Abstract:
An optics plate for an ion implantation system, the optics plate comprising a pair of aperture assemblies. Each pair of aperture assemblies respectively comprises a first aperture member, a second aperture member; and an aperture fastener, wherein the aperture fastener fastens the first aperture member to the second aperture member. An aperture tip may be also fastened to the second aperture member. One or more of the first aperture member, second aperture member, aperture tip, and aperture fastener is made of one or more of a refractory metal, tungsten, lanthanated tungsten alloy, yttrium tungsten alloy, and/or graphite and silicon carbide. The aperture assemblies may define an extraction electrode assembly, a ground electrode assembly, or other electrode assembly in the ion implantation system.
Abstract:
Provided herein are approaches for controlling particle trajectory from a beam-line electrostatic element. A beam-line electrostatic element is disposed along a beam-line of an electrostatic filter (EF), and a voltage is supplied to the beam-line electrostatic element to generate an electrostatic field surrounding the beam-line electrostatic element, agitating a layer of contamination particles formed on the beam-line electrostatic element. A trajectory of a set of particles from the layer of contamination particles is then modified to direct the set of particles to a desired location within the EF. The trajectory is controlled by providing an additional electrode adjacent the beam-line electrostatic element, and supplying a voltage to the additional electrode to control a local electrostatic field in proximity to the beam-line electrostatic element. In another approach, the trajectory is influenced by one or more geometric features of the beam-line electrostatic element.
Abstract:
A selectively configurable system for directing an electron beam with a limited energy spread to a sample includes an electron source to generate an electron beam having an energy spread including one or more energies, an aperture having an on-axis opening and an off-axis opening, a first assembly of one or more electron lenses with selectively configurable focal powers positioned to collect the beam from the source and direct the beam to the aperture, a second assembly of one or more selectively configurable electron lenses positioned to collect the beam, a sample stage, and an electron inspection sub-system including electron optics positioned to direct the beam onto one or more samples. The first assembly includes an off-axis electron lens for interacting with the beam at an off-axis position and introducing spatial dispersion to the beam when configured with a nonzero focal power, thus filtering the energy spread.
Abstract:
A combined scanning and focusing magnet for an ion implantation system is provided. The combined scanning and focusing magnet has a yoke having a high magnetic permeability. The yoke defines a hole configured to pass an ion beam therethrough. One or more scanner coils (206A, 206B) are operably coupled to the yoke and configured to generate a time-varying predominantly dipole magnetic field when electrically coupled to a power supply. One or more focusing coils (210 A-D) are operably coupled to the yoke and configured to generate a predominantly multipole magnetic field, wherein the predominantly multipole magnetic field is one of static or time-varying.
Abstract:
Beschrieben ist ein Teilchenstrahl-System mit einer Teilchenquelle (301), welche dazu konfiguriert ist, einen ersten Strahl (309) geladener Teilchen zu erzeugen. Das Teilchenstrahl-System weist einen Vielstrahlerzeuger (305) auf, der dazu konfiguriert ist, aus einem ersten einfallenden Strahl geladener Teilchen eine Mehrzahl von Teilstrahlen (13) zu erzeugen, die in einer Richtung senkrecht zu einer Ausbreitungsrichtung der Teilstrahlen räumlich voneinander beabstandet sind, wobei die Mehrzahl an Teilstrahlen mindestens einen ersten Teilstrahl und einen zweiten Teilstrahl umfasst. Das Teilchenstrahl-System weist ein Objektiv (102) auf, das dazu konfiguriert ist, einfallende Teilstrahlen in einer ersten Ebene zu fokussieren, derart, dass ein erster Bereich, auf den der erste Teilstrahl in der ersten Ebene einfällt, von einem zweiten Bereich getrennt ist, auf den ein zweiter Teilstrahl einfällt. Das Teilchenstrahl-System weist ein Detektorsystem mit mehreren Detektionsbereichen (209) und einem Projektivsystem (205) auf, wobei das Projektivsystem dazu konfiguriert ist, Wechselwirkungsprodukte, die die erste Ebene aufgrund der einfallenden Teilstrahlen verlassen, auf das Detektorsystem zu projizieren. Das Projektivsystem und die mehrerer Detektionsbereiche sind so aufeinander abgestimmt sind, dass Wechselwirkungsprodukte, die von dem ersten Bereich der ersten Ebene ausgehen, auf einen ersten Detektionsbereich des Detektorsystems projiziert werden und Wechselwirkungsprodukte, die von dem zweiten Bereich der ersten Ebene ausgehen, auf einen zweiten Detektionsbereich projiziert werden, der vom ersten Detektionsbereich verschiedenen ist. Weiterhin weist das Detektorsystem eine Filtereinrichtung (208) zur Filterung der Wechselwirkungsprodukte entsprechend ihres jeweiligen Bahnverlaufs auf.
Abstract:
An electron energy loss spectrometer for electron microscopy is disclosed having an electrically isolated drift tube (214) extending through the bending magnet (213) and through subsequent optics (216, 217) that focus and magnify the spectrum. An electrostatic or magnetic lens (211, 212, 219, 220) is located either before or after or both before and after the drift tube and the lens or lenses are adjusted as a function of the bending magnet drift tube voltage to maintain a constant net focal length and to avoid defocusing. An energy selecting slit (218) is included in certain embodiments to cleanly cut off electrons dispersed outside the energy range incident on the detector, thereby eliminating artifacts caused by unwanted electrons scattering back into the spectrum.
Abstract:
One embodiment relates to a dual Wien-filter monochromator. A first Wien filter focuses an electron beam in a first plane while leaving the electron beam to be parallel in a second plane. A slit opening allows electrons of the electron beam having an energy within an energy range to pass through while blocking electrons of the electron beam having an energy outside the energy range. A second Wien filter focuses the electron beam to become parallel in the first plane while leaving the electron beam to be parallel in the second plane. Other embodiments, aspects and features are also disclosed.