for determining a relative location of the autonomous vehicle within the working area based on the signal emitted by the emitter.
Provided herein is an autonomous or semi-autonomous vehicle fleet comprising a plurality of electric autonomous vehicle for apportioned display of a media, operating autonomously and a fleet management module for coordination of the autonomous vehicle fleet. Each autonomous or semi-autonomous vehicle comprising a screen configured to display the media. Activation, deactivation, brightness modification, in combination with specific media selection enables more efficient media display.
Methods and apparatus for automotive vehicles respond to earthquake warnings to provide occupant awareness of potential hazards while taking autonomous actions such as slowing the vehicle, navigating to a safe location, and providing safety advice. Data gathered by the vehicle can be sent wirelessly to a remote center for coordinating emergency response using the data. The vehicle preferably comprises a powertrain, a plurality of vehicle accessory systems, and an emergency management controller. The controller is adapted to receive an earthquake warning message. The controller responds to the warning message by providing a power conservation command to at least one accessory system to reduce power consumption by at least one respective noncritical accessory function. In addition, it evaluates a vehicle mobility status and automatically launches a corresponding safety measure.
A high-level vehicle command is determined based on a location of the vehicle with respect to a route including a start location and a finish location. An image is acquired of the vehicle external environment. Steering, braking, and powertrain commands are determined based on inputting the high-level command and the image into a Deep Neural Network. The vehicle is operated by actuating vehicle components based on the steering, braking and powertrain commands.
A system may include one or more sensors configured to acquire data associated with a driver of a vehicle and a processor. The processor may receive the data and determine whether the data is within a baseline data associated with expected behavior of the driver. The processor may then control one or more operations of the vehicle in response to the data being outside the baseline data.
At least one transceiver is configured to wirelessly receive data from a source node that is external to a vehicle, the data including a unique identifier (ID) of the source node and at least one of: a first location of the source node; a first heading of the source node; a first speed of the source node; and a first object type of the source node. At least one of a camera and a sensor is configured to identify objects located around the vehicle. An anomaly module is configured to selectively indicate that an anomaly is present in the data. A distributed ledger includes a list of unique IDs associated with not-trusted source nodes. A ledger management module is configured to, in response to an indication that an anomaly is present in the data received from the source node, add the unique ID of the source node to the list.
A motor controller includes memory, and processing circuitry that controls a motor based on a position command and based on a position detection value corresponding to a detected position of the motor, calculates a tolerance position error in a successive manner based on the position command and based on a control parameter used to control the motor, calculates a position error maximum threshold that depends on the tolerance position error, detects an abnormality based on the position error maximum threshold, and triggers an indication when the abnormality is detected.
Embodiments for performing manufacture processes are disclosed. In one embodiment, a system includes a tool to be used in a manufacture process on a workpiece. The system includes a robot having an arm. The arm has an attachment point and is configured to move the tool, when attached to the attachment point, in multiple degrees of freedom during the manufacture process. A robot controller of the robot controls the movement of the arm based on motion parameters to perform the manufacture process via the tool. The system includes a power source having power electronics to generate electrical output power, based on electrical input parameters, provided to the tool during the manufacture process. A power source controller of the power source is configured to communicate with the robot controller, allowing a path planner component to generate the motion parameters used to perform the manufacture process while avoiding robot collision conflicts.
A screen information generation device generates screen information indicating display content of a display device connected to a programmable controller that controls a control object device according to a chart program indicating execution order of a plurality of steps each provided per operation unit. When generating the screen information of an individual-manipulation screen for use in individually operating the control object device per operation unit, the screen information generation device is configured to generate the screen information based on the chart program such that a plurality of operation buttons that respectively correspond to the plurality of steps is displayed on the display device.
Environmental characteristics of habitable environments (e.g., hotel or motel rooms, spas, resorts, cruise boat cabins, offices, hospitals and/or homes, apartments or residences) are controlled to eliminate, reduce or ameliorate adverse or harmful aspects and introduce, increase or enhance beneficial aspects in order to improve a “wellness” or sense of “wellbeing” provided via the environments. Control of intensity and wavelength distribution of passive and active Illumination addresses various issues, symptoms or syndromes, for instance to maintain a circadian rhythm or cycle, adjust for “jet lag” or season affective disorder, etc. Air quality and attributes are controlled. Scent(s) may be dispersed. Noise is reduced and sounds (e.g., masking, music, natural) may be provided. Environmental and biometric feedback is provided. Experimentation and machine learning are used to improve health outcomes and wellness standards.
A system and method is provided for smart grid dynamic regulation pools. The system may include at least one processor configured to initiate a plurality of pool regulation tasks that are respectively executed by different processing resources. The pool regulation tasks respectively manage respective subsets of electrical power assets assigned to respective different regulation pools to fulfill electrical power requirements for market orders received from at least one energy trading market system. Such management may include determining whether to reassign at least one asset to fulfill at least one market order. Also responsive to a determination to reassign the at least one asset, the management may include removing the at least one asset from one regulation pool managed with one pool regulation task for at least one market order and assigning the removed asset to another regulation pool managed with another pool regulation task for at least one market order.
An automation system includes a fieldbus, at least two automation devices which are securely connected to the fieldbus, at least two coupling points which are configured such that automated connection and disconnection of an exchanging device to and from the fieldbus is possible, wherein exchanging devices are configured to establish a functionally safe connection with the automation devices via the fieldbus, where the functional safety thus achieved serves to avoid malfunctions as a result of errors.
A nanophotonic phased array is configured to generate dynamic three-dimensional imagery when employed as an oscillatory beam-steering device. A scanning nanophotonic phased array generates programmable light fields. That is, a phased array generates reconfigurable light fields when controlled to perform an angular scan of incident illumination synchronized with respect to modulation of the incident illumination.
An image forming apparatus includes a controller to control a driving device such that a rotational speed of a supplying and feeding screw when it is rotated a predetermined number of times to supply developer to a developing device in a predetermined amount during execution of a continuous image forming job on a plurality of first recording materials is a first rotational speed, and a rotational speed of the supplying and feeding screw when it is rotated the predetermined number of times to supply the developer in the predetermined amount during execution of a continuous image forming job on a plurality of second recording materials is a second rotational speed slower than the first rotational speed. The second recording materials have a length longer than the first recording materials with respect to a sub-scan direction.
A cabinet includes a first body side engagement and a second body side engagement mounted on a body and a first cover side engagement and a second cover side engagement mounted on a cover. Slide restriction faces of the first cover side engagement and the second cover side engagement come into contact with slide restriction faces of the first body side engagement and the second body side engagement, respectively, to restrict sliding of a slider when the first cover side engagement does not engage the first body side engagement. The slide restriction face of at least one of the first body side engagement and the first cover side engagement has a length that is greater than a length of the slide restriction face of other one of the first body side engagement, the first cover side engagement, the second body side engagement, and the second cover side engagement.
In accordance with an embodiment, an image forming apparatus encompasses a heat roller, a lamp, a use amount acquisition section, a switching controller and a cycle controller. The heat roller heats a sheet printed with a toner image. The lamp heats the heat roller. The use amount acquisition section acquires a use amount of the lamp. The switching controller repeats a processing from a moment at which the lamp is charged until the lamp is charged next after the lamp is not charged in a predetermined control cycle. The cycle controller sets the cycle based on the use amount.
An image forming apparatus includes: plural image forming units that each include plural image forming sections and a first intermediate transfer body to which toner images formed by the plural image forming sections are transferred through first transfer; plural second transfer sections provided in correspondence with the plural image forming units to transfer the toner images on the first intermediate transfer body to a recording medium through second transfer; and a detection device that detects the toner images downstream of a most downstream one of the second transfer sections.
Drive belt systems and methods thereof are disclosed. Drive belt systems and methods thereof include driving a continuous belt around a drive pulley member and an idler pulley member by the drive pulley member and transporting a transport unit and/or reciprocating carriage unit coupled to the continuous belt in a first direction away from the drive pulley member. Drive belt systems and methods thereof also include applying at least a force to the belt in a traverse direction thereto to direct a portion of the belt about the drive pulley member by a belt stretch management apparatus coupled to the transport unit and/or reciprocating carriage unit.
A powder-amount detection device includes a first electrode, a second electrode, a third electrode and a voltage detector with the second electrode adjacent to the first electrode on the powder container and have a smaller surface area than a surface area of the first electrode. The third electrode is on a side opposite to the second electrode with the powder container interposed between the third electrode and each of the first electrode and the second electrode. The voltage detector detects voltages of the first electrode and the second electrode by detecting charging and discharging behaviors of the first electrode and the second electrode when a voltage is applied between the third electrode and each of the first electrode and the second electrode for a short time, and detects the amount of powder in the powder container based on the voltages of the first electrode and the second electrode.
A projection exposure apparatus for semiconductor lithography includes at least one component, and a support device with at least one support actuator which acts on at least one support location of the component so that deformations of the component are reduced. The support device includes a control unit for triggering the at least one support actuator. The control unit is configured to trigger the support actuator in the event of a dynamic acceleration acting on the component. The disclosure also relates to a method for reducing deformations, resulting from dynamic accelerations, of a projection exposure apparatus for semiconductor lithography.
A substrate holder (WT) for use in a lithographic apparatus and configured to support a substrate, the substrate holder comprising: a main body (20) having a main body surface; and a plurality of burls (21) projecting from the main body surface; wherein each burl has a distal end configured to engage with the substrate; the distal ends of the burls substantially conform to a support plane whereby a substrate can be supported in a substantially flat state on the burls; and a flow control feature (22, 22c, 22d) configured to form a gas cushion adjacent the periphery of the substrate holder when a substrate is being lowered onto the substrate holder.
Implementations described herein generally relate to methods for leveling a component above a substrate. In one implementation, a test substrate is placed on a substrate support inside of a processing chamber. A component, such as a mask, is located above the substrate. The component is lowered to a position so that the component and the substrate are in contact. The component is then lifted and the particle distribution on the test substrate is reviewed. Based on the particle distribution, the component may be adjusted. A new test substrate is placed on the substrate support inside of the processing chamber, and the component is lowered to a position so that the component and the new test substrate are in contact. The particle distribution on the new test substrate is reviewed. The process may be repeated until a uniform particle distribution is shown on a test substrate.
Systems and methods which provide anti-counterfeiting patterns tagged with multi-mode nanotaggants, such as may comprise single-mode nanoparticles, multi-mode nanoparticles, or a combination thereof, are described. The multi-mode nanotaggants of embodiments are configured to exhibit prescribed emissions by excitation at distinct stimulus wavelengths. Decryption of anti-counterfeiting patterns tagged with multi-mode nanotaggants of embodiments of the invention may be achieved by examining temporal color responses of the pattern to varying illuminations. In addition to the various color codes that may be encrypted into an anti-counterfeiting pattern using nanotaggants, embodiments provide various graphic codes that may be encrypted into anti-counterfeiting patterns. Such graphic codes may not only comprise the graphic pattern of the anti-counterfeiting pattern itself, but one or more graphic patterns of nanotaggants of the anti-counterfeiting pattern.
The present invention relates to a resist composition, especially for use in the production of electronic components via electron beam lithography. In addition to the usual base polymeric component (resist polymer), a secondary electron generator is included in resist compositions of the invention in order to promote secondary electron generation. This unique combination of components increases the exposure sensitivity of resists in a controlled fashion which facilitates the effective production of high-resolution patterned substrates (and consequential electronic components), but at much higher write speeds.
A light source apparatus includes a plurality of light sources each having a light emitting area, an optical characteristic converter configured to generate emitting light having a characteristic different from that of incident light from the plurality of light sources, and a first optical system configured to irradiate the incident light on each of a plurality of irradiated areas on the optical characteristic converter. A shape of each irradiation area is non-similar to that of the light emitting area.
A light structure for an electronic device includes a first portion permitting user access to a button of the device; and a second portion surrounding the first portion, wherein the second portion permits light from a light source to pass through. The light passing through the second portion varies according to a condition of the electronic device.
The invention provides an electrophoretic medium comprising at least two types of particles having substantially the same electrophoretic mobility but differing colors. The invention also provides article of manufacture comprising a layer of a solid electro-optic medium, a first adhesive layer on one surface of the electro-optic medium, a release sheet covering the first adhesive layer, and a second adhesive layer on an opposed second surface of the electro-optic medium.
A pixel array includes pixel unit sets each including a substrate having first and second pixel regions, a scan line, first and second data lines extending along a second direction, first and second active devices respectively in the first and second pixel regions, and first and second pixel electrodes respectively located in the first and second pixel regions and electrically connected to the first and second active devices, respectively. The scan line includes a main scan line and first and second branch scan lines (connected to the main scan line) extending along a first direction. The first active device is electrically connected to the first branch scan line and the first data line. The second active device is electrically connected to the second branch scan line and the second data line. At least one of the first and second data lines is overlapped with the first and second pixel electrodes.
Provided is a technique of suppressing display defects such as flicker, without limiting the arrangement of data lines, in a liquid crystal display device having a display area in a non-rectangular shape. A liquid crystal display device includes an active matrix substrate 10, a counter substrate, and a liquid crystal layer. The active matrix substrate 10 includes a plurality of gate lines 11, and a plurality of data lines 12. In each of pixels defined by the gate lines 11 and the data lines 12, a pixel electrode 14 is arranged, and in a display area R, common electrodes 15 are provided. Outside the display area R, capacitance-generating parts C that generate capacitances between some gate lines 11 among the plurality of gate lines 11 and the common electrode are provided. The some gate lines 11 have lengths smaller than the gate lines having the maximum length, and intersect with some data lines 12 among the plurality of data lines 12. The capacitance-generating parts C are provided in such a manner that at least one capacitance-generating part C is provided with respect to one of the some gate lines 11.
A liquid crystal grating includes a liquid crystal layer arranged between a first substrate and a second substrate; a quantum dot layer including a plurality of sub-pixels distributed in an array, each of the sub-pixels includes a light-shielding region located at a central portion of the sub-pixel and a quantum dot region that is separate from the light-shielding region; an electrode structure distributed across the plurality of sub-pixels; and a light input layer defining a plurality of light input ports each arranged opposite to the light-shielding region of a respective one of the sub-pixels. The electrode structure is configured to change light transmission of the liquid crystal layer depending on control voltages applied to the electrode structure.
A front-lit display includes a light source, a coupling lens, a first and a second polarizers, a light guide plate, and a reflective display panel. The light guide plate has a first surface, a second surface, a side surface connecting the first and second surfaces, and light guiding microstructures located between the first and second surfaces. The first polarizer, the coupling lens, and the light source are sequentially disposed at a side of the side surface. Light emitting elements of the light source that emit light beams of different colors are arranged along a first direction instead of a second direction. The first direction is parallel to the side surface and the first surface, and the second direction is parallel to the side surface and perpendicular to the first surface. The coupling lens includes vertical columnar structures arranged along the first direction and respectively extending along the second direction.
A display device includes: a panel including a display screen and a side face that extends along a periphery of the display screen; a backlight located on a side of the panel opposite to the display screen to radiate light on the panel; a case, for containing the backlight, including a bottom that faces the panel with the backlight in between and a side wall that stands at a periphery of the bottom and faces the side face of the panel; and a combining member provided between the side face of the panel and the side wall to combine the panel and the case.
An apparatus (32) includes an electronic circuit (76, 80, 84), an electro-acoustic transducer (60) and a coupler (64). The electronic circuit is configured to receive data to be transmitted over an optical cable (24), and to convert the data into a modulating signal. The electro-acoustic transducer is configured to convert the modulating signal into an acoustic wave. The coupler is mechanically coupled to a section of the optical cable, and is configured to apply to the section a longitudinal strain that varies responsively to the acoustic wave, so as to modulate the data onto an optical carrier traversing the optical cable.
An optical modulator may include a lower waveguide, an upper waveguide, and a dielectric layer disposed therebetween. When a voltage potential is created between the lower and upper waveguides, these layers form a silicon-insulator-silicon capacitor (also referred to as SISCAP) guide that provides efficient, high-speed optical modulation of an optical signal passing through the modulator. In one embodiment, at least one of the waveguides includes a respective ridge portion aligned at a charge modulation region which may aid in confining the optical mode laterally (e.g., in the width direction) in the optical modulator. In another embodiment, ridge portions may be formed on both the lower and the upper waveguides. These ridge portions may be aligned in a vertical direction (e.g., a thickness direction) so that ridges overlap which may further improve optical efficiency by centering an optical mode in the charge modulation region.
According to an example, a polarization control system is to manipulate polarization manipulators to output light that achieves a trajectory on a Poincaré sphere that tracks a known trajectory of a polarizer on the Poincaré sphere, in which the trajectory of the output light enables definition of a reference polarization state of the output light. The polarization control system may also manipulate an output polarization manipulator to set the output light to a predefined polarization state based upon the reference polarization state.
Assembly (1) comprising a laser source (3) and a component for reducing speckle (7) comprising a beam splitter (9) that reflects a first portion (11) of the laser beam and transmits a second portion (13) and a first and second reflecting means (15, 17), the first reflective means (15) receiving the second portion (13) of the laser beam and the second reflective means (17) directing said second portion (13) back to the beam splitter (9), wherein the second portion (13) of the laser beam can be directed from the first (15) to the the second reflective means (17), wherein the first (15), the second (17) reflective means and the means for beam splitting (9) define an optical path for the second portion (13) of the laser beam, the length of which being equal to, or greater than, the coherence length of the laser beam.
A display device and a display method are provided. The display device includes a plurality of transparent display units configured to emit imaging light along a same direction and arranged in sequence with spaces therebetween along a light-emitting direction of the imaging light; and a layer-by-layer scan circuit configured to respectively input a plurality of depth images of a same three-dimensional (3D) image into corresponding transparent display units in the plurality of transparent display units, wherein, the plurality of depth images have different depth ranges; and upon each transparent display unit displaying the inputted depth image, the layer-by-layer scan circuit is configured to control transparent display units on a display side of the each transparent display unit to be in a transparent state.
Examples of an image sensor are disclosed. In one example, the image sensor comprises a dual-mode pixel cell operable in a first mode and in a second mode at different times, the pixel cell including a photodiode to receive incident light. The image sensor further comprises one or more configurable voltage sources coupled with the photodiode. In the first mode, the one or more voltage sources are configured to bias the photodiode to generate a quantity of charges that reflects a quantity of photons of the incident light received by the photodiode within a first exposure period. In the second mode, the one or more voltage sources are configured to bias the photodiode to generate a signal corresponding to a time when the photodiode receives a first photon of the incident light within a second exposure period for a time-of-flight measurement.
An optical assembly including first (340) and second (312) polarizers and a liquid crystal module (314) disposed therebetween, with the first and second polarizers making an oblique angle of at least 5 degrees therebetween is disclosed. Optical devices like head mounted displays (300) including the optical assembly are also disclosed.
A method or system can be used with an aircraft or other vehicle. The system can include or the method can use a head up display for integrating views of conformally mapped symbols and a first image from at least one image source in an environment. The head up display includes a computer and a combiner configured to provide a second image in response to the computer. The second image includes the conformally mapped symbols and a window for viewing the first image on the image source.
An apparatus for mitigating contamination of an optical device comprises an open-topped, closed-sided, and closed-bottomed housing cup partially defining a protected volume to enclose the optical device. A housing cap encloses a top of the housing cup and partially defines the protected volume. The housing cap includes a top collar having an open central aperture. The top collar includes at least one drain channel extending longitudinally downward into a top collar top surface and extending across the top collar top surface laterally outward from the central aperture. A top cover laterally spans the central aperture of the top collar. An interface structure circumscribes the top cover to suspend the top cover downwardly into the housing cup from the top collar. The interface structure prevents direct contact between the top cover and the top collar.
A projection device According to the present invention there is provided a projection device (30,50,100) comprising, a light source (31,61) which can provide light beams (32a,b,c 62a,b,c), wherein the light beams (32a,b,c 62a,b,c) can be used to define one or more pixels of a virtual image (48); a MEMS micro mirror (34) which is arranged to receive the light beams (32a,b,c 62a,b,c) provided by the light source (31,61), and wherein the MEMS micro mirror (34) can oscillate about at least one oscillation axis (7,17) to scan the light beams (32a,b,c 62a,b,c); a reflective element (38), which comprises a plurality of convex reflective projections (39), and wherein the reflective element (38) is arranged so that light beams (32a,b,c 62a,b,c) reflected by the MEMS micro mirror (34) are incident on said convex reflective projections (39), so that the light beams (32a,b,c 62a,b,c) are reflected by the convex reflective projections (39); a beam combiner (45,81), wherein the beam combiner is arranged to receive the light beams (32a,b,c 62a,b,c) which are reflected by the convex reflective projections (39) wherein the beam combiner (45,81) is configured to at least partially reflect the light beams (32a,b,c 62a,b,c) which it receives so that the light beams (32a,b,c 62a,b,c) can form a virtual image (48) which is visible when viewed from within an eyebox (47). There is further provided a corresponding method of projecting a virtual image.
System and method configured to operate under conditions when the object being imaged destroys or negates the information which otherwise allows the user to take advantage of optical parallax, configured to elicit luminescence from the same targets in the object as a result of irradiation of these targets with pump light at different, respectively corresponding wavelengths, and acquire optical data from so-illuminated targets through the very same optical path to image the object at different wavelengths. One embodiment enables acquisition, by the same optical detector and from the same object, of imaging data that includes a reflectance image and multiple fluorescence-based images caused by light at different wavelengths, to assess difference in depths of locations of targets within the object.
A system includes an optical waveguide configured to receive multispectral radiation from a scene, a first optical component and a second optical component. The first optical component is configured to cause a first portion of the multispectral radiation with wavelengths in a first range to exit the optical waveguide at a first position, and a second portion of the multispectral radiation with wavelengths in a second range to travel through the optical waveguide from the first position to a second position via total internal reflection. The second optical component is configured to cause the second portion of the multispectral radiation to exit the optical waveguide at the second position.
A zoom lens includes in order from an object side to an image side, a positive first lens unit that is not moved for zooming, a negative second lens unit that is moved during zooming, at least one zooming lens unit that is moved during zooming, a stop, and a positive fixed lens unit that is not moved for zooming. The first lens unit includes in order from the object side to the image side, a first lens sub-unit that is not moved for focusing, a positive second lens sub-unit that is moved toward the object side when focusing to an object at short distance from an object at infinite distance, and a positive third lens sub-unit that is moved during focusing. The second lens sub-unit includes a negative meniscus lens having a convex surface facing the image side.
An imaging lens includes a first lens group and a second lens group, arranged in this order from an object side to an image plane side. The first lens group includes a first lens, a second lens, and a third lens. The second lens group includes a fourth lens, a fifth lens, and a sixth lens. The second lens has a convex surface facing the image plane side near an optical axis thereof. The fifth lens has a concave surface facing the image plane side near an optical axis thereof. The sixth lens has a concave surface facing the object side near an optical axis thereof. The fifth lens has refractive power weaker than those of the fourth lens and the sixth lens. The second lens has a specific Abbe's number.
The present disclosure discloses a camera lens. The camera lens including, in an order from an object side to an image side, a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, a fourth lens having a negative refractive power, a fifth lens having a positive refractive power, and a sixth lens having a negative refractive power. The camera lens further satisfies specific conditions.
A cable arrangement includes indexed optical lines that are indexed between first and second multi-fiber connectors; a first of the optical line having a first end terminated at the first multi-fiber connector; and a second optical line having a first end terminated at the second multi-fiber. An input of an optical splitter is optically coupled to second ends of the first and second optical lines. The optical splitter splits optical signals carried over the first and second optical lines onto output lines so that each output line carries signals split from the first optical line and signals split from the second optical line.
A drawer slide having first and second rails interconnected by a center rail. The center rail includes a spool configured to provide half-speed travel of the center rail relative to the travel of the first rail. The drawer slide is configured for use with a drawer assembly having a drawer and a chassis. The drawer assembly further includes a radius limiter secured to the center rail. The radius limiter travels at half-speed relative to the drawer. The radius limiter also automatically rotates relative to the travel of the drawer. The chassis includes sides including threaded backing plates, and mounting brackets. The mounting brackets include tri-lobed holes for receipt of a reciprocally shaped washer and a fastener for mounting the brackets to the chassis sides.
In some embodiments, a lanyard organizing tool is provided comprising a plurality of retainer dust caps connected to an organizing chord, with reach retainer dust cap being releasably connectable to a terminating connector of a fiber optic cable. The retainer dust caps may be formed with release components that can be manually squeezed, or depressed, by an operator using one hand to release a connector from the chord conveniently, in order to connect the connector to an intended receiving port. Methods of using the lanyard organizing tool are also provided.
An optical fiber connection system includes a first and a second optical fiber, each with end portions that are terminated by a first and a second fiber optic connector, respectively. A fiber optic adapter connects the first and the second fiber optic connectors. A fiber alignment apparatus includes V-blocks and gel blocks. Each of the fiber optic connectors includes a connector housing and a sheath. The end portions of the optical fibers are positioned beyond distal ends of the respective connector housings. The sheath is slidably connected to the connector housing and slides between an extended configuration and a retracted configuration. The sheath covers the end portion of the respective optical fiber when the sheath is at the extended configuration and exposes the end portion when at the retracted configuration. The end portions of the optical fibers are cleaned when slid between the V-blocks and the gel blocks.
Apparatus, methods and systems are provided for improving the quality of illumination from a luminaire. The apparatus, methods and systems provide quantum dots, methods and apparatus for stimulating device light emission from quantum dots, sensors, and controllers to adjust quality of illumination from a luminaire.
An optical device includes: a light guide plate; a first light emission part provided in a first region of the light guide plate, the first light emission part having optical surfaces that cause the light incident thereon to exit from a first emission surface and a second emission surface opposite the first emission surface; and a second light emission part provided in a second region of the light guide plate, the second light emission part having optical surfaces that cause the light incident thereon to exit from the first emission surface and the second emission surface. The optical device configured to control the luminous flux from the first and second emission surfaces via the optical surfaces in the first and second light emission parts to thereby control how leaked light is perceived by an observer on the opposite side of the emission surface of the light guide plate.
A light guide device made of a light diffusing agent-free light transmissive material is disclosed to include a base provided with a light-incident surface at one side thereof to face toward the light-emitting side of a plurality of predetermined light-emitting devices, and a plurality of continuously connected and irregularly configured light guide components located on at least one side of the base and capable of unevenly projecting light passing therethrough toward the outside and respectively provided with at least three light-emitting surfaces, each light-emitting surface defining with the base a respective contained angle that causes a glare effect when light passes through the respective the light guide component.
The present disclosure provides a retroreflective film for removable application to a three-dimensional object. The film comprises a transparent film layer; a first transparent adhesive layer; a retroreflective layer comprising glass microspheres and a binder; a metalized coating layer comprising aluminum applied on the retroreflective layer; a removable adhesive layer having a peel force of 2 lbs/inch or less. When the film is elongated by 50% it retains at least 50% of its unstretched coefficient of retroreflection as measured at the 0.2 degree observation angle and −4 degree entrance angle. When the film is elongated by 50% it retains at least 50% of its unstretched gloss when measured at a 20 degree angle.
A precursor sol of aluminum oxide contains a polycondensate formed by the hydrolysis of an aluminum alkoxide or an aluminum salt, a solvent, and an organic aluminum compound having a specific structure. An optical member is produced by a process including a step of immersing an aluminum oxide film in a hot water with a temperature of 60° C. to 100° C. to form a textured structure made of aluminum oxide crystals, the aluminum oxide film being formed by feeding the precursor sol of aluminum oxide onto a base. A method for producing an optical member includes a step of immersing an aluminum oxide film in a hot water with a temperature of 60° C. to 100° C. to form a textured structure made of aluminum oxide crystals, the aluminum oxide film being formed by feeding the precursor sol of aluminum oxide onto a base.
The invention is related to a medical device comprising a core material made of a crosslinked silicone material and a hydrogel coating which is thermodynamically stable. The invention is also related to a method for producing such a medical device, especially a soft contact lens.
Disclosed embodiments include systems and methods of correcting induction logging data for relative dip. Initial induction logging data is measured at a plurality of frequencies. One example embodiment includes displaying dip corrected data for a plurality of different relative dip angles, which may further be displayed with a qualitative indicator displayed over many depth samples for selecting or validating a correct relative dip angle. The data may be iteratively processed using an automated relative dip correction algorithm and analyzed by the user to obtain and apply the best relative dip correction angle to induction logging data. Once dip corrected, the induction logging data can be used with resistivity methodologies generally designed for instances where no dip is present in the formation under analysis.
A device including at least two ICEs that optically interact with a sample light to generate a first and a second modified lights is provided. The at least two ICEs include alternating layers of material, each of the layers having a thickness selected such that the weighted linear combination of the transmission functions is similar to the regression vector associated with a characteristic of the sample. The device may also include a detector that measures a property of the first and second modified lights separately to generate a first and second signal, respectively, wherein the weighted average of first and second signals is linearly related to the characteristic of the sample. A method for fabricating the above device is also provided.
An electromagnetic (EM) telemetry system includes an EM transmitter configured to transmit EM signals downhole and multiple sensors each configured to communicate with the EM transmitter and with another of the multiple sensors. Each sensor is placed a distance from another sensor along a length of a wellbore in the EM telemetry system. The EM telemetry system also includes a processor configured to select two or more sensors of the multiple sensors based on a signal to noise ratio (SNR) of an EM signal received from the two or more selected sensors, a depth of the EM transmitter, or both.
A method for estimating a time variant signal representing a seismic source obtains seismic data recorded by at least one receiver and generated by the seismic source, the recorded seismic data comprising direct arrivals and derives the time variant signal using an operator that relates the time variant signal to the acquired seismic data, the operator constrained such that the time variant signal is sparse in time.
A method for assessing the time of flight (TOF) performance of a positron emission tomography (PET) scanner is provided. The method may include obtaining raw data relating to radiation originating from an object from a PET scan by a PET scanner, the raw data including TOF information. The method may also include generating, based on a back projection algorithm, a first back projection image by reconstructing the raw data including the TOF information. The method may further include generating, based on the back projection algorithm, a second back projection image by reconstructing the raw data excluding the TOF information. The method may further include comparing the first back projection image with the second back projection image. The method may also include assessing, based on the comparison, the TOF performance of the PET scanner.
An augmentation information adjustment unit (102) reduces an amount of information in augmentation information by combining: update cycle adjustment processing (1021) to set an update cycle of the augmentation information to be an integer multiple of a predetermined update cycle; geographic interval error value adjustment processing (1022) to reduce the number of geographic interval error values by selecting from among a plurality of the geographic interval error values each of which is an error at every predetermined geographic interval out of a plurality of error values, a geographic interval error value at every geographic interval that is an integer multiple of the predetermined geographic interval; and bit count adjustment processing (1023) to reduce a bit count of the error value for each error value. An augmentation information output unit (103) outputs, to an output destination, augmentation information after being reduced in the amount of information by the augmentation information adjustment unit (102).
Aspects of the present disclosure involve systems, methods, and devices for determining reflectance properties of objects based on Lidar intensity values, A system includes one or more processors of a machine and a machine-storage medium storing instructions that, when executed by the one or more processors, cause the machine to perform operations comprising accessing an incoming data point output by a Lidar unit during operation of a vehicle. The operations may further include inferring, using a reflectance inference model, a reflectance value of an object based on the incoming data point. The reflectance inference model comprises a mapping of previously collected data points to a coordinate system using associated range values and raw intensity values. The operations may further include determining one or more characteristics of the object based on the inferred reflectance value.
The disclosed embodiments include a light detection and ranging (LIDAR) system. The LIDAR system includes a modular LIDAR device, which includes a scanner component and a structurally separate base component. The scanner component is mountable on an external surface of a vehicle, and includes a light source and detector to capture LIDAR data including a measure of a distance to an object relative to the vehicle. The scanner component also includes a communications transmitter to transmit LIDAR data indicative of the distance, and a power receiver to wirelessly power the scanner component. The base component is at least partially mountable on an interior surface of the vehicle, and includes a power transmitter to wirelessly power the scanner component, a communications receiver to wirelessly receive the LIDAR data, and a processor to enable autonomous or semi-autonomous navigation of the vehicle based on processed LIDAR data.
SPADs detect photons of a return light pulse and output corresponding pulse signals. First and second counters, when enabled in response to phase measurement value, are configured to count the pulse signals. The phase measurement value is set for a subsequent iteration of the return light pulse in response to processing of first and second count values of the first and second counters, respectively, for a current iteration. If the first count value exceeds the second count value by more than a difference threshold limit, the phase measurement value is decremented for the subsequent iteration. Otherwise, the phase measurement value is incremented for the subsequent iteration. If the difference threshold limit is not satisfied, the phase measurement value may be maintained for the subsequent iteration, but one of the counters is preloaded for the subsequent iteration with a value equal to a magnitude of the difference between the count values.
An image capture device includes, in part, N optical transmit antennas forming a first array, N phase modulators each associated with and adapted to control a phase of a different one of the transmit antennas, M optical receive antennas forming a second array, M phase modulators each associated with and adapted to control a phase of a different one of the receive antennas, and a controller adapted to control phases of the first and second plurality of phase modulators to capture an image of an object. The first and second arrays may be one-dimensional arrays positioned substantially orthogonal to one another. Optionally, the first array is a circular array of transmitters, and the second array is a one-dimensional array of receivers positioned in the same plane as that in which the circular array of the transmitters is disposed.
A phase controller for an antenna array includes a determination circuit, determining a direction index of the antenna array, and calculating a phase index according to the direction index according to a congruence modulo equation; a switching box, selecting L first frequency signals with L different first phases among K first frequency signals with K different first phases according to the phase index, wherein L and K are integer larger than 1, and L is not larger than K; and a frequency synthesizing module, comprising L phase-coherent PLL frequency synthesizers for receiving the L first frequency signals with the L different first phases to generate L second frequency signals with L different second phases to L antennae of the antenna array, wherein a second frequency of the second frequency signals is larger than a first frequency of the first frequency signals.
The invention relates to a coaxial direct-detection LIDAR system for measuring velocity, temperature and/or particulate density. The system comprises a laser source for emitting a laser light beam having a lasing center frequency along an emission path. The system further comprises an optical delivery system arranged in the emission path of the laser source, the optical delivery system being arranged for delivering the laser light beam in a measuring direction, the optical delivery system further being configured for collecting a return signal backscattered along the measuring direction. Finally, the system comprises a detector system arranged to receive the return signal from the optical delivery system, the detector system comprising a narrowband optical filter and a detector, the narrowband optical filter having a filter center frequency of a pass-band, wherein the center lasing frequency and/or the center filter frequency may be scanned. The invention further relates to an aircraft airspeed measurement device, and a wind turbine airspeed measurement device comprising the LIDAR system.
A method for ascertaining operating data of a radar sensor, including transmitting defined data of a first subsequence of ramp signals to an RF component of the radar sensor; ascertaining the data of the remaining subsequences of the ramp signals from the defined values of the first subsequence with the aid of the RF component; and storing the ascertained data of the remaining subsequences in a first memory of the RF component.
A method for tracking a device not actively sending patient data to a network of medical devices is disclosed. The method comprises the device giving a signal at a time interval; an active hub listening to the device at the time interval; the active hub storing information about the device; and the active hub continuing to listen at the time interval to the device until the device actively sends patient data, or until no more signals are heard from the device. A system for tracking a device of a network of medical devices is also disclosed. The network comprises a hub and at least one device. The at least one device is configured to give a signal to the hub at a time interval, if the at least one device does not actively send patient data. The hub is configured to listen at the time interval to any devices not actively sending patient data. The hub is configured to store information about any devices not actively sending patient data. The hub is configured to continue listening to any devices not actively sending patient data until all devices actively send patient data, or until no more signals are heard from any devices not actively sending patient data.
Estimating range bias in a timing-based radio positioning network. Systems and methods estimate range bias, and use the estimated bias to adjust an estimated range measurement for use in estimating a position of a receiver. Estimated range bias may be based on surveyed range errors associated with locations near the position of the receiver, or may alternatively be based on comparisons of different range measurements.
A system for determining a source location of a firearm discharge includes a plurality of monitoring stations and a central processing system. Each of the monitoring stations determines a time value of identification of a firearm discharge signature and transmits the time value. The central processing system 1) receives the time value from each of the monitoring stations; 2) determines, based on the time values, a geographic area that includes the source location of the firearm discharge; 3) determines a time of acoustic propagation from each of a plurality of randomly selected locations within the geographic area to each of the monitoring stations; 4) identifies the source location of the firearm discharge as the selected location for which difference in the time of acoustic propagation to each of the monitoring stations is closest to difference in the time values received from each of the monitoring stations.
Provided are a magnetic resonance imaging (MRI) apparatus and method for obtaining a plurality of MR images having different contrasts by using a single pulse sequence. The MRI apparatus includes a controller configured to control a pulse sequence of one cycle to be applied to a plurality of slices of an object, wherein the one cycle includes a first obtaining section during which a first inversion radio frequency (RF) pulse is applied to a first slice of the object and a second obtaining section during which a second inversion RF pulse is applied to a second slice of the object adjacent to the first slice, and to sequentially obtain a first MR signal for capturing a first MR image of the first slice, a second MR signal for capturing at least one second MR image of the second slice adjacent to the first slice, and a third MR signal for capturing at least one third MR image of the first slice, during the first obtaining section.
For reduction of artifacts when acquiring magnetic resonance (MR) data using an MR apparatus, a SPAR pulse, which acts on spins in a first predetermined frequency range, and a saturation pulse, which acts on spins in a second predetermined frequency range, are radiated. A gradient for spatial encoding is activated at the same time as the saturation pulse, so that the saturation pulse acts on an edge region adjacent to the volume segment. The edge region borders an ellipsoidal useful volume of the scanner of the MR apparatus, in which the strength of the B0 field changes in terms of magnitude by no more than 30 ppm. Spoiler gradients are activated to destroy a transverse magnetization, before an RF excitation pulse, adjusted to the SPAIR pulse, is radiated. MR data are acquired after the SPAIR pulse, the saturation pulse and the RF excitation pulse. The second frequency range is adjusted to the first frequency range.
The invention relates to a method for maintenance of a frequency converter for driving an electric motor of a transportation device, said frequency converter being supplied with AC mains power via a contactor, and including a rectifier circuit for providing a DC supply voltage, a capacitive intermediate circuit for leveling DC supply voltage, and an inverter circuit for providing power to the electric motor. In the method, after the transportation device has been vacant for a predetermined time period, said contactor is opened to disable power flow from mains supply to the frequency converter, and a test load is connected to the intermediate circuit, parallel to a capacity of the intermediate circuit. The DC supply voltage Udc(t) is detected, and the detected DC supply voltage Udc(t) is utilized for establishing a maintenance information indicating that a maintenance should be done on the frequency converter. Another aspect of the invention is a software program realizing the method when executed on a computer.
A device for testing a power supply. The device includes a modulation generator, and a connection between the modulation generator and the power supply under test through which a load is injected to the power supply under test. A resistive load generator applies a resistive load to the power supply. A reactive load generator applies a reactive load to the power supply. A load selector selectively applies the resistive load and/or the reactive load to the power supply to be tested. The device further includes a discharge network that automatically or manually discharges capacitors of the device.
Systems of an electrical vehicle and the operations thereof are provided. In particular, a vehicle is described with the ability to gather State of Charge (SOC) information as well as State of Health (SOH) information for one or more batteries in a vehicle and then display both SOC and SOH information to a driver of the vehicle as well as other interested parties. The displayed SOH information may be accompanied by suggestions to modify driving and/or charging behaviors that will improve or contribute to a slower degradation in the SOH of the batteries.
Monitoring apparatus for monitoring partial discharge activity in an AC electrical system comprises: a pair (60) of high- and low-frequency sensors; a timing module arranged to receive a cyclic signal from the low-frequency sensor and to provide a timing signal derived from the timing of successive cycles of the cyclic signal; and a monitoring unit (66) arranged to digitise a signal from the high-frequency sensor, to capture the digitised signal as consecutive data blocks of varying duration, and to trigger the capture of each data block in response to the timing signal. A condition monitored electrical system comprises a variable-speed drive (VSD) and a motor (M) operated by the drive, wherein the pair (60) of sensors is arranged at an end of a cable supplying power from the drive to a winding of the motor. A sensor unit (60) for condition monitoring of a high-voltage electrical system comprises a split-core current transformer with a low-frequency winding, arranged for sensing a high-voltage AC waveform in a cable about which the transformer is positionable, and a high-frequency winding arranged for sensing pulses in the cable that originate from partial discharge activity.
A method and system for detecting a fault in a permanent magnet synchronous motor (PMSM), operably connected to a controller. The method includes receiving at a controller a stator voltages and currents for the PMSM, computing a negative sequence current and a negative sequence voltage for the PMSM; and determining if conditions are satisfied for monitoring for a fault of the PMSM. The method also includes ascertaining a change in the negative sequence current and a change in the negative sequence voltage for a selected time duration, calculating a ratio of the change in the negative sequence current and the negative sequence voltage corresponding to a negative sequence admittance for the PMSM, determining if the negative sequence admittance differs from a nominal value in excess of a threshold; and identifying the stator winding as faulted if the ratio exceeds the threshold.
A circuit interrupter includes a sensor structured to output a sensor signal, a control unit structured to receive an external control signal, the control unit including: a communication interface structured to receive the external control signal, and a waveform generator structured to generate a waveform equivalent to the sensor signal in response to the external control, and a signal processing circuit structured to receive and process the sensor signal or the generated waveform and to output the processed sensor signal or generated waveform to the control unit.
A testing system for semiconductor package components includes a testing circuit board, a test socket, at least one probe pin and a thermal barrier layer element. The testing circuit board has at least one electrical contact. The test socket is used to receive a DUT. The probe pin is located on the test socket for contacting with the DUT. The thermal barrier layer element is located between the testing circuit board and the test socket, electrically connected to the probe pin and the electrical contact, and thermally isolated the electrical contact from the probe pin.
In one implementation, a method for operating an apparatus is described. The method includes applying a bias voltage to place a transistor of a reference sensor in a known state, the reference sensor in an array of sensors that further includes a chemical sensor coupled to a reaction region for receiving at least one reactant. The method further includes acquiring an output signal from the reference sensor in response to the applied bias voltage, and determining a defect associated with the array if the output signal does not correspond to the known state.
The invention relates to a method for insulation fault location as well as to an insulation fault location system for an ungrounded power supply system.The main idea of the present invention rests upon the idea that while preserving a predetermined maximally admissible test current amplitude, a test current pulse duration of a test current is adaptively set such that all interfering values are eliminated in a captured differential current, in particular the leakage currents arising in consequence of large supply leakage capacitances.Should a test of the value of the final value of the differential current reveal that a test current threshold value has been exceeded, this exceedance can be seen as an indicator that the respective conductor section is therefore in the fault circuit.
Methods, systems, and computer program products for prioritizing errors in connectivity models of distribution networks are provided herein. A computer-implemented method includes collecting geo-spatial data arising from each of multiple transformers and multiple customer meters within an electric power distribution network; collecting load data arising from each of the customer meters within the electric power distribution network; assigning one of the transformers to each of the customer meters that is not presently assigned to one of the transformers according to a connectivity model for the distribution network, wherein said assigning is based on the collected multiple items of geo-spatial data and the collected load data; computing an error probability attributable to each of the transformers and the customer meters assigned thereto within the electric power distribution network based on multiple variables; and modifying an existing field inspection schedule corresponding to the electric power distribution network based on said computing.
Example implementations described herein are directed to detection of historical anomalous events that are similar to currently occurring events in a transmission power system based on phasor management unit (PMU) data to provide information to grid operators with online decision support. From the high-resolution time synchronized PMU data, the historical events can be quickly retrieved and compared to the currently occurring event so that operators can be provided with remedy actions that were attempted in response to the historical events. Utilization of PMU information for such decision support may compliment operation practices relying on supervisory control and data acquisition (SCADA) measurements by allowing a much fast response to the currently occurring event. Accurate identification of similar, historical events can advise grid operators of the cause of disturbances and provide ideas for response. Implementations of the proposed technology may improve the resilience and reliability of the transmission power systems.
When securing a watthour meter to a meter box base, a meter sealing ring is typically used. A quick-fastening watthour meter retaining member is provided, in certain embodiment of the present invention, to reduce installation time and generally comprises a circular band, a connector housing member, and a receiver housing member. The connector housing member and a receiver housing member are preferably mounted to the terminus ends of the circular band. A portion of the connector housing member, comprising locking protrusions or “teeth”, is adapted to engage, with a ratchet-type action, in one example embodiment, and fasten into the receiver housing member, which contains, a pre-installed “padlock type” frangible sealing device in an example embodiment. Removal of the ring is accomplished by simply cutting, in one embodiment, and removing the frangible sealing device and allowing the housings to disengage from each other.
Embodiments of the invention include a tool and method for automatically replacing defective pogo pins for use in testing a semiconductor package. Aspects of the invention include a nozzle tip and a pin management valve assembly coupled to the nozzle tip. The pin management valve assembly is actuatable to couple an open pin management valve or a partially closed pin management valve to the nozzle tip. The open pin management valve includes a first diameter and the partially closed pin management valve includes a second diameter. A vacuum reservoir is coupled to the pin management valve assembly and a vacuum management valve is positioned between the pin management valve assembly and the vacuum reservoir. The vacuum management valve is actuatable between an open and closed position.
The present disclosure relates to a particle and energy detection system. More particularly, the present disclosure relates to coherent particle generation/detection devices configured to detect a plurality of particles (or energy quanta) which are caused to be combined by superposition upon impacting the detector and imparting a portion of their kinetic energy to the detection process. Additionally, a low power particle generating system that uses a particle generator device configured to generate a plurality of excitation signals which are caused to be focused and impinge upon a separating mechanism is provided so as to direct the particle beam to optimize the system's detection capability.
Methods are described for determining the amount of metabolites of leflunomide in a sample. More specifically, mass spectrometric methods are described for detecting and quantifying teriflunomide in a sample.
Subject matter of the present invention is an in vitro method for identifying a subject in need of administration of fluid resuscitation or a vasopressor comprising the following steps: Determining the level of proADM and/or fragments thereof having at least 6 amino acids in a bodily fluid of said subject Correlating said level with the need of said patient for fluid resuscitation or administration of a vasopressor wherein said patient is identified as having such a need if the level of proADM and/or fragments thereof having at least 6 amino acids in the bodily fluid of said subject is above a threshold.
A method of detecting and isolating cells that produce a secreted protein of interest (POI), for example, an antibody, comprising: a) providing a eukaryotic cell comprising (i) a nucleic acid encoding the POI, and (ii) a nucleic acid encoding a cell surface capture molecule, which comprises a membrane anchor and is capable of binding the POI; (b) culturing the cell under conditions in which the POI and cell surface capture molecule are expressed, and a POI-cell surface capture molecule complex is formed intracellularly and displayed on the cell surface; c) detecting the surface-displayed POI by contacting the cells with a detection molecule, which binds the POI; and d) isolating cells based on the detection molecule.
The present invention provides kits and methods for detecting peptides that change of the fluorescence of dyes upon binding to the dye. In addition, the invention provides methods for identifying said peptides.
Lateral flow devices and methods of use for a molecular diagnostic assay are provided. The method is suitable for detection or monitoring of targets, including biological, chemical, and material targets that exist in very low concentrations in biological samples. The methods and devices of the present application are amenable to power source-free point of care testing.
The present invention provides devices and systems for use at the point of care. The methods devices of the invention are directed toward automatic detection of analytes in a bodily fluid. The components of the device are modular to allow for flexibility and robustness of use with the disclosed methods for a variety of medical applications.
A high dew point humidity sensor includes an enclosure assembly, an ambient temperature sensor, air sample intake and exhaust openings, a fluid-moving device, a heater block assembly, an internal temperature sensor, a humidity sensor chip, and a controller. The controller is configured to: (i) collect a measured ambient temperature from the ambient temperature sensor; (ii) collect a measured humidity of sample air from the humidity sensor chip; (iii) collect a measured temperature from the internal temperature sensor; and (iv) control operation of the heater block assembly based, at least in part, on the measured ambient temperature and the measured temperature from the internal temperature sensor.
Provided herein are systems and methods for real time processing of signals from an array of transducers for detecting transient elastic waves originating from unknown locations in a body, which may propagate in a dispersive fashion. The systems and methods allow real time combination and analysis of signals, including decisions regarding storage as new data is received. The methods described herein include designing arrays of detectors and methods for processing signals in real time given the constraints of the body under test determining whether to store the set of information while a new set of information is received for processing within a real time environment. The methods described herein include methods which result in the determination or small time shifts which place all signals into a coherent time base which are then combined achieving a composite waveform that possesses an increased signal-to-noise ratio over any single element.
Methods and techniques for fabricating layered structures, such as capacitive micromachined ultrasound transducers, as well as the structures themselves. The layered structure has a membrane that includes a polymer-based layer and a top electrode on the polymer-based layer. The membrane is suspended over a closed cavity and may be actuated by applying a voltage between the top electrode and a bottom electrode that may be positioned along or be a bottom of the closed cavity. The layered structure may be fabricated using a wafer bonding process.
According to at least one aspect of the present disclosure, a method includes applying an alternating current having a frequency at a selected voltage to a sensor, wherein the voltage is applied between a reference electrode and a working electrode of the sensor, varying the frequency of the alternating current between a lower frequency and an upper frequency, measuring an impedance of the sensor between the reference electrode and the working electrode as a function of the frequency of the alternating current, analyzing the measured impedance to determine a total impedance of the sensor and the real and imaginary components of the total impedance at each applied frequency of the alternating current, and characterizing the sensor based on the total impedance at the low frequency end of the sensor and on the real and imaginary components of the total impedances.
Embodiments of the present disclosure relate to electrochemical analyte sensor electrodes that have one or more sensing structures, each structure has a respective perimeter at least partially around it to define the structure so that each of the structures have a liquid limiting barrier around their perimeters. The liquid limiting perimeter may completely or partially encompass the perimeter of each sensing structure of the electrode. Also provided are methods for fabricating the electrodes, analyte sensors employing the subject electrodes, and methods of using the analyte sensors in analyte monitoring.
Liquid sample imaging devices and processes are disclosed for high resolution TEM imaging and multimodal analyses of liquid sample materials in situ under high vacuum that are compatible with standard type TEM chip membranes and TEM sample holders allowing TEM liquid sample imaging to be performed wherever a TEM instrument is accessible and at a substantially reduced cost compared to prior art systems and approaches.
Provided is a method that enables an interior of a wind turbine blade to be safely inspected. A method of inspecting an interior of a wind turbine blade includes the steps of: placing, in the wind turbine blade, an inspection unit including a support frame, at least one wheel rotatably provided to the support frame, and inspection equipment attached to a front portion of the support frame in a traveling direction; and conveying the inspection unit from a blade root portion toward a blade tip portion of the wind turbine blade. The conveying step includes connecting at least one extension bar to a back end portion of the inspection unit, and sending the inspection unit by pushing the extension bar toward the blade tip portion.
An automated tablet tooling inspection system (100) for inspecting defects in tablet tooling's including upper punch, lower punch and die. The system (100) comprising of a base plate (101), a punch holder (102), a punch stopper (103), a die holder (104), a LM rail and carriage assembly (105), a LED Micrometer (107) to measure parameters of said tablet tooling, a Laser sensor or con focal sensor (108) to measure parameters of said tablet tooling and a control unit. The automated tooling inspection and system (100) reduces the inspection time of said tablet tooling by minimizing manual intervention; wherein said manual intervention is reduced by eliminating the requirement of changing configuration of said system (100) when a different type of tablet tooling is inspected such as TSM/Euro, B, D, BD, BB and BBS and the like.
A system for inspecting a surface of a specimen includes a normal incidence phase-shifted deflectometry (PSD) sensor including an imaging sensor, a beam splitter, and an imaging optic arranged between the imaging sensor and the beam splitter. The illumination source illuminates the specimen with a light pattern and is arranged perpendicular to the surface of the specimen. The imaging sensor captures the light pattern reflected from the surface of the specimen in a sensor image. The beam splitter directs a first portion of the light from the illumination source to the optical absorber, a second portion of the light from the illumination source to the surface of the specimen, and the light pattern reflected from the surface of the specimen to the imaging sensor. A data processing apparatus in communication with the normal incidence PSD sensor determines properties of the surface of the specimen based on the sensor image.
A method for identifying the presence of partly liberated diamonds in a material stream. The method can include illuminating a material with a multi-wavelength beam including at least one monochromatic SWIR laser beam, and at least one IR scatter-/anti-scatter laser beam, capturing a portion of the at least one monochromatic SWIR laser beam after the monochromatic SWIR laser beam has been reflected and/or scattered by the material, producing a SWIR signal based on the captured portion of the at least one monochromatic SWIR laser beam, and capturing a first portion of the at least one IR scatter-/anti-scatter laser beam after the at least one IR scatter-/anti-scatter laser beam has been scattered and optionally reflected by the material.
A gas concentration measuring device including a light emitter and a light receiver which are disposed so as to be opposed to each other with a hollow tube-like measurement pipe interposed therebetween. The device is configured to measure concentration of target gas passing through the measurement pipe using light applied from the light emitter, transmitted through the inside of the measurement pipe, and received by the light receiver. Purge gas guide pipes through which purge gas is introduced into optical systems of the light emitter and the light receiver are connected to a side wall of the measurement pipe. The measurement pipe includes a gas entrance portion having a tapered shape widening from a gas supply port toward a downstream side thereof.
In the systems and methods of the present invention a multifocal multiphoton imaging system has a signal to noise ratio (SNR) that is reduced by over an order of magnitude at imaging depth equal to twice the mean free path scattering length of the specimen. An MMM system based on an area detector such as a multianode photomultiplier tube (MAPMT) that is optimized for high-speed tissue imaging. The specimen is raster-scanned with an array of excitation light beams. The emission photons from the array of excitation foci are collected simultaneously by a MAPMT and the signals from each anode are detected using high sensitivity, low noise single photon counting circuits. An image is formed by the temporal encoding of the integrated signal with a raster scanning pattern. A deconvolution procedure taking account of the spatial distribution and the raster temporal encoding of collected photons can be used to improve decay coefficient. We demonstrate MAPMT-based MMM can provide significantly better contrast than CCD-based existing systems.
An optical device includes a door, a door control unit, a polarized light generation unit and a spectrum response analysis unit. The polarized light generation unit and the spectrum response analysis unit are located at a first side of the door. When the door is opened by the door control unit, a polarized light from the polarized light generation unit is transmitted through the door and externally projected on an under-test object at a second side of the door, so that a scattered light is generated. After the scattered light is returned back and transmitted through the door, the scattered light is projected on the spectrum response analysis unit, so that the spectrum response analysis unit performs a spectrum response analysis. The optical device has enhanced signal-to-noise ratio. Moreover, the optical device is capable of acquiring more explicit and diverse inherent information of the under-test object.
A method and a device for synchronous high-speed photographing of microparticle rotation in a liquid cyclone field and for determining the rotation velocity of a microparticle in a liquid cyclone field by using a combination of a synchronous high-speed photographing system and a transparent microparticle containing two centrosymmetrically arranged inner cores having the same diameter. The method comprises: using a transparent microparticle comprising two inner cores having the same diameter and arranged centrosymmetrically as a rotation test particle; acquiring synchronously two groups of two dimensional image series of microparticle motion in a liquid cyclone field using two orthogonally arranged high-speed digital cameras; and reconstructing a three dimensional motion trajectory of the microparticle from the two groups of synchronous image series, and determining a rotation velocity of the microparticle in the cyclone field at the same time.
Disclosed is a rolling unit for a test rig for testing an automatic underground train, including: two rolling belts, each one provided for a wheel of the train to roll thereon, the wheels driving the movement of the belts; and a rotary inertial body; each belt including: a pinion that is rotatably connected to the inertial body; two rollers; and a grooved rolling surface mounted on the rollers, meshed with the pinion, and forming a rolling area for a respective wheel between the rollers.
The present invention provides a multi-bolt loosening test machine for flange with tension, bending and torsion compound loading. The multi-bolt loosening test machine for flange with tension, bending and torsion compound loading uses a transverse load generated by a three-phase asynchronous motor as a bending load applied to a flange, uses a tension force generated by a hydraulic puller as an axial tension load, and uses a torque generated by a servo motor as a torque load applied to the flange. The test machine is different from the current device that can apply two compound loads to a single bolt, and can apply three compound loads to the multi-bolt connection flanges. The present invention can isolate three compound loads from each other without interference, and display the applied loads in real time.
A rotating body, which rotates about an axis, includes a recessed reference mark and at least one recessed dummy mark. The reference mark is provided on the surface of the rotating body, serves as a reference for detecting the rotational phase of the rotating body, and can be detected with an electromagnetic wave. The dummy mark is provided on the surface of the rotating body, and is located at a position separated from the reference mark by an angle greater than 90 degrees about the axis.
A pressure sensor assembly for use in sensing a pressure of a process fluid in a high temperature environment includes an elongate sensor housing configured to be exposed to the process fluid and having a cavity formed therein. A pressure sensor is positioned in the cavity of the elongate sensor housing. The pressure sensor has at least one diaphragm that deflects in response to applied pressure and includes an electrical component having an electrical property which changes as a function of deflection of the at least one diaphragm which is indicative of applied pressure. A flexible membrane in contact with the at least one diaphragm is disposed to seal at least a portion of the cavity of the sensor housing from the process fluid and flexes in response to pressure applied by the process fluid to thereby cause deflection of the at least one diaphragm.
A pressure sensor, e.g. for being arranged in the sole structure of an article of footwear, for measuring a pressure exerted by the wearer's foot. The pressure sensor has one or more pressure-sensing cells. Each cell has a first flexible carrier film and a second flexible carrier film, the first and second carrier films being attached to one another by a spacer film having an opening, a plurality of first electrodes arranged on the first carrier film and a plurality of second electrodes arranged on the second carrier film. The plurality of first electrodes has a first group of electrodes and a second group of electrodes. The first and second groups of electrodes are arranged so as to interdigitate with delimiting gaps there between. One or more electrically insulating overprints are arranged on the first carrier film so as to cover the gaps.
A system and method for characterization and/or calibration of performance of a multispectral imaging (MSI) system equipping the MSI system for use with a multitude of different fluorescent specimens while being independent on optical characteristics of a specified specimen and providing an integrated system level test for the MSI system. A system and method are adapted to additionally evaluate and express operational parameters performance of the MSI system in terms of standardized units and/or to determine the acceptable detection range of the MSI system.
A method for operating a machine plant having a shaft train, including: a) determining the harmonic frequency of a torsional vibration mode of the shaft train and determining mechanical stresses arising during a vibration period of the torsional vibration mode; b) determining a correlation for each torsional vibration mode between a first stress amplitude, at a position of the shaft train that carries risk of stress damage, and a second stress amplitude, at a measurement location of the shaft train, using stresses determined for the respective torsional vibration mode; c) establishing a maximum first stress amplitude for the position; d) establishing a maximum second stress amplitude, corresponding to the maximum first stress amplitude, for the measurement location; e) measuring the stress of the shaft train while rotating; f) determining a stress amplitude at each harmonic frequency; g) emitting a signal when the stress amplitude reaches the maximum second stress amplitude.
A method of limiting a current drawn by two or more meter assemblies (10a,10b) is provided. The method includes driving a first meter assembly (10a) with a first drive signal, comparing one or more operating parameters of the first meter assembly (10a) to an operating threshold, and driving a second meter assembly (10b) with a second drive signal based on the comparison to prevent a current drawn by the first meter assembly 10a) and the second meter assembly (10b) from exceeding a current threshold.
Embodiments include methods, and computer system, and computer program products for performing test and calibration of integrated sensors on a processor chip. Aspects include: initializing, by a tester program, an on-chip service engine of processor chip, performing and completing, by on-chip service engine, test and calibration of integrated sensors. The method may also include: loading and decoding tester program into an on-chip service engine memory, testing and calibrating each integrated sensor, which may include: selecting an integrated sensor for test and calibration, loading sensor test and calibration patterns and parameters, and sensor test code, and executing the sensor test code to test and calibrate integrated sensors, writing results of the test and calibration to a predetermined location of the on-chip service engine memory, and writing a return code of test and calibration to another predetermined location of on-chip service engine memory, when every integrated sensor is tested and calibrated.
The disclosure relates to a sensor carrier as a mechanical connection of a sensor to a component of a motor vehicle. The sensor carrier has a sensor section to fix the sensor to the sensor carrier, at least one component section to fix the sensor carrier to the component, and at least one intermediate section that connects the sensor section to the at least one component section. The sensor carrier is composed, at least in the intermediate section, of an inherently rigid cellular material, the cavities of cellular material are arranged regularly, at least in some sections, specifically in such a way that, starting from a defined minimum force, the material of the sensor carrier in the intermediate section is intrinsically more deformable in at least one direction than in other directions.
Object is to enable a directly-modulated semiconductor laser to be applied as a light source of probe light. A transmission unit configured to generate probe light; and a reception unit including a receiver-side optical bandpass filter that extracts a Stokes component of Brillouin backscattered light from backscattered light which is caused by the probe light in a measurement target optical fiber, and a self-delayed heterodyne interferometer that detects a change in a frequency shift amount of the Stokes component as a phase difference are included. The transmission unit includes a directly-modulated light source configured to generate an optical pulse, and a transmitter-side optical bandpass filter provided in a stage following the directly-modulated light source, and configured to transmit wavelength of an ON level of the optical pulse as the probe light, and block wavelength of an OFF level.
In one aspect, an integrated circuit (IC) includes a magnetic field sensor to detect speed and direction of angular rotation of a rotating magnetic structure. The magnetic field sensor includes at least two magnetic field sensing elements configured to sense changes in a magnetic field caused by rotation of the magnetic structure. The IC also includes an output port configured to provide an output signal of the magnetic field sensor. The output signal indicates the speed and one of the direction or a fault.
A method and system for computing the phase shift or the amplitude of an electromagnetic three-phase system. The method comprises the following steps of: detecting vector values corresponding to an electromagnetic quantity by three sensors, the three sensors delivering signals that are offset from each other substantially by 0°, 120° and 240°; computing changed vector values by logically adjusting one of the detected vector values to a phase of 0°; and iteratively computing the phase shift of the three-phase system using the changed vector values.
A system is provided which utilizes multiple combinations of object location technology to locate objects and direct users to them, and which provides reliable owner recognition and ownership verification with the use of displayed augmented reality with a predefined image of the object and/or the user.
A travel route generation apparatus includes a work field data input interface, a handwriting input interface, a memory, and circuitry. Work field data are to be input via the work field data input interface. The work field data includes data regarding a shape of a work field in which a work vehicle is to work. A handwriting locus is to be input via the handwriting input interface. The memory is to store travel route patterns. The circuitry is configured to select a designated travel route pattern from travel route patterns based on the handwriting locus and to generate, based on the designated travel route pattern and the work field data, a travel route along which the work vehicle is to travel in the work field.
The present disclosure extends to methods, systems, and computer program products for routing following vehicles toward a lead vehicle in a vehicle caravan. GPS locations can be shared between caravanning vehicles moving towards a destination. Routes (e.g., turn-by-turn navigation) for individual vehicles participating in a caravan can be dynamically updated. Within a group of GPS devices, one GPS device (e.g., a GPS device at a designated lead vehicle) can be selected as a master GPS device. As the designated lead vehicle travels towards the destination, the master GPS device can continually share its GPS coordinates (i.e., share its location) with the other GPS devices. The other GPS devices use the shared GPS coordinates to continually adjust routes to progress towards the master GPS device (and thus progress towards the lead vehicle). That is, the other GPS devices are continually updating navigation routes to follow the master GPS device.
A method (100) for generating a geographic coordinate and a device (500) for generating a geographic coordinate. The method (100) comprises: enabling a device to point to a position point (102); obtaining data including a geographic coordinate of the device, a relative height between the device and the position point and pointing information of the device (104); and generating a geographic coordinate of the position point based on the data (106). The device (500) for generating a geographic coordinate comprises a pointing module (502), a data obtaining module (504) and a generating module (506). By enabling the device to point to a desired position point, a geographic coordinate of the desired position point can be obtained rapidly.
A local navigation system includes: a plurality of beacons located in a local environment and being configured to send signals specified to different routes in said local environment; a plurality of mobile devices, each of them including a client controller; and a wireless communication link configured to receive the signals sent by the beacons; an output means configured to display/emit navigation guide data. In the local navigation system, the client controller is configured to process the signals received via the wireless communication link and to process this data into navigation guide data outputted on an output of the mobile device. Each route included in the local environment is assigned a unitary ID and each beacon is located in one specific location of the local environment along at least one of said routes. Each beacon is configured to send the IDs of all the routes passing along its specific location. The client controller obtains the route ID to a chosen destination from a destination input device of the local navigation system and/or of the mobile device. The client controller is configured to provide the navigation guide data in interaction with the beacons sending said route IDs of the chosen location. This system allows anonymous navigation in the local environment, possibly in a decentralized system without centralized or wired system components.
The present invention discloses a module for robot navigation, an address marker and an associated robot. The module divides a whole workspace area for robot traveling into a plurality of module areas, and each module area is internally provided with a first magnetic piece having a polarity of an N pole or an S pole and a second magnetic piece having a polarity different from the polarity of the first magnetic piece. The first magnetic piece is a first magnetic strip, and the second magnetic piece is a second magnetic strip. The first magnetic strip is arranged in the Y-axis direction, and the second magnetic strip is arranged in the X-axis direction. A third magnetic strip and a fourth magnetic strip are further included.
A resonator array comprises substantially paralleled first and second resonant layers having resonating masses. A first set of lateral drive electrodes cause the first resonating mass to vibrate along an axis in a first geometric plane. A second set of lateral drive electrodes cause the second resonating mass to vibrate along an axis in a second geometric plane in an opposite direction of the first resonating mass by about 180 degrees. Rotation in the system causes the masses to vibrate out-of-plane in opposite directions. The opposite vibrational directions of the first and second resonating masses produces a balanced system with small motion in a bonding area between the stacked resonators. As a result, there is minimal propagation of mechanical waves from the balanced system to a substrate resulting in lower anchor loss and a high Q-factor.
As an autonomous vehicle moves through a local area, pairwise alignment may be performed to calculate changes in the pose of the vehicle between different points in time. The vehicle comprises an imaging system configured to capture image frames depicting a portion of the surrounding area. Features are identified from the captured image frames, and a 3-D location is determined for each identified feature. The features of different image frames corresponding to different points in time are analyzed to determine a transformation in the pose of the vehicle during the time period between the image frames. The determined poses of the vehicle are used to generate an HD map of the local area.
Disclosed is a method of determining a characteristic of a target on a substrate and corresponding metrology apparatus and computer program. The method comprises determining a plurality of intensity asymmetry measurements from pairs of complementary pixels comprising a first image pixel in a first image of the target and a second image pixel in a second image of the target. The first image is obtained from first radiation scattered by the target and the second image is obtained from second radiation scattered by the target, the first radiation and second radiation comprising complementary non-zero diffraction orders. The characteristic of the target is then determined from said plurality of intensity asymmetry measurements.
Around a crankshaft (S) supported by a support device (10), a first shape measuring device (31) to a fourth shape measuring device (34) are disposed, and the crankshaft (S) and the first shape measuring device (31) to the fourth shape measuring device (34) are relatively movable in an axial direction (X direction) of the crankshaft (S). The first shape measuring device (31) and the third shape measuring device (33) are disposed so as to face to one X direction and acquire partial shape information (including the other side surfaces in the X direction of counterweights (S2)) of the crankshaft S, and further, the second shape measuring device (32) and the fourth shape measuring device (34) are disposed so as to face to the other X direction and acquire partial shape information (including one side surfaces in the X direction of the counterweights (S2)) of the crankshaft S. This makes it possible to accurately inspect a shape of the crankshaft (S) in a short time.
A production line a first conveyor for advancing assembled vehicle seats to a checking station and a second conveyor for advancing each of the checked seats to a subsequent station, the nature of the subsequent station depending on as-built coordinates relating to each of the vehicle seats and determined by the checking station. The checking station includes a displacement mechanism and a detector. The displacement mechanism displaces a hip point fixture between a first standby position and a second test position in which the hip point fixture is depressed into each of the vehicle seats to simulate a load. The detector determines the as-built coordinates, at least one such as-built coordinate being determined from a location on the hip point fixture.
A device responsive to an acceleration pulse event, the device including: a piezoelectric device configured to generate a voltage over a duration responsive to one or more acceleration pulse events; an electrical storage device configured to receive a portion of the generated voltage to accumulate a charge; an energy dissipating device coupled to the electrical storage device and configured to dissipate the accumulated charge following the one or more acceleration pulse events and not to substantially dissipate the accumulated charge during the one or more acceleration pulse events; and a voltage limiting device coupled to the electrical storage device and configured to limit the portion of the generated voltage applied to the electrical storage device to a predetermined limit.
A pocket holster assembly is used to support and to carry an implement in a user's pocket. The pocket holster assembly includes a hook catch arranged to catch on the user's pocket to prevent the pocket holster assembly from being removed from the pocket with the implement. A concealer hook camouflages the shape of the pocket holster and the implement while in the pocket.
A loader (10) facilitates loading loose rounds into a firearm magazine (60). It comprises a body (12) that fits on and is locked to the magazine using a locker (40). A spring-loaded press (30) with a plunger (34) is coupled to the body and is tiltable from above to between the magazine's lips (64). To load a round, the user fits the loader onto and locks it to the magazine and forces the spring-loaded press down so the plunger pushes the topmost round and/or follower down enough to insert a new round, case first, until it meets the plunger. Then the user reduces force on the press to allow the plunger to be lifted up so that the plunger is cleared from the magazine, whereupon the user can nudge the partially inserted round rearwardly to its final position in the magazine.
An improved bolt and bolt carrier with integral gas key having an extension nozzle threadedly secured and pinned to the gas key for use with a direct gas operated firearm is provided. The extension nozzle is designed to receive a portion of the host firearm's gas operating system. The firing pin retaining pin is oriented so as to expose its widest profile to the firing pin's annular flange, increasing its service life. The bolt has a plurality of lugs extending from its forward end. The extractor recess is constructed so that the face of the bolt is round and the adjacent lugs fully supported. The extractor engages approximately 17% more of a seated ammunition cartridge's rim as compared to the prior art AR15/M16 extractor. The result is an improved bolt and bolt carrier which provides for increased operational reliability.
Embodiments of a thermal management system are provided herein. In some embodiments, a thermal management system may include a base plate; and a plurality of three dimensional fins coupled to the base, wherein each of the plurality of three dimensional fins comprises a first portion extending away from the base in a first direction and a second a portion extending away from the first portion in a second direction different from the first direction.
A beverage chiller contains two compartments, allowing coolant to be introduced into the first compartment, and allowing a beverage to be introduced into the second compartment. Heat transfer between the first compartment and the second compartment allows for rapid cooling of the beverage.
A refrigerator includes a cabinet forming a storage space, a main door that opens and closes the storage space while defining an opening part that is in communication with the storage space, a sub-door mounted to the main door and configured to open and close the opening part, the sub-door including a panel assembly for allowing selective viewing of an inside of the opening part, a detection device for detecting an operation of a user, a lighting unit inside the refrigerator that turns on based on user operation to allow selective viewing of the inner side of the opening part, and a display unit inside the refrigerator at a position corresponding to the panel assembly that becomes visible and displays an operation state of the refrigerator when the lighting unit turns on.
Disclosed herein is a lifting apparatus and refrigerator having the same, by which a driving motor to generate driving force to vertically move a basket may be miniaturized and the load of the driving motor may be reduced. A refrigerator includes a main body, a storeroom formed inside the main body with an open front, a drawer slidingly coupled with the main body to open or close the storeroom and provided at a lower side thereof with a basket having storage space, and a lifting apparatus moving the basket vertically, wherein the lifting apparatus includes a driving motor, a driving shaft rotated by the driving motor, a lifting unit moving the basket vertically by means of rotational force of the driving shaft, and a coil spring coupled to the driving shaft and transferring energy in a direction in which the driving shaft is rotated to reduce a load of the driving motor, when the driving shaft is rotated to move the basket upward.
A refrigerator contains a dispenser for ice and/or liquid. A dispenser housing covers an opening in an outer shell of the refrigerator. The dispenser housing delimits a dispenser recess that extends outward and upward over an upper edge of the opening and is assembled from at least one main part, which extends from a lower edge of the opening over a rear wall to a front edge of a ceiling of the dispenser housing, and a filling part, which extends from the front edge to an upper edge of the opening.
A stopper of an ice bucket may be for promptly stopping withdrawal of ice when a command for withdrawal of ice from the ice bucket is stopped. The stopper may be configured such that a plunger enters a rotation trajectory of a blade, at a time when the plunger needs to be moved so as to promptly stop the blade by the plunger.
An air-conditioning apparatus includes: a refrigerant circuit including a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger that are connected by a refrigerant pipe so that refrigerant circulates through the refrigerant circuit; and a controller configured to control an operation state of the compressor, in which the controller is configured to estimate an oil concentration inside the compressor based on a temperature of gas refrigerant discharged from the compressor and a pressure of the gas refrigerant discharged from the compressor, and when the oil concentration is less than an oil concentration reference value, continue an operation of the compressor even under a state in which the thermo-off condition is satisfied.
Magnetic refrigerating device improves refrigerating capacity and efficiency by improving the heat exchanging method between a magnetic material and a heat exchanging fluid and devising a magnetic field applying method. The magnetic refrigerating device comprises: a cylindrical active magnetic regenerator (AMR) bed accommodating refrigerant therein; two magnetic materials disposed in the AMR bed in the axial direction, configured to be movable in the axial direction of the AMR bed, and made of material having a magnetocaloric effect; at least two permanent magnets positioned to face the two magnetic materials; a rotary shaft positioned between the two magnetic materials in the AMR bed and positioned between the at least two permanent magnets; and a magnetic rotary movement unit that rotationally moves the permanent magnets about the rotary shaft and that repeatedly moves the permanent magnets and the two magnetic materials closer together and farther apart in association with the rotational movement.
Standalone and self-contained cooling systems using compressed liquid and/or gas CO2 containers positioned in an insulated or non-insulated vessel encompassing a container which is either vertically positioned in an upright or an upside-down position.The liquid and/or gas CO2 coolant is then released into a capillary system or flow metering system to allow the CO2 to enter a second body to where the CO2 coolant properties may be leveraged. The second body includes, by way of example, a plate, a cushion, a spot treatment pad for a person's muscle, or a cooler.The temperature is controlled by a metering CO2 releasing system encompassing an electronic control device which sends alerts when pre-defined thresholds are exceeded.The invention's metering CO2 releasing system may be triggered by an electronic or a thermostatic valve or may be triggered manually or by an electronic solenoid.
A solar thermal absorber element (100) includes a cover glass (110) and a highly selective vacuum coated roll-bond absorber (120) including heat transport tubes (126). The element further including a thermoplastic sealing (130) configured to attach the cover glass and the roll-bond absorber to each other so that there is a distance (h) between the cover glass and the roll-bond absorber, and a sealed space (134), which is formed by the cover glass, the roll-bond absorber, and the thermoplastic sealing and which is filled up with a low thermal conductive gas (136).
A gas flow controller for use with a gas powered water heater includes a first gas flow valve, and a first gas flow valve actuator assembly connected to the first gas flow valve and configured to hold the first gas flow valve in an open position. The first gas flow valve actuator assembly includes a first electromagnetic actuator, a corrosion resistant material encapsulating the first electromagnetic actuator, a first wire lead connected to the first electromagnetic actuator at a first solder joint, a corrosion resistant material encapsulating the first solder joint, a second wire lead connected to the first electromagnetic actuator at a second solder joint, and a corrosion resistant material encapsulating the second solder joint.
A damper regulator for controlling the opening/closing characteristics of an HVAC damper has a swing arm coupled to the shaft on which the damper pivots. The swing arm has an arm carriage mounted to translate on the swing arm as the swing arm pivots, and a biasing spring connects the arm carriage to the damper regulator's housing, or to another suitable anchor. The translation of the arm carriage effectively adapts the characteristics of the biasing spring so that the damper need not be subjected to ever-increasing pressure to achieve greater airflow, or so that other damper opening characteristics can be achieved.
An electric-power control device including a substrate of an annular shape in which a through hole is formed and a connector is arranged in a peripheral part, the electric-power control device driving an electric motor. On the substrate, a power semiconductor module is mounted on a first region on one side relative to a straight line connecting the center of the through hole to the center of the connector, and a microcomputer is mounted on a second region on the other side. Furthermore, a first ground pattern part that is formed extending from the power semiconductor module toward the connector in the first region and a second ground pattern part that is formed extending from the microcomputer toward the connector in the second region are provided on the substrate.
A cooking grate that is hinged directly to the structural framework of an appliance is disclosed. The cooking grate may include one or more grate hinge brackets that are connected behind or through a cooktop without connection to the cooktop. One or more cooking grates may be used in a variety of applications.
The present invention provides an oven, including: an oven body; and a gas circuit system and an electric circuit system, both of which are installed on the oven body; the gas circuit system includes: a gas pipeline; a combustor installed in the oven body and being in communication with an outlet of the gas pipeline; a control switch installed on the gas pipeline; and an electric control valve controlling connection and disconnection of the gas pipeline together with the control switch; the electric circuit system includes: a controller connected to the electric control valve and matched with the control switch for use, wherein when the control switch is turned on, the controller switches on the electric control valve, and when the control switch is turned off, the controller switches off the electric control valve; and a timer.
A grill top that can be removably attached to a barbecue grill fire basin has a lever that adjusts the height of the rack above the fire basin. The lever handle is located well away from the fire. A ratchet mechanism holds the rack at a selected height, and parallelogram bars maintain the rack in a horizontal orientation.
A swirler for a combustor of a gas turbine engine includes a swirler outer body with a swirler threaded section defined around a swirler central longitudinal axis. A bulkhead support shell for a combustor of a gas turbine engine includes a swirler boss with a boss threaded section defined around a swirler central longitudinal axis. A combustor of a gas turbine engine includes a bulkhead support shell with a swirler boss. The combustor also includes a swirler mountable to the swirler boss at a threaded interface defined around a swirler central longitudinal axis.
An apparatus includes a heat exchange member at least partially defining a passageway, and structure defining a first plurality of holes and a second plurality of holes. The first and second pluralities of holes provide fluid communication from the passageway to the exterior of the apparatus, i.e., to the atmosphere. A blower is operatively connected to the heat exchange member and configured to blow air into the passageway. The apparatus is configured such that, when the heat exchange member is sufficiently positioned with respect to a campfire, air exiting the first plurality of holes is directed downward and away from the campfire and air exiting the second plurality of holes has an upward velocity component.
A heat discharge structure that includes a film of a nitride of a group 13 element having a first main face, a second main face and an outer side end face. The structure further includes a portion for containing the light source device. The portion has a through hole opening at the first main face and the second main face, and a fixing face for fixing the light source device. The fixing face faces the through hole and contacts the light source device.
Pathlights for illuminating paths, walkways, and other landscape and architectural features advantageously incorporate light emitting diodes (“LEDs”) as an illumination source, and a visor which both directs the light and dissipates heat generated by the LEDs.
An illuminated bag system includes a bag with a body forming at least one interior compartment; an illumination system, having one or more lights secured within a bottom of the body; a power source; a control system to activate the one or more lights via power from the power source; and a sensor incorporated into the body of the bag and in communication with the control system; activation of the sensor is to activate the one or more lights to light the interior compartment of the bag.
A downlight apparatus has a major housing, multiple hook slots, and multiple hooks. The major housing has a surface ring and a main cup. The main cup contains a LED plate and a driver circuit. The LED plate emits light through an opening of the surface ring. The multiple hook slots are located surrounding the main cup. The multiple hooks have bottom hooks inserted and locked in corresponding hook slots respectively and have top hooks to fix the major housing on a ceiling.
An illumination apparatus comprises a plurality of LEDs aligned to an array of directional optical elements wherein the LEDs are substantially at the input aperture of respective optical elements. An electrode array is formed on the array of optical elements to provide at least a first electrical connection to the array of LED elements. Advantageously such an arrangement provides low cost and high efficiency from the directional LED array.
A light bar has a circuit board positioned within a housing and having a plurality of light emitting diodes (LEDs) or a thin-film-transistor liquid-crystal display (TFT LCD) is configured to transmit light. The housing has wiring electrically connected to a controller. The controller is configured to receive signals from the electrical system of the vehicle, interpret the signals received from the electrical system of the vehicle, and in response automatically control illumination of independently controllable segments of the vehicle light bar. The controller is initially programmed to perform specific function(s) and/or strobe according to specific patterns and is thereafter at least partially restricted from being reprogrammed by a user to serve other function(s), either by restricting the emission of light in at least one color and/or preventing specific strobing pattern(s).
A light source module and a vehicle headlamp is provided. The light source module and the vehicle headlamp include a circuit board and first and second light emitting modules that are disposed on the circuit board. The first and second light emitting modules are divided by a partition wall. Each of the first and second light emitting modules includes a blue LED light source and a phosphor that is disposed on the blue LED light source. The phosphor is configured to be activated by the blue LED light source to emit first light and includes a phosphor film that is disposed on an exterior of the first light emitting module and the phosphor film is configured to emit a second light.
An electromagnetic radiation collecting and directing apparatus is described herein. The electromagnetic radiation collecting and directing apparatus facilitates directing light from an exterior of a structure to an interior of a structure. The directed light is then distributed as necessary within the structure for heating, illumination, or is stored for use at a later time.
A connection structure for pressure vessels is configured such that respective mouth pieces are connected to at least one ends of the pressure vessels, and when adjacent mouth pieces are connected to each other in an intersection direction intersecting with the axial direction, the pressure vessels placed in parallel can be connected to each other. The mouth piece includes a connecting portion along the intersection direction intersecting with the axial direction. The connecting portion includes an external screw thread portion formed on a first side thereof, and a nut rotatably locked to a second side thereof and having an internal screw thread portion threadedly engageable with the external screw thread portion.
One aspect of the invention provides an energy-dissipative fuel gas tube including: a length of corrugated stainless steel tubing; an inner resin layer surrounding a radially outer surface of the corrugated stainless steel tubing; a laminated foil layer surrounding a radially outer surface of the inner resin layer; and an outer resin layer extruded over a radially outer surface of the laminated foil. The laminated foil layer includes: a foil and a high-tensile-strength material bonded to the foil. Another aspect of the invention provides an energy-dissipative fuel gas tube including: a length of corrugated stainless steel tubing; a resin layer surrounding a radially outer surface of the corrugated stainless steel tubing; and a laminated foil layer surrounding and bound directly to a radially outer surface of the resin layer. The laminated foil layer includes: a foil and an outer protective layer bonded to the foil.
A pipe restraint, system, and method for securing a pipeline, of which the pipe restraint includes an anchor configured to be secured to the ground, a first gripping member configured to grip a first pipe, a second gripping member configured to grip a second pipe that is connected to the first pipe, and one or more arms connected to the anchor and the first and second gripping members. The one or more arms are configured to constrain movement of the first gripping member, the second gripping member, or both with respect to the anchor.
A valve rotor for a solenoid valve includes a base body and a ram that cooperates with a valve seat. A damping device is arranged between the ram and the base body. The damping device has a cavity that is configured to be filled with a damping medium and a choke opening through which the damping medium flows into or out of the cavity. The damping device damps a pulse that occurs when the ram hits the valve seat. A valve cartridge includes the valve rotor.
An annular seal comprising a metallic ring having a cross section. The cross section includes an axially extending body portion having a radial width and an axial height. A spaced apart pair of sealing arms extend axially from the body portion, wherein each sealing arm includes a radially opposed arcuate sealing surface. The arcuate sealing surface may be convex, for example. The spaced apart pair of sealing arms are spaced apart a radial distance greater than the radial width of the body portion. A sealing system comprises a plurality of interconnected metallic rings wherein the body portion engages the sealing arms of an adjacent metallic ring.
A control device for a vehicle gearbox includes a support casing and a control lever pivotally mounted about an oscillation axis within said support casing. A pivoting body is rotatably mounted within the support casing about the oscillation axis of the control lever and is connected in rotation with the control lever. A connecting member for a gearbox control cable is connected to the pivoting body by an adapter element. The adapter element and the pivoting body are configured so they can be coupled with each other in different relative positions, in order to create different positions and/or different orientations of the control cable with respect to the pivoting body.
An actuator assembly may comprise a screw shaft having a shaft axis; a drive arrangement pivotally supported about the screw shaft axis for driving the screw shaft, e.g., about the shaft axis or along the shaft axis, and a rod mounted to the drive arrangement at a location off the shaft axis for providing a primary function of reacting torque about the shaft axis on the drive arrangement. The rod may comprise a rod axis and provide a load path along the rod axis for reacting torque. The rod may also comprise a device for which provides a secondary function for the actuator assembly based on the load experienced along the load path provided by the rod.
A hydraulic fracturing system for fracturing a subterranean formation is described according to various embodiments. In an embodiment, the system can include a multi-plunger hydraulic fracturing pump fluidly connected to a well associated with the subterranean formation, the multi-plunger pump configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation. In an embodiment, a plurality of motors can be positioned to power the multi-plunger pump, and a planetary gear train can have a plurality of pinion gears in rotational contact with each of the plurality of motors. In an embodiment, a gear ratio of the planetary gear train and a speed at which the plurality of motors operates can be selected so as to limit a maximum pump speed associated with the multi-plunger pump.
A joint cushioning system includes a pad of a foam material which is resiliently compressible. The pad has an outer surface, an inner surface, an upper edge, a lower edge, a first lateral edge and a second lateral edge. A magnetorheological fluid impregnates the foamed material. The magnetorheological fluid is configured to be alternated between a first state wherein the foamed material is bendable and compressible and a second state wherein the magnetorheological fluid forms rigid columns within the foamed material such that the foamed material is less bendable and compressible. An actuating system is mounted on the pad and is in operational communication with magnetorheological fluid. The actuating system actuates the magnetorheological fluid from the first state to the second state when a condition has been met.
The invention relates to a valve to ensure pressure compensation between subchambers of a hydraulic damper, wherein the valve comprises a first side for connection to a first subchamber and a second side for connection to a second subchamber, the valve is designed to shut off in its rest position a flow of fluid between the two sides and comprises, when deflected from its rest position, a passage channel with a passage cross-section for admitting the flow of fluid, the valve comprises two valve elements guided towards each other and movable towards each other along a path of movement in a movement direction x, one of the two valve elements is designed as a moving element and the other valve element as a seat element, a pressure can be applied to the moving element, on the load side thereof, by a fluid coming from the first side, generating an effective force for moving the moving element in the moving direction x, and the moving element is connected to a spring system which applies to the moving element a spring force, generating a restoring force opposite to the effective moving force. At least one of the valve elements comprises a cylinder section comprising a plurality of passages, the passage channel runs through at least some of the passages and the passage cross-section is limited by a cross-section of these passages, while the other valve element comprises a closed cylindrical surface which lies on the one valve element in the rest position, shutting off the flow of fluid, and the passage cross-section can be adjusted by the deflection of the valve as a result of the movement of the moving element towards the seat element in the direction of movement x, the passage cross-section increasing with the deflection.
To reduce abnormal noise production in a friction brake structure, the friction brake structure includes: a brake plate (20) fixed to a rotating shaft (15) of a rotary electric machine (1); a ring-shaped brake shoe (30) disposed facing the brake plate; and a brake shoe support plate (40) which engages with a fixing portion of the rotary electric machine so as to be movable in an axial direction, and which supports the brake shoe and is biased by biasing action so as to bring the brake shoe into sliding contact with the brake plate.
A plurality of elastic elements are mounted to at least one of a plurality of interleaved input and output plates of a clutch stack such that, when the clutch stack is moved to a disengaged position, the plurality of elastic elements maintain separation in an axial direction between the plurality of interleaved input and output plates. Clutch flutter is avoided, reducing the drag between clutch plates.
A bearing device and an ion implantation device are provided. The bearing device includes a bearing table configured to bear a substrate, and a plurality of supporting components configured to support the substrate, each supporting component is movably arranged on the bearing table, to support the substrate at an adjustable position.
In a motor, a dynamic pressure gas bearing is prevented from seizing when the motor shaft and a sleeve contact each other. The number of rotations of a rotating body with respect to a case is maintained substantially constant both before and after contact. Auxiliary bearings are arranged in series with the gas bearing. A non-contact detent torque generation mechanism in parallel with the auxiliary bearings suppresses rotation in the auxiliary bearings. The sum of a predetermined detent torque generated by the torque generation mechanism during a rotation suppression time and the friction torque of the auxiliary bearings is smaller than the magnitude of an adhesion-time contact friction torque generated when the motor shaft and sleeve adhere to each other and is greater than the magnitude of a rotation-time viscous friction torque of the dynamic pressure gas bearing while the motor shaft and sleeve are spaced from each other.
A hydrodynamic thrust bearing for a torque converter comprising: an axis of rotation; a first radial thrust surface; a second radial surface, opposite the first radial thrust surface, including at least two axially protruding anti-rotation pins for preventing relative motion with one of either a stator assembly or an impeller once assembled; an inner circumferential surface defining an opening concentric with the axis of rotation; an outer circumferential surface; and, an axial retention means for attaching to the one of either a stator assembly or an impeller and including at least two resilient tabs, each tab comprising: a deflectable portion; a lockable portion; and, an axial portion having a first width and connecting the deflectable portion and the lockable portion. A torque converter having a hydrodynamic thrust bearing as described is also provided.
A bearing joint assembly may include a bearing sleeve, a first collar, a first mount, a pair of second mounts and a fastener, which projects through the bearing sleeve and secures the bearing sleeve to the second mounts. The bearing sleeve extends axially along a centerline and includes a spherical bearing. The first collar is configured with the bearing sleeve. A first annular channel is formed by and extends axially between the spherical bearing and the first collar. The first mount is mounted on and slidably engages the spherical bearing. The spherical bearing and the first collar are axially between the second mounts.
An aircraft landing gear arrangement may comprise a landing gear bogie having an axle, a torque tube surrounding the axle and mechanically coupled to the landing gear bogie. A brake stack may surround the torque tube. The torque tube may comprise a cylindrical body extending between a first end and a second end. A flange may be disposed at the first end. A mating surface may be disposed on the first end or the second end of the torque tube for mating the torque tube to the landing gear bogie. A bogie flange may extend from the landing gear bogie whereby the torque tube may be mounted to the landing gear bogie.
A safety shear bolt includes a main bolt portion and a torque head portion connected to the main bolt portion. The torque head portion includes an extended head portion, a stem portion rigidly connecting the main bolt portion to the torque head portion, and a coupling mechanism rotatably connecting the extended head portion to the main bolt portion. The stem portion is configured to shear when a predetermined torque is applied to the extended head portion, while the coupling mechanism prevents the extended head portion from dropping after shearing off from the main bolt portion.
The invention relates to a rotary actuator, converting actuator and method for producing rotation. The rotary actuator includes at least two rotation units for producing stepped angular displacements (Rs). The rotation unit includes a cylinder for producing linear movement (L) and a converter for converting the linear movement to rotation. The stepped rotary movements of the rotation units are transmitted by transmission elements to an output shaft.
A heat-dissipation fan includes a rotary assembly and a plurality of rotary cylinders mounted on an outer surface of the rotary assembly to serve as cylindrical fan blades of the heat-dissipation fan. The rotary assembly includes a plurality of first electrical conducting units and a second electrical conducting unit. The rotary cylinders move along with the rotary assembly when the latter rotates and are correspondingly electrically connected to the first electrical conducting units to be rotatable about their respective centerlines.
A gas turbine engine, with a conical screw integrated compression system, that utilizes at least one conical screw as an intermediary fluid transport device to facilitate the multi-staging of non-axial compressors, such as centrifugal and diagonal compressors, as well as or alternatively to combine non-axial compressors to axial compressors and to the fan. The conical screw in the compression system applies axial flow translation and funnels, as necessary, the exit flow of the impeller, fan or compressor into the next impeller or compressor.
An air compressor includes a tank unit that stores compressed air, a motor unit that generates compressed air to be stored in the tank unit, a pressure detection unit that detects a pressure value in the tank unit, and a control unit that drives the motor unit when a pressure value in the tank unit detected by the pressure detection unit is equal to or less than a motor start pressure value, and stops the motor unit when the pressure value in the tank unit detected by the pressure detection unit is equal to or greater than a motor stop pressure value. The control unit changes at least either of the motor start pressure value or the motor stop pressure value every time when a predetermined time passed.
A method of balancing a beam pumping unit can include securing counterweights to crank arms, thereby counterbalancing a torque applied at a crankshaft at a maximum torque factor position due to a polished rod load and any structural unbalance. A well system can include a beam pumping unit including a gear reducer having a crankshaft, crank arms connected to the crankshaft, a beam connected at one end to the crank arm and at an opposite end to a rod string polished rod, and counterweights secured to the crank arms, and in which a torque applied at the crankshaft at a maximum torque factor position due to weights of the crank arms, the counterweights and wrist pins equals a torque applied at the crankshaft at the maximum torque factor position due to a load applied to the beam via the polished rod and any structural unbalance.
A semi-free rotating crankshaft actuator (80) for an oral healthcare appliance comprises a chamber (82), a spring loadable plunger (85), and a crank mechanism (88). The crank mechanism (88) comprises at least a drive pin (90) rotatably driven about a drive axis (96), and a crank shaft (94) semi-freely rotatable about the drive axis, wherein the crank shaft (94) couples to the spring loadable plunger (85) and is partially driven about the drive axis (96) via (i) the drive pin (90) in a first operational mode, (ii) the spring loadable plunger (85) in a second operational mode, and (iii) the drive pin (90) in a third operational mode that comprises at least completing an incomplete actuation of the plunger (84) from an undesired end position to the desired end position in response to the crank shaft (94) pushing the plunger (84) from the undesired end position to the desired end position.
A pump in desalination systems has four cylinders, each having a double acting piston. Each cylinder and piston defines a feed chamber and a recovery chamber. The pistons connect to a common drive. The connection to the common drive is such that the pistons reciprocate in a sequence equally spaced in time. Reciprocating valving for each piston is driven by the common drive to be 90 degrees out of phase with the respective piston. The valving connects the recovery chamber alternately to an inlet manifold for an intake stroke of the piston relative to the recovery chamber, and to an outlet manifold for a discharge stroke of the piston relative to the recovery chamber. A brief period of closure coincides with top dead centre and bottom dead centre of the piston, during which the recovery chamber is blocked off from both the inlet and outlet manifolds. The reciprocating valving is midway between its top dead centre and bottom dead centre during the period of closure.
A method for detaching or installing a rotor blade from or to a hub of a wind turbine includes positioning the rotor blade toward a ground location between a three o'clock position and a nine o'clock position. The method also includes mounting a mechanical arm to an uptower location of the wind turbine. Further, the mechanical arm includes a torqueing tool at a distal end thereof. Thus, the method also includes removing or installing, via the torqueing tool, each of the plurality of hub fasteners so as to detach or attach the rotor blade from or to the hub.
A method, system, apparatus, and/or device for generating electrical power from a solar cell and rotational energy from a blade of a wind turbine. The method, system, apparatus, and/or device a blade of a wind turbine, a solar cell, and a rotor system. The blade may be blade configured to catch wind from a surrounding area to rotate the blade and convert kinetic energy into rotational energy. The solar cell may be connected to an exterior surface of the blade. The solar cell may be configured to convert solar energy into electric energy. The rotor system may be electrically connected to the solar cell to receive the electric energy from the solar cell. The rotor system may be configured to remain stationary relative to the blade as the blade rotates about an axis. The rotor system is configured to send the electric energy to a power source.
An axial hydraulic pump-motor, in which a cylinder block having a plurality of cylinder bores on a valve plate having a high-pressure side port and a low-pressure side port for controlling an amount of reciprocation of a piston in each of the cylinder bores, the hydraulic pump-motor includes: a residual pressure release port provided on the valve plate and communicating until the cylinder bore on a top dead center side communicates with the low-pressure side port; a residual pressure acquisition portion obtaining a value of a residual pressure in the cylinder bore on the top dead center side; and a directional switching valve switching a flow path between the residual pressure release port and an hydraulic oil tank and a flow path between the residual pressure release port and the low-pressure side port.
This method allows determining the operating point of a hydraulic machine in a considered operating range, such as turbine mode, and comprises steps that consist in a) determining two coordinates (N′11, T′11) of a first series of potential operating points of the hydraulic machine for the orientation affected to guide vanes of the machine, b) measuring the rotation speed of the machine, and c) determining the torque exerted by water flow on the machine. The method further includes steps consisting in d) calculating two coordinates (N11, T11) of a second series of potential operating points of the machine in function of the rotation speed (N) measured at step b) and the torque determined at step c), and e) deducing the two coordinates (N11_real, T11_real) of operating point that belongs both to the first and the second series in the said considered operating range of the machine.
A system for increasing the efficiency of separating two liquids through filtration is disclosed. In a detailed example, water (both free and emulsified) is separated from diesel fuel, along with contaminants. The system has a filter medium attached to a support. The support has a tube structure that positions the filter medium away from the top plate. The filter can be positioned in a canister for removing emulsified water from the liquid. This canister can be used in a system to filter liquid stored in a tank that may contain water (emulsified and free) and/or debris. The system and method disclosed is particularly useful for removing emulsified water from diesel, such as ultra-low sulfur diesel (ULSD), bio-blended diesel, and diesel derivatives.
A method and a device for open- or closed-loop control of an amount of water mixed with a fuel is provided. A fuel supply is split into a first branch having a Venturi pipe with a vacuum connection and a second branch having a blocking valve. Water is supplied to the Venturi pipe vacuum connection, and the fuel-water mixture in the first branch and the fuel in the second branch is supplied to the fuel pump. Open-loop or closed-loop control is provided by either reducing fuel flow in the second branch with the stop valve such that the fuel flow in the first branch increases, increasing the amount of water mixed in the fuel at the Venturi pipe, or increasing fuel flow in the second branch such that first branch fuel flow decreases, decreasing the amount of water mixed in the fuel at the Venturi pipe.
A system composed of a water sleeve and a spark plug for an internal combustion engine. The spark plug has a supply passage, a center conductor, an insulator surrounding the center conductor, and a metallic body surrounding the insulator. A center electrode and at least one ground electrode form a spark air gap. In the region of its front end, the spark plug has an external thread for screwing the spark plug into a component of the internal combustion engine and has at least one discharge opening of the supply passage. The spark plug, at its front end, has, attached to the body, a sleeve that contains the external thread; the body has, on its outside, at least one groove that forms a section of the supply passage; and the sleeve has a heat conducting section that contains at least a part of the external thread and that is in contact with the body and covers at least portions of the groove.
A controller for an internal combustion engine includes processing circuitry. The processing circuitry performs a dither control process and a multi-injection process. Multiple injections in the multi-injection process includes a first injection and a second injection performed at a timing retarded from the first injection. The dither control process includes at least one of a process performed on a cylinder changed to a lean combustion cylinder so that a reduction amount of fuel injected through the first injection is greater than a reduction amount of fuel injected through the second injection and a process performed on a cylinder changed to a rich combustion cylinder so that an increase amount of fuel injected through the first injection is greater than an increase amount of fuel injected through the second injection.
Systems and methods for operating an engine operated by a controller that has a capacity to determine whether or not misfire occurs in the engine are presented. In one example, an operating region of the engine is broken into a plurality of zones and a misfire threshold level is dynamically provided for each of the plurality of zones based on slowly updated zone-level statistical parameters and quickly updated buffer-level parameters. The real-time dynamic misfire thresholds provide a basis for determining misfire within the engine.
A method for adapting a characteristic curve of a nitrogen oxide sensor of a combustion engine with exhaust gas recirculation having the first nitrogen oxide sensor upstream of an SCR catalytic converter and a second nitrogen oxide sensor downstream of the SCR catalytic converter includes determining that a particle filter is in a regeneration phase, increasing the exhaust gas recirculation rate, interrupting the supply of urea by a urea injection device, acquiring first nitrogen oxide values from signals generated by the first nitrogen oxide sensor, determining that the first nitrogen oxide values are within a first nitrogen oxide interval, acquiring values from second nitrogen oxide signals generated by the second nitrogen oxide sensor, and determining that the second nitrogen oxide values are within a second nitrogen oxide interval, and adapting the characteristic curve of the first nitrogen oxide sensor by the second nitrogen oxide values.
A fuel injection controller updates an air-fuel ratio learning value such that the amount of correction of a fuel injection amount according to an air-fuel ratio feedback correction value approaches zero. Further, the fuel injection controller makes an update rate of the air-fuel ratio learning value lower when the variation among respective-cylinder correction values, which are set for the respective cylinders in order to differentiate air-fuel ratios of a plurality of cylinders, is great than when the variation among the respective-cylinder correction values of the cylinders is small.
A fuel selector for use with a dual fuel generator includes a selector plate, a first fuel valve assembly positioned adjacent the selector plate and actuatable between an ON position and an OFF position to selectively control a first fuel flow to an engine of the dual fuel generator, and a second fuel valve assembly positioned adjacent the selector plate and actuatable between an ON position and an OFF position to selectively control a second fuel flow to the engine of the dual fuel generator. A selector switch coupled to the selector plate is linearly translatable from a first position to a second position, so as to enable positioning of only one of the first fuel valve assembly and the second fuel valve assembly in the ON position at a given time, such that the first and second fuel valve assemblies cannot be in the ON position concurrently.
A torque drive transmission, having at least two counter-rotating cams bearing-mounted within a housing about a rotational axis. The counter-rotating cams are operative to: (i) convert a linear input to a rotary output, and (ii) drive a pair of coaxial drive shafts in opposite directions along the rotational axis. Furthermore, each counter-rotating cam defines a cam profile surface having drive and follower surfaces defining angles α and β respectively. The angles α and β are unequal to drive each cam and respective output drive shaft in an opposite rotational direction. As such, the cams may be driven in opposite directions irrespective the initial rotational position of the linear input, i.e., relative to each counter-rotating cam.
Embodiments relate to a turbine for an exhaust gas turbocharger, which has a turbine housing in which are provided a first and a second flow duct that each has an inlet region and an outlet region. A self-regulating rotary slide valve, which has an adjustable flow duct closure element, is arranged in the inlet region of the flow ducts.
A split-cycle engine includes: a first cylinder housing a first piston, wherein the first piston performs an intake stroke and a compression stroke, but does not perform an exhaust stroke; a second cylinder housing a second piston, wherein the second piston performs an expansion stroke and an exhaust stroke, but does not perform an intake stroke; and a valve chamber housing a valve, the valve comprising an internal chamber that selectively fluidly couples to the first and second cylinders, wherein the valve and internal chamber move within the valve chamber and relative to the first and second cylinders.
A method for combustion in a combustion chamber of an internal combustion engine includes mixing fuel and air to form a charge, flowing a first portion of the charge to the main chamber of an engine and a second portion of the charge to the pre-chamber volume of an engine, igniting the second portion of the charge in the pre-chamber volume, and delivering the ignited second portion of the charge to the main chamber.
A cooling device for an additive injection valve is connected to a circulation circuit for coolant in parallel with a different cooling device. The cooling device includes a coolant path through which the coolant flows, and a movable member that receives a flow of the coolant and shifts to vary a passage area of a predetermined portion of the coolant path.
Disclosed is a honeycomb catalyst substrate core having geometrically non-linear flow channels. In an embodiment, the honeycomb catalyst substrate core includes helical flow channels. In another embodiment, the honeycomb catalyst substrate core includes sinusoidal flow channels. In yet another embodiment, the honeycomb catalyst substrate core includes helical plus sinusoidal flow channels. The honeycomb catalyst substrate core comprises a plurality of parallel non-linear flow channels formed along a longitudinal axis of symmetry of the catalyst substrate core, each non-linear flow channel configured such that a turbulent vortical flow occurs during engine exhaust gas flow. Also disclosed is a method for manufacturing a ceramic honeycomb having non-linear flow channels, comprising the steps extrusion soft ceramic material through a die whilst the die moves through six degrees of freedom along its axis of symmetry. Disclosure includes a method for manufacturing a ceramic honeycomb having non-linear flow channels using three-dimensional printing.
A diesel exhaust fluid (DEF) delivery system and method for operating same. The method includes controlling a pump to operate at an idle speed to pressurize a pressure line. The method includes controlling a backflow dosing module (BFDM) valve to open to allow an amount of the DEF to flow into a fluid storage tank through a backflow line. The method includes determining a dosing request, a first dosing actuation request for the first dosing valve and a second dosing actuation request for the second dosing valve based on the dosing request. The method includes, when a sum of the first and second dosing actuation requests is less than 100%, controlling the BFDM valve to close when either of the first and second dosing valves is open; and controlling the BFDM valve to open when the first dosing valve is closed and the second dosing valve is closed.
An exhaust purification system comprises an exhaust purification catalyst 20, an NOX sensor 46, air-fuel ratio sensor 41 downstream of the catalyst 20, and a control and diagnosis device. The device alternately sets a target air-fuel ratio to a rich air-fuel ratio and a lean air-fuel ratio and switches the target air-fuel ratio from the rich air-fuel ratio to the lean air-fuel ratio when the output air-fuel ratio of the air-fuel ratio sensor becomes a rich judged air-fuel ratio or less. The device diagnoses abnormality of the catalyst based on the output of the NOX sensor. It diagnoses abnormality of the catalyst when the air-fuel ratio of the exhaust gas flowing into the catalyst is a rich air-fuel ratio, but does not diagnose abnormality of the catalyst when the air-fuel ratio of the exhaust gas flowing into the catalyst is a lean air-fuel ratio.
Methods and systems are provided for removing moisture from an engine exhaust system. In one example, a method includes, during a vehicle key-off condition, in response to a higher than threshold exhaust moisture level and a lower than threshold engine run time during an immediately prior drive cycle, operating an electric air compressor to remove the moisture accumulated in the exhaust manifold.
Provided is a PCV valve assembly that includes a fluidic geometry that allows for the flow of combustion fluid/gas to flow between an inlet and an outlet and switch between two modes of operation, (i) a radial or high flow mode, and (ii) a tangential or low flow mode, as dictated during the operation of the engine. At low vacuums, the fluidic equipped PCV valve assembly has been tuned to operate in the radial mode producing high flow rates due to low flow resistance. As vacuum increases, the PCV valve assembly is tuned to automatically switch modes. This may be enabled due to the shape of the fluidic geometry and the bypass channel which is adapted to vary the amount of flow between a first and a second control ports. The bypass channel allows the geometric fluidic pattern to switch between the high flow mode and the low flow mode.
A rocker arm system provides variable ratio valve actuation. A rocker arm extends between a pair of ends. One end receives a movement input and the second end delivers a movement output. The rocker arm reacts against a bearing cap to deliver the movement output in response to the movement input. The bearing cap includes a load surface facing the rocker arm that defines a trajectory of the rocker arm.
An evaporator with integrated heat recovery incorporates a vapor tube in a combustion chamber surrounded by a water jacket. The water jacket is in fluid communication with an exhaust gas heat exchanger. Coolant circulates through the exhaust gas heat exchanger to recover heat from exhaust gasses leaving the combustion chamber and then circulates through the water jacket surrounding the combustion chamber to recover heat not delivered to the operating fluid. The evaporator may incorporate a condenser within the housing and in fluid communication with the exhaust gas heat exchanger and water jacket. Coolant may enter the evaporator housing at the condenser before circulating through the exhaust gas heat exchanger and water jacket.
An oil jet for a turbine engine, comprising a body including a circulation pipe intended for the flow of a pressurized fluid. The jet's body comprises a first part and a second part between which a resiliently deformable membrane is inserted, said membrane being capable of deforming between a sealed position in which it prevents the circulation of the fluid in the pipe and a position in which it allows the circulation of fluid in the pipe. The second part includes bearing means configured to exert a force on the membrane positioned in the opposite direction to the circulation of fluid so as to preload the membrane when in blocked position.
A labyrinth seal for a gas turbine engine is provided. The labyrinth seal includes a stator and a rotor spaced apart from the stator. The rotor includes a first tooth at a first side having a first radial height, and a second tooth between the first tooth and a second side. The second tooth has a second radial height that is different than the first radial height. The rotor includes a third tooth between the first tooth and the second side having a third radial height that is substantially the same as the first radial height. A first clearance between a first tip of the first tooth and the stator is different than a second clearance between a second tip of the second tooth and the stator, and a third clearance between a third tip of the third tooth and the stator is substantially the same as the first clearance.
A guide vane element for a gas turbine, the guide vane element having a first guide vane, a second guide vane distanced by one division in the peripheral direction, and at least one band joining these guide vanes, in particular, a radially inner band and/or a radially outer band, wherein at least one band joining these guide vanes has a vane-side surface having a contouring and a first front side in the peripheral direction having a groove, which is particularly straight in the axial direction, for the uptake of a sealing element.
An airfoil includes a core structure that defines a cooling passage, a panel attached with the core structure, and a channel. The panel has an exterior gas path side, an opposed interior side, and side edges. The channel has a first end that opens to the cooling passage and a second end that opens to the exterior gas path side at one of the side edges.
A blade with an airfoil profile for a gas turbine includes at least two opposite walls enclosing the inner part of the blade which form cooling channels and method of cooling the blade with a reduced cooling fluid flow rate at a side towards the bottom part of the blade in comparison to the side at the top part, wherein the airfoil profile extends from a bottom to a top part of the blade and at least one direct cooling fluid inlet is arranged at the bottom part of the blade, where at least one set of ribs is respectively arranged on the two walls, extending from the respective wall into the inner part of the blade, forming cooling channels in-between ribs with a channel cross-section smaller at the side towards the bottom part of the blade compared to the side at the top part.
A power turbine includes a second stage blade having an airfoil with a cold un-coated nominal profile substantially in accordance with at least an intermediate portion of the Cartesian coordinate values of X, Y and Z set forth in Table 2. The X and Y values are distances, which when smoothly connected by an appropriate continuing curve, define airfoil profile sections at each distance Z. The profile sections at each distance Z are joined smoothly to one another to form a complete airfoil shape.
The present invention relates to a gas turbine which includes a cooling system provided with cooling air supply paths bypassed through an outside casing and, more specifically, to a gas turbine including a cooling system and a cooling method, wherein, in order to supply cooling air to a plurality of turbine blades and other devices provided to the inside of the gas turbine, cooling air supply paths are not provided to the rotor center shaft of the gas turbine but provided around the outer casing of the gas turbine so as to achieve the increased effect in the aerodynamic efficiency of the compressor and the turbine. According to the above structure and method, it may be possible to provide the cooling air supply paths not to the rotor center shaft of the gas turbine but around the outer casing of the gas turbine, thereby finally achieving the increased effect in the aerodynamic efficiency of the compressor and the turbine.
A spanner nut for a bearing compartment of an engine with a bearing stack on a first shaft that rotates about an engine centerline includes a body, a piloting hook connected to the body, a first threaded portion, and a channel formed by the piloting hook. The piloting hook includes first and second extensions. The first extension is connected to and extends radially inward from the body. The second extension is connected to and extends in an axial direction from the first extension. The second extension includes a radially outward facing surface. The first threaded portion is configured to engage with a second threaded portion on the end of the first shaft. The channel is configured to receive the end of the first shaft. The piloting hook is configured to draw the second extension radially outward as the spanner nut is compressed.
A method of pressure testing a well tool can include applying positive or negative pressure to an internal chamber of the well tool, or determining a reference pressure, and monitoring the pressure in the internal chamber using a pressure sensor in the internal chamber. Another method can include applying pressure to an internal chamber of a well tool at a surface location, thereby creating a pressure differential in one direction across a seal, and installing the well tool in a well, thereby creating another pressure differential in a possibly opposite direction across the seal. A well system can include a well tool including an internal chamber, and a pressure sensor disposed in the chamber, whereby the pressure sensor detects pressure within the chamber.
A gas lift valve for use in a hydrocarbon well includes an elongated valve housing including an inlet port for receiving a fluid from an annulus of a hydrocarbon well, and an outlet port for delivering the fluid to a production tubing of the hydrocarbon well, and an elongated, internal valve body, which is movable along a longitudinal, central axis of the valve housing between a first end position and a second end position. In the first end position, a sealing surface of the valve body is in sealing contact with a valve seat surface of the valve housing prohibiting the fluid to flow from the inlet port to the outlet port, and in the second end position the sealing surface is separated from the valve seat surface allowing the fluid to flow from the inlet port to the outlet port. The outlet port is positioned at a terminal end of the valve housing.
Provided are systems and method for operating and maintaining downhole inflow control valves (ICVs) of hydrocarbon wells, including monitoring the operations of ICVs to identify failure and non-failure times of defective and non-defective ICVs, respectively, determining a probability of failure of the ICVs (Pf) based on the failure and non-failure times, determining an operational stroking duration based on the probability of failure of the ICVs (Pf), and operating ICVs in accordance with the operational stroking duration determined.
A technique facilitates formation of perforations into a formation surrounding a borehole in a manner which enhances fluid flow along the perforations. The technique comprises providing a plurality of perforating charges which may be detonated in the borehole to create perforations. The detonation is used to initiate a time delay device for controlling a subsequent detonation of a corresponding charge. The corresponding charge is used to create a pressure underbalance in the borehole. This relatively lower pressure in the borehole is selectively established to create a reverse flow through the perforations which cleans the perforations.
A sand screen assembly including a base pipe, a filtration subassembly disposed about the base pipe, the filtration assembly being removable and replaceable on the base pipe as a subassembly, a hollow defined between the filtration subassembly and the base pipe, a removable and replaceable end cap securable to the base pipe with a fastener and configured to retain the filtration subassembly on the base pipe. A method for installing a tracer material in a sand screen assembly. A downhole system including a base pipe, a filtration subassembly disposed about the base pipe, the filtration assembly being removable and replaceable on the base pipe as a subassembly, a hollow defined between the filtration subassembly and the base pipe, a removable and replaceable end cap securable to the base pipe with a fastener and configured to retain the filtration subassembly on the base pipe.
An apparatus includes an inflow control device that is disposed in a well and is adapted to receive a flow. The inflow control device includes a chamber, an outlet and at least one inlet. The chamber has a first end, a second end, and a cross-section of the chamber decreases along a length of the chamber. The outlet is disposed at the second end of chamber. The inlet has a cross-sectional dimension and is adapted to, in response to the received flow, inject a flow into the chamber near the first end of the chamber such that a fluid flow is produced inside the chamber that rotates and translates in a direction along the length of the chamber toward the outlet.
An apparatus and method according to which a zone of a wellbore that traverses a subterranean formation is completed. The apparatus includes a flow joint including a first internal flow passage, and a plurality of openings formed radially therethrough, a plurality of plugs disposed within the plurality of openings to form a fluid and pressure tight seal with the flow joint, thus impeding fluid flow through the plurality of openings, and a screen disposed exteriorly about the flow joint and axially along the plurality of openings, and thus also along the plurality of plugs, wherein, when the plurality of plugs are exposed to a downhole fluid, the plurality of plugs are adapted to degrade so that fluid flow is permitted through the plurality of openings. The plurality of plugs may include protective layers adapted to be damaged or removed to expose the plurality of plugs to the downhole fluid.
A whipstock system and methods are disclosed, including a whipstock body, a control unit mounted on or in the whipstock body, the control unit comprising transmitters and receivers operable to receive commands from an external source, activatable components mounted on or in the whipstock body, and a hydraulic system in the whipstock body, the hydraulic system in communication with the control unit, the hydraulic system including at last one hydraulic power unit operable to repeatedly activate and de-activate the activatable components.
An electro-separation apparatus for separation of drilling fluids is provided. The apparatus can include a reaction chamber and a set of electrode plates provided in the reaction chamber. A sediment outlet can be provided near a bottom of the reaction chamber and wiper blades can be provided for sweeping sediment that has collected on the electrode plates towards the sediment outlet.
A torque impact mitigator including a housing assembly having a hydraulic cylinder. A piston is disposed within the hydraulic cylinder. A piston rod is mounted at a first end to the piston and having a second end extending out from the compression end. A compression spring is disposed between the piston and an end of the cylinder. A rod clevis is secured to the second end of the piston rod to compress the compression spring into a compressed state when the rod clevis is moved away from the cylinder and to release the compression spring into a relaxed state when the rod clevis is moved towards the cylinder. A plug is disposed within an upper end of the compression spring and having a bore extending therethrough to receive the piston rod. One or more bores are disposed through the piston to allow passage of hydraulic fluid into the hydraulic cylinder.
A drilling component includes a spinodally-hardened copper-nickel-tin alloy. The drilling component may be a drill stem or a drill string component, such as a tool joint used for joining pipe together.
A boom system for transporting and deployment of utility service lines (such as cables, wires, hoses, pipes, etc.) from sources of the services to a drilling rig. The mobile boom system includes a mobile skid with posts located at opposite ends of the skid, and one or more articulating booms pivotally attached to each skid post. One or more articulating booms attached to a post at the first end of the skid can support and carry the service lines connected to the sources and one or more articulating booms attached to a post at the second end of the skid can support and carry the service lines connected to a drilling rig, or to an articulating boom extending from a drilling rig. The mobile articulating boom system can include means for moving and selectively positioning the mobile articulating boom system at a drilling site.
A slat angle adjustment mechanism for Venetian blind includes a body shell and a transmission unit including a transmission gear set and retractable member. The transmission gear set includes a gear having a position-limiting hole corresponding a second through hole of the body shell, and a screw rod with an extension shank. The retractable member is connected to and movable back and forth along the extension shank of the screw rod. When pulling the retractable member, the retractable member is moved along the extension shank of the screw rod from a first position; when pushing the retractable member, the retractable member is moved along the extension shank of the screw rod from the second position back to the first position. Thus, subject to the retractable characteristic, the slat angle adjustment mechanism prevents damage during packaging.
A vertical cellular drape configured for use as a covering for an architectural structure may include a front drape panel and a rear drape panel. The front and rear drape panels may be coupled to each other so that the drape panels are configured to be moved laterally between an extended position and a retracted position to cover or expose an adjacent architectural structure, as desired. In addition, the drape panels may be configured to be positioned relative to each other such that a plurality of vertically oriented, internal cells are defined between the drape panels.
A barrier operator feature enhancement device is designed to provide one or more features found in modern barrier operator devices and to incorporate those features into a previously installed barrier operator system. To facilitate ease of use, the barrier operator feature enhancement device can communicate with a large variety of barrier operators. Such communication may be wireless or wired, depending on the communication protocol implemented by a particular previously installed barrier operator. To facilitate the ease of installation, the device is designed to configure itself to operate with the communication protocol of the previously installed barrier operator. Once configured to be able to communicate with the previously installed barrier operator, the feature enhancement device works with the barrier operator to provide one or more additional features to enhance the capabilities of the previously installed barrier operator.
The monolithic door of the present invention includes a single panel door having a top edge and a front and back side. The door is hinged at the top edge, within a door opening, to a building structure (in one embodiment, a door frame header). A first cam style winding mechanism is secured towards the top of a first vertical member of the door frame and a second winding mechanism is secured towards the top of a second vertical member of the door frame, opposite the first vertical member. A compression strut on each side of the door is secured to tension straps or cables which are in turn attached to a corresponding winding mechanism secured to the building structure. An actuator operatively connected to the winding mechanisms rotates the drums to either to force the door open or allow the door to close.
The present invention relates to the technical field of spring hinges, and to a silent spring hinge, which addresses the technical shortcoming that relatively high noise is generated when an existing spring hinge used in a household appliance drives a cabinet door to close. The silent spring hinge includes a fixing base, a hinge arm and a spring assembly, a damping assembly corresponding to a side edge of a rotating wheel being further provided on the fixing base, the damping assembly including a sleeve body, a steel ball, a spring and a lock nut, an outer wall of the sleeve body being snap-fitted on the fixing base, the steel ball, the spring and the lock nut being mounted within the sleeve body in sequence, a portion of the steel ball being exposed from the sleeve body and being elastically connected to the side edge of the rotating wheel, and a deceleration groove and a self-locking groove mated with the steel ball at a final stage of the process of closing a cabinet door being provided on a gear edge of the rotating wheel. By means of the present invention, the closing speed of the cabinet door is effectively reduced, and an effect of damping is achieved, such that the cabinet door is closed in a more stable manner, and a force of the spring assembly is not affected after the spring assembly drives the cabinet door to close. The present invention is particularly suitable for use on such products as ovens and microwave ovens.
A magnetic lock is presented. The magnetic lock includes a base having a cylindrical opening disposed therein, and having a first magnetic element disposed in a bottom surface of the cylindrical opening of the base. The lock further includes an insert removably securable within the cylindrical opening of the base, the insert having a second magnetic element disposed along a bottom surface thereof. When the insert is inserted into the cylindrical opening of the base and the first magnetic element of the base is aligned with the second magnetic element of the insert the insert is locked within the cylindrical opening of the base. When the insert is rotated within the cylindrical opening of the base to a position wherein the first magnetic element and the second magnetic element are not aligned with each other the insert is removable from the cylindrical opening of the base.
A method for controlling a motor vehicle locking mechanism and to a motor vehicle locking mechanism, in particular a motor vehicle door lock, comprising a control unit, at least one electric drive that can be controlled by the control unit, and at least one illuminant that can be associated with the locking mechanism, the illuminant being controllable in accordance with a status of the locking mechanism and/or of a vehicle component accommodating the locking mechanism, said status being detectable by the control unit, the illuminant being integrated into a switching circuit of the electric drive.
A vehicle door operating device includes an opening inside lever connected to an inside handle in a door inside a vehicle, a childproof lock lever that moves between a childproof unlock position and a childproof lock position; a switch lever, a childproof sensor and a single engagement pin. When the childproof lock lever is in the childproof lock position, opening action of the inside handle cannot be transmitted to a door latch device, but can be transmitted to the switch lever. When the childproof lock lever is in the childproof unlock position, releasing action of the opening inside lever can be transmitted to door latch devices for holding a door closed via a single engagement pin, but cannot be transmitted to the switch lever. When the childproof lock lever is in the childproof lock position, the releasing action of the opening inside lever cannot be transmitted to the door latch device via the engagement pin, but can be transmitted to the switch lever.
A collapsible canopy with an improved locking mechanism. The collapsible canopy has at least three supporting legs. The collapsible canopy also has a self-locking central lock that is used for locking the collapsible canopy in an unfolded state and permits the collapsible canopy to be folded into a folded state when the central lock is unlocked. An outer retractable unit is connected between each adjacent supporting leg. An inner retractable unit having an inner end is connected between each supporting leg and the central lock. The inner end of the inner retractable unit is connected through the central lock.
A post base includes a base member comprising post support wall and a plurality of peripheral side walls extending from the post support wall. The base member further comprises a first tab and a second tab, each extending inward. A plurality of stirrup plates each include at least one slot sized and shaped to receive one of the plurality of tabs of the base member.
The present invention is a roof securing system with fewer components and easy-to install and maintain securing methods for providing additionally strength to a roof of a building during adverse climatic conditions. Roof securing system of the present invention includes a plurality of securing sets positioned at pre-determined distances on rooftop. More closely adjacently disposed securing sets are positioned more secured roof securing system will be. Each securing set include a strap that sits on rooftop, wall mounting fixtures and at least one anchor fasteners. Each wall mounting fixture holds strap and are tightly secured to side walls of building by using anchor fastener(s). Holding of strap enables strap to grip rooftop with remaining building structure and hence enable roof to maintain its position during adverse climatic condition.
The invention relates to a swimming-pool cleaning apparatus which comprises: a body; at least one hydraulic circuit for circulating liquid between at least one liquid intake and at least one liquid outlet, and through a filtering device of the cleaning apparatus; a fluid-circulation pump installed in the hydraulic circuit downstream from the filtering device; means for adjusting the pressure inside the hydraulic circuit upstream from the circulation pump, in response to a detected variation of said pressure, said pressure-adjustment means comprising: at least one secondary liquid intake (21) connected to the hydraulic circuit, upstream from the circulation pump, said at least one secondary liquid intake (21) being provided with a valve (22) mounted rotatably movable about an axis of rotation, and with means for driving the valve from an open position to a closed position, said means for driving the valve comprising a float (26), the orientation and/or the force of which depend on the orientation of the cleaning apparatus relative to a horizontal plane.
A wave pool and wave generating mechanism are disclosed. The wave pool includes a bathymetry that includes a dynamically shapeable reef along a length or circumference of a channel that defines the wave pool. The wave generating mechanism includes a foil that has a shape for bi-directionality based on an adjustment of a yaw angle of the foil. The foil can be further controlled to increase or decrease certain surface areas or other angles of interacting with water in the wave pool.
A portable inflatable golf studio including an arcuate shaped roof panel, first and second side panels, a floor panel, a front panel, a back panel, a projector screen, a projector, and a tracking system. The first and second side panels are positioned parallel from one another and are attached to the arcuate shaped roof panel, wherein one of the first and second side panels defines a cavity configured to receive a television monitor. The floor panel configured to connect the first and second side panels to one another. The front panel removable attached to the arcuate shaped roof panel and the first and second side panels. The back panel positioned parallel to the front panel and attached to the arcuate shaped roof panel and the first and second side panels. Each panel includes one or more of inflatable sections.
This decorative glass enclosed floor cavity is a new innovation in flooring. It is designed to give flair, special lighting effects or mood to a raised floor room. There is no benefit other than an aesthetic quality given to a room. The strip lights with dimmer give a special mood and the planter boxes filled with artificial plants in the bottom of the cavity give beauty and originality to its form. This decorative floor cavity has a specified size and shape according to the size of the raised floor in which it is built and is constructed with 4×4 posts attached to the finished floor of the cavity with post bases and an asymmetrical grid formed with 2×4s attached to 4×4 posts with hex bolts, deck screws and reinforced L brackets for support of a ⅜″ regular or non-slip glass overlay which covers the entire cavity to expose lighting and artificial plants inside cavity. Hand grip slots are cut in end 2×4s to aid in removal of glass for cleaning and to change light bulbs. ⅜″ raised floor finish flooring butts up against ⅜″ glass overlay to form a level trimmed finished floor. This decorative glass cavity can be built with lights or plants only in the interior with reduced depth of cavity and reduced raised floor level. Can also be built as wall borders. Built with metal or chrome, it is perfect for modern designed structures.
It is described herein an adjustable rigid clip assembly comprising an anchor plate joined with a connector plate and a slide plate. The anchor plate is joined with the connector plate at a juncture having a juncture angle between the anchor plate and the connector plate in a range of between 0° and less than 180°. The connector plate comprises at least one connector plate slot and at least one connector plate lock. The slide plate may comprise at least one slide plate lock. The at least one slide plate lock may be engaged with the at least one connector plate lock. The slide plate may further comprise at least one slide plate tab passing from the slide plate through the at least one connector plate slot.
The present technology relates generally to a platform and concrete composite slab system used as a building material. A platform, is formed from joined, substantially coplanar boards with connector plates partially embedded between the boards such that a portion of the connector plates extend above the platform's top surface. A reinforcing material (e.g., wire mesh and/or rebar) can be arranged on the prongs or other portion of the connector plates spaced above the platform and concrete is poured over the reinforcing material and allowed to cure, forming a reinforced concrete layer that encases the connector plates and reinforcing material. The connector plates act as standoffs and help to suspend the reinforcing material in the middle of the concrete layer to increase the strength of the reinforced concrete and to fixedly anchor and bind the concrete layer to the platform, so as to establish a composite action between the platform and the concrete.
A positioning template comprises a forward portion, a rearward portion, and a medial portion. The rearward portion include a first plurality of indicia, and the medial portion includes a second plurality of indicia. The positioning template further includes a top surface which includes a third plurality of indicia and a plurality of guides. The positioning template includes a bottom surface and a plurality of protrusions extending downwardly from the bottom surface.
Disclosed are various embodiments of a lockable toilet fill valve and methods according to the present invention. In one embodiment, a toilet fill valve includes a float/arm assembly. The toilet fill valve is closed when the float/arm assembly is disposed in a first position. The toilet fill valve being open when the float/arm assembly is disposed in a second position. A valve lock is associated with the float/arm assembly. The valve lock includes an unlock position and a lock position, wherein the valve lock fixes the float/arm assembly in the first position when the valve lock is in the lock position.
A subsoil tool for ameliorating soil compaction having a shank attached to a toolbar of a tractor, wings on forward wing links pivotally engaged to the shank, and following wings on a wing rod pivotally engaged with the forward wing link. The forward wing links are positioned near the bottom of the shank in front of the rear of the shank. The wing rod is positioned behind the shank. A power link is engaged to the toolbar, a hydraulic drive cylinder, and the wing rod for enabling oscillation of the wing rod relative to the shank.
A bulldozer rake assembly for facilitating a single bulldozer blade to be employed for grubbing and grading includes a bulldozer blade that is mountable on a bulldozer for grading. The bulldozer blade has a bottom edge and a top edge. A rake unit is pivotally coupled to the bulldozer blade. The rake unit is positionable in a deployed position having the rake unit being aligned with the bottom edge of the bulldozer blade. In this way the rake unit is positioned to engage roots and debris for grubbing. The rake unit is positionable in a stored position having the rake unit being aligned with the top edge of the bulldozer blade. In this way the bulldozer blade can engage earth for grading.
A snow shovel features a support sled, an inclined load blade having an upwardly and rearwardly tapered shape; and up-turned and in-turned side walls that converge in the tapering direction of the load blade. An up-turned and front-turned rear wall cooperates with the side walls to form a forwardly open pocket at a rear end of the blade. The converging side walls and rear pocket compress the snow as it rides up the load blade, whereupon an increased density of the tightly packed snow encourages gravitationally unloading of the shovel through an avalanching action. In use, the leading edge of the shovel is tilted upward as one approaches an intended dumping area in order to ride up onto remaining fallen snow, during which the collected and densely compacted snow avalanches off the leading edge of the shovel to simultaneously build and climb up a snow heap at the dump area.
A portable railroad spike remover comprises an extractor that is shaped to engage and secure a railroad spike previously installed into a rail tie. A drive shaft is connected to the extractor such that as the drive shaft is rotated, the extractor is vertically raised and lowered within a main column. The extractor may have an opening extending through at least one side to engage the railroad spike.
A machine for repairing a ballast bed has an undercutter that defines a direction of movement of the repairing machine, and a distributor for dividing a flow of ballast entering from the undercutter into a rear flow of exiting ballast and a separate front flow of exiting ballast. At least one rear screening machine is positioned behind the undercutter in the direction of movement and is fed by the rear flow of exiting ballast. At least one front screening machine is positioned in front of the undercutter and fed by the front flow of exiting ballast, and the distributor has a variator for varying the ratio between the separate first and the second flows of exiting ballast.
A size press composition for improving properties of lignocellulosic material is provided herein. The size press composition includes an aluminum salt and an anionic styrene acrylate emulsion sizing agent. The aluminum salt and the anionic styrene acrylate emulsion sizing agent are substantially homogeneously dispersed within the size press composition based on visual observation utilizing a microscope at 10× magnification. A size press composition formed by a process is also provided herein. The process includes combining a dye and a starch to form a dye mixture. The process further includes combining the dye mixture, a styrene acrylate emulsion sizing agent, and an aluminum salt to form the size press composition. The dye, the starch, the aluminum salt, and the styrene acrylate emulsion sizing agent are substantially homogeneously dispersed within the size press composition based on visual observation utilizing a microscope at 10× magnification.
An asymmetric crumb is described that includes 20 to 100 wt % of a para phenylene terephthalamide pulp. Also described are a process for manufacturing the crumb and a material including the crumb.
A method for manufacturing a dye-attached substrate provided with a dye section that includes a sublimable dye to be deposited on a resin body includes a printing step of printing a plurality of units of the dye sections, the dye section for dyeing one resin body or one set of resin bodies constituting one unit, lined up in a longitudinal direction of a long thin substrate, by discharging ink that includes the sublimable dye on the substrate using a printing device, a piece creating step of creating a piece of the substrate that includes the plurality of units of the dye sections, by cutting the substrate on which the dye section is printed, and a drying step of drying the ink of the plurality of units of the dye sections included in the piece of the substrate.
A formulation for durable press finishing of a cellulosic substrate, or a blend thereof, in a finish bath, the formulation comprising from about 3.0% to about 60.0% by weight of non-formaldehyde dimethylurea/glyoxal (DMUG), or an analog thereof, and from about 0.1% to about 4.0% by weight of one or more additives selected from dicyandiamide, choline chloride, ethyleneurea, propyleneurea, urea, dimethylurea, and combinations thereof, wherein the percent by weight is given in terms of percent weight of the finish bath, and wherein the formulation is substantially free of dimethyloldihydroxyethyleneurea (DMDHEU), and methods of use thereof.
Composition, comprising at least components (A) and (B) and optionally at least one of components (C) to (E): (A) a polyacrylate obtained in the polymerisation of monomers (M1) CH2═CR3COO—R1 with (M2) CH2═CR3COO—R2 and optionally (M3) CH2═CR6COO—Y—RF (M4) CH2═CR3—X—R4; (B) a wax; (C) a blocked isocyanate; (D) an organic polysiloxane; (E) a melamine resin.
An air-jet type spinning device (4), comprising a body (8) at least partially hollow which defines a spinning chamber (12), a fibre feed device (16), facing said spinning chamber (12) so as to feed the fibres into the spinning chamber (12), a spinning spindle (20) at least partially inserted in the spinning chamber (12) and fitted with a spinning channel (24) for the suction of yarn obtained from said fibres, the spinning channel (24) defining a spinning direction (X-X), at least one channel (28) for sending a jet of compressed air inside the spinning chamber (12). Advantageously, the spinning chamber (12) is delimited at least partially by an outer side wall (32), opposite the spinning spindle (20), wherein at least one thread (36) is made on said outer side wall (32), wherein said at least one channel (28) is oriented so as to direct the jet of compressed air towards the at least one thread (36) in order to be guided and oriented by the latter.
An object of the present invention is to provide a polyethylene powder for a fiber which is excellent in the color tone of an obtained article and allows an obtained fiber to be highly drawn, and a fiber and an article made of the polyethylene powder for a fiber. The present invention provides a polyethylene powder for a fiber, wherein the intrinsic viscosity measured at 135° C. in decalin is 10 dL/g or higher and 40 dL/g or lower, the total amount of Al, Mg, Ti, Zr, and Hf is 1.0 ppm or higher and lower than 15 ppm, the amount of a particle having a particle size exceeding 355 μm is 2.0% by mass or lower, and the amount of a particle having a particle size of 75 μm or smaller is 3.0% by mass or higher and 50.0% by mass or lower.
An electrically conductive material for a connection component that includes a Cu—Sn alloy coating layer in which a Cu content is 55 to 70 atomic % and has an average thickness of 0.1 to 3.0 μm, and a Sn coating layer having an average thickness of 0.2 to 5.0 μm, which are formed in this order on a surface of a base material made of a copper or copper alloy sheet strip. When a reflected electron image of a material surface is observed with a scanning electron microscope at a magnification of 100 times, a region A and a region B having a higher brightness than the region A and in which the Cu—Sn alloy coating layer is not exposed coexist on the material surface, and an area ratio of the region A on the material surface is 2 to 65%. Further, when the region A is observed with the scanning electron microscope at a magnification of 10,000 times, a region C covered with the Sn coating layer and a region D not covered with the Sn coating layer coexist in the region A, and the area ratio of the region C in the region A is 20 to 70%.
The invention relates to the production or a heat-transfer gas circuit for the heat management/regulation of the stack of an HTE reactor or an SOFC fuel cell by removing certain cells in certain areas of the stack in order to replace them with electrical contact elements that allow the heat transfer gas to pass through.
A device for coating one or more yarns by a vapor deposition method, the device including a treatment chamber defining a first and a second treatment zone in which at least one yarn is to be coated by performing a vapor deposition method, the first and second zones being separated by a wall and the first zone surrounding the second zone, or being superposed on the second zone; a conveyor system to transport the at least one yarn through the first and second zones; a first injector device to inject a first treatment gas phase into the first zone and a first removal device configured to remove the residual first gas phase from the first zone; and a second injector device configured to inject a second treatment gas phase into the second zone, and a second removal device configured to remove the residual second gas phase from the second zone.
Apparatus and methods for aligning large susceptors in batch processing chambers are described. Apparatus and methods for controlling the parallelism of a susceptor relative to a gas distribution assembly are also described.
Embodiments relate to a sputter chamber with a configurable surface in communication with a target material. A control system is in communication with the chamber and functions to prepare an alloy film by changing a composition of the configurable surface. As ingress gas is introduced to the chamber to interact with the changed composition, the interaction causes a reaction that produces an alloy film.
A rare earth thin-film magnet of a Nd—Fe—B film deposited on a Si substrate, wherein, when the film thickness of the rare earth thin film is 70 μm or less, the Nd content satisfies the conditional expression of 0.15≤Nd/(Nd+Fe)≤0.25 in terms of an atomic ratio; when the film thickness of the rare earth thin film is 70 μm to 115 μm (but excluding 70 μm), the Nd content satisfies the conditional expression of 0.18≤Nd/(Nd+Fe)≤0.25 in terms of an atomic ratio; and when the film thickness of the rare earth thin film is 115 μm to 160 μm (but excluding 115 μm), the Nd content satisfies the conditional expression of 0.20≤Nd/(Nd+Fe)≤0.25 in terms of an atomic ratio. An object of the present invention is to provide a rare earth thin-film magnet having a maximum film thickness of 160 μm and which is free from film separation and substrate fracture, and a method of producing such a rare earth thin-film magnet by which the thin film can be stably deposited.
The present invention relates to a porous material, wherein the pores of the porous material are uniformly distributed. The uniform distribution of the pores means that the pores are evenly distributed at any unit-level volume of the porous material. The elastic modulus of the porous material is reduced by 10-99% compared to that of the raw material used to make the porous material. This kind of porous material ensures the uniformity of its various properties. It is a porous material with excellent performance and quality. Its uniformity also ensures that its elastic modulus can be effectively reduced to meet multiple purposes.
Provided is a steel wire rod for wire drawing containing, in terms of % by mass, C: from 0.90 to 1.20%, Si: from 0.10 to 1.30%, Mn: from 0.20 to 1.00%, Cr: from 0.20 to 1.30%, Al: from 0.005 to 0.050%, and the balance being composed of Fe and impurities, wherein a content of each N, P, and S, which are contained as the impurities, is N: from 0.0070% or less, P: from 0.030% or less, S: from 0.010% or less, and the steel wire rod having a metallographic structure of which 95% or more by volume ratio is a lamellar pearlite structure, wherein the lamellar pearlite structure has an average lamellar spacing of from 50 to 75 nm, an average length of cementites in the lamellar pearlite structure is 1.0 to 4.0 μm, and a percentage of a number of cementites having a length of 0.5 μm or less among the cementites in the lamellar pearlite structure is 20% or less.
A pre-coated steel strip is provided. The steel strip includes a strip of base steel having a length, a width, a first side, and a second side. The length of the strip is at least 100 m and the width is at least 600 mm. An aluminum or an aluminum alloy pre-coating is on at least part of at least one of the first or second sides of the strip of base steel. A thickness tp of the pre-coating is from 20 to 33 micrometers at every location on at least one of the first or second sides. Processes, coated stamped products and land motor vehicles are also provided.
A process for producing a high-grade steel tube includes the steps of: providing a tubular blank of an austenitic high-grade steel, wherein the high-grade steel comprises in weight % no more than 0.02% carbon, no more than 1.0% manganese, no more than 0.03% phosphor, no more than 0.015% sulfur, no more than 0.8% silicon, no more than 17.5% t to 18.5% nickel, no more than 19.5% to 20.5% chromium, no more than 6.0% to 6.5% molybdenum, no more than 0.18% to 0.25% nitrogen, no more than 0.5% to 1.0% copper, and a remainder of iron and unavoidable impurities; and cold-forming the blank into a tube.
The present invention discloses a machining technology of a low-temperature high-strength-ductility high manganese steel, high manganese steel plate, and high manganese steel tube, and a high manganese steel comprises the following components in percentage by weight: Mn 30%-36%, C 0.02%-0.06%, S≤0.01%, P≤0.008% and the balance being Fe. Smelted steel ingots are subject to solution treatment and are rolled and homogenized to obtain a high manganese steel plate or are drawn to form a high manganese steel tube. The hot-rolled or cold-rolled steel plate after being hot-rolled has tremendous application value in the fields of low-temperature applications, such as the steel plate used for a low temperature pressure container.
Methods and kits for detecting a genetic variation in a polynucleotide analyte in a sample. A fluorophore is attached to a first primer, a quencher is attached to a second primer, and the first primer and the second primer are specific for the polynucleotide analyte. At least one of the primers is configured to hybridize to a region of the polynucleotide analyte encoding the genetic variation. The primers are configured to amplify the polynucleotide analyte having the genetic variation and a corresponding polynucleotide analyte lacking the generic variation. There is a detectable difference between a change in signal generated by the fluorophore and quencher when using the first and second primers to amplify the polynucleotide analyte with the genetic variation, and a change in signal generated by the fluorophore and quencher when using the first and second primers to amplify the corresponding polynucleotide analyte lacking the genetic variation.
Provided herein is technology relating to detecting neoplasia and particularly, but not exclusively, to methods, compositions, and related uses for detecting premalignant and malignant neoplasms such as gastric cancer.
A system and method for determining the genetic data for one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available, are disclosed. Genetic data for the target individual is acquired and amplified using known methods, and poorly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related subjects. In accordance with one embodiment of the invention, incomplete genetic data is acquired from embryonic cells, fetal cells, or cell-free fetal DNA isolated from the mother's blood, and the incomplete genetic data is reconstructed using the more complete genetic data from a larger sample diploid cells from one or both parents, with or without genetic data from haploid cells from one or both parents, and/or genetic data taken from other related individuals.
The present disclosure relates to methods for detecting unique genetic signatures derived from markers such as, for example, mutations, somatic or germ-line, in nucleic acids obtained from biological samples. The sensitivity of the methods provides for detection of mutations associated with a disease, e.g., cancer mutations, or with inherited disease, e.g., an autosomal recessive disease, in a noninvasive manner at ultra-low proportions of sequences carrying mutations to sequences carrying normal, e.g., non-cancer sequences, or a reference sequence, e.g., a human reference genome.
Provided are polymeric scaffold compositions and methods for detecting or quantitating diols such as carbohydrates or carbohydrate containing molecules (e.g., glycosylated protein). Provided herein are capture probes configured to bind to a scaffold. Also provided herein are capture probes linked to one or more reactive organoboronic moiety for binding diol-containing compounds in a solution. Methods of detecting complexes comprising diol-containing compounds for detecting or quantifying the presence of diol-containing compounds in solution using a nanopore device are also provided herein.
The present invention relates to a proximity-probe based detection assay for detecting an analyte in a sample and in particular to a method that comprises the use of at least one set of at least first and second proximity probes, which probes each comprise an analyte-binding domain and a nucleic acid domain and can simultaneously bind to the analyte directly or indirectly, wherein the nucleic acid domain of at least one of said proximity probes comprises a hairpin structure that can be unfolded by cleavage of the nucleic acid domain to generate at least one ligatable free end or region of complementarity to another nucleic acid molecule in said sample, wherein when the probes bind to said analyte unfolding said hairpin structure allows the nucleic acid domains of said at least first and second proximity probes to interact directly or indirectly.
This application provides fluidic devices, such as microfluidic devices, which can be used for the creation and/or manipulation of droplets in droplet-based microfluidic systems, as well as systems and methods for using the same. The microfluidic devices can be used to generate droplets, extract or inject volume to droplets, and/or split droplets. Also provided are methods for generating nucleosomes, and isolated DNA from nucleosomes (or from non-nucleosomes), for example using the disclosed devices.
The present disclosure relates to a protein having the activity of exporting O-acetylhomoserine and a novel modified protein thereof, a microorganism capable of producing O-acetylhomoserine with enhanced expression of the protein, and a method for producing O-acetylhomoserine using the microorganism.
The present invention provides for a method of producing an oxidation product of an aromatic amino acid in a genetically modified host cell. The method comprises culturing the genetically modified host cell under a suitable condition such that the culturing results in the genetically modified host cell producing oxidation product of an aromatic amino acid. The host cell comprises an enzyme capable of catalyzing the oxidation of aromatic amino acid. In some embodiments, the host cell is capable of biosynthesizing BH4 or MH4 from GTP.
Systems and methods for fixing carbon using bacteria are described. In one embodiment, a system includes a reactor chamber with a solution contained therein. The solution may include hydrogen (H2), carbon dioxide (C02), bioavailable nitrogen, and a chemolithoautotrophic bacteria. The system may also include a pair of electrodes that split water contained within the solution to form the hydrogen. Additionally, the system may be operated so that a concentration of the bioavailable nitrogen in the solution is below a threshold nitrogen concentration to cause the chemolithoautotrophic bacteria to produce a product.
Provided are isolated polynucleotides which comprise a nucleic acid sequence encoding a polypeptide which exhibits at least 94% sequence identity to SEQ ID NO: 333, and nucleic acid constructs, plants and methods of using same for increasing a yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance, and/or nitrogen use efficiency of a plant.
Disclosed is a PHD protein regulating the differentiation of plant phloem; a recombinant vector containing a gene encoding the same; a plant transformed with the recombinant vector; a seed of the plant; and a method for regulating the development and formation of plant phloem by using the gene encoding the PHD protein. Regulated is the development of phloem, which plays the role in moving a photosynthetic product and finally storing the same in starch and sugar forms in a plant storage organ, so as to regulate the function of phloem, thereby having an effect of controlling the size and storage capacity of the plant storage organ. The development of phloem can be improved by allowing the PHD gene to be silent in plants, and thus it is expected that the function of plant phloem can be increased through the regulation of PHD gene expression by using genetic engineering techniques.
The present invention relates to genetic constructs, which can be used in the preparation of transgenic plants. The constructs can have the ability of reducing nitrate concentration in the plant, in particular the plant's leaves. The invention extends to plant cells transformed with such constructs, and to the transgenic plants themselves. The invention also relates to methods of producing transgenic plants, and to methods of reducing nitrate content in plants. The invention also relates to harvested plant leaves, for example tobacco leaves, that have been transformed with the genetic constructs, and to various tobacco articles, such as smoking articles, comprising such harvested plant leaves.
There is a need for delivery platforms with robust capacity that offer the possibility to deliver diverse protein-based therapeutics into specific cells. Described herein is a platform for delivering cargo polypeptides into cells, which is based on a recombinant molecule comprising: a cargo polypeptide, a diphtheria toxin enzymatic fragment (DTA), and a diphtheria toxin translocation fragment (DTB). The platform has been employed to deliver diverse cargo into cells, including those having low or high molecular weights. A hyper-stable cargo polypeptide has been delivered, as well as proteins of therapeutic significance (e.g, MecP2, SMN, FMRP, PNP, alpha-amylase, and RRSP). The platform is also useful for delivering genome-modifying proteins, such as the CRISPR protein, Cas9. Associated nucleic acids, pharmaceutical compositions, methods, uses, and kits are also described, including those of therapeutic significance aimed at treating diseases or disorders caused by enzyme or protein deficiency.
Methods of inhibiting influenza A virus in a sample are provided. Aspects of the methods include contacting a sample comprising viral RNA (vRNA) having a PSL2 motif with an effective amount of an agent that specifically binds the PSL2 motif to inhibit the influenza A virus. Also provided are methods of treating or preventing influenza A virus infection in a subject. Also provided are methods for screening a candidate agent for the ability to inhibit influenza A virus in a cell, the method comprising: contacting a sample with a candidate agent; and determining whether the candidate agent specifically binds to the PSL2 motif of vRNA. Also provided are compounds and pharmaceutical compositions comprising an oligonucleotide sequence complementary to a PB2 vRNA region that find use in the subject methods.
Methods for modulating T-type calcium channel activity without directly targeting the T-type calcium channels are provided that include modulating kelch-like protein 1 (KLHL1) levels in a subject by providing a small hairpin RNA (shRNA) that targets a KLHL1 gene, and then administering the shRNA to the subject in an amount sufficient to modulate KLHL1 gene expression. The KLHL1 level directly effects current activity in T-type calcium channels and therefore modulation of KLHL1 gene expression indirectly modulates current activity in T-type calcium channels. The methods may be implemented with, for example, an shRNA molecule suitable for modulating a KLHL1 level in the subject which may be provided as a plasmid encoding the shRNA molecule or an adeno-associated virus vector encoding the shRNA molecule. Methods of identifying compounds that modulate current activity in T-type calcium channels by determining an effect of the compound on KLHL1 gene expression are also provided.
The invention provides pipette tip columns and automated methods for the purification of nucleic acids including plasmids. Nucleic acids can be purified from unclarified, clarified or partially-clarified cell lysates that contain cell debris. The columns typically include a bed of medium positioned in the pipette tip column, above a bottom frit and with an optional top frit. Plasmid preparation scales include miniprep, midiprep, maxiprep, megaprep and gigaprep.
The present disclosure relates to nucleic acid extraction and purification methods and devices to accomplish the same. The present disclosure proposes a novel approach to this problem wherein cell isolation and nucleic acid purification can be integrated in a single “step,” by using the same solid phase for both cell adsorption and nucleic acid purification. This is achieved by binding the cells to a solid support as a first step. The same solid support is then used under conditions that lyse the bound cells, and then subsequently enable the nucleic acid to bind to the support. Methods of the present disclosure relate to the isolation of nucleic acid, and especially to a method for isolating DNA from cells, biological or environmental samples using antibiotics, which bind nucleic acids.
Disclosed are mammalian tau proteases, as well as proteolytically-active fragments, variants, and mutants thereof. Also disclosed are polynucleotides and recombinant expression vectors that encode these polypeptides, as well as methods for producing such proteins in selected recombinant host cells, and for using the compositions in a variety of diagnostic and analytical assays.
The present invention discloses a novel composition of the elution mobile phase for virus purification by immunoaffinity chromatography which is consisting of one or more amino acids: L-serine, L-asparagine, or L-glutamine, or their salts with pharmaceutically acceptable acids; one or more auxiliary ingredients: L-arginine, glycine or imidazole, or their salts with pharmaceutically acceptable acids; one or more pharmaceutically acceptable pH adjusting agents for correcting the pH value of the mobile phase from pH=6.0-8.0; and purified water, up to 100% w/w of the mobile phase composition. The invention provides the use of immunoaffinity chromatography as a key step in the production of viral vaccines and/or viral vectors, in separation of infectious from non-infectious viral particles, and for enrichment of the viral suspension in infectious viral particles.
Provided is an isolated population of human pluripotent stem cells comprising at least 50% human pluripotent stem cells characterized by an OCT4+/TRA1-60−/TRA1-81−/SSEA1+/SSEA4− expression signature, and novel methods of generating and maintaining same in a pluripotent, undifferentiated state a suspension culture devoid of cell clumps. Also provided are novel culture media, cell cultures and methods for culturing pluripotent stem cells in a suspension culture or a two-dimensional culture system while maintaining the cells in a proliferative, pluripotent and undifferentiated state. The novel culture media comprise interleukin 11 (IL11) and Ciliay Neurotrophic Factor (CNTF); bFGF at a concentration of at least 50 ng/ml and an IL6RIL6 chimera; or an animal contaminant-free serum replacement and an IL6RIL6 chimera. Also provided are methods for generating lineage-specific cells from the pluripotent stem cells.
The invention relates to improved culture methods for expanding epithelial stem cells and obtaining organoids, to culture media involved in said methods, and to uses of said organoids.
The present invention provides an apparatus and a method which can be used for producing an organic substance effectively from a synthesis gas obtained from a waste incinerator. The apparatus 1 for producing an organic substance from waste, comprises a synthesis gas generation furnace 11, a fermenter 13, and a nutrient feeder. The synthesis gas generation furnace 11 generates a synthesis gas by partial oxidation of waste. The fermenter 13 contains a microorganism which produces an organic substance from the synthesis gas. The nutrient feeder 12 feeds a solid or liquid nutrient to the fermenter 13 when an amount of the synthesis gas supplied to the fermenter 13 is insufficient.
An incubation apparatus, including a temperature-controlled room adjusted to be a predetermined environment condition, and incubating a sample of an incubation container inside the temperature-controlled room, includes a carrying apparatus, an imaging section, and an image analyzing section. The carrying apparatus carries the incubation container in the temperature-controlled room. The imaging section photographs a whole of the incubation container inside the temperature-controlled room. The image analyzing section analyses an operation state of the incubation apparatus or an incubating environment state of the sample based on a total observing image of the incubation container photographed at the imaging section, and outputs an error signal notifying an abnormality of the operation state or the incubating environment state in accordance with the analysis result.
A perfusion culture apparatus, capable of culturing cells having a multilayer structure, includes (i) a film, which is a sheet-shaped carrier on which cells are seeded in a state in which a liquid medium is allowed to pass through the sheet-shaped carrier; (ii) a vessel, which holds the film in a state in which the liquid medium is in contact with front and rear surfaces of the film; and (iii) a gas chamber, which applies pressure from outside to the liquid medium on the side in contact with either of the front and rear surfaces of the film to form a pressure difference between the liquid medium on the side in contact with the one surface and the liquid medium on the side in contact with the other surface, the liquid medium passing through the film in accordance with the pressure difference.
According to the invention, the compositions and methods provide for the complete removal of synthetic glues or adhesives from a plurality of surfaces through the use of amide solvents in combination with surfactants, chelants, acidulants and/or additional bottle wash additives. Beneficially, the compositions and methods are suitable for use at lower temperatures, including below 35° C., and lower pH conditions, including from 5 to 10, from 6 to 9, and from 6 to 8, in comparison to conventional caustic-based adhesive removal compositions.
Provided herein are solid salt base or sugar base compositions for delivering encapsulated fragrance to textiles, and processes of making and using the compositions for treating textiles. It has been discovered that, during the manufacturing process, premixing a silicon compound and a salt base or sugar base before incorporating an encapsulated fragrance slurry to the salt base or sugar base significantly decreases the encapsulate breakage rate of the solid compositions. Solid encapsulated fragrance compositions prepared by the process allows consumers to experience a long-lasting freshness of their clothes after treating their clothes with the encapsulated fragrance compositions.
A process is described for upgrading pyrolysis tar, such as steam cracker tar, by hydroprocessing in the presence of a utility fluid. The hydroprocessing conditions comprise a pressure >8 MPa and a weight hourly space velocity of combined pyrolysis tar and utility fluid >0.3 hr−1 and are selected so that the hydrogen consumption rate is in the range of 270 to 445 standard cubic meters/cubic meter (S m3/m3) of pyrolysis tar.
The invention relates an additive composition for a drilling fluid, as well as a method of increasing the lubricity and reducing the coefficient of friction of a drilling fluid. The additive composition may further contain a sulfurized olefin and/or a metal dithiophosphate compound, which further enhances the lubricating effect.
A date tree trunk- and rachis-based lost circulation material (LCM) is provided. The date tree trunk and rachis LCM includes superfine date tree trunk fibers produced from date tree trunks and superfine date tree rachis fibers produced from date tree rachises. The date tree trunks and rachises may be obtained from the date tree waste produced by the processing of date trees in the production of date fruits. The date tree trunk and rachis LCM may include fibers having lengths in the range of about 20 microns to about 300 microns. Methods of lost circulation control using a date tree trunk and rachis LCM and manufacture of a date tree trunk and rachis LCM are also provided.
A two-component lost circulation material (LCM) is provided. The two-component LCM includes a polymer component and a sodium hydroxide component. The polymer component may include may include a drilling fluid, a fibrous material such as polypropylene fibers, and an acrylic polymer, such as a 30% acrylic polymer solution. The sodium hydroxide component may include water and sodium hydroxide. The sodium hydroxide component is introduced to contact the polymer component to form the two-component LCM. Methods of lost circulation control and manufacture of a two-component LCM are also provided.
An abrasive article including a body having a bond material extending throughout the body and including at least 8 wt % aluminum oxide (Al2O3) for a total weight of the bond material, and also including unagglomerated abrasive particles including silicon carbide (SiC) contained within the bond material and present in an amount of greater than 30 vol % for a total volume of the body.
An organopolysiloxane emulsion composition for release paper or a release film, said composition being produced by dispersing a mixture comprising components (A) to (D) as mentioned below in water: (A) an alkenyl-group-containing diorganopolysiloxane having at least two alkenyl groups per molecule and having a viscosity of 1,000 Pa·s or less at 25° C., in an amount of 100 parts by mass; (B) an organohydrogenpolysiloxane having at least two Si—H groups per molecule and having a viscosity of 1 Pa·s or less at 25° C., in such an amount that the number of moles of an Si—H group can become 0.5 to 10 times the number of moles of an alkenyl group in the component (A); (C) a curing catalyst, in an amount of 0.01 to 3 parts by mass; and (D) a polyether-modified and/or polyol-modified organosilicon compound, in an amount of 0.01 to 10 parts by mass.
The invention relates to an aqueous dispersion for use as open time improver in a coating composition which aqueous polymer dispersion comprises a first polymer having a number average molecular weight (Mn) of from 2,000 to 120,000 (determined by gel permeation chromatography using a mixture of tetrahydrofurane and acetic acid as eluent), an acid value of from 30 to 150 mg KOH/g, and an ethylene-oxide wt % (on total solid polymer) of from 1 to 20 wt %, said first polymer dispersion being obtainable by free radical polymerization of a monomer mixture in the presence of at least one free-radical initiator and at least one surfactant, said monomer mixture comprising: a) 5 to 20 wt %, preferably 7 to 10 wt %, acid functional ethylenically unsaturated monomers or precursors thereof or ethylenically unsaturated monomers comprising ionic group precursors; b) 5 to 25 wt %, preferably 7 to 20 wt %, ethylenically unsaturated monomers containing polyethylene oxide, polyethylene glycol or mono-alkoxypolyethylene glycol moeity c) up to 90 wt % of non-ionic ethylenically unsaturated monomers other than a) or b); d) 0 to 10 wt % ethylenically unsaturated monomers with a functional group for cross-linking e) 0 to 10 wt % of chain transfer agents; f) up to 90 wt % non-ionic ethylenically unsaturated monomers other than c), wherein 30 to 90 wt %, more preferably 60 to 80 wt % comprise crosslinkable groups or precursors thereof; wherein the sum of a) through f) is 100 wt %. The invention further relates to a method for making the first polymer dispersion, the use of said aqueous dispersion as an open time improver in a coating composition, to aqueous coating compositions comprising a blend of at least a first aqueous polymer dispersion and a second aqueous polymer dispersion comprising a film-forming second polymer and to a method for making said coating composition.
A coating composition comprising an acid functional acrylic resin and a silane modified compound is disclosed. Substrates coated at least in part with such coatings are also disclosed.
An electrophoretic particle includes a base particle (particle), a first compound, a second compound, and a third compound bonded to the base particle. The first compound is a polymer having a dispersion portion derived from a first monomer, and a bonding portion derived from a second monomer, and is connected to the base particle at the bonding portion. The second compound includes a non-polar group and a second functional group and is connected to the base particle at the second functional group. The third compound includes a charging group and a second functional group and is connected to the base particle at the second functional group.
A surface treatment method for treating a surface formed of an inorganic material by using a polymer is provided. The polymer contains a repeating unit (A) having a cationic group with a particular structure in a side chain thereof and a repeating unit (B) having a group of a particular structure in a side chain thereof. Also provided are a tool and a device having a modified surface, and a method for producing the tool and the device.
Compositions comprising A) from 40 to 80 parts by weight of aromatic polycarbonate or polyester carbonate, B) from 10 to 40 parts by weight of rubber-free vinyl copolymer, C) from 5 to 20 parts by weight of organically surface-modified chopped glass fibre, D) from 0 to 9 parts by weight of a graft polymer with an elastomeric graft base, E) from 0 to 20 parts by weight of additives, where the sum of the parts by weight of components A) to E) in the composition is standardized to 100, characterized in that (i) a size composed of an organic compound or a mixture of various organic compounds is used as surface-modification of the glass fibre at a concentration such that the carbon content of component C is from 0.2 to 2% by weight, (ii) the ratio of the integrated peak area of the FTIR spectrum in the wave number range from 2700 to 3000 cm−1 to the integrated peak area of the FTIR spectrum in the wave number range from 500 to 4000 cm−1, in each case measured on the dichloromethane-extracted content of this size of component C, is from 0.20 to 0.70, have improved toughness (impact resistance, notched impact resistance, performance on exposure to multiaxial impact and/or tensile strain at break) in comparison with the prior art and, because they have good melt flowability and increased tensile modulus of elasticity, are suitable for use in the production of mouldings.
This invention relates to a polymer composition that is particularly suitable for use in the manufacture of injection moulded articles, which can be biodegraded in industrial composting. This invention also relates to a process for the production of the said composition and articles obtained thereby.
The present invention relates to a process for extraction of bioplastic from bioplastic-producing microbial cells, comprising the steps of: A. providing bioplastic producing microbial cells comprising bioplastic; B. providing bacterial cells selected from the species Bacillus pumilus; C. extracting the bioplastic by admixing the bioplastic-producing microbial cells of step A and the bacterial cells of step B and allowing reaction. The present invention further relates to the process of producing monomers from said bioplastics by depolymerization.
A polyimide precursor solution contains resin particles and a polyimide precursor. The resin particles in the polyimide precursor solution have a volume particle size distribution with one or more peaks. The volume frequency of a peak having the highest volume frequency of the one or more peaks accounts for 90% to 100% of the total volume frequency of all peaks of the volume particle size distribution.
A low temperature process which comprises several steps to integrate polymeric foams with at least one polymeric body in order to obtain a final body with improved properties is provided; the process being performed at a low temperature in order to avoid deformations in the polymeric body which compromise the functionality and other properties of the final body. The process comprises the steps of selecting the materials involved to guarantee the adhesion between them, the processability, their use and/or recycling, among other properties; impregnating the polymeric material to be foamed with a gas; generating the foam; and integrating the foam with the at least one polymeric body.
A prepreg containing at least the following components [A]-[F], wherein the ratio Ne/Nd of the number of structures Ne of component [F] present in a range of outside 110% of the particle diameter of component [E] and the number of structures Nd of component [F] present in a range outside 110% of the particle diameter of component [D] is 0.25 or higher. [A]: Carbon fibers, [B] thermosetting resin, [C]: curing agent, [D]: particles composed mainly of thermoplastic resin having a primary particle number-average particle size of 5-50 μm, [E]: conductive particles different from component [D] and having a primary particle number-average particle size in the range of a specific expression, [F]: filler comprising a carbon material.
An object of the invention is achieved by a method for producing a composite material, including the steps of combining a resin precursor and a reinforcing fiber and carrying out a polymerization reaction of the resin precursor. That is, a thermoplastic resin composite material having high strength can be obtained by the production method.
A salt composition includes at least one ammonium carboxylate salt obtained from: (a) at least one aromatic compound comprising 2 anhydride functional groups and/or its carboxylic acid and/or ester derivatives; and (b) one or more aliphatic diamines in which said aliphatic diamine or diamines are chosen from the diamines of formula (I) NH2—R—NH2 with R being a saturated aliphatic divalent hydrocarbon radical, the two amine functional groups of which are separated by 4 to 6 carbon atoms and 1 or 2 hydrogen atoms of the divalent radical of which are replaced by 1 or 2 methyl and/or ethyl groups; and optionally the diamines of formula (II) NH2—R′—NH2 with R′ being a saturated or unsaturated and aliphatic, cycloaliphatic or arylaliphatic divalent hydrocarbon radical, which optionally comprises heteroatoms; and at least one chain-limiting compound chosen from monoamines, monoacids or diacids in the α,β positions.
In a process for the production of pore-free polyurethane elastomer moldings with Shore D hardness of at least 60 in accordance with DIN 53505, (a) polyesterdiol with OH number from 20 to 100 mg KOH/g and (b) a chain extender composed of diol with molar mass below 300 g/mol, is mixed with (c) isocyanate prepolymers obtainable via reaction of diisocyanate with polyesterols with functionality from 1.95 to 2.2 and with OH number from 20 to 200 mg KOH/g to form a reaction mixture. The reaction mixture is charged to a mold and hardened to form the polyurethane elastomer. Polyurethane elastomer moldings are thus obtainable by this process, and these polyurethane moldings may be used as cladding component for commercial vehicles, bodywork component in vehicle construction, or a cladding component of a machine installation.
The invention provides a class of amphiphilic branched macromers and the uses thereof. An amphiphilic branched polydiorganosiloxane macromer of the invention is produced from an α,ω-dimethacryloyl-terminated polydiorganosiloxane vinylic crosslinker comprising one or more ATRP-containing siloxane units having one substituent having an ATRP initiator by ATRP polymerization of one or more hydrophilic vinylic monomers. It comprises at least two polydiorganosiloxane polymer chains each having at most two terminal methacryloxy groups, dangling hydrophilic polymer chains each having a polymerizable or non-polymerizable terminal group, and one or more hydrophilic polymer chains as linkages between two polydiorganosiloxane chains. The present invention is also related to a silicone hydrogel contact lens, which comprises units derived from a polydiorganosiloxane-containing amphiphilic branched macromer of the invention.
Disclosed are compositions comprising a liquid carrier, a polysulfide rubber curing agent, a metal cation, and an ionic liquid. Also disclosed are methods for curing a surface of an uncured polysulfide rubber. These methods involve applying the disclosed compositions to the surface of the uncured polysulfide rubber.
The present disclosure provides novel anti-CD40 antibodies, compositions including the new antibodies, nucleic acids encoding the antibodies, and methods of making and using the same.
Newly identified mammalian taste-cell-specific G protein-coupled receptors, and the genes and cDNA encoding said receptors are described. Specifically, T1R G protein-coupled receptors active in taste signaling, and the genes and cDNA encoding the same, are described, along with methods for isolating such genes and for isolating and expressing such receptors. Methods for representing taste perception of a particular taste stimulus in a mammal are also described, as are methods for generating novel molecules or combinations of molecules that elicit a predetermined taste perception in a mammal, and methods for simulating one or more tastes. Further, methods for stimulating or blocking taste perception in a mammal are also disclosed.
The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
The disclosure provides for covalent organic frameworks (COFs) that constructed from weaving a plurality of long organic threads together. In particular, the disclosure provides for the construction of woven COFS, where long organic strands are connected together in a woven pattern using organic ligands/complexes that when orientated in certain geometries are capable of reversibly binding metal ions.
A humic acid-bonded metal foil current collector in a battery or supercapacitor, comprising: (a) a thin metal foil having two opposed but parallel primary surfaces; and (b) a thin film of humic acid (HA) or a mixture of HA and graphene, having hexagonal carbon planes, wherein HA or both HA and graphene are chemically bonded to at least one of the two primary surfaces; wherein the thin film has a thickness from 10 nm to 10 μm, an oxygen content from 0.01% to 10% by weight, an inter-planar spacing of 0.335 to 0.50 nm between hexagonal carbon planes, a physical density from 1.3 to 2.2 g/cm3, all hexagonal carbon planes being oriented substantially parallel to each other and parallel to the primary surfaces, exhibiting a thermal conductivity greater than 500 W/mK, and/or electrical conductivity greater than 1,500 S/cm when measured alone without the metal foil.
The present invention relates to the compound (2R,2′R)-bis(((((tetrahydro-2H-pyran-4-yl)oxy)carbonyl)oxy)methyl) 1,1′-adipoylbis(pyrrolidine-2-carboxylate), pharmaceutical compositions comprising the same and the use of the same for treatment of diseases or disorders wherein depletion of serum amyloid P component (SAP) would be beneficial, including amyloidosis, Alzheimer's disease, type 2 diabetes mellitus and osteoarthritis.
The present invention relates to compounds of formula (I): or pharmaceutically acceptable salts thereof, as well as processes for their manufacture, pharmaceutical compositions comprising them, and their use as medicaments.
A novel α-halogen-substituted thiophene compound or a pharmacologically acceptable salt thereof, which has a potent LPA receptor-antagonist activity and is useful as a medicament is provided. A compound represented by the general formula (I) wherein A represents, a phenyl ring, a thiophene ring, or an isothiazole ring; R1 is the same or different, and represents a halogen atom, or a C1-C3 alkyl group; R2 represents a hydrogen atom, or a C1-C6 alkyl group; p represents an integer of 0 to 5; V represents CR3 wherein R3 represents a hydrogen atom, an amino group, a nitro group, or a C1-C3 alkoxy group, or V represents a nitrogen atom; and X represents a halogen atom, or a salt thereof.
The integrated process comprises a step a) of dehydrogenating propane providing a stream S1 comprising propane and propene; a step b) of separating stream S1 in at least one rectification column, providing an overhead product stream S2 comprising more than 99% by weight propene, a side stream S3 comprising from 90 to 98% by weight propene and a bottoms product stream S4 enriched in propane; a step c) of reacting propene with hydrogen peroxide in the presence of an epoxidation catalyst using propene in molar excess; and a step d) of separating non-reacted propene and propene oxide from the reaction mixture of step c) providing a propene oxide product and a stream S5 comprising propene and propane; wherein stream S3 is passed to step c), stream S5 is recycled to step b) and stream S4 is recycled to step a).
The present invention provides compounds of Formula (I): as defined in the specification and compositions comprising any of such novel compounds. These compounds are endothelial lipase inhibitors which may be used as medicament.
The present invention provides, in certain aspects, novel syringolin analogues, In certain embodiments, the compounds of the invention are proteasome inhibitors, In other embodiments, the compounds treat or prevent a cancer such as, but not limited to, leukemia in a subject.
Provided herein are small molecule active metabotropic glutamate subtype-2 and -3 receptor negative allosteric modulators (NAMs), compositions comprising the compounds, and methods of using the compounds and compositions.
Substituted hydroquinones and quinones and methods of synthesizing such compounds are disclosed herein. The substituted hydroquinones have the formula: while the substituted quinones have the corresponding oxidized structure (1,4-benzoquinones). One, two, three, or all four of R1, R2, R3 and R4 comprise a thioether moiety and a sulfonate moiety, and wherein each R1, R2, R3 and R4 that does not comprise a thioether and a sulfonate moiety sulfonate moiety is independently a hydrogen, an alkyl or an electron withdrawing group. The substituted hydroquinones and quinones are soluble in water, stable in aqueous acid solutions, and have a high reduction potential in the oxidized form. Accordingly, they can be used as redox mediators in emerging technologies, such as in mediated fuel cells or organic-mediator flow batteries.
The present invention relates to a method for preparing high-purity 1,3-cyclohexanedimethanol capable of achieving a high conversion rate by allowing most of the reactant to participate in the reaction, and of increasing reaction efficiency and economic efficiency by further simplifying the reaction process, while minimizing by-products within a shorter period of time.Specifically, the method for preparing 1,3-cyclohexanedimethanol includes reducing 1,3-cyclohexanedicarboxylic acid in the presence of a metal catalyst, which is fixed to a silica support and includes a ruthenium (Ru) compound, a tin (Sn) compound and a platinum (Pt) compound in a weight ratio of 1:0.8 to 1.2:1.2 to 2.4.
An object of the present invention is to provide a composition containing fluoromethane having high purity. A method for producing fluoromethane, comprising: pyrolyzing in a gas phase a fluorine-containing methyl ether represented by Formula (1): wherein R1 and R2 are the same or different, and each represents an optionally substituted linear or branched monovalent aliphatic hydrocarbon group, an optionally substituted monovalent aromatic hydrocarbon group, an optionally substituted monovalent cyclic aliphatic hydrocarbon group, hydrogen, or halogen, in the presence of an alumina catalyst to thereby obtain a mixed gas containing fluoromethane and acid fluoride, wherein: the alumina catalyst contains chlorine in an amount of 1.0 wt % or less.
Provided is a method including obtaining ceramic matrix composite (CMC) with a first matrix portion including a silicon carbide and silicon phase dispersed therewithin, disposing a coating thereupon to form a sealed part, and forming thereupon another segment comprising a CMC, which may be another matrix portion including a silicon carbide and a silicon phase dispersed within therewithin. Also provided is a gas turbine component with a CMC segment including a matrix portion including a silicon carbide and a silicon phase dispersed therewithin, a sealing layer including silicon carbide enclosing the first segment, and a second segment on the sealing layer, wherein the second segment includes a melt-infiltrated CMC having a matrix portion including a silicon carbide and a silicon phase dispersed therewithin.
A turbine is provided which is simple in structure and which allows a gas now passage to be formed using a CMC over a wide range while suppressing thermal stress on turbine stator vanes, thereby achieving further improved jet engine performance and reduced fuel consumption. The turbine includes a turbine stator vane formed of a CMC and including an outer band portion and an inner band portion extending continuously from an airfoil portion is hooked to a hanger made of a metal material with a front portion and a rear portion of the outer band portion engaged with a front hook portion and a rear hook portion of the hanger, respectively, and the hanger in turn is attached to a turbine case made of a metal material.
The present invention provides compositions and methods relative to controlling hydration onset of an alkaline earth metal oxide such as calcium oxide, comprising heating an inorganic alkaline earth metal oxide to sub-calcination temperatures in the presence of organic material comprising a carbohydrate, an amino-carboxylic acid, a hydroxycarboxylic acid, or a mixture thereof. Preferred treated particles comprise at least 40% and more preferably at least 80% by dry weight calcium oxide which is heated in the presence of ascorbic acid and a starch. Treated particles of the present invention manifest an unexpected, surprising hydration induction postponement behavior as demonstrated through calorimetric testing.
The present invention relates to coating glass for architectural or automotive use, either monolithic or laminated, having solar control properties. The coating consists of several layers of different metal oxide semiconductors (TiO2, ZnO, ZrO2, SnO2, Al2O3) and a layer of metallic nanoparticles, which when superimposed on a pre-established order give the glass solar control properties. In particular the use of protective layers of n-type semiconductors around the metallic nanoparticles layer. It also relates to the method for obtaining the coating by means of the aerosol-assisted chemical vapor deposition technique, using precursor solutions containing an organic or inorganic salt (acetates, acetylacetonates, halides, nitrates) of the applicable elements and an appropriate solvent (water, alcohol, acetone, acetylacetone, etc.). The synthesis is performed at a temperature between 100 and 600° C. depending on the material to be deposited. A nebulizer converts the precursor solution into an aerosol which is submitted with a gas to the substrate surface, where due to the temperature the thermal decomposition of the precursor occurs and the deposition of each layer of the coating occurs.
A bending tool for bending at least one glass pane by means of suction, comprising a frame-like convex contact surface and a cover having a peripheral air guide plate that surrounds the contact surface at least in regions is described. The bending tool is suitable for generating a first, reduced pressure in a first pressure region between the air guide plate and the contact surface; a second reduced pressure in a second pressure region. The second pressure is less than the first pressure; and a third pressure in a third pressure region, wherein the third pressure is greater than the first pressure.
Methods and compositions for dispersing a biofilm in an aqueous stream using fatty acids are disclosed. The fatty acids may have the formula: R1-R5—CH3 wherein R1 is an aryl or arylalkyl, —COR2, —COOR2, or —CONR3R4, —PO3(R2)3; R2 is H, an alkyl, an aryl or arylalkyl, or a halide; R3 and R4 may be the same or different and are H, a hydroxyl, an alkyl, an aryl or arylalkyl, a halide, or a sulfo (sulfonic acid group); R5 is an aliphatic chain having 2-30 carbon atoms and at least one double bond; and wherein when R1 is —COOH and R5 has eight carbon atoms and the FA has only one double bond, such double bond is not on the number 2 carbon.
Chlorination-assisted coagulation processes and systems are disclosed for removing organic and inorganic contaminants from aqueous compositions and streams such as produced water generated by petroleum production operations. The chlorination-assisted coagulation process includes converting at least a portion of chloride ions in the aqueous composition to hypochlorite ions or hypochlorous acid by passing an electric current through at least a portion of the aqueous composition under anaerobic conditions, the aqueous composition including the chloride ions, iron (II) compounds, and one or more organic compounds. The chlorination-assisted coagulation process further includes reacting at least a portion of the iron (II) compounds of the aqueous composition with the hypochlorite or hypochlorous acid to produce iron (III) ions, and coagulating the one or more organic compounds with the iron (III) ions to produce a plurality of insoluble solid particles in a treated aqueous composition.
Systems and methods for the desalination of water. A system includes a concentrated solar power (CSP) system, the CSP system operable to concentrate solar energy to increase temperature and pressure of a heat transfer fluid and operable to produce steam utilizing heat from the heat transfer fluid; a photovoltaic (PV) system, the PV system operable to collect solar energy to produce electricity; a desalination system in fluid communication with the CSP system and in electrical communication with the PV system, the desalination system operable to produce desalinated water from a salt water source utilizing the steam from the CSP system and electricity from the PV system; and a pump station in fluid communication with the CSP system and the desalination system, and in electrical communication with the PV system, the pump station operable to transmit the desalinated water to consumers for use.
A compound represented by LiαCo(1-x-2y)Mex(M1M2)yOδ, (Formula (I)) wherein Me, is one or more of Li, Mg, Al, Ca, Ti, Zr, V, Cr, Mn, Fe, Ni, Cu, Zn, Ru and Sn, and wherein 0≤x≤0.3, 0
A system, method, and articles of manufacture for a surface-modified transition metal cyanide coordination compound (TMCCC) composition, an improved electrode including the composition, and a manufacturing method for the composition which may include multiple chelation species (Che_x). The composition, compound, device, and uses thereof according to AxMn(y-k)Mjk[Mnm(CN)(6-p-q)(NC)p(Che_I)rq]z. CHE_GROUP (Vac)(1-z).nH2O, wherein CHE_GROUP includes one or more chelation materials selected from the group consisting of (Che_I)rw, (Che_II)sv, and combinations thereof, and wherein 0
This invention relates to a method for emulsion templating hollow silica-based particles. The particles are suitable for containing one or more active ingredients or for containing other smaller particles which may include one or more active ingredients. The emulsion templated particles can be formed from two or more silanes. The emulsion templated particles can also be formed from a silane and a compound that attaches a polymer on the shell of the hollow silica-based particles.
A hydrogen production apparatus including a desulfurizer, a reformer, a CO transformer a gas flow path, and a purge gas supply path which is provided where a purge gas is supplied to an upstream side of a pressure feeding apparatus in the gas flow path, prior to a stopping operation, a purging step of replacing gas within the gas flow path with the purge gas and filling the purge gas into the gas flow path is performed, and in a start-up operation in which a heating means is operated to increase the temperature of the gas within the gas flow path, which is performed prior to a hydrogen purification operation, a pressure increasing step of supplying the purge gas from the purge gas supply path to the closed circulation circuit and increasing the pressure within the closed circulation circuit is performed.
A power generation system that includes a membrane reformer assembly, wherein syngas is formed from a steam reforming reaction of natural gas and steam, and wherein hydrogen is separated from the syngas via a hydrogen-permeable membrane, a combustor for an oxy-combustion of a fuel, an expander to generate power, and an ion transport membrane assembly, wherein oxygen is separated from an oxygen-containing stream to be combusted in the combustor. Various embodiments of the power generation system and a process for generating power using the same are provided.
A transducer module, comprising: a supporting substrate, having a first side and a second side; a cap, which extends over the first side of the supporting substrate and defines therewith a first chamber and a second chamber internally isolated from one another; a first transducer in the first chamber; a second transducer in the second chamber; and a control chip, which extends at least partially in the first chamber and/or in the second chamber and is functionally coupled to the first and second transducers for receiving, in use, the signals transduced by the first and second transducers.
Holder for beverages, whereby the holder includes a rigid outer holder that is provided with a mouth for inserting a flexible inner holder, whereby the holder also includes an adapter, that is designed to be provided on the mouth and which is designed to be coupled to a coupling element of such an inner holder, so that in this way an inner holder, with a coupling element that is too small to be provided on the mouth directly, can nonetheless be provided on the mouth. The outer holder and the adapter are fitted with a complementary first unit to lock their mutual position when they are coupled, whereby the locking is repeatedly reversible.
A fill valve assembly for use in association with a filler device including: a vent tube; a valve housing; a valve sleeve; and a quick start seal member, wherein: (1) the vent tube is positioned at least partially within the valve housing and the valve sleeve, (2) the valve housing is in communication with the filler device, (3) the valve sleeve is positioned at least partially within the valve housing, (4) the quick start seal member is positioned within the valve housing; and (5) the fill valve assembly is configured for precluding filling start lag during normal operation of the filler device.
Devices, methods, and systems for a fairlead changing direction of a line under tensions are disclosed. The fairlead may include an opening with a front lip. The line under tension may be roved through the opening. The front lip may have a variable radius round. The front lip guides a change in direction of the line.
The present invention relates to a crane having a boom at which at least one load receiving means is arranged in a raisable and lowerable manner, wherein an overload protection device has detection means for detecting the outreach and the load on the at least one load receiving means, and wherein a monitoring device for monitoring the overload protection device is provided and has determination means for determining a tensioning force holding the boom and/or induced in a guy cable. The invention furthermore also relates to a method for monitoring the overload protection device of such a crane. Provision is made in accordance with the invention that the monitoring device determines online in crane operation a tensioning torque from the continuously determined tensioning force, determines a lifting torque from the continuously detected outreach and the continuously detected load, determines a dead torque while making use of stored crane data, compares the sum of the named lifting torque and the named dead torque with the named tensioning torque and then, if a difference found in the comparison exceeds a tolerance threshold, emits an error signal and/or shutdown signal.
A trolley for a lifting device with lifting gear arranged on a support frame and wheels which are mounted on the support frame, via which the trolley can be moved on a support, and at least one first wheel of which is mounted on an axle. The axle can be driven together with the wheel by means of a drive motor. The trolley provides a reliable transmission of drive forces between the wheels and the rail with the drivable first wheel connected to at least one of the other wheels in a driving manner via a flexible drive such that the axle is arranged between the drive motor and the flexible drive and thus the flexible drive is connected downstream of the axle in a driving manner so that the flexible drive can be driven by the axle.
A safety circuit board for controlling an electromechanical brake and motor controller of a passenger transport installation includes at least one processing unit, a main safety output with an associated relay connected to the at least one processing unit and providing a connection to the electromechanical brake and motor, and a secondary safety output with an associated relay connected to the at least one processing unit and providing a connection to the electromechanical brake and motor. The main safety output and the secondary safety output are configured in parallel enabling control of the electromechanical brake and motor with the at least one processing unit using either of the safety outputs.
A method and system for providing destination dispatch in an elevator control system, includes identifying a user, retrieving a user profile associated with the user, receiving a destination request associated with the user, analyzing the user profile and the destination request, determining a plurality of assignments, identifying a preferred assignment of the plurality of assignments, and prompting the user to opt-out of the preferred assignment.
An automated aisle runner includes an automated control unit, an aisle runner, and a mobile runner extender. The automated control unit includes a housing and a runner roller, wherein the runner roller is rotatably mounted within the housing. The aisle runner is disposed around the runner roller, such that the aisle runner is wound around and unwound from the runner roller as the runner roller is rotated by a motor. The mobile runner extender is provided to ensure the aisle runner is extended in a straight, smooth manner, eliminating problematic tangling. A plurality of lights may be positioned along the aisle runner and a projector integrated into the automated control unit to provide enhanced visual effects, while a speaker provides audial effects. A microcontroller allows a user to control the color and pattern of the plurality of lights, projections, and the audio files played through the speaker.
An apparatus for dispensing wire or cable, the apparatus including an enclosure with a top and a bottom portion and at least three side portions of a first height, a plurality of holes located in both the top and bottom portions of the enclosure, and a core of a second height located within the enclosure, wherein the core forms an area, wherein at least one of the plurality of holes has a first hole diameter and is located in the top and bottom of the enclosure and is located within the area formed by the core, and wherein the wire or cable is placed around the core.
The present invention provides an elastic hair tie material and an elastic hair tie dispenser for dispensing varying lengths of elastic hair tie material. More particularly, the present Elastic Hair Tie Dispenser device has been configured with a flexible cover, a pivoting cutting blade actuator and cutting blade to conveniently dispense elastic hair tie material of varying color, cut to any desired length by the user of the dispenser, to be worn by women or men to restrain their hair in many varying different stylish configurations and for varying purposes, and wherein the dispenser is refillable by either winding hair tie material onto a spool rotatably housed within the dispenser or inserting a new coil of hair tie material sold separately.
A medium feeding apparatus includes a feeding portion that performs a feeding operation, which feeds a medium to a downstream side, and a reverse feeding operation, which feeds the medium to an upstream side, and a wind-up portion that performs a wind-up operation, which winds up a medium fed to the downstream side by the feeding operation, and a unwinding operation that unwinds the wound up medium, in which the wind-up portion performs the unwinding operation prior to the reverse feeding operation.
A system, method, and apparatus for palletizing cargo on a rack for shipment are provided. The system generally includes a tiered rack having a base tier, a support framework extending from the base tier, and a second tier adjustably attached to the support framework. The system may further include a plurality of lower frame support members positioned longitudinally across the bottom of the base tier, and a plurality of pneumatically actuated rollers spaced to cooperatively engage the plurality of lower frame support members, the rollers being selectively extendable from a plurality of raised tracks positioned longitudinally along a floor of the railcar, where the rollers are configured to pneumatically extend past an upper surface of the track when actuated and allow for linear motion thereover.
A conveyance facility for conveying a bag along a conveyance path includes a carrier including a traveling wheel traveling on the conveyance path, and a support supporting the bag being suspended, the carrier conveying the bag along the conveyance path; and a traveling rail provided along the conveyance path, and supporting the traveling wheel so as to be travelable. The traveling rail includes an accumulation belt causing the traveling wheel to travel in frictional contact with the support; and a tracking conveyance belt being meshed with the support to thereby cause the traveling wheel to travel.
A transfer system for transferring thermoplastic material containers from a linear operating machine to a rotary operating machine having a first linear transfer device apt to pick the containers from the linear operating machine and to translate along a first axis to an exchange zone and vice versa, a wheel cooperating with the rotary operating machine peripherally provided with seats for the containers and apt to rotate about a second axis perpendicular to the first axis, at least one second linear transfer device apt to pick the container from the first linear transfer device in the exchange zone and to transfer them to the seats, the at least one second linear transfer device being apt to translate parallel to the first axis from the exchange zone to an unloading zone proximal to the wheel and vice versa.
Various embodiments described herein generally relate to techniques for conveying articles on a conveyor system of a robotic material handling system in a material handling environment. In accordance with an embodiment, the robotic material handling system includes a front portion and a rearward conveyor. The front portion may be expandable to a first configuration and retractable to a second configuration. On detecting a jam on the front portion, the robotic material handling system may actuate expansion of the front portion to the first configuration, and attempt to dislodge the jammed articles by causing one or more of (i) separating the jammed articles by activating one or more of a plurality of zones of the front portion under the jammed articles, and/or (ii) activating one or more of the plurality of zones under the jammed articles in a reverse direction.
The invention relates to a rail module (1) having rail portions (2) and having a linear drive for moving a rail-bound carriage. The linear drive has at least one drive module (4) which can be brought into operative connection with at least one reaction element. Here, the reaction element is secured, independently of the drive module (4), to the carriage in a drive region and the drive module (4) is arranged fixedly in relation to the rail module (1). When the rail module (1) is used as intended, the rail-bound carriage can be moved along at least a first or a second movement axis. The invention also relates to a rail transport system made up of at least two of the rail modules.
A water storage and management system takes water from a water source, such as captured run-off, and through a piping system, directs a flow of the water into an aquifer for storage and future utilization. Using moisture detectors, the system ascertains the water content of different layers or zones of the aquifer and reports this information to a digital processor. The digital processor may utilize this information to issue instructions to one or more control valves to direct the flow of the water into portions of the aquifer which have additional storage capacity. The digital processor may also instruct a submersible pump to withdraw from the aquifer as desired. This system is utilized in a method of banking groundwater from a remove location. Such groundwater storage may result in receipt of groundwater recharge credits.
A magnetic drive intelligent trash bin lid assembly automatically opens and closes a lid portion relative to a trash container. The lid portion comprises a shell that pivotally joins the container at a lid shaft. A sensor detects motion near the lid, and activates a drive motor in response. The drive motor powers an output shaft to rotate and engages a magnetic clutch. The magnetic clutch includes two magnets that are released from their respective seats to attract each other; and thereby axially displace the output shaft into engagement with a variable linkage. The magnetic clutch engages and disengages the drive motor and the variable linkage, allowing the variable linkage to articulate independently of the drive motor. This separation reduces excessive loads as the lid portion articulates between open and closed positions. A spring absorbs forces in the magnetic clutch, so as to reduce axial loads in the magnetic clutch.
Provided is a pressure reducing tilt nozzle that includes a body defining a cavity having an inlet and an outlet, and a piston disposed in the cavity. The piston is biased in a first piston position away from the inlet allowing flow through the inlet and is movable toward the inlet to a second piston position preventing flow through the inlet when pressure in the cavity overcomes a biasing force biasing the piston in the first piston position.
This invention relates to apparatus and devices that generate sclerosing microfoams for the treatment of venous disorders, such as varicose veins. The invention includes adaptors which provide fluid connections to microfoam generating devices, to enable filling with gas and/or dispensing of the microfoam product. The adaptors are generally cylindrical elements with open ends to enable attachment to pressurisable container on one end and are configured to enable rapid and easy attachment of a filling means or a dispensing means through the other end of the adaptor. A particular configuration comprises three or more circumferentially and downward extending cam tracks which cooperate with corresponding cams on the filling means or dispensing means and which connect a pressurisable container to a fluid path of a filling or dispensing means when the pressurisable container and filling or dispensing means are rotated relative to each other.
A thermally insulating packaging to hold an item includes a solid compostable or recyclable shell that is formed primarily of starch, and a bottom cover. The shell includes a floor, a plurality of inner side walls that are coupled to the floor, a rim coupled to the plurality of inner side walls, and a plurality of outer side walls that are couple to the rim. The floor and the plurality of inner side walls define an interior space of the shell to receive the item and an opening to the interior space. The plurality of inner side walls and plurality of outer side walls have a space therebetween that defines a gap. The gap can be an air-filled cavity, or be filled with a compostable or recyclable core material.
A packing member attached to an article to be packed, which is accommodated in a package box, to absorb an impact applied to the article, including: a first supporting part; a second supporting part; and a shock absorbing member connected to the first supporting part and the second supporting part. One of the first supporting part and the second supporting part is disposed so as to be partially in contact with the article in a state in which an impact is not applied. When an impact is applied, the shock absorbing member deforms to absorb the impact.
An apparatus (10) receives an at least partially flexible vessel (14) adapted for receiving a fluid. The apparatus (10) may include an overpack (12) and a partition (16) removably positioned in an interior of the overpack (12). The partition (16) may extend generally transverse to a sidewall (12b) and generally aligned with a floor (12c) of the overpack (12) to form a compartment for receiving the vessel (14). The partition (16) may also form part of a carrier (17) for the vessel (14). A filling station for filling containers (10) is also disclosed, as are related methods.
A package is defined by a rigid base member and a peripheral flange surface. A flexible lidding member is heat sealed to the flange. The lidding member includes a first layer having a perimeter portion fixed to the flange and a second layer adhered to the first layer. An adhesive layer includes a permanent adhesive central portion and a perimeter pressure sensitive adhesive portion overlapping with the flange. A central score line is provided within the first layer, surrounding the central adhesive portion. A tab portion is formed as part of the perimeter portion of the lidding member and includes an edge score line formed in the first layer directly adjacent the fixed perimeter portion of the first layer.
A screw cap container including a container main body and a screw cap. The container main body includes a mouth tubular portion, which is provided with slope screw portions. The slope screw portions include: upper screw protrusions disposed at three or more different positions; lower long screw protrusions having left end positions same as left end positions of the upper screw protrusions, and each having a length longer than a length of each upper screw protrusion; and oblique screw protrusions extending obliquely from right ends of the lower long screw protrusions and each being connected to a left end of a different one of the upper screw protrusions. The screw cap includes a top wall and an outer circumferential wall. The outer circumferential wall is provided with cap screw protrusions disposed in the same number as the number of the upper screw protrusions.
An assembly of a closure with a container, for sealing of the container, comprises the container having an inner container surface defining a cavity opening to ambient through an opening, the closure comprising an upper portion and a lower portion, the lower portion having a lower lateral surface, the lower portion being adapted to be inserted into the opening of the container and two grooves provided on the lower lateral surface and adapted to receive two respective sealing members, the two grooves being separated by a predetermined distance, the two sealing members provided in the two respective grooves, the two sealing members being adapted to provide sealing between the lower lateral surface and the inner container surface, wherein the lower lateral surface, the inner container surface and the two auxiliary sealing members together define an annular space and a barrier sealant in the annular space.
A seed container and shell receptacle for separately storing fresh and used seeds. The seed container and shell receptacle includes an outer container having at least one sidewall, an open upper end, and a removably securable base defining an interior outer volume. An inner container having at least one sidewall, an open top end, and an open bottom end nests within the outer container such that the base of the outer container acts as the inner container's base defining an interior inner volume. A lid is removably securable to the open upper end of the outer container and includes a first and second aperture giving access to the interior outer volume and interior inner volume, respectively. The first and second apertures can be sealed by a first and second sealing mechanism respectively.
A resealable beverage can lid has a lid having a top side having a first scored opening and a bottom side, a first rivet formed in the lid and extending outwardly from the top side of the lid, a tab portion connected to the first rivet, a second rivet formed in the lid and extending outwardly from the top side of the lid, the second rivet having an indentation formed in the bottom side of the lid, the second rivet having a second scored opening, and a closure element connected to the indentation.
An apparatus for heat shrinking a package, comprising: a chamber configured such that a package on a surface of the apparatus may be heat shrunk via a heating fluid in the chamber; and a preheat container configured to supply a preheated liquid to a heat tank from which the heating fluid is supplied to the chamber; wherein the preheat container is above the surface such that liquid in the preheat container can be preheated by heat from the chamber.
A packaging machine with a carousel with horizontal axes, particularly suitable for packaging rolls of paper or packs of paper serviettes or other solid products of variable size, of the type that comprises a plurality of identical seats on the same carousel, angularly equidistant from each other, radially open towards both the outside and the inside and each formed by a longitudinal wall fastened perpendicularly to said carousel and by a parallel and opposite wall, the distance of which from said fixed longitudinal wall can be adjusted to ensure that, with a movement parallel to the axis of the carousel, a product of variable size with its wrapping sheet can be inserted between these walls, and wherein the same seats comprise, between said longitudinal walls, two transverse walls designed to cooperate with the ends of said product with the wrapping sheet inserted in the same seats, which for this must have an adjustable reciprocal distance, whereby at least one of these transverse walls is connected to means for adjusting the distance from the other transverse wall, characterized in that said adjustment means comprise, for each said wall, respective internal threads and respective slides sliding on respective rectilinear guide means, directly or indirectly supported by the table of the carousel and parallel to the movement of the associated walls, with two sets of screws being provided parallel to these guide means that cooperate with said internal threads, which are also rotationally supported, directly or indirectly, by said table, these screws being kinematically connected to each other by associated means to ensure that by acting on one of the components of these connection means, the adjustment of the dimensions in length and in width of all the seats is performed in a centralized, rapid and precise manner to adapt them to the different sizes of the products to be packaged.
A method and a device for producing a container filled with a liquid filling material from preforms made of a thermoplastic material, wherein each preform is thermally conditioned and subsequently, during a molding and filling phase, remolded into the container in a mold having at least one liquid filling material as a pressure medium. The filling material or parts of the filling material are supplied at at least two points in time and/or in at least two process phases with different contents of carbon dioxide and/or at different temperatures. In the second process phase, dry ice, particularly in form of pellets, is supplied.
A rocket landing stabilization system can include one or more upright support structures such as posts, columns, or walls, from which one or more stabilizing elements can be supported. The stabilizing elements can be used to stabilize a rocket as it lands at a landing site. The rocket landing stabilization system can also include a cradle, funnel, or cone to catch or otherwise support a rocket as it lands at the landing site. The rocket landing stabilization system can be located on land or at sea.
Disclosed is a magnetic-fluid momentum sphere, which is used for satellite attitude adjustment. The magnetic-fluid momentum sphere comprises stators and a spherical shell. The stators are classified into three groups, axes of the three groups of stators are orthogonal to each other, each group comprises two stators arranged symmetrically about the center of the spherical shell, and the inner surfaces of the stators are spherical surfaces. The spherical shell is formed by combining two hemispherical shells, the material of the spherical shell is a non-ferromagnetic material, the inner surfaces of the stators closely adhere to the outer surface of the spherical shell, there is no relative movement between the spherical shell and the inner surfaces of the stators, and the spherical shell is filled with magnetic fluid. The magnetic-fluid momentum sphere achieves a small size and mass, low costs, and small coupling among the axes.
A method and device for aerial vehicle-based image projection, and an aerial vehicle are provided. The method comprises adjusting a position of the aerial vehicle to a projection-permitted position if an image projection event for the aerial vehicle is detected, triggering a projection module of the aerial vehicle to project an image. Adjusting the position of the aerial vehicle comprises adjusting the position of the aerial vehicle based on an obstacle image captured in a projecting direction of the projection module.
The device for assisting the landing of an aircraft in a phase of descent for the purpose of a landing on a runway with the help of an instrument landing assistance module includes an image capturing module for capturing a sequence of successive images of the ground, an image processing module, a monitoring module for detecting on the processed images at least one visual characteristic corresponding to a runway, a computation module for computing a current position of the aircraft and a comparison module for comparing the computed current position with a signal representative of a current position of the instrument landing assistance module, a go-around warning being transmitted to a display unit, if the current positions are not substantially identical.
An in flight refueling probe for an aircraft includes a circular shaped hollow tubular member having a first end attached to the aircraft and a second end extending from the aircraft terminating in an external convex shape with a plurality of first holes equally spaced thereabout. A cylindrical member having a first end with an internal curved surface convex shaped end of the tubular member with a plurality of second holes there through in alignment with the plurality of first holes in the second end of the tubular member with fasteners installed in the holes joining the cylindrical member to the tubular member. The fasteners have a strength limited to a value that will break under a specific load on the probe. A nozzle assembly is mounted to the second end of the cylindrical member for coupling to the receptacle on a fuel dispensing aircraft.
A method for manufacturing a strainer, such as a strainer of an ejector used to transfer fuel between two tanks of an aircraft or to supply fuel to an engine is provided. The strainer includes a conduit whereof a first end is intended to be connected to an inlet of the ejector, and whereof a second end is located within a housing including an open face for the passage of fuel, the open face being closed off by a grate acting as a filter. The method includes the step of manufacturing the conduit, the housing and the grate of the strainer as a single monobloc part.
An arrangement in the cabin of a vehicle includes a floor, a first equipment component, a second equipment component and a partitioning device. The partitioning device is set up to provide a wall surface between the first equipment component and second equipment component largely perpendicular to the floor. The partitioning device is positionable in at least two positions along a length running between the first equipment component and second equipment component. The partitioning device is lockable in its respective position on at least one of the floor, a cabin ceiling and a cabin lining.
A mechanically simple rotor system is a novel mechanism that collectively drives the pitch of the rotor blades by combining the input from three separate servos. Each servo can be controlled by redundant control systems. This configuration reduces total error caused by any one system and allows the continuation of rotor pitch control in the event of one or more servo or system failures.
An aircraft tire includes a tire body forming an outer peripheral part of an aircraft wheel; and a protrusion with a pressure receiving surface configured to receive flight wind pressure toward one end and a streamline shape tapering toward another end. The protrusion rotates the aircraft wheel before touchdown through flight wind pressure received by the pressure receiving surface. The protrusion includes a pair of legs; a weight portion with a center of gravity positioned outwardly of respective horizontal positions of the pair of legs with respect to a center line widthwise of the tire body; and a hollow part extending between the ends of the protrusion. Centrifugal force that acts on the weight portion causes the pair of legs to fall over in a direction toward an outer periphery of the tire body to narrow the hollow part for reduction of an area of the pressure receiving surface.
A diver navigation, information and safety buoy system and method. The system and method incorporate a float device, and an ultra-short baseline acoustic array in communication with a diver transponder. The system and method also include a GPS system having a GPS antenna device mounted on the float device. The system also includes an AIS system having an AIS antenna mounted on the float. A diver processor permits a diver's location information to be calculated, and the diver can be navigated to a desired destination.
An electronically powered, light emitting fin used with a surfboard or paddleboard, or similar water sports board. The fin is configured to be attached to the water sports board to provide illumination under the board when using the device. The lighted fin may be particularly useful when using the water sports board at night to illuminate water beneath the board.
A method of operating an electronic transmission is disclosed, including the following steps. First, turn on the electronic transmission, initialize settings, and perform as an operating mode. Next, detect whether a setup command, a shifting command, or a shutdown command is received. If the setup command is received, perform as the setup mode; if the shifting command is received, perform shifting; if the shutdown command is received, shut down the electronic transmission. If none of the commands is received for a predetermined period, detect whether a standby function is executed. If the function is not executed, shut down the electronic transmission; if the function is executed, perform as a standby mode, and detect whether to receive any command in a less energy consumption manner. If any command is received, return to perform as the operating mode whereby the method protects, including sustaining the power supply.
An electric self-balancing vehicle including a top cover, a bottom cover, an inner cover, a rotating mechanism, two wheels, two hub motors, a plurality of sensors, a power supply, and a controller is described herein. The top cover includes a first top cover and a second top cover disposed symmetrically and rotatable relative to each other. The bottom cover is fixed to the top cover and includes a first bottom cover and a second bottom cover disposed symmetrically and rotatable relative to each other. The inner cover is fixed between the top cover and the bottom cover and includes a first inner cover and a second inner cover disposed symmetrically and rotatable relative to each other. The rotating mechanism is fixed between the first inner cover and the second inner cover. The two wheels are rotatably fixed at two sides of the inner cover, respectively. The two hub motors are fixed in the two wheels, respectively. The plurality of sensors is disposed between the bottom cover and the inner cover, respectively. The power supply is fixed between the first bottom cover and the first inner cover. The controller is fixed between the second bottom cover and the second inner cover, the controller is electrically connected with the plurality of sensors, the power supply, and the hub motors, and the controller controls the hub motors to drive the corresponding wheels to rotate according to sensing signals transmitted by the sensors.
An adjustable structure for rear seat of bicycle has a rear seat, a clamp, and a connection member. The rear seat and the clamp are respectively arranged a first teeth portion and a second teeth portion. The connection member has a third teeth portion and a fourth teeth portion. The first teeth portion and the third teeth portion are engaged with each other and the second teeth portion and the fourth teeth portion are engaged with each other. The first, second, third, and fourth teeth portions are allowed a little rotation. It may adjust position without totally releasing the screws. It may be quickly positioned.
A device for transporting a payload (to include a human user) over varied terrain. A platform accommodates the payload. A pair of wheel clusters are mounted to opposite ends of the platform and are powered in rotation relative thereto. Each includes at least two co-planar wheels powered by electric motors. A latch is hand-operable (without tools) to secure the cluster to the platform and, alternatively, allow the cluster to be detached from the platform and rotated 90° to lie parallel thereto. An electrical connector conducts electric power from the platform to the cluster when the latch is operated/actuated to secure the cluster to the platform, and is configured such that it does not impede or obstruct detaching the wheel cluster from the platform, with no requirement that the user take any additional step (other than actuating the latch) to detach the wheel cluster.
An air fairing device is connected below the bottom a frameless trailer to improve aerodynamic efficiency and improve fuel economy. One embodiment of the air fairing device provides an air deflector positioned forward of a trolley which supports the frameless trailer at a rear end. A second embodiment of the air fairing device provides two deflectors mounted below the frameless trailer. The first deflector is attached and extends downward from an articulating arm, said arm connecting the trailer to a semi-tractor or truck. The second deflector connected to below the bottom of the frameless trailer and positioned rear of the first deflector and forward of the trolley. A third embodiment is similar to the second but further includes a third deflector positioned between two axles of the trolley.
In one embodiment, a method comprising dampening movement of a cab supported by a chassis according to at least one dampening component; receiving plural inputs from at least one sensor and a seat suspension system; and based on the received plural inputs, causing an adjustment to the dampening movement of the cab according to the at least one dampening component.
To provide a vehicle front body structure including a side sill that extends in a vehicle front-rear direction and is located behind a position where a front wheel is disposed and a torque box extending from a front end of the side sill toward an inside in a vehicle width direction. In the vehicle front body structure, the torque box includes an upper surface portion disposed at a substantially same height as an upper surface of the side sill and a lower surface portion disposed at a substantially same height as a lower surface of the side sill. A reinforcing member is provided in an internal space surrounded by the upper surface portion and the lower surface portion of the torque box.
A vehicle has a transmission and a brake booster disposed rearward of the transmission. A generally C-shaped lever is pivotingly mounted to the transmission and immediately adjacent to the brake booster such that a first arm of the lever is disposed forward of the brake and a second arm of the lever is disposed beneath the brake booster. The lever is configured such that rearward movement of the transmission due to a vehicle collision urges the first arm into contact with the brake booster and thereby rotates the lever such that the second arm urges the brake booster upwardly relative to the transmission. The upward movement of the brake booster thereby prevents the brake booster from being trapped between the transmission and structure of the vehicle such that it may cause undesirable intrusion of a brake pedal into the vehicle passenger compartment.
A power system for an electric vehicle including a firewall positioned between an engine compartment and a passenger compartment of the vehicle. A floor structure of the vehicle is coupled with the firewall and defines an aperture between the firewall and a central support beam of the floor structure. A battery assembly is configured to mount with an underside of the floor structure having a battery and a battery connector housing to house a battery connector. The connector housing defines an electric connector to couple with an electric system of the vehicle. The connector housing is inserted within the aperture of the floor structure such that at least a portion of the battery connector housing extends above the floor structure. A rigid tunnel is coupled with the firewall, the floor structure, and the central support beam to cover the portion of the connector housing that extends above the floor structure.
A vehicle is configured to travel, when a vehicle velocity is within a velocity range from not less than a first velocity of at least zero to not more than a second velocity larger than the first velocity, in a mode in which a vehicle body is leaned by a lean mechanism according to an input into an operation input unit, and a wheel angle of a turn wheel changes following a lean of the vehicle body. A natural frequency of roll oscillation of the vehicle body is either within a range of smaller than a reference frequency or within a range of larger than the reference frequency, the reference frequency being a frequency at which oscillation of the wheel angle of the turn wheel has phase delay of 90 degrees relative to the roll oscillation of the vehicle body in its width direction.
A bar is designed for attaching a steering cylinder of a vehicle to a wheel axle. The bar is twisted around its longitudinal axis. The bar is manufactured by cutting out a rectangular plate of metallic material or of composite material, clamping the longitudinal ends of the cut-out plate, and pivoting one end or pivoting both ends in opposite directions, around a longitudinal axis of the plate.
A motor vehicle steering system with steer-by-wire functionality may include an upper steering shaft that is mounted in a steering column and can be connected to a steering wheel in a rotationally fixed manner, a lower steering shaft that is connected to a steering gear for pivoting at least one steerable wheel, a manual torque adjuster that is connected to the upper steering shaft, an actuating drive that is connected to the lower steering shaft, and a coupling that in a closed state couples the steering wheel and the steering gear in a rotationally fixed manner. The actuating drive may be disposed on the steering column.
A miniature vehicle includes a chassis frame, front and rear wheel assemblies operatively coupled at front and rear ends of the chassis frame respectively, a motorized assembly supported on the chassis frame to power the rear wheel assembly, and a foot steering arrangement operatively coupled to the front wheel assembly. Therefore, the user is able to control the miniature vehicle by the feet of the user to precisely steer and control the miniature vehicle.
A steering wheel includes a core metal, a resin layer molded so as to cover a part of the core metal, a wiring including a base part covered with the resin layer so as to be integral with the part of the core metal and an extending part configured to be continuous to the base part and extend from the resin layer, a covering member deformably covering at least a part of the wiring, and an accommodating part provided in the core metal and configured to accommodate the part of the wiring together with the covering member.
A train control system controls an operation of a train by transmitting and receiving, between an on-vehicle wireless station mounted on the train and a ground wireless base station, information that includes train control information by wireless communication. General transmission information, which is information included in the information that includes the train control information and is transmitted only once from the ground wireless base station to the on-vehicle wireless station. The train control information is transmitted repeatedly a plurality of times from the ground wireless base station to the on-vehicle wireless station. Among the repeatedly transmitted train control information, the on-vehicle wireless station uses, for an operation of the train, a piece of train control information, which the on-vehicle wireless station receives without lack of data lack for a first time.
A system and method for inspecting components of a moving train having a locomotive and a plurality of rail cars is disclosed. An inspection unmanned aerial vehicle (UAV) may be deployed from the locomotive or one of the rail cars of the train, and the inspection UAV may fly to an initial inspection position relative to the moving train. The inspection UAV performs an inspection function on components of the moving train via inspection equipment mounted on the inspection UAV and starting at the initial inspection position. The inspection UAV then returns to the locomotive and the rail car after the inspection of the components of the moving train is complete.
A railway truck includes two parallel side frames, a suspension spring assembly supported by the side frames, and a bolster transversely mounted between the side frames and supported by the suspension spring assembly. Each side frame has at least one vertical support face, and the bolster has at least one sloped support face. A friction shoe includes a bottom base engaging and supported by a support spring, and a sloped wall engaging the sloped support face of the bolster. The friction shoe prevents bolster side wall wear.
An air spring includes an outer cylindrical member, an inner cylindrical member combined with the outer cylindrical member, a diaphragm coupling the outer cylindrical member and the inner cylindrical member to each other, the diaphragm providing an internal space between the outer cylindrical member and the inner cylindrical member, a first element located on a side of the internal space in at least one of the outer cylindrical member and the inner cylindrical member and defining a part of the internal space, a second element adjacent to the first element, the second element defining a part of the internal space, and a cover layer covering a boundary portion between the first element and the second element.
An information display structure includes a stationary part to be secured upright on or against a support; securing means for securing the stationary part; and at least one information display screen connected to the stationary part, extending in front of same, and having a visible front display face.
A control part controls a clutch actuator. The control part has a first shift mode and a second shift mode. In the first shift mode, the clutch is switched to the disengaged state before changing of the gear position and the clutch is switched to the engaged state after changing of the gear position. In the second shift mode, an output of the prime mover is adjusted while the clutch is kept in the engaged state during the shift operation. Either the first shift mode or the second shift mode is selected on the basis of a detection result on whether the shift operation is a shift-up operation or a shift-down operation, and a traveling state of the vehicle.
A method for adjusting driveline torque output of a vehicle is described. In one example, driveline output torque of a vehicle is decreased via switching from a first curve of a transfer function to a second curve of the transfer function, and then adjusting driveline output responsive to the second curve of the transfer function.
A vehicle speed control system for a vehicle having a plurality of wheels, the vehicle speed control system comprising one or more electronic control units configured to carry out a method that includes applying torque to at least one of the plurality of wheels, detecting a slip event between any one or more of the wheels and the ground over which the vehicle is travelling when the vehicle is in motion and providing a slip detection output signal in the event thereof. The method carried out by the one or more electronic control units further includes receiving a user input of a target speed at which the vehicle is intended to travel and maintaining the vehicle at the target speed independently of the slip detection output signal by adjusting the amount of torque applied to the at least one of the plurality of wheels.
A drive assist apparatus includes a position acquisition unit that acquires a position of an own vehicle, a position of a tollgate present ahead of the position of the own vehicle, and a position of a target lane in a road present ahead of the tollgate, a scheduled traveling route creation unit that creates a scheduled traveling route from the position of the own vehicle to the position of the target lane through the position of the tollgate, and a travel control unit that controls the own vehicle so as to travel along the scheduled traveling route.
A vehicle includes an engine cranked by an electric machine powered by a first battery, a first plurality of components powered by the first battery, a second plurality of components powered by a second battery, and a processor programmed to isolate the second battery and associated components from the first battery and associated components at least during engine cranking. The first battery may be a low voltage battery having a first chemistry, such as a lead-acid battery with associated components that are less sensitive to voltage variation induced by engine cranking or starting, such as heated mirrors, seats, wipers, a climate control blower, power windows/doors, and auxiliary pumps. The second battery may be a low or high voltage battery having a second chemistry, such as a lithium-ion battery with associated components that may be more sensitive to low voltage during engine cranking/starting, such as lighting, electronics, and infotainment systems.
A control apparatus for a vehicle includes a control portion configured to control an input torque to an automatic transmission such that a value representing a rotating state of an input rotary member of the automatic transmission coincides with a target value; a racing determining portion configured to determine whether a rotating speed of an engine is predicted to exceed a predetermined rotating speed when control is provided such that the value representing the rotating state of the input rotary member of the automatic transmission coincides with the target value during a power-on shift-down action of the automatic transmission; and an output limiting portion configured to limit the output torque of the engine to a predetermined torque or less if the rotating speed of the engine is predicted to exceed the predetermined rotating speed during the power-on shift-down action of the automatic transmission.
A hybrid electric powertrain includes an electric machine delivering torque to an engine in an engine start event having initial cranking and transition phases. In response to a request for an engine start event, a controller commands delivery of the motor torque to the crankshaft. In the initial cranking phase the controller regulates crankshaft acceleration from zero speed up to a target cranking speed in a closed-loop manner via a predetermined fixed profile. In the transition phase, the crankshaft accelerates from the target cranking speed to a target idle speed using a feed-forward torque value blended, using a calibration table, from a predetermined engine drag torque to a reported engine torque. In the transition phase the controller periodically adjusts a speed trajectory of the crankshaft, with the magnitude and frequency of adjustment based on combustion of the engine and calibration of the feed-forward torque.
In a driving assist device, an electronic control unit is configured to determine whether a target position is able to be decided from a predetermined object indicating that a vehicle needs to be decelerated, when recognizing the predetermined object, to perform a first assist by which the vehicle is decelerated at a first deceleration that is changed based on a brake operation by a driver, when determining that the target position is not able to be decided, and to perform a second assist by which the vehicle is decelerated at a second deceleration that is equal to or higher than a predetermined deceleration necessary to decelerate the vehicle to the target velocity before the vehicle reaches the target position decided from the predetermined object, when determining that the target position is able to be decided.
A vehicle brake control device includes a wheel deceleration calculating unit configured to calculate a wheel deceleration of each of wheels of a vehicle, and a front and rear wheel braking distribution controlling unit configured to execute a front and rear wheel braking distribution control for distributing a braking force on front and rear wheels. The front and rear wheel braking distribution controlling unit is configured to start the front and rear wheel braking distribution control on front and rear wheels of one of left and right sides if an absolute value of a wheel deceleration of the front wheel is equal to or larger than a first threshold and an absolute value of a wheel deceleration of the rear wheel is equal to or larger than a second threshold.
A deflection control apparatus is configured to perform a deflection control in which a subject vehicle is deflected by a braking force difference between left and right wheels. The vehicle control apparatus is provided with: a calculator configured, in the deflection control, (i) to calculate a target yaw rate so that the subject vehicle drives on a target track by the deflection control, and (ii) to calculate a target yaw moment by dividing the calculated target yaw rate by a coefficient based on a velocity of the subject vehicle; and a controller configured to control a braking force of each wheel so that the target yaw moment is applied to the subject vehicle.
A method for operating a driver assistance device for a motor vehicle. A drive potential is respectively determined from all driven wheels of at least one axis of the motor vehicle. The drive potentials are compared and a braking device with a specific wheel braking force is controlled for braking the wheel having a lower drive potential.
The invention relates to an intermediate piece 101 intended to be interposed between a connector 8 that is able to carry a wiper and a connecting element 203 of a driving arm, the connector 8 comprising at least one receiving bearing 15 for receiving a first shaft 102, the connecting element 203 comprising at least one receiving orifice 215 for receiving a second shaft 103, characterized in that the intermediate piece 101 is equipped with the first shaft 102 and the second shaft 103. Application to motor vehicles.
A sensor and a system using the sensor are described. The sensor may comprise: a cover; and a positive temperature coefficient (PTC) shroud located at a periphery of the cover. The system may include one or more such sensors in a passage of a housing. The system further may comprise a blower that moves air through the passage and across at least a portion of the sensor(s).
A plate for an electro-thermal window includes a heatable transparent conductive film, and bus bars that feed power to the transparent conductive film. The bus bars include a left bus bar connected to a left side edge and a right bus bar connected to a right side edge of the transparent conductive film. The transparent conductive film is divided into regions by a slit continuously or discontinuously formed from the left bus bar to the right bus bar. The regions include first and second regions. A distance between the left bus bar and the right bus bar of the first region is shorter than a distance between the left bus bar and the right bus bar of the second region. A width of the first region in a direction orthogonal to the slit is shorter than a width of the second region in the direction.
A vehicle brake pedal lock that is fixedly installed under a brake pedal. The brake pedal lock prevents the arm of a brake pedal from being depressed. The brake pedal lock uses a linear servomotor to position a bolt under the brake pedal arm. The linear servomotor is activated using a wired safety switch and a radio frequency remote to minimize inadvertent activation.
A vehicle seating assembly is provided herein. The vehicle seating assembly includes a seatback coupled to a seat-base. An airbag assembly is coupled to the seatback and configured to deploy therefrom. A tether is coupled to the airbag assembly and at least one of the seatback and the seat-base. An anchoring feature is coupled to at least one of the seatback and the seat-base and is configured to restrain seating-assembly-upward movement of the tether.
A variable control apparatus for an airbag of a vehicle includes: a plurality of tethers each of which having one side coupled to a front sheath among a plurality of sheaths of an airbag cushion, each of the plurality of tethers formed to have a length shorter than a distance between the front sheath and a rear sheath when the airbag cushion is fully deployed; a release mechanism provided at a rear sheath side of the airbag cushion, connected to the respective other sides of the plurality of tethers, and selectively releasing a tether among the plurality of tethers upon an operation of the release mechanism; and a controller configured to variably control a deployment shape of the airbag cushion by operating the release mechanism based on a collision direction of the vehicle, a seat state of a seat of the vehicle, or a sitting posture of a passenger in the vehicle.
A barrier door for a protective enclosure includes a lower section and an upper section. The upper section includes an outer stationary portion and an inner movable portion disposed within the outer stationary portion. The outer stationary portion and the inner movable portion are light transmissive. The inner movable portion is movable in a vertical direction and is coupled to a lift device disposed in the lower section. The lift device is configured to move the inner movable portion between a lowered position in which the inner movable portion is at least partially withdrawn into the lower section to form an opening in the upper section and a raised position in which the inner movable portion is extended to close the opening.
A filter system for a motor vehicle, such as a car, truck, train, ship includes a filter element for a fluid filter with a wireless identification means having second data about the filter element. A filter housing for the fluid filter in which the filter element is exchangeably arranged and which has a read device for the wireless identification means. A central data base in which third data about the filter element is stored. An evaluation unit configured to retrieve the third data about the filter element from the central data base and to compare them to the second data about the filter element that were obtained from the read device.
A vehicular camera module includes a camera having an image sensor and a lens. The image sensor is disposed at a first printed circuit board, and a second printed circuit board is in board-to-board electrical connection with the first printed circuit board. Board-to-board electrical connection between the first and second printed circuit boards is via a multi-wire ribbon connection. A housing houses the first and second printed circuit boards. The housing is configured for mounting at a windshield of a vehicle and, with the vehicular camera module mounted at the windshield of the vehicle, the camera has a field of view external of the vehicle. With the vehicular camera module mounted at the windshield of the vehicle and responsive at least in part to processing by an image processor of image data captured by the image sensor, an object in the field of view of the camera is detected.
The present invention provides a window mounted wireless terminal apparatus, comprising a main body for receiving signals, a holder, and a rotary base, wherein the main body for receiving signals is mounted at one end of the rotary base, one other end of the rotary base is detachably connected to one end of the holder through a fastening assembly and is horizontally rotatable on the holder, and a fixing device used for being fixed on a window body is installed on one other end of the holder. According to the present invention, an angular orientation of the main body is positioned to accurately correspond to a wireless signal transmitting angle of an outdoor communication base station. The present invention has the advantages of strong capability for wireless signal receiving and convenience in adjustment and installation.
A vehicle interior component includes an interior component body arranged along a vehicle body member with a face thereof exposed to a vehicle room and a display unit arranged at the interior component body to perform displaying for a passenger. The display unit includes a light source to radiate light to the interior component body from a back face side thereof, a transmissive section to perform displaying to be visible from a front face side of the interior component body by being transmissively illuminated with light from the light source as being formed by thinning a region of the interior component body, and a reinforcing member arranged on the back face side of the interior component body to reinforce the transmissive section.
An imaging connection device is provided for use with a vehicle and a trailer. The vehicle includes a hitch assembly, a wired vehicle interface, and a vehicle communications unit, and the trailer includes a tow assembly and a wire harness. The imaging connection device includes a housing defining a first connector configured to mate with the wired vehicle interface and a second connector configured to mate with the wire harness; a connector interface at least partially arranged within the housing and extending between the first connector and the second connector; a camera unit at least partially arranged within the housing and configured to capture image data representing a side view of the hitch assembly; and a wireless communications unit at least partially arranged within the housing and configured to transmit the image data captured by the camera unit to the vehicle communications unit for display on a display device.
A display device for a vehicle includes an imaging unit configured to capture a video around a vehicle, a generation unit configured to generate a bird's eye view video obtained by converting a viewpoint of the captured video so it seems as if the vehicle is seen from above, a horizontally long display unit disposed in front of a driver's seat in the vehicle, an information acquisition unit configured to acquire information on a steering angle of the vehicle, an orientation determination unit configured to determine as to whether a steering orientation of the vehicle is left or right based on the information on the steering angle of the vehicle, and a display control unit configured to perform control in such a way that a display mode of the bird's eye view video displayed on the display unit is changed according to the steering orientation of the vehicle.
An image recognition-based intelligent alarm lamp includes a lighting device, a rotating mechanism, a high-definition camera, a DC motor, an LED alarm lamp and an embedded processing device. The lighting device is mounted onto the rotating mechanism and rotated with the rotating mechanism to illuminate an object from different directions; the DC motor is coupled to the rotating mechanism for driving the rotation of the rotating mechanism; the high-definition camera is provided for capturing a video stream around a police car; the embedded processing device is provided for receiving an image around the police car, determining whether or not to send a rotation drive signal to the DC motor based on the image around the police car, and determining a flashing method of the LED alarm lamp based on the image around the police car. This invention improves the level of recognizing a criminal around the police car.
To provide a technique capable of accurately obtaining the attitude of a vehicle in the pitch direction. A control device for a vehicular lamp which controls the optical axis of a vehicular lamp in accordance with an attitude change in pitch direction of the vehicle is disclosed. The device includes an angle calculation part which obtains a first and a second acceleration by eliminating the gravitational acceleration component from each acceleration in the vertical and the longitudinal direction of the vehicle, calculates a vehicle traveling direction acceleration based on the accelerations, and obtains a vehicle attitude angle based on the correlation between the vehicle traveling direction acceleration and the first and the second accelerations. The angle calculation part obtains the attitude angle of the vehicle when it determines that the vehicle is accelerating or decelerating based on the determination on the basis of each acceleration difference at the predetermined time.
A suspension system for a vehicle includes an extendable and retractable actuator disposed at each side of a frame of the vehicle and pivotally attached at one end to a vehicle bracket and at the other end to a suspension bracket. The suspension bracket includes an actuator portion, an axle portion and a suspension arm, with the actuator portion and the suspension arm pivotable relative to an axis of the axle portion. When the actuator is extended or retracted, the actuator portion pivots about the axis of the axle portion and imparts pivotal movement of a suspension arm about the axis to adjust a height of the frame of the vehicle. The actuator includes an elastomeric element disposed between an outer end of a slide rod and an outer end of a ram rod, with the slide rod movable to absorb sudden movements of the frame or wheel.
A mechanism for holding an article. The mechanism includes a rotatable member, at least two holding members and a sensor. The rotatable member is rotatably mounted below a base and controlled by a motor to rotate around a vertical rotation axis. The holding members are each mechanically linked by a connecting member to the rotatable member. The rotation of the rotatable member in a first direction moves the holding member from a rest position to a holding position and rotation of the rotatable member in a second direction moves the holding member to the rest position. The sensor is arranged on the base and adapted to sense the article in proximity. The sensor upon sensing the article rotates the rotatable member in the first direction to move the holding members to the holding position and rotates the rotatable member in the second direction upon removal the article from the base.
The vehicle floor carpet of the present invention includes a skin layer, a thermoplastic resin layer, and a base layer in this order, the thermoplastic resin layer has a plurality of open hole parts penetrating through the thermoplastic resin layer in the thickness direction, and the open hole parts are arranged on recesses in a surface of the skin layer or recesses in a surface of the base layer at the side of the thermoplastic resin layer.
A headrest includes: (a) a headrest frame, (b) a speaker unit supported by the headrest frame and having a speaker box, a speaker attached to the speaker box, and a megaphone-shaped tube attached to the speaker box, (c) a cushion material, (d) a skin material having an opening, sewed into a pouch shape, and covering the headrest frame, the speaker unit, and the cushion material, and (e) a ring-shaped member securing the entire opening-side end portion of the skin material sandwiched between the ring-shaped member and the megaphone-shaped tube.
A seating assembly includes a seatback having a seatback cushion. A carrier supports the seatback cushion. An upper thoracic region includes a first side support defining a first receiving aperture and a second side support defining a second receiving aperture. A lower lumber region includes an actuatable lumbar support configured to move between deployed and non-deployed conditions. An air mover is disposed between the first and second side supports. The air mover is suspended between the first and second side supports by a flexible band that extends laterally between the first and second side supports and is removably coupled with the first and second receiving apertures.
An apparatus for mounting a child safety seat and a seat for a vehicle, which are capable of easing a restriction on a position of the child safety seat on the vehicle seat due to a limited width of the vehicle, so as to enhance the degree of freedom of such a position. At the same time, the apparatus and seat allow mounting of the child safety seat on the vehicle seat in a precise and reliable manner in such a way that the child safety seat can endure an impact load in a longitudinal direction of the vehicle or a lateral direction of the vehicle.
A child restraint system is configured to secure a child in a seat. The child restraint system includes a harness configured to extend across the child. The harness includes at least one connector. The child restraint system includes at least one anchorage configured to releasably connect to the connectors. The at least one anchorage extends through at least one slot in the seat. In some embodiments, the child restraint system includes an adjustment mechanism coupled to the at least one anchorage and configured to adjust a position of the at least one anchorage relative to the seat. The adjustment mechanism has a locked configuration in which the adjustment mechanism is prevented from moving along the at least one slot and an unlocked configuration in which the adjustment mechanism is movable along the at least one slot.
A seat tracking system includes a longitudinal tracking member mechanically coupled to a first portion of a seat, and a tracking block mechanically coupled to a second portion of the seat. The tracking block includes a bore that is adapted to receive the tracking member, such that the tracking member slides within the tracking block to enable the first portion and the second portion to slide longitudinally with respect to each other. At least one stand is mechanically coupled to the second portion of the seat and has a through-hole that is adapted to receive a lateral tracking member, which is mechanically coupled to the first portion of the seat. The lateral tracking member enables the first portion and the second portion to slide longitudinally with respect to each other. A swivel plate mechanically couples the at least one stand to a seat base such that the seat is rotatable.
A rail system (1), for a vehicle seat, includes a lower rail (3), an upper rail (5), a sliding block (7) and at least one rolling body cage (9) having rolling bodies (11). The sliding block (7) is rigidly connected to the lower rail (3). The rolling body cage (9) is movable relative to the sliding block (7), parallel to a longitudinal axis (13) of the lower rail (3), between two end positions defined by end stops (71) of the sliding block (7). The rolling body cage (9) is coupled to the lower rail (3) via the rolling bodies (11). The upper rail (5) is mounted movably on the sliding block (7) along the longitudinal axis (13) of the lower rail (3) and is coupled to the rolling body cage (9).
A system includes a first energy storage device, a second energy storage device coupled to the first energy storage device and charged via a charging current from the first energy storage device, a power controller having a processor, a memory coupled to the processor and on which charging current instructions are stored, and a converter coupled to the processor and directed via switch control signals from the processor, and an output terminal via which power is provided to a load of the system. The converter is disposed between the first energy storage device and the output terminal. The converter is disposed between the first and second energy storage devices and configured to control a level of the charging current in accordance with the switch control signals. The charging current instructions are executed by the processor to cause the processor to generate the switch control signals such that the level of the charging current is regulated.
A powertrain for a vehicle, may include a first planetary gear set having three rotation elements, with an input shaft connected to a first rotation element of the three rotation elements; an output shaft connected to a second rotation element of the first planetary gear set; a differential connected to the output shaft; a brake configured to lock or release a third rotation element of the first planetary gear set; a hub connected to the second rotation element through a clutch; and a sleeve unit restricted in rotation with respect to the hub and configured to be linearly slidable along an axial direction of the first planetary gear set to change a restriction state of relative rotation between a selected driveshaft of two driveshafts receiving power from the differential, the second rotation element, the third rotation element, and the hub by linear sliding.
In a pane arrangement, in particular a body-pane arrangement, comprising at least one glass pane and a profile frame component bordering the glass pane, placed on the pane edge on one side of the glass pane, it is provided that the profile frame component is multi-layered, and that one layer that may be coated onto the glass pane is made of a hard material and at least one additional layer is made of a soft material, and in that the profile frame component has holding elements that may be engaged with the glass pane in its layer made of hard material, and has protruding projections protruding over the layer of hard material in its layer made of soft material.
A tonneau cover for covering a cargo box of a pickup truck. The tonneau cover including a cover assembly for covering the cargo box and at least one clamp assembly secured to the cover assembly for securing the tonneau cover to the cargo box. The clamp assembly includes an elongated strap, and a clamp mechanism that is in sliding engagement with the strap between a series of secured positions along the strap. The clamp mechanism includes a clamp that is engageable with the cargo box and a pawl is supported by the clamp and biased into engagement with the strap, or more particularly teeth provided on the strap. A release is also supported by the clamp and by pulling on the release the pawl is disengaged from the strap, allowing the clamp to be slid along the strap.
A tonneau system for use with a pickup truck. The tonneau system includes a tonneau cover, a frame, and a latch. The tonneau cover has a plurality of tonneau sections, including at least a first tonneau section and a second tonneau section. A first hinge system couples the first tonneau section to the second tonneau section, enabling stacking and expanding of the first tonneau section relative to the second tonneau section. The frame has a first side rail securable to a first side of a cargo box of a pickup truck and a second side rail securable to a second side of the cargo box. The latch releaseably secures the tonneau cover to the first and second side rails. When the latch is released, the stacked tonneau sections are permitted to depend into the cargo box.
A tarpaulin support device for an open top of a trailer or vehicle. The device has a flexible and resilient tube assembly bowed from a normally straight position under tension to an arched position outwardly from the trailer or vehicle. The tube assembly may be removably mounted to the side walls of the trailer or vehicle via brackets with angled bores therethrough. The tube assembly comprises an outer tube and an inner tube located substantially within an outer tube. The inner tube may have a slot running along at least part of its length, such that the portion of the inner tube with the slot has a C-shaped cross-section.
A plurality of fans is connectable to a heat exchanger arrangement having a plurality of separated cooling loops. At least one of the fans is operable to move air through at least two of the cooling loops, and at least one other fan is operable to move air through at least one of the cooling loops. A control system includes at least one controller and is operable to control each of the at least one fan using a respective control strategy correlating temperature values with fan outputs, and to control each of the at least one other fan using a respective control strategy that is different from each control strategy used to control the at least one fan.
An air conditioning device for a vehicle has a compressor, an evaporator, a driving condition detector, a temperature detector, and a controller. The driving condition detector detects a driving condition of the vehicle. The evaporator has a cold storage portion storing the heat from the refrigerant and having phase-change energy in at least two different temperature ranges. The controller (i) maintains the compressor being stopped while a temperature detected by the temperature detector is lower than or equal to the first temperature when the vehicle is in a coasting operation and (ii) maintains the compressor being stopped while the temperature is lower than or equal to the second temperature when the vehicle is stopped. The coasting operation is a driving condition in which a vehicle speed is lower than or equal to a specified speed and an acceleration device of the vehicle is not operated.
A swingarm includes a first swingarm leg oriented along a first horizontal plane, a main body extending upward and outward from a second end of the first swingarm leg, and a second swingarm leg extending from a second end of the main body along a second horizontal plane. The swingarm also includes a first bearing holder coupled to a first end of the first swingarm leg and a second bearing holder coupled to a second end of the second swingarm leg. The first bearing holder includes a cavity oriented horizontally to form a first pivot axis. The second bearing holder includes a cavity oriented vertically to form a second pivot axis. The first and second bearing holders are of the same construction.
A tire air pressure detection system and a vehicle body side device to detect air pressure of a plurality of tires. The vehicle body side device causes a transmission unit to transmit to all tire side devices, a transmission stop signal instructing transition to a transmission stop state and then the transmission unit transmits a transmission standby signal at a transmission strength that enables the signal to reach the tire side devices; and then the transmission unit transmits to the one of the tire side devices, a transmission request signal requesting a transmission of a signal including a unique identifier stored in that tire side device; and when it is determined that a reception unit has received a response signal in response to the transmission request signal, the transmission unit transmits a transmission standby signal and a transmission request signal to the tire side device corresponding to the next tire.
A puncture resistant liner assembly for use with a tire having a tread layer and opposed inside and outside walls extending away from the tread layer so as to define an interior tire space includes a primary protection layer that includes a plurality of primary pockets each having an outer wall defining a primary interior area and having a primary air capsule situated in the primary interior area. An auxiliary protection layer includes a plurality of auxiliary pockets each having a continuous outer wall defining an auxiliary interior area and having an auxiliary air capsule situated in the auxiliary interior area. Similarly, the liner assembly includes inner and outer protection layers adjacent and operably coupled to an inside and outside ends of the primary protection layer and that include a plurality of inner and outer pockets, respectively, each having a continuous outer wall defining an inner and outer interior areas.
A pneumatic tire includes a reinforcing rubber layer disposed in the sidewall portions and having a crescent-like meridian cross-section; wherein when the tire is assembled on a regular rim and in an unloaded state with an internal pressure of 0 kPa, a radius of curvature (RP) is larger than a radius of curvature (RO), an arc of the radius of curvature (RP) joining an intersection (Pa) of a carcass layer and a straight line (La), an intersection (Pb) of the carcass layer and a straight line (Lb), and an intersection (Pc) of the carcass layer and a straight line (Lc), and an arc of the radius of curvature (RO) joining an intersection (Oa) of the straight line (La) and a tire external contour, an intersection (Ob) of the straight line (Lb) and the tire external contour, and an intersection (Oc) of the straight line (Lc) and the tire external contour.