US11412438B2
A radio communication apparatus capable of, in a network in which communication may be performed by simultaneously using a plurality of communication paths, improving (e.g., extending) the operating time of the whole network are provided. A radio communication apparatus includes a power-supply information management unit configured to manage power-supply information of another radio communication apparatus for each of N redundant communication paths (N is an integer equal to or greater than two), and a communication management unit configured to perform switching, based on an amount of traffic to be transmitted and the power-supply information, between communication using n communication paths (n is an integer no smaller than two and no greater than N) among the N communication paths and communication using m communication paths (m is an integer no smaller than one and smaller than n (i.e., m
US11412428B2
Provided are a cell handover method, a terminal device, and a network device that can implement cell handover in scenarios such as high-speed mobile scenarios and high-frequency deployment scenarios. The cell handover method includes receiving, by a terminal device, first configuration information sent from a network device serving a first cell. The first configuration information is used to instruct the terminal device to be handed over from the first cell to the second cell. The cell handover method further includes sending, by the terminal device, response information to the network device serving the first cell and/or the network device serving the second cell in response to the first configuration information.
US11412406B2
Apparatus and methods for improving throughput and reliability in a wireless network. In one embodiment, the apparatus and methods provide mechanisms for wireless user device buffer management that mitigate buffer overflow within the device due to overscheduling, such as from different networks with which the device is connected simultaneously. In one variant, a 3GPP-based signaling architecture from wireless device to the multiple networks is provided to enable user device-controlled management buffer overflow. In another variant, potentially buffer-demanding (e.g., HARQ) process management and prioritization rules are defined to avoid buffer overflow. In other variant, buffer size computation is provided considering the number of networks to which the wireless user device can connect.
US11412405B2
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A control method of a user equipment (UE) in a wireless communication system is provided. The method includes receiving, from a base station, packet data convergence protocol (PDCP) configuration information including information indicating that a PDCP layer is configured with out-of-order delivery; identifying that the PDCP layer is configured with the out-of-order delivery based on the PDCP configuration information; and processing a PDCP packet based on a result of identifying that the PDCP layer is configured with the out-of-order delivery. A header compression or a header decompression associated with a robust header compression (ROHC) are not configured, in case that the PDCP layer is configured with the out-of-order delivery.
US11412402B2
An electronic messaging device includes a receiver configured to receive a message at one of a first operational frequency and second operational frequency. The messaging device can added to a message distribution group comprising a plurality of existing messaging devices. A test communication can be sent through a coupling to test an operation of the messaging device and confirming the addition of the messaging device to the message distribution group without communicating with the existing messaging devices.
US11412401B2
The disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The disclosure discloses a method and apparatus for performing early frequency measurement and fast reporting a result of frequency measurement.
US11412392B2
In an example, a distributed relay includes a relay node master unit communicatively coupled to a base station; and one or more remote relay antenna units located remotely from the relay node master unit and communicatively coupled to the relay node master unit. The relay node master unit is configured to communicate demodulated and decoded data and/or demodulated data with the one or more remote relay antenna units via one or more transport interfaces, and the one or more remote relay antenna units are configured to communicate radio frequency signals to a coverage zone via one or more antennas. The relay node master unit includes a backhaul interface and an access interface. The backhaul interface is configured to implement communications between the relay node master unit and the base station. The access interface is configured to implement communications between the one or more remote relay antenna units and user equipment.
US11412388B2
A radio terminal (3) operates to perform a predetermined process regarding a first cell (Cell #2) on an unlicensed frequency (F2) based on a predetermined relationship between a frame timing of a first serving cell (Cell #1) using a licensed frequency (F1) and a frame timing of the first cell (Cell #2) using the unlicensed frequency (F2). This contributes, for example, to enabling a radio terminal to differentiate among two or more cells when these cells use the same cell identifier.
US11412384B1
Disclosed herein are methods, systems, and processes to detect rogue wireless access points and determine their approximate location in a geospatial location. Wireless access point data collected from wireless access points by fixed sensor nodes and agent-based sensor nodes in a geospatial location is received. A wireless site survey is performed at the geospatial location based on the wireless access point data. Based on the wireless site survey, an approximate location of a rogue wireless access point at the geospatial location is determined.
US11412383B2
Disclosed herein are systems and methods for facilitating data transmission using a decentralized consensus network. The system comprising: a verified and decentralized consensus network comprising a plurality of node, wherein at least one of the nodes is configured to: (a) determine a target node from the plurality of nodes to be verified; verify the target node by validating a geographic location of the target node or a time of the target node; and (c) receive a token for verifying and validating the target node.
US11412382B2
A system and a method are disclosed for selectively activating access by an application to a camera. In an embodiment, a physical object provider receives a request, from an application installed on a mobile device of a user, for a physical object to be delivered to an address corresponding to the user, wherein access by the application to a camera of the mobile device is de-activated. Responsive to receiving the request, the physical object is caused to be delivered to the address. The physical object provider receives a notification that the physical object has been delivered to the address, and transmits an instruction to the application to activate access by the application to the camera. The physical object provider receives, from the application, an image captured by the camera, and publishes the image to an additional user.
US11412381B2
An apparatus includes a memory to store subscription data for access to a network, the subscription data including at least terms and conditions information for the network; circuitry linked to the memory; and a connection component for execution on the circuitry to identify an access point connected to the network and automatically forward at least a portion of the subscription data to the identified access point in an association message. Other embodiments are disclosed and claimed.
US11412380B1
A method of discouraging theft of a set of headphones from a rightful user includes, when first connecting the headphones to a first cell phone, requesting transmission of an ID number for the first cell phone from the first cell phone to the headphones, requesting the rightful user to provide a personal identification number (PIN) for the headphones; and storing the ID number and PIN in the headphones. At any subsequent attempt by a user to connect the headphones to a second cell phone, the second cell phone's ID number is requested and compared with the stored ID number for the first cell phone. If the ID numbers match, full functional connection between the headphones and the second cell phone is allowed, but if they do not, full functional connection is blocked until the user provides the PIN for the set of headphones.
US11412376B2
The proposed technology generally relates to interworking and integration of different radio access networks, and more specifically to carrier aggregation between different radio access networks such as a cellular radio access network, e.g. a 3GPP network, on one hand and a WLAN network such as Wi-Fi, on the other hand. Such tight interworking/aggregation of radio access networks puts new requirements on efficient handling of authentication and security aspects. The proposed technology provides methods, and corresponding network nodes, computer programs, carriers comprising such computer programs, and computer program products as well as arrangements to support carrier aggregation between different radio access networks.
US11412367B2
The present disclosure is directed to seamless mobility between Wi-Fi technologies and includes one or more processors and one or more computer-readable non-transitory storage media comprising instructions that perform operations including detecting a client device having 802.11ax and 802.11ay Wi-Fi capability, identifying a 802.11ax access point associated with a first data path, wherein the first data path is configured to transmit traffic to and from the client device, identifying a 802.11ay access point associated with a second data path, wherein the second data path is configured to transmit the traffic to and from the client device, and wherein the 802.11ay access point is non-colocated with the 802.11ax access point, and establishing a mobility anchor point through which the traffic is switched, wherein a determination is made in the mobility anchor point as to whether the traffic will be transmitted via the 802.11ax access point through the first data path or via the 802.11ay access point through the second data path.
US11412364B2
A method and system for locating a network device connected to a proxy network device in an emergency situation. When an electrical connection, whether through physical wires or over a wireless interface such as spread spectrum technology is made on a proxy network device (e.g., analog terminal adapter (ATA), analog or digital Private Branch Exchange (PBX) system, Digital Enhanced Cordless Telecommunications (DECT) devices, gateway, bridge, router, switch, etc.) for a network device, the proxy network device sends a connection identifier such as a port number or wireless channel number, Device IDentifier (DID) number, etc. to an emergency location server network device to associate the connection identifier on the proxy network device with connected network and with a current physical location to be used in an emergency. When an emergency event occurs, the connection identifier is used to determine an emergency current physical location that is used by first responders.
US11412358B2
A method of operating a first user equipment (UE) in a wireless communication system includes receiving information related to a sidelink bandwidth part (BWP) by the first UE, establishing a plurality of unicast links by the first UE, transmitting a sidelink signal in the sidelink BWP on a first unicast link among the plurality of unicast link, and releasing a second unicast link for which radio link failure (RLF) has been declared among the plurality of unicast links, based on the RLF and a PC5 link identifier (ID) by the first UE. The PC5 link ID is used to identify the second unicast link for which the RLF has been declared among the plurality of unicast links.
US11412356B2
A communications system, a core network device and a non-transitory machine-readable medium are provided. In the communications system, a master base station gather traffic statistics information on a service of a user terminal which is transmitted between the user terminal and the master base station through a secondary base station, and sends a message to a core network device. The message includes the traffic statistic information for calculating a charge on the service by the core network device.
US11412343B2
An event processing system for distributing a geospatial computation, and processing events in an event stream, is disclosed. The disclosed system and methods can apply a spatial function, such as distance, within Distance, and proximity, in parallel to a stream comprising event locations. The disclosed system improves over existing geospatial computations by providing an efficient parallel implementation that can handle a large number of moving objects in real time with little latency. A computing device receives an event stream comprising locations and can geohash the locations to obtain geohashes identifying geo grid cells containing the locations. The computing device can determine respective sets of neighboring geohashes identifying neighboring cells in the geo grid. The computing device then partitions the geospatial computation by mapping, based on the respective geo hash and the respective set of neighboring geo hashes, the events to processors.
US11412336B2
Apparatus including circuitry configured for: determining, for two or more speaker channel audio signals, at least one spatial audio parameter for providing spatial audio reproduction; determining between the two or more speaker channel audio signals at least one audio signal relationship parameter, the at least one audio signal relationship parameter being associated with at least one coherence parameter, in such a way that the at least one coherence parameter provides at least one interchannel coherence information for at least two frequency bands, to reproduce the two or more speaker channel audio signals based on the at least one spatial audio parameter and the at least one audio signal relationship parameter; and transmitting using at least one determined value.
US11412330B2
A speaker unit for an earphone is provided. The speaker unit for an earphone includes a frame including a first hole in a front thereof and a second hole in a rear thereof; a yoke disposed on the frame and elongated along a front-to-rear direction; a first magnet disposed on one side of the yoke; a first plate disposed on one side of the first magnet; a first diaphragm disposed on one side of the first plate; a second magnet disposed on the other side of the yoke; a second plate disposed on the other side of the second magnet; and a second diaphragm disposed on the other side of the second plate, wherein the first magnet and the second magnet are together in contact with the yoke, and the yoke includes a first passage that connects the first hole and the second hole.
US11412329B1
The present invention relates to a home entertainment system, which includes four major parts: entertainment play equipment, a Bluetooth transmitter, a set of rear audio play devices, and a set of front audio play devices with a subwoofer.
The rear audio play devices are composed of a main speaker, a sub-speaker, wire, and a Bluetooth receiver; the front Bluetooth speakers are composed of a main speaker, a sub-speaker, a subwoofer, wire, and a Bluetooth receiver, and each Bluetooth receiver is integrated in each main speaker.
This home entertainment system uses a Bluetooth transmitter module to connect the entertainment play equipment with the rear speakers and the front speakers through wireless radio waves, and can simultaneously emit 4-channel audio of left front, left rear, right front, and right rear to achieve stereo surround sound effects. When the existing home entertainment audio is installed, it is necessary to drill, wire, and construct on the wall. That method is costly, and will destroy the original decoration and cause inconvenience. Therefore, we bring forward the home entertainment system.
US11412325B2
A method of providing audio information from a meeting includes receiving a first audio stream from a first input audio device and a second audio stream from a second input audio device during the meeting, identifying a first audio fragment from the first audio stream, and identifying a second audio fragment from the second audio stream. The method also includes compiling the audio fragments from the first and second audio streams into an audio file that includes at least the first audio fragment and the second audio fragment. The method further includes providing the audio file to one or more recipients. The audio file identifies the first audio fragment as corresponding to a first participant of the meeting and the second audio fragment as corresponding to a second participant of the meeting.
US11412322B2
A display apparatus includes a display module including a display panel configured to display an image, a rear cover on a rear surface of the display module, and a sound generating module at the rear cover and configured to vibrate the display module to generate sound, and a rear surface of the sound generating module is covered by the rear cover.
US11412321B2
A method and an apparatus for enabling adaptive audio signal alteration are described. When an input audio signal is received, a determination of whether the user of an audio device hears the input audio signal is performed based upon brain activity of the user. A determination of whether the user is distracted by the audio signal is performed based upon sensor measurements indicating a physical state of the user. In response to determining that the user hears the input audio signal and that the input audio signal causes the user to be distracted, a determination of configuration parameter(s) is performed. An alteration of audio signal(s) is caused based upon the configuration parameter(s) to obtain modified version(s) of the audio signal(s) that are intended to address the distraction caused by the input audio signal, and output audio signals are output, where the output audio signals include the modified versions.
US11412313B2
According to an aspect, a method includes receiving, by a client application, a video stream of a live broadcast from a messaging platform, displaying, by the client application, the video stream of the live broadcast on a user interface of the client application, receiving, via a timestamp selector on the user interface, a selection of a time location in a time window of a timeline of the video stream of the live broadcast, generating, by the client application, a timestamp based on the time location received via the timestamp selector, and sending, by the client application, a message that includes the timestamp to the messaging platform to share the video stream of the live broadcast on the messaging platform such that playback of the shared video stream of the live broadcast is configured to start at the time location indicated by the timestamp.
US11412306B2
iTV content is created and deployed using a server component adapted to allow content developers to create applications according to an authoring specification that describes a framework for same; a transport component configured to optimize and deliver the applications to one or more clients; and a client component adapted to render the applications through a television so as to permit user interaction therewith. The authoring specification provides for the presentation of content through one or more templates defined therein, allowing application definition and behavior to remain common across multiple client device types, middleware platforms, and/or iTV operating environments. The framework for applications accommodates advertising, promotions, content placement packages and/or programming campaign definitions, so as to permit a selection of a specific advertisement, promotion or content at a time of preparation of the iTV content by the server, and/or a time of execution of the applications by the client.
US11412305B2
Methods, systems, and apparatuses, including computer programs encoded on a computer storage medium, for facilitating analyzing media items and to filter inappropriate media items before distribution to the users. In one aspect, a method includes partitioning digital media items such as videos into segments and/or scenes, and classifying the segments into predetermined classes such as “Violence”, “Conversation”, “Street”, “Nudity”, “Animation”. After classifications have been assigned, the segments are clustered and/or grouped together before presenting the segments belonging to a particular cluster to a rating entity in a single user interface, for further evaluation. After evaluation, the segments of the media items that were approved by the rating entity are used to identify media items for which all the segments were approved by the rating entity before distributing the media items to the users.
US11412292B2
A video processing method, a video processing device, and a storage medium are provided. The video processing method includes: determining target image frames corresponding to a dynamic special effect in a video and determining an attribute of a special effect element corresponding to the dynamic special effect in each of the target image frames and coordinates of the special effect element. The video processing method also includes: rendering the special effect element on a drawing interface based on the attribute and the coordinates of the special effect element; filling the target image frames into the drawing interface as a background and forming drawing interface frames with the dynamic special effect; and outputting the drawing interface frames corresponding to each of the target image frames.
US11412286B2
Methods and apparatus to verify and/or correct media lineup information are disclosed. Disclosed example apparatus include a signature comparator to, when media presentation data representative of media output by a media device does not correspond to reference data associated with first reference media corresponding to a first station: identify a plurality of first signatures in a database that matches a plurality of second signatures included in the media presentation data, the plurality of first signatures including at least one of first audio signatures or first video signatures, the plurality of second signatures including at least one of second audio signatures or second video signatures generated from the media output by the media device; and determine second reference media corresponding to the plurality of first signatures; and memory to store the media presentation data.
US11412277B2
Methods, apparatus, systems and articles of manufacture are disclosed for watermark outage detection. Example methods include evaluating an onset time and duration of a detected watermark outage based on a model of expected watermark outages to determine whether the detected watermark outage corresponds to at least one of the expected watermark outages represented in the model. Example methods further include generating an alert in response to determining the detected watermark outage does not correspond to at least one of the expected watermark outages included in the model, and suppressing the alert in response to determining the detected watermark outage corresponds to the at least one of the expected watermark outages represented in the model.
US11412275B2
A method provides translation of metadata related to enhancement of a video signal according to a first high dynamic range video distribution type into metadata related to enhancement of a video signal according to a second high dynamic range video distribution type. Translation is done between a value of a first metadata set corresponding to a first type of high dynamic range video and a value of a second metadata set corresponding to a second type of high dynamic range video and uses an association that may be stored in a lookup table that is determined according to differences between a test image reconstructed using the metadata of first type and the same image reconstructed using the metadata of second type. A receiver apparatus and a transmitter apparatus comprising the translation method are also disclosed.
US11412273B2
Systems and methods for managing the storage of content are described. A video stream may include a content identifier and content information relating to a boundary that may be used to facilitate recording of at least a portion of the video stream.
US11412270B2
A method for processing a multimedia file is described. The method includes obtaining a source slice media file included in a source multimedia file, and obtaining, by processing circuitry of a transcoding device, a slice pre-processing result corresponding to the source slice media file, the slice pre-processing result indicating a storage address of an image area processing result of the source slice media file, in a pre-processing device. The method also includes obtaining, by the processing circuitry of the transcoding device, the image area processing result of the source slice media file from the storage address. Finally, the method includes processing, by the processing circuitry of the transcoding device, the source slice media file according to the image area processing result, to obtain a processed target slice media file.
US11412267B2
An apparatus includes at least one processor; and at least one non-transitory memory including computer program code; wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus at least to perform: provide signal information to identify an atlas identifier on a sample of a volumetric media track, or on the volumetric media track in a multi-track container; wherein the signal information allows a file parser to link volumetric media tracks with different atlas identifiers that originate from a volumetric media elementary stream; and wherein the file parser is able to reconstruct the volumetric media elementary stream based on the signal information and data encapsulated in the multi-track container.
US11412265B2
In an implementation, a supplemental sequence parameter set (“SPS”) structure is provided that has its own network abstraction layer (“NAL”) unit type and allows transmission of layer-dependent parameters for non-base layers in an SVC environment. The supplemental SPS structure also may be used for view information in an MVC environment. In a general aspect, a structure is provided that includes (1) information (1410) from an SPS NAL unit, the information describing a parameter for use in decoding a first-layer encoding of a sequence of images, and (2) information (1420) from a supplemental SPS NAL unit having a different structure than the SPS NAL unit, and the information from the supplemental SPS NAL unit describing a parameter for use in decoding a second-layer encoding of the sequence of images. Associated methods and apparatuses are provided on the encoder and decoder sides, as well as for the signal.
US11412259B2
Provided by the implementations of the present disclosure are a transform method, a coder, a decoder and a computer readable storage medium. The transform method includes: determining normal vectors of encoding points in an encoding point cloud; analyzing the sum total of all coordinates of the normal vectors on the basis of the normal vectors of the encoding points; and determining a transform sequence on the basis of the sum total of all coordinates of the normal vectors.
US11412248B2
An image encoding method includes: determining N encoded units from adjacent encoded units of a to-be-encoded unit according to a first preset rule, where a motion prediction mode of the N encoded units is the same as that of the to-be-encoded unit; generating an nth motion vector group by using a first preset algorithm and based on a motion vector of an nth encoded unit; determining, from obtained N motion vector groups according to a second preset rule, one motion vector group as an optimal motion vector group; determining a prediction sample value of each sample unit in the to-be-encoded unit by using a second preset algorithm and based on the optimal motion vector group; and encoding a prediction residual of each sample unit and an index identifier of the optimal motion vector group, to obtain a bitstream corresponding to the to-be-encoded unit.
US11412242B2
The present invention relates to a video signal decoding method based on a Multiple Transform Selection (MTS). The method may comprise the steps of: parsing a first syntax element representing whether MTS applies to the inverse transformation of a current block, wherein the MTS represents a transform mode which uses a transform type other than a default transform type predefined for the current block; by performing inverse quantization on the current block, deriving an inverse-quantized transform coefficient array having the width and the height of the current block; determining, on the basis of the first syntax element, a vertical transform type applying to the vertical direction of the current block, and a horizontal transform type applying to the horizontal direction of the current block; and, by performing inverse transformation on the inverse-quantized transform coefficient array by using the vertical transform type and the horizontal transform type, deriving a residual sample array having the width and the height of the current block.
US11412234B2
A method and apparatus for parallel processing of at least two bins relating to at least one of a video and an image. The method includes determining scan type of at least a portion of the at least one of video and an image, analyzing neighboring position of a bin, removing dependencies of context selection based on the scan type and position of location being encoded in a transform, and performing parallel processing of that least two bins.
US11412231B2
An inter-prediction method according to the present invention comprises the steps of: deriving motion information of a current block; and generating a prediction block for the current block on the basis of the derived motion information. According to the present invention, computational complexity can be reduced and encoding efficiency can be improved.
US11412229B2
A video coding method includes obtaining an input video frame; determining down-sampling information corresponding to the input video frame in response to determining that a target processing manner corresponding to the input video frame is a down-sampling processing manner; encoding the input video frame according to the down-sampling information to obtain encoded data corresponding to the input video frame; and adding the down-sampling information to the encoded data according to a processing range corresponding to the down-sampling information. The down-sampling information is capable of identifying at least one of a down-sampling proportion and a down-sampling method for the input video frame or identifying a rule for identifying the at least one of a down-sampling proportion and a down-sampling method.
US11412227B2
A method of processing a video bitstream includes determining a motion precision set based on coding information of a current block. A conversion between a video block and a coded representation of the video block is performed based on the motion precision set. The conversion corresponds to a reconstruction of the current block. In some example aspects, a motion vector difference (MVD) precision of a current block from a motion precision set is determined based on a selected motion precision set and a MVD precision index. A conversion between a video block and a coded representation of the video block using an MVD is performed based on the MVD precision. The MVD represents a difference between a predicted motion vector and an actual motion vector used during motion compensation processing.
US11412225B2
Disclosed herein is a context-adaptive entropy model for end-to-end optimized image compression. The entropy model exploits two types of contexts. The two types of contexts are a bit-consuming context and a bit-free context, respectively, and these contexts are classified depending on the corresponding context requires the allocation of additional bits. Based on these contexts, the entropy model may more accurately estimate the distribution of each latent representation using a more generalized form of entropy models, thus improving compression performance.
US11412221B2
The present disclosure provides method and apparatus for motion field storage in video coding. An exemplary method includes: determining whether a first uni-prediction motion vector for a first partition of a block and a second uni-prediction motion vector for a second partition of the block are from a same reference picture list; and in response to the first uni-prediction motion vector and the second uni-prediction motion vector being determined to be from the same reference picture list, storing, in a motion field of the block, one of the first uni-prediction motion vector and the second uni-prediction motion vector for a subblock located in a bi-predicted area of the block.
US11412220B2
A block of video data is split using one or more of several possible partition operations by using the partitioning choices obtained through use of a texture-based image partitioning. In at least one embodiment, the block is split in one or more splitting operations using a convolutional neural network. In another embodiment, inputs to the convolutional neural network come from pixels along the block's causal borders. In another embodiment, boundary information, such as the location of partitions in spatially neighboring blocks, is used by the texture analysis. Methods, apparatus, and signal embodiments are provided for encoding.
US11412216B2
The present invention relates to an intra prediction mode mapping method and a device using the method. The intra prediction mode includes: decoding flag information providing information regarding whether an intra prediction mode of a plurality of candidate intra prediction modes for the current block is the same as the intra prediction mode for the current block, and decoding a syntax component including information regarding the intra prediction mode for the current block in order to induce the intra prediction mode for the current block if the intra prediction mode from among the plurality of candidate intra prediction modes for the current block is not the same as the intra prediction mode for the current block. Thus, it is possible to increase the efficiency with which are images are decoded.
US11412215B2
A method of decoding a coded video bitstream includes obtaining a sequence parameter set (SPS)-level syntax element from the bitstream, wherein that the SPS-level syntax element equals to a preset value specifies that no video parameter set (VPS) is referred to by a SPS, and the SPS-level syntax element greater than the preset value specifies that the SPS refers to a VPS, obtaining, as the SPS-level syntax element is greater than the preset value, an inter-layer enabled syntax element specifying whether one or more inter-layer reference pictures (ILRPs) are enabled to be used for the inter prediction of one or more coded pictures, and predicting one or more coded pictures based on the value of the inter-layer enabled syntax element.
US11412212B2
Techniques for video encoding and decoding are described. An example method of video processing is disclosed. The method includes classifying motion candidates in a candidate list into a plurality of categories of motion candidates, each category being assigned a corresponding pruning rule; performing pruning or skipping the pruning of the motion candidates in the candidate list based on the corresponding pruning rule, the pruning being applied to determine whether to insert motion candidates from the candidate list into a final candidate list for a current block; and performing a video processing on the current block based on the final candidate list.
US11412193B2
The present disclosure relates to a projector including a light source apparatus that outputs a light ray flux containing fluorescence, a bandpass filter provided at least in part of an optical path of the fluorescence, an integrator unit on which the light ray flux is incident and which divides the light ray flux into a plurality of partial light ray fluxes, a superimposing lens that is provided on the downstream of the integrator unit and causes the plurality of partial light ray fluxes to be incident in different positions, a light modulator including a plurality of pixels, a microlens array including a plurality of microlenses corresponding to the plurality of pixels, and a projection optical apparatus that projects light outputted from the light modulator.
US11412192B2
The present technology relates to a projector, a control method thereof, and an image system that make it possible to easily control operation performed by a projector.
The projector includes a display control section which acquires display data including equipment control information that controls equipment, and which controls another equipment according to the equipment control information. The present technology is applicable, for example, to a projector that is to be connected to another equipment through a network.
US11412191B2
The present disclosure discloses systems and methods for content enhancement using QCFA sensors of an electronic device. Embodiments herein include previewing contents in a field of view (FOV) of a first QCFA sensor, wherein the first QCFA sensor is operating in a first mode. Embodiments herein include detecting whether a zoom level of the contents previewed meets a first zoom-level criteria, and whether a light condition of the contents previewed meets a light criteria. Further, the first QCFA sensor may be configured to switch from a first mode to a second mode in order to enhance a resolution of the contents being previewed in the FOV of the first QCFA sensor in response to detecting that the zoom level of the contents previewed meets the first zoom-level criteria, and that the light condition of the contents previewed meets the light criteria.
US11412188B2
Techniques are described for an autonomous asset management system that integrates autonomous devices, such as drone devices and other robotic devices, with a home security system of a property to enable management, monitoring, and/or tracking of various assets located within the property. In some implementations, an indication of an asset associated with a property is obtained by an autonomous device. Sensor data collected by one or more sensors of the property is obtained by the autonomous device based on the indication of the asset. A present status of the asset is determined by the autonomous device based on the sensor data. A determination that the present status of the asset does not correspond to an expected status of the asset is made by the autonomous device. In response, the autonomous device navigates to the particular location of the property.
US11412186B2
A method and system for enhancement of video systems using wireless device proximity detection. The enhanced video system consists of one or more video capture devices along with one or more sensors detecting the presence of devices with some form of wireless communications enabled. The proximity of a device communicating wirelessly is sensed and cross referenced with received video image information. Through time, movement of wirelessly communicating mobile devices through a venue or set of venues can be deduced and additionally cross referenced to and augmented over image data from the set of video capture devices.
US11412182B2
The LED and/or laser projection light device has three major project parts including (a) light source (b) image-forming-unit (c) project/refractive lens to make desired enlarge projected image, patterns or light beams. The project light has at least one of inner optics-lens or optics-elements rotating to create the splendid lighted image or patterns or light-beam to emit to outer-cover. Further, The project light preferred have at least one of additional-functions built-in project light device select from (i) 2nd light source for preferred illumination function(s), (ii) glow, back light, (iii) 2nd or more project assemblies in one light device, (iv) other light functions, (v) candle light illumination, (vi) bulb illumination, (vii) desk top or floor light illumination, (viii) having battery or rechargeable battery or built-in/outside AC-to-DC circuit to get power source, (ix) apply the USB port or adaptor or connector or AC-plug wire to get power source, (x) steady, rotating, replaceable, detachable, movable 3 major project parts.
US11412181B1
One example system for sharing content across videoconferencing sub-meetings includes a processor and at least one memory device. The memory device includes instructions that are executable by the processor to cause the processor to establish a videoconferencing session including a main meeting and a first sub-meeting, receive, from a presenter, a content to be displayed in the main meeting, and cause the content to be displayed in the main meeting. The memory device further includes instructions that are executable by the processor to cause the processor to receive, from a first participant in the videoconferencing session, an indication that the content is to be displayed in the first sub-meeting, and cause the content to be displayed in the first sub-meeting simultaneously with the content in the main meeting.
US11412180B1
One example method includes joining, using a computing device, a video conference hosted by a video conference provider, the video conference having a plurality of participants; accessing, by the computing device, presentation content during the video conference, the presentation content comprising one or more content items and one or more video filters, at least one of the one or more video filters corresponding to one of the content items; receiving a selection of a first item of the one or more content items; accessing a first video filter of the one or more video filters, the first video filter corresponding to the content item; receiving a video feed from a video source; generating a composite video feed comprising the first content item and the first video feed, the composite video feed based on the video filter; and providing, via the video conference provider, the composite video feed to one or more video conference participants via the video conference.
US11412179B2
Systems and methods are described herein for maintaining and/or facilitating video call continuity between devices. For example, the systems and methods support video calls or other communications between multiple devices (e.g., a mobile device providing a video call stream of content and a drone or other moving device capturing and streaming content via a camera) providing video content to a target device, such as another mobile device.
US11412174B2
The present disclosure relates to systems and methods for transmitting Standard Dynamic Range (SDR) content. The systems and methods may use a modified Electro-Optical Transfer Function (EOTF) curve to convert nonlinear color values of SDR content into optical output values of modified SDR content. The systems and methods may encode the modified SDR content using eight bits while preventing banding. The systems and methods may transmit the encoded data to a client device for presentation on a display.
US11412169B2
There is provided a pixel circuit including a first circuit and a second circuit. The first circuit is used to output a first voltage associated with exposure intensity. The second circuit is used to output a second voltage associated with exposure time interval. The processor multiples the first voltage to a ratio between a reference voltage and the second voltage to obtain an actual light intensity, wherein the reference voltage is a voltage value outputted by the second circuit of a dummy pixel.
US11412168B2
An imaging element included in an imaging device includes a pixel array in which a plurality of unit pixels are arranged in a matrix, each of the unit pixels having a photoelectric conversion unit. The imaging element is able to read out multiple rows of pixel signals in parallel in a unit horizontal synchronous period. The multiple rows of pixel groups are classified into a first pixel group and a second pixel group by a plurality of rows control signals, and are periodically arranged in a vertical direction of the imaging element. The imaging element is able to acquire signals obtained by multiplying different gains by pixel signals of unit pixels of the first pixel group and pixel signals of unit pixels of the second pixel group through setting of a plurality of rows control signals.
US11412165B2
An image sensor is presented which includes a pixel array including a plurality of image sensing pixels in a substrate, a phase detection shared pixel in the substrate, the phase detection shared pixel including two phase detection subpixels arranged next to each other, a color filter fence disposed on the plurality of image sensing pixels, and the phase detection shared pixel, the color filter fence defining a plurality of color filter spaces, a plurality of color filter layers respectively disposed in the plurality of color filter spaces on the plurality of image sensing pixels, and the phase detection shared pixel, a first micro-lens disposed on each of the plurality of image sensing pixels to have a first height, and a second micro-lens disposed to vertically overlap the two phase detection subpixels of the phase detection shared pixel and to have a second height greater than the first height.
US11412162B2
An image sensor includes a plurality of pixels, each pixel including a photosensitive element, and a photo-signal converter adapted to provide, on a first output, a current signal linearly proportional to the intensity of light impinging on the photosensitive element and to provide, on a second output, a voltage signal logarithmic with the intensity of light impinging on the photosensitive element. Each pixel further includes a detector adapted to generate a trigger signal when a signal of the detector proportional to the voltage signal of the second output of the photo-signal converter exceeds a threshold, and a light-to-time converter adapted to measure and encode, in the time domain, light intensity on the photosensitive element. A light-to-time conversion cycle may be initiated by the light-to-time converter in response to receipt of the trigger signal.
US11412159B2
Disclosed is a method and apparatus for generating a three-dimensional particle effect, an electronic device and a computer readable storage medium. The method comprises: receiving a three-dimensional particle resource package; parsing a configuration file of the three-dimensional particle resource package; displaying parameter configuration items corresponding to the configuration file on the display apparatus, the parameter configuration items at least comprises a three-dimensional particle system parameter configuration item, a three-dimensional particle emitter parameter configuration item, and a three-dimensional particle affector parameter configuration item; receiving a parameter configuration command to perform a parameter configuration for the above parameter configuration items; generating the three-dimensional particle effect according to parameters configured in the parameter configuration items.
US11412138B2
An imaging apparatus according to embodiments of the present disclosure includes a sensor unit, a front engine that generates compressed raw image data by processing image data acquired from the sensor unit, a main engine that executes a development process on the compressed raw image data acquired from the front engine, and a display unit that displays an image. The front engine controls the display unit to display an image based on the image data acquired from the sensor unit, and the main engine records the image data subjected to the development process in a recording medium.
US11412127B2
An imaging device in which an autofocus function can be performed without using brightness information is provided. In an imaging device according to one aspect, a density of points obtained by plotting two-dimensional point data of a plurality of event data as points on a plane, the event data outputted from an imaging element in a predetermined period in a state in which a focal point of a light receiving lens is adjusted by an adjustment mechanism, is calculated as a point density. When the point density is calculated, a control unit drives and controls the adjustment mechanism based on comparison results between the point density currently calculated and the point density last calculated to thereby adjust the focal point toward the in-focus position. In another aspect, an imaging device having an autofocus function can be provided without using event data.
US11412125B2
An imaging apparatus to which a plurality of accessory apparatuses are attachable includes a camera communicator configured to provide a communication path with each of the plurality of accessory apparatuses, and a camera controller configured to communicate with the plurality of accessory apparatuses via the camera communicator. The camera controller transmits a first request to the plurality of accessory apparatuses, receives first information corresponding to whether or not to stop a communication with the imaging apparatus from each of the plurality of accessory apparatuses that have received the first request, and controls a communication with each of the plurality of accessory apparatuses according to the first information.
US11412124B1
Systems and methods for operating a focal plane array are provided. The operations can be stored as command sequences stored in a command queue established in memory provided as part of reconfigurable focal plane electronics. Each command sequence can include definitions of a plurality of image frames that are executed in series. The configurations of the defined frames can be the same as or different from one another. Moreover, the frame definitions can specify a number of focal plane array parameters, such as gain, full frame or window, and integration time. The sequence of focal plane array parameters can be provided to the focal plane array as a command stream at the direction of a state machine implemented by the reconfigurable focal plane electronics. New commands containing different frame commands can be loaded into the command queue without requiring reconfiguration of the electronics.
US11412123B2
A display system for a vehicle comprises an imager configured to capture image data in a field of view rearward relative the vehicle. The system further comprises a display device and a controller. The display device comprises a screen disposed in a passenger compartment of the vehicle. The controller is in communication with the imager and the display device. The controller is operable to process the image data to identify at least one feature. Based on a position or orientation of the at least one feature in the image data, the controller adjusts at least one of a position and an orientation of a desired view of the image data for display on the screen.
US11412114B2
Provided is an image shooting device and an electronic apparatus, which enable suppression of shaking of a camera unit. The image shooting device (12) includes: a camera unit (26); and a holder (28) configured to movably support the camera unit (26), wherein the holder (28) includes a power transmission-side coil (36), and the camera unit (26) includes a power reception-side coil (38), and wherein the power transmission-side coil (36) and the power reception-side coil (38) are opposed to each other across a space therebetween.
US11412111B2
An image sensor mounting board includes a first substrate and a second substrate. The first substrate has an upper surface with a recess and includes an organic material. The second substrate is located in the recess on the first substrate, has an upper surface on which an image sensor is mountable, and includes an inorganic material.
US11412109B1
A camera mounting system for inspection is intended to be used with lights and a camera connected to a data transmission system to allow temporary installation of the mounting system upon a barge hatch to allow for visual confirmation via a camera or other digital imaging system of the interior space of the barge. The system is intended to be used to reduce personnel exposure to the interior of barges. The camera mounting system is portable and may be folded. The camera mounting system allows use with hatches generally rectangular at the access hatch as well as hatches having rounded or sweeping ninety degree type access hatches with the mounting system providing multiple positions for placement of the camera for either hatch type to ensure repeatability of the visual confirmation between various barge and barge configurations.
US11412108B1
Techniques for efficiently identifying objects of interest in an environment and, thereafter, determining the location and/or orientation of those objects. As described below, a system may analyze images captured by a camera to identify objects that may be represented by the images. These objects may be identified in the images based on their size, color, and/or other physical attributes. After identifying these potential objects, the system may define a region around each object for further inspection. Thereafter, portions of a depth map of the environment corresponding to these regions may be analyzed to determine whether any of the objects identified from the images are “objects of interest”—or objects that the system has previously been instructed to track. These objects of interest may include portable projection surfaces, a user's hand, or any other physical object. The techniques identify these objects with reference to the respective depth signatures of these objects.
US11412100B2
An image forming system including: a conveyance unit configured to convey a first sheet on which an image has been formed by an image forming portion; a reading unit including a reading sensor configured to read the first sheet being conveyed by the conveyance unit through a transparent member at a reading position; a guide member configured to cover a reference member on a side opposite to the reading sensor with respect to the transparent member; and a controller configured to perform shading correction on a result of reading the first sheet based on image data obtained by the reading unit reading the reference member through the transparent member, and to control, based on an image subjected to the shading correction, a geometric characteristic of an image to be formed on a second sheet by the image forming portion.
US11412099B2
An image reading apparatus includes a first image reading unit, a second image reading unit provided on a side opposite from the first image reading unit with respect to a sheet feeding passage, a first guiding member, a second guiding member, a first unit holding the first image reading unit and the second guiding member, and a second unit holding the second image reading unit and the first guiding member. One of the first unit and the second unit is movable relative to the other unit so as to open the sheet feeding passage.
US11412091B2
An embodiment of the present disclosure provides an intercom system including a cloud server, and a relay gateway. The cloud server is configured to receive a trigger signal from a visitor door station, and to send a notification when the cloud server receives the trigger signal from the visitor door station. In one embodiment, the relay gateway is configured to receive the notification from the cloud server and to send the notification to one of a plurality of local intercom stations via one of plurality of hard wires, the hard wires being connected to the local intercom stations, respectively. In one embodiment, the cloud server is configured to send the notification to a remote intercom device that corresponds to the one of the plurality of the local intercom stations.
US11412089B1
A voice over internet protocol (VoIP) system for an aircraft includes a ground gateway, an aircraft gateway disposed on the aircraft, and a service provider network disposed on the aircraft. The ground gateway is in communication with the aircraft gateway via the service provider network. The aircraft gateway includes a first proxy agent, and the ground gateway includes a second proxy agent. The first proxy agent and the second proxy agent communicate a network packet for a number streams. The network packet includes a header and voice payloads for the streams.
US11412084B1
Certain aspects of the disclosure are directed to customization of alerts using telecommunications services. A data-communications server is configured to provide a database with a set of virtual office features including client-specific call routing functions available to remotely-situated client entities based on a subscription. The server is configured to provide to the client entities, a set of instructions written in a first programming language, and to receive from each respective client entity, client-specific sets of control data written in a second programming language. The client-specific sets of control data may specify particular alerts and/or reminders to be provided to end-users of the respective client entity.
US11412079B1
A pouch for removable attachment to a mobile phone case that affords easier holding of the phone case by the user as well as secure holding of personal items in the pouch. The pouch does not interfere with use of the phone camera or with mounting the phone on a charger or car mount. A strap with fasteners such as snaps or fasteners directly attached to the case hold the pouch to the case.
US11412078B2
A data transmission method includes encapsulating, by a first device, first target data into N remote direct memory access (RDMA) packets according to an RDMA protocol, sequentially sending, by the first device, the N RDMA packets to the second device according to a packet sequence number (PSN) sequence of the N RDMA packets, where each of the N RDMA packets carries a first data write address, and the first data write address is an address for writing data in each of the N RDMA packets into the second device such that the second device directly obtains the first data write address in each RDMA packet from the RDMA packet, and writes the target data into storage space corresponding to the first data write address.
US11412071B2
A node may receive a network topology message that identifies a first association of a first segment identifier (SID), relating to a loosely routed segment of a network, and an address of a first terminal interface associated with the loosely routed segment, or a second association of a second SID, relating to a strictly routed segment of the network, and an address of a second terminal interface associated with the strictly routed segment. The node may generate an entry in a segment translation table based on the first association or the second association. The node may route, according to the segment translation table, an internet protocol (IP) payload packet that has been encapsulated using an IPv6 transport header that has been extended with a compressed routing header of variable length.
US11412069B1
An application managed by a provider is configured to run according to a selected usage scenario of a group of usage scenarios. The group of usage scenarios include a hard-partitioned usage scenario in which instances of the application are hard partitioned in correspondence with tenants of the provider. The group of usage scenarios include a soft-partitioned usage scenario in which the instances of the application are soft partitioned in correspondence with the tenants of the provider. The configured application is executed.
US11412064B2
A system for suggesting a list of actions to a user includes a server and an automaton connected to the server. The system makes it possible to calculate a list of actions that is suited to a user while taking into account the identity of the user, the profile of the user, and the first context data. The profile of the user includes: a unique identifier associated with the identity of the user, a history of the selections already made by the user on the automaton, and the second context data and the datum representing the return of the user that are related to each selection already made. Thus it is possible to suggest, to a user, a list of actions wherein the list of actions is established on the basis of analysis of the selections previously made in a similar context by a pre-identified user.
US11412062B2
Systems and methods for effectively managing exit nodes are provided. The exemplary systems and methods use a Supernode to examine an Exit Node through sending and receiving a request to a Target. Information about the exit node is then stored into the Supernode. According to the information provided from the Supernode, the Exit Nodes Database systemizes the proxies according to availability and provides available exit nodes to a User Device.
US11412058B2
Techniques are described herein for distributed data stream programming and processing. The techniques include sending a request indicating one or more regions of a program code to access a stream in a stream pool and to execute on a processing node in a processing nodes pool. The techniques also include accessing the stream defined in the one or more regions of the program code to service the request. Thereafter, the processing node is selected to use for execution of the one or more regions of the program code and the processing node executes one or more instances of the one or more regions of the program code.
US11412056B2
In various embodiments, a service worker processes network requests by proxying the network requests via a content distribution network. The service worker intercepts a network request from a client application, generates a duplicate network request, and changes certain elements of the duplicate network request. The intercepted request can be an initial document request used to load a webpage or a subsequent request that includes an application programming interface (API) call. The service worker transmits the duplicate network request to a content distribution network that proxies the duplicate request to a cloud computing system, thereby accelerating that request.
US11412038B2
Techniques for performing network-assisted peer discovery to enable peer-to-peer (P2P) communication are described. In one design, a device registers with a network entity (e.g., a directory agent) so that the presence of the device and possibly other information about the device can be made known to the network entity. The network entity collects similar information from other devices. The device sends a request to the network entity, e.g., during or after registration. The request includes information used to match the device with other devices, e.g., information about service(s) provided by the device and/or service(s) requested by the device. The directory agent matches requests received from all devices, determines a match between the device and at least one other device, and sends a notification to perform peer discovery. The device performs peer discovery in response to receiving the notification from the network entity.
US11412037B2
The present invention relates to systems and methods suitable for real-time streaming over a decentralized or centralized network. In the decentralized network, the present invention relates to a system and method that utilizes a block-chain distributed network to securely and reliably stream multimedia in real-time. In the centralized network, the present invention utilizes a centralized stream manager to manage nodes within the distributed network to securely and reliably stream multimedia in real-time.
US11412025B2
A system designed for increasing network communication speed for users, while lowering network congestion for content owners and ISPs. The system employs network elements including an acceleration server, clients, agents, and peers, where communication requests generated by applications are intercepted by the client on the same machine. The IP address of the server in the communication request is transmitted to the acceleration server, which provides a list of agents to use for this IP address. The communication request is sent to the agents. One or more of the agents respond with a list of peers that have previously seen some or all of the content which is the response to this request (after checking whether this data is still valid). The client then downloads the data from these peers in parts and in parallel, thereby speeding up the Web transfer, releasing congestion from the Web by fetching the information from multiple sources, and relieving traffic from Web servers by offloading the data transfers from them to nearby peers.
US11412022B2
A method includes generating, at a first computing device, a header for media packets, the header including a header flag in a first portion of the header and a variable length header field in a second portion of the header, the first portion contiguous to the second portion, wherein the header flag includes a value indicating a length of the header field. The method also includes generating a body for the media packets, generating the media packets based on the header and the body, generating a protocol report based on media data, and sending the media packets and the protocol report to a second computing device. The protocol report includes information to enable the second computing device to account for successful receipt of the body of the media packets by the second computing device.
US11412020B2
In this invention, we disclose a multimedia streaming base station used preferably in a wireless communication network. The multimedia streaming base station is capable of capturing, storing, encoding, and transmitting multimedia via a local multimedia capture device. The multimedia base station can be a heterogeneous multi-RAT node, in which case the wireless communication network could be a heterogeneous mesh network. The multimedia base station could by a dynamic mesh node in alternate embodiments. Additional embodiments of the present invention include methods for facilitating streaming of locally captured multimedia content.
US11412019B2
The present disclosure relates to a method performed in a network server of a service provider providing a service comprising media streaming. The method comprises receiving a detection message from a mobile radio device running the service for a user registered with the service provider, said message comprising an indication that said radio device has detected a radio transmitter as well as comprising an identifier of said radio transmitter. The method also comprises determining that the radio transmitter, as identified by the received identifier, is registered with the service provider and associated with one or more actions. The method also comprises electing an action of the one or more actions. The method also comprises sending an instructions message to the radio device, said message comprising instructions to modify the service such that the radio device performs the elected action.
US11412017B2
Multi-layer partitioned timed media data comprising timed samples is encapsulated. Each timed sample is encoded into a first layer and at least one second layer, at least one timed sample comprising at least one subsample, each subsample being encoded into the first layer or the at least one second layer. The method includes obtaining at least one subsample, belonging to said first layer, from at least one of the timed samples; creating a first track comprising the at least one obtained subsample; obtaining at least another subsample, belonging to said second layer, from the same one of the timed samples; creating a second track comprising said at least another obtained subsample; and generating descriptive metadata associated with the second track.
US11412016B2
Systems and methods for demonstrating network security products in a virtual conference and providing training to attendees of a network security training session in the virtual conference through the use of gamification are provided. A server generates a dedicated virtual environment for a particular attendee. A three-dimensional (3D) user interface for the virtual conference is presented on a display of the particular attendee, which represents a simulated conference environment with each network security product being demonstrated as a virtual booth represented in the conference environment. A game client causes the particular attendee to navigate in the 3D user interface to a first virtual booth to access a first learning objective relating to demonstration of a first network security product corresponding to the first booth. A progress report, which is maintained by the server, is used to notify regarding other learning objectives that are of potential interest to the particular attendee.
US11412004B2
Aspects of the subject disclosure may include, for example, identifying from a user device, authentication methods associated with services, obtaining network security information and identifying device security information for the authentication methods. Further embodiments include, in response to analyzing the network security information and the device security information: determining a first security risk for a first authentication method; and identifying a second authentication method with a second security risk lower than the first security risk. Additional embodiments include transmitting a notification to the user device indicating not to utilize the first authentication method based on the first security risk and to utilize the second authentication method, and transmitting a notification to network devices indicating the first security risk associated with the first authentication method. Each network device transmits to a group of user devices a notification indicating to cease utilizing the first authentication method. Other embodiments are disclosed.
US11412003B1
A method of verifying resource protection statuses for resources for address-based resources may include receiving a request for verification of resource protection from a client device for an address-based resource. The request includes an address of a resource. The intermediate system is programmed to receive resource protection verification requests from a plurality of client devices, and to receive resource protection verifications from a plurality of resource protection systems that are in communication with the intermediate system. The method also includes determining that none of the resource protection systems in the plurality of resource protection systems currently protect the resource; retrieving information that is securely stored for the resource and a user associated with the request; and sending the information to one or more of the plurality of resource protection systems as a request to protect the resource.
US11412001B2
Embodiments of the present invention generate network communication policies by applying machine learning to existing network communications, and without using information that labels such communications as healthy or unhealthy. The resulting policies may be used to validate communication between applications (or services) over a network.
US11412000B2
Presented herein are methodologies for implementing application security. A method includes generating an extraction vector based on a plurality of application security rules to be enforced, transmitting the extraction vector to a first agent operating on a first network device and to a second agent operating on a second network device; receiving, separately, from the first agent and from the second agent, first metadata generated by the first agent and second metadata generated by the second agent by the agents applying the extraction vector to network traffic passing, respectively, through the first network device and the second network device. The first metadata includes a transaction ID assigned by the first agent, and the second metadata includes the same transaction ID. The method further includes correlating the first metadata with the second metadata based on the transaction ID to construct a transactional service graph for the network traffic.
US11411995B2
Techniques are disclosed for securing traffic flowing across multi-tenant virtualized infrastructures using group key-based encryption. In one embodiment, an encryption module of a virtual machine (VM) host intercepts layer 2 (L2) frames sent via a virtual NIC (vNIC). The encryption module determines whether the vNIC is connected to a “secure wire,” and invokes an API exposed by a key management module to encrypt the frames using a group key associated with the secure wire, if any. Encryption may be performed for all frames from the vNIC, or according to a policy. In one embodiment, the encryption module may be located at a layer farthest from the vNIC, and encryption may be transparent to both the VM and a virtual switch. Unauthorized network entities which lack the group key cannot decipher the data of encrypted frames, even if they gain access to such frames.
US11411992B2
There is disclosed in one example a computing apparatus, including: a processor and a memory; a network interface; and instructions encoded within the memory to instruct the processor to: receive a uniform resource locator (URL) for analysis, the URL to access a web page via a remote server; via the network interface, retrieve from the remote server a copy of the web page; render the web page in a headless browser to provide a computer-accessible visual output; perform visual analysis of the visual output via a digital eye; compare the visual analysis to a plurality of known phishing target websites; and if the comparison identifies the web page as visually similar to a known phishing target website, detect the web page as a phishing web page.
US11411991B2
There is disclosed in one example a computing apparatus, including: a hardware platform including a processor and a memory; a network interface; a user-space application including instructions to interact with a web site via a uniform resource locator (URL); and a security agent including instructions to: intercept an interaction of the user-space application with the web site; determine that the intercepted interaction is to send sensitive information to the web site; suspend the interaction; and assign a reputation to the URL.
US11411979B2
Systems, computer-implemented methods, and computer program products that can facilitate compliance process risk assessment are provided. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise a metric assignment component that assigns one or more risk assessment metrics based on vulnerability data of a compliance process. The computer executable components can further comprise a risk assignment component that assigns a risk score of the compliance process based on the one or more risk assessment metrics.
US11411973B2
A method, system and computer-usable medium are disclosed for identifying security risks to a computer system based on a distribution of categorical features of events. Certain embodiments are directed to a computer-implemented method comprising: receiving a stream of events, the stream of events including a plurality of events; extracting a categorical feature from the plurality of events, where the categorical feature includes a set of categorical feature members, where the set of categorical feature members are generated on the fly from string values included in the extracted categorical feature; constructing a distribution for the categorical feature based on categorical feature members extracted from the plurality of events; and, analyzing the distribution of the categorical feature to identify one or more security risk factors.
US11411972B2
Methods, systems, and media for dynamically separating Internet of Things (IoT) devices in a network are provided. In accordance with some embodiments of the disclosed subject matter, a method for dynamically separating IoT devices in a network is provided, the method comprising: detecting a first IoT device in the network; monitoring network communication of the first IoT device; determining device information of the first IoT device based on the monitored network communication; and causing the first IoT device to communicate on a first subnet of a plurality of subnets in the network based on the device information.
US11411969B2
Live process migration in conjunction with electronic security attacks. A determination is made to cause the initiation of a live migration of a process executing on a first computing device to a second computing device. Prior to causing the initiation of the live migration of the process, it is determined that the first computing device is undergoing an electronic security attack. In response to determining that the first computing device is undergoing the electronic security attack, the initiation of the live migration of the process is caused, or the determination to cause the initiation of the live migration of the process is reversed.
US11411953B2
In some embodiments, a secure local connection between a network node of a network and an edge device attached to the network node is provided by extending the security of the network to this local connection. The edge device attached to the network node communicates with a network manager of the network to obtain security keys and security credentials for the edge device. Using the security keys and the security credentials, the edge device can establish a secure channel between the network node and the edge device over the local connection. The edge device further communicates with the network manager to exchange routing information and to obtain a network address for the edge device. The edge device can then communicate, through the network node, with other network nodes in the network using the security keys, the security credentials, and the network address.
US11411952B2
A system described herein may provide for multiple levels of authentication, such that a User Equipment (“UE”) may receive secure content from an application server, which may include or may be implemented by a multi-access edge computing (“MEC”) system. As described herein, a user associated with a UE may register the UE and/or a particular application with an authentication system and/or the application server. The registration of the UE and/or the application may establish a “trust” relationship between the authentication system and the UE, such that a user-level authentication performed by the UE, such as biometric authentication, may be accepted by the authentication system and/or the application system as an authentication of the user.
US11411951B1
Methods and systems described in this disclosure receive a call from a device associated with a caller and determine whether the caller is eligible for biometric authentication via the device by sending, via a communications network, an eligibility determination request to an issuer of the device. In response to the caller being eligible for biometric authentication, a request to initiate a biometric authentication process on the device is sent to an issuer of the device, where biometric credentials are received by the device and an indication of whether the biometric credentials were verified is received from the issuer of the device.
US11411942B1
Systems, methods, and computer-readable media are provided for an efficient roaming management method using a single association identifier token for associating with different access points. In one aspect of the present disclosure, a network controller includes memory having computer-readable instructions stored therein and one or more processors. The one or more processors are configured to execute the computer-readable instructions to receive a request from an endpoint to connect to a first access point; generate association identification token (e.g., PMK and PMKID) for the endpoint to connect to the first access point; and distribute the association identification token to a second access point prior to the endpoint attempting to connect to the second access point, the association identification token being used by the second access point to validate a subsequent request by the endpoint to connect to the second access point.
US11411941B2
Systems, apparatuses, and methods are described for establishing, or re-establishing, trust for a network device. A user device may send, via a network device, a service request to establish trust for the network device in a network. The service request may comprise, or may allow look up of, identifying information for the network device, such as a network address. Trust of the network device may be established, at least in part, by confirming the network address (or other identifying information) associated with the network device, and/or by confirming certain devices that are in communication with the network device. An authentication token may be sent to the network device for reconnecting to the network.
US11411940B2
A data source device (“device”) can generate a plurality of data segments, each of which can include data that is owned by a specific entity. The device can calculate and store a hash for each data segment of the plurality of data segments as part of a message footer of a data message. The device can calculate and store a further hash that includes a combination of the plurality of data segments and the hashes for the plurality of data segments as part of the message footer. The device can encrypt each data segment to create a plurality of encrypted data segments. The device can assemble the data message to include the plurality of encrypted data segments and the message footer. The device can send the data message to a gateway for further processing.
US11411938B2
The technology disclosed herein provides a proof-of-work key wrapping system that uses integrated key fragments to cryptographically control access to data. An example method may include encrypting a first cryptographic key to produce a wrapped key, wherein the first cryptographic key enables a computing device to access content; determining a plurality of key fragments of a second cryptographic key, wherein the second cryptographic key is for decrypting the wrapped key and at least one of the plurality of key fragments is derived using one of the key fragments as input; selecting a set of cryptographic attributes for deriving the plurality of key fragments, wherein the set of cryptographic attributes are selected in view of a characteristic of the computing device; and providing the wrapped key and the set of cryptographic attributes to the computing device, the set of cryptographic attributes facilitating determination of the second cryptographic key.
US11411919B2
Deep Packet Inspection (DPI) application classification systems and methods are presented to enrich and improve application classification. Specifically, the systems and methods utilize domain and hostname information to enrich the DPI application classification. The systems and methods can include obtaining a packet; determining a hostname associated with the packet; utilizing a main rule to extract a domain from the hostname; and analyzing the domain and the hostname with a plurality of secondary rules based on the domain to deduce an application therefrom.
US11411916B2
Provided is a computer-implemented method and a transmission apparatus for transmitting data between a first network and a second network having high and low security requirements, wherein a first session is set up between the first and second networks, a first data packet is transmitted from a transmitting unit in the first network via a first one-way communication unit to a receiving unit in the second network, and a second session is set up and a second data packet is transmitted from a transmitting unit in the second network via a second one-way communication unit to a validation unit, the second data packet is validated in the validation unit on a prescribed rule, positive validation of the second data packet results in a third session being set up, and the second data packet is transmitted from the validation unit to a receiving unit in the first network.
US11411909B2
A message treatment process executed by a user's terminal when a message is being drafted is disclosed. The terminal has access to a corpus of messages containing at least one message sent by that user to at least one recipient user. In one aspect, at least one part of the message drafted by the user is retrieved. Concerning at least one message in the corpus, a semantic similarity score is calculated with a view to match at least part of the draft message with one message at least in the predetermined corpus of messages. At least one message is selected in the corpus of messages, based on the semantic similarity score calculated for a least one message in the corpus, then at least part of a previously received reply to at least one selected message is replicated.
US11411906B2
Provided is a method and system for providing an answer message to a query message. An answer message providing method may include managing a plurality of chatrooms of an instant messaging service; receiving a query message in a preset form from a first user of a first chatroom among the plurality of chatrooms; forwarding the query message to second users through the instant messaging service; receiving an answer message to the query message from at least one of the second users; and providing the received answer message to be displayed through the first chatroom.
US11411897B2
This application provides a communication method that includes grouping a plurality of clients to obtain at least two device groups, where each of the at least two device groups includes at least two clients. The method further includes receiving a publish request sent by a first client, where the publish request includes first data that corresponds to a first topic. The publish request is used to request a message queue telemetry transport (MQTT) server to publish the first data. After it is determined that a first device group to which the first client belongs from the at least two device groups, a publish message that includes the first data is sent to a second client in the first device group.
US11411888B2
A request is obtained that, if fulfilled, is operable to access a computing resource, with the request including an indication to evaluate the request in a verification mode while inhibiting fulfilment of the request. Responsive to the request, a policy applicable to the request is determined, decision data that is relevant to the policy is obtained, and the request is evaluated based at least in part on the policy and the decision data to produce an evaluation result. Further responsive to the request, fulfillment of the request is inhibited, a verification report is generated based at least in part on the evaluation result, and a notification is provided indicating that the verification report is generated.
US11411885B2
A user can set or modify operational parameters of a data volume stored on a network-accessible storage device in a data center. For example, the user may be provided access to a data volume and may request a modification to the operational parameters of the data volume. Instead of modifying the existing data volume, the data center can provision a new data volume and migrate data stored on the existing data volume to the new data volume. While the data migration takes place, the existing data volume may block input/output (I/O) requests and the new data volume may handle such requests instead. Once the data migration is complete, the data center may deallocate the data blocks of the existing data volume such that the data blocks can be reused by other data volumes.
US11411882B2
A device may identify a plurality of first values associated with network traffic of a label-switched path of a plurality of label-switched paths. The device may determine an adjustment policy based on the plurality of first values. The adjustment policy may include one or more factors associated with a plurality of second values. The plurality of second values may be determined based on the plurality of first values. The device may implement the adjustment policy in association with the label-switched path. A bandwidth reservation of the label-switched path may be adjusted based on the adjustment policy. The adjustment policy may be implemented for fewer than all of the plurality of label-switched paths.
US11411880B2
Provided are a connection management mechanism and a connection management method with which computer bus connections can be managed such that failures and freezes do not occur in a computer system when delays and packet losses occur. A connection management unit, which is used in computer bus communication in which packets are transmitted between a request source and a request destination, has a dummy return packet generation/transmission function wherein a dummy return packet is generated and is transmitted to the request source when a delay or loss occurs in a return packet transmitted from the request destination, and/or a filter function wherein, after transmission of the dummy return packet, a legitimate return packet arriving from the request destination is discarded.
US11411878B2
A data transmission method implemented by a network device, where the data transmission method includes receiving a first data packet sent by a transmit end, buffering the first data packet to a low-priority queue when the first data packet is sent by the transmit end during a first round-trip time (RTT) of a data transmission phase between the transmit end and a receive end, receiving a second data packet from the transmit end, buffering the second data packet to a high-priority queue when the second data packet is not sent by the transmit end during the first RTT, and forwarding the second data packet in the high-priority queue before the first data packet in the low-priority queue.
US11411872B2
The centralized control capability of Software Defined Networking (SDN) presents a unique opportunity for enabling Quality of Service (QoS) routing. For delay sensitive traffic flows, a QoS mechanism efficiently computes path latency and minimizes a controller's response time. At the core of the challenges is how to handle short term network state fluctuations in terms of congestion and latency while guaranteeing the end-to-end latency performance of networking services. The disclosed technology provides a systematic framework that considers active link latency measurements, efficient statistic estimate of network states, and fast adaptive path computation. The disclosed technology can be implemented, for example, as an SDN controller application, and can find optimal end-to-end paths with minimum latency and significantly reduce the control overhead.
US11411871B2
A method for data processing may include receiving a communication from a parent span, the communication including a data portion and a header portion. The header portion may include an identifier of an originating service that produced the communication, an identifier of a transaction for the communication, and an identifier of the parent span. The method may include identifying the parent span and the originating serviced based on the header portion. The method may also include performing a system trace process of the communication throughout the transaction based on the parent span and the originating service.
US11411870B2
Some embodiments provide a method for processing a packet for a pipeline of a hardware switch. The pipeline, in some embodiments, includes several different stages that match against packet header fields and modify packet header fields. The method receives a packet that includes a set of packet headers. The method then populates, for each packet header in the set of packet headers, (i) a first set of registers with packet header field values of the packet header that are used in the pipeline, and (ii) a second set of registers with packet header field values of the packet header that are not used in the pipeline.
US11411869B1
Embodiments for handling multidestination traffic in a network are described. The multidestination traffic includes packets that are in transit to a multihomed destination in the network. Upon determining the destination is multihomed, a network switch determines a hash value from a selection of header values in the network traffic and uses the hash value to determine if the network switch is a designated forwarder for the multihomed destination. The network switch handles the network traffic according a designated forwarder status.
US11411866B1
In some implementations, a network device may identify a segment routing traffic engineering (SR-TE) algorithm supported by the network device. The network device may determine, based on identifying the SR-TE algorithm, an identification value associated with the network device. The network device may generate an advertisement packet that includes the identification value and information identifying the SR-TE algorithm. The network device may send the advertisement packet to another network device to cause the other network device to update a data structure to indicate that the network device supports the SR-TE algorithm and that the network device is associated with the identification value. The other network device may determine, using the SR-TE algorithm, a forwarding path for a data packet that indicates the network device as a hop in the forwarding path.
US11411861B2
An integrated circuit chip device includes monitoring circuitry for monitoring system circuitry, the monitoring circuitry having units connected in a tree-based structure for routing communications through the integrated circuit chip device. The tree-based structure has branches extending from a root unit, each branch comprising a plurality of units, each unit connected to a single unit above in the branch and a single unit below in the branch. Communications are routable between the root unit and a destination unit of a branch via intermediate units of that branch. Crosslinks connect corresponding units of adjacent branches, each crosslink can be enabled to route communications between the root unit and a destination unit of one of the branches the crosslink connects via the other branch the crosslink connects in response to an intermediate unit being deemed defective, that intermediate unit being in the same branch as the destination unit.
US11411858B2
This application provides a method for updating a route in a network. The first network device sends a first LSA packet to a third network device, so that the third network device generates a first route whose destination address is a second IP address, where a next-hop IP address of the first route is the IP address of the first network device, and the second IP address belongs to the IP network segment corresponding to the first IP address which is an IP address of the first network device. The first network device sends a second LSA packet to the third network device when determining that switching needs to be performed on a next hop of a route in the third network device, whose destination address belongs to the IP network segment, and whose next-hop IP address is the first IP address.
US11411851B2
Disclosed herein are methods, systems, and processes for centralized containerized deployment of network traffic sensors to network sensor hosts for deep packet inspection (DPI) that supports various other cybersecurity operations. A network sensor package containing a pre-configured network sensor container is received by a network sensor host from a network sensor deployment server. Installation of the network sensor package on the network sensor host causes execution of the network sensor container that further causes deployment of an on-premise network sensor along with a network sensor management system, a DPI system, and an intrusion detection/prevention (IDS/IPS) system. The configurable on-premise network sensor is deployed on multiple operating system distributions of the network sensor host and generates actionable network metadata using DPI techniques for optimized log search and management and improved intrusion detection and response (IDR) operations.
US11411850B2
A traffic analysis apparatus includes an information amount calculation part that calculates information amounts of a plurality of items of time series data relating to communication traffic and an input information selection part that selects at least one item of time series data based on the information amounts of the plurality of items of time series data.
US11411849B1
A control server receives probe data from a plurality of data centers indicating measured latencies with a first IP address associated with an origin server. The control server sums the measured latencies of a first data center having a lowest measured latency and a second data center. When the sum is below a threshold value, the control server determines the IP address to be an anycast IP address and selects a proper subset of the plurality of data centers as proxying data centers for other data centers in the plurality of data centers. When the sum is not below the threshold value, the control server determines the IP address to not be an anycast IP address and selects the first data center having the lowest measure latencies as the proxying data center for other data centers in the plurality of data centers.
US11411837B2
A subscription request to obtain notifications of actions pertaining to the data file that has been previously stored at the cloud-based file system is received. The subscription request identifies the networked device and a set of actions to the data file that are to prompt the notifications to be transmitted to the networked device. An occurrence of an action is identified from the set of actions specified in the subscription request and involving the data file. Responsive to identifying the occurrence of the action from the set of actions involving the data file and in view of the subscription request identifying the networked device, a notification indicating the occurrence of the action involving the data file is transmitted to the networked device.
US11411836B1
Embodiments described herein enable a receipt of a first input representative of a risk score for a data type and a plurality of second inputs representative of a plurality of a plurality of setting evaluations of a network-based application; and a presentation of a first polygonal shape based on the first input, a plurality of second polygonal shapes, and a third polygonal shape based on the second inputs such that the first polygonal shape and the second polygonal shapes are concentric with each other and such that the first polygonal shape and the third polygonal shape are presented over the second polygonal shapes. The presentation enables a user to readily visualize a set of areas where the first polygonal shape and the third polygonal shape differ in order to determine how the network-based application is compliant and non-compliant with the first input.
US11411825B2
Autoscaling comprises: accessing operational data associated with a pool of servers; determining an expected load associated with a service provided by the pool of servers based at least in part on the operational data; determining an estimated capacity associated with the service provided by the pool of servers; determining that an autoscale operation is to be performed based at least in part on the expected load and the estimated capacity, wherein the autoscale operation automatically scales out one or more additional servers or automatically scales in one or more servers in the pool of servers; and performing the autoscale operation.
US11411823B2
An example system includes a vehicle having a first network zone and a second network zone of a different type than the first network zone, a converged network device (CND) interposed between the zones, where the CND includes a policy management circuit that interprets a policy including a network regulation description, a configuration circuit that configures network interface circuit(s) in response to the policy, and the interface circuit(s) that regulate communications between end points of the network zones.
US11411815B1
A system, method, and computer-readable medium are disclosed for performing a data center monitoring and management operation. The data center monitoring and management operation includes: identifying a plurality of asset resources within a data center; selecting a workload for allocation of asset resources; maintaining an inventory of available asset resources from the asset resources of the plurality of asset resources; determining which asset resources of the plurality of asset resources to allocate to the workload, determination of which asset resources of the plurality of asset resources to allocate taking into account the inventory of the available asset resources; and, performing a data center asset allocation operation, the data center asset allocation operation allocating resources the workload based upon the determining.
US11411814B2
A method of managing a configuration of a computer network system includes creating of an instance of a server by a user through an interface of a public cloud service. A management process detects the existence of the instance by regularly polling the cloud service for infrastructure data and analyzing the infrastructure data to determine that the newly created instance exists. The method also includes testing parameters of the server indicated in the infrastructure data, which parameters are fully determined by the request, against predefined one or more infrastructure policies, whereby the parameters are available and testable against the policies during the generating, but are tested after the request is enacted to create the instance without creating policy enforcement encumbrance on the user when the user creates the new instance of the server.
US11411806B2
A method of performing beam failure recovery (BFR) procedure in primary cell and secondary cells with reduced UE complexity is proposed. A UE is configured to operate in one or multiple frequency bands under carrier aggregation or dual connectivity. The UE performs beam failure recovery (BFR) procedure on one serving cell for one frequency band across FR1 and FR2. The serving cell is an active serving cell including both primary cell (PCell) and secondary cells (SCells). Specifically, for SCell BFR procedure, a sharing factor K is introduced when multiple SCells are configured to perform BFR procedure. In one embodiment, the SCell BFR evaluation period equals to a predefined PCell BFR evaluation period times the sharing factor K.
US11411800B1
A computing system receives, from a client device, a first request for access to a single page application associated with the computing system. A gateway of the computing system intercepts the first request before it reaches a shell service associated with the single page application. The gateway sends a second request for the single page application to the shell service. Based on the single page application request, the gateway determines that the shell service is experiencing a failure. Responsive to determining that the shell service is experiencing a failure, the gateway retrieves, from a content delivery network, a uniform resource locator (URL) associated with a time-lapse hypertext markup language (HTML) of the single page application. The gateway redirects the client device to the time-lapse HTML of the single page application using the URL.
US11411793B2
A method for a user equipment (UE) to receive physical downlink control channels (PDCCHs) is provided. The UE receives configuration information for a first control resource set that includes a number of symbols in a time domain and a number of resource blocks (RBs) in a frequency domain, configuration information indicating a first number of Nbundle,1 frequency-contiguous RBs, and a PDCCH in the first control resource set in a number of frequency distributed blocks of Nbundle,1 RBs. The UE assumes that a demodulation reference signal associated with the reception of the PDCCH has a same precoding over the Nbundle,1 RBs. A method for constructing a search space to reduce a number of channel estimations that the UE performs for decoding PDCCHs, relative to conventional search spaces, is also provided.
US11411788B2
This specification is related to a long training field (LTF) symbol of a WLAN. The LTF symbol may be generated based on a first LTF generation sequence used for an odd-numbered stream and a second LTF generation sequence used for an even-numbered stream. An even-numbered element of the first LTF generation sequence may be set to zero (0), and an odd-numbered element of the second LTF generation sequence may be set to zero (0). A plurality of LTF symbols for first and third streams may be generated by applying a P mapping matrix to the first LTF generation sequence. A plurality of LTF symbols for a second stream may be generated by applying the P matrix to the second LTF generation sequence.
US11411784B1
A system for producing a for digitally producing amplifier drive signals for high power transmission includes signal generators to produce, based on the desired transmit frequency and modulation, a high digital pulse, low digital pulse, or no digital pulse of the desired pulse width and phase relationship. The drive signal is a three-level signal, having states of “1”, “0”, and “−1”. A drive signal will direct the amplifier to output either its high voltage rail, 0 volts, or its low voltage rail. Multiple signal sets may be used to independently generate pulses based on differently phase shifted signals. These multiple drive signals can be used to drive multiple amplifiers, whose combined output produces a stair-step approximation to the desired transmit signal.
US11411780B2
Systems, methods, and processor readable media for distributing digital data and electrical power to a plurality of devices over high-impedance cables are disclosed. Certain embodiments include a gateway device connected to a power source, a first device connected to the gateway device by a cable, the cable being a high-impedance cable having at least two conductive paths, and wherein the first device receives electrical power and digital data from the gateway device via the cable over the same conductive path of the cable, a second device connected to the gateway device by the cable wherein the second device receives power and digital data from the gateway device via the cable over the same conductive path, and wherein the power source provides power to the first and second devices via the cable, and wherein the second device is connected to the gateway device through the first device via a daisy-chain topology.
US11411772B1
Systems, methods, and software can be used for establishing a tunneling connection over restrictive networks. One example of a method includes selecting, at an endpoint, at least one protocol to be used to establish a tunneling connection between the endpoint and a server. The at least one protocol is one of transmission control protocol (TCP) or user datagram protocol (UDP). The method further includes transmitting data between the endpoint and the server over the tunneling connection by using the selected at least one protocol.
US11411758B2
Examples of generating contextual compliance policies are described. A meeting invitation can be created by a meeting organizer. The meeting can have compliance rules associated therewith. A compliance policy that facilitates enforcement of the compliance rules during the meeting can be transmitted to attendee client devices and enforced by a management component running on the client devices.
US11411751B2
A privacy-preserving, mutual PUF-based authentication protocol that uses soft data to exchange and correlate Helper Data bitstrings instead of PUF response bitstrings as a means of authenticating chips to prevent attacks.
US11411750B2
The technology disclosed herein provides a system for generating a personal unclonable function (PUF) for a user based on a biometric data related to the user. Implementations of the system include a camera to generate a partial image of a user's tongue, a sensor to generate a moisture level in the user's saliva, a PUF generator configured to generate a PUF benchmark of the user based on combination of the partial image of a user's tongue and the moisture level in the user's saliva, and an access control unit configured to control access to one or more user devices based on the PUF benchmark.
US11411742B2
Embodiments disclosed herein describe computing calculations based on two overlapping private sets between various parties. To conduct the calculation, an intersection of the overlapping private sets data lists is conducted without revealing the underlying data. A homomorphic encryption is conducted on the intersecting data elements to allow them to be compared.
US11411740B2
The invention relates to distributed ledger technologies such as consensus-based blockchains. Computer-implemented methods for a self-replicating smart contract with termination condition are described. The invention is implemented using a blockchain network, which may be, for example, a Bitcoin blockchain. A first transaction to validate is received at a node in a blockchain network. The first transaction includes a first script that, as a result of being executed, causes the node to at least obtain a first set of field values of the first transaction, with the first set of field values including a third script, and obtain a second set of field values of a second transaction, with the second set of field values including a copy of the second script. A second transaction is obtained. The second transaction includes a second script that, as a result of being executed, causes the node to, as a result of determining that a termination condition is unfulfilled, at least obtain the third script from the first set of field values, and determine that the copy of the second script matches the third script. The first transaction is validated as a result of execution of the first script and the second script.
US11411734B2
The disclosed exemplary embodiments include computer-implemented systems, devices, apparatuses, and processes that maintain data confidentiality in communications involving voice-enabled devices operating within a distributed computing environment. By way of example, an apparatus may receive, from a communications system across a public communications network, a request for an element of data generated by the computing system based on first audio content obtained at a device. The apparatus may obtain the requested data element and further, may generate acoustic data representative of at least a portion of the requested data element. The apparatus may also generate an encrypted response to the received request that includes the acoustic data, and transmit the encrypted response to the device across the public communications network. The device may execute an application program that causes the device to decrypt the encrypted response and to perform operations that present the acoustic data through an acoustic interface.
US11411731B2
A method may include obtaining input data for an application programming interface (API), and encrypting the input data for the API using a public key of a provider of the API. The method may also include transmitting, to an API management server, an API request that invokes the API, where the API request includes an API call for the API and the encrypted input data. The API request may be in a format such that the API management server is capable of performing API management services based on the API call but unable to decrypt the encrypted input data with the public key.
US11411729B2
A receiving circuit includes a first channel, a second channel, a third channel and a control circuit, wherein the first channel is arranged to decode and descramble a first data stream to generate first data corresponding to first color information of an image frame, the second channel is arranged to decode and descramble a second data stream to generate second data corresponding to second color information of the image frame, and the third channel is arranged to decode and descramble a third data stream to generate third data corresponding to third color information of the image frame. The control circuit is configured to enable the first channel to make the first channel decode the first data stream, and enable or disable at least part of functions of the second channel and the third channel according to whether or not the image frame is displayed on a display panel.
US11411723B2
Free-Space key distribution method comprising exchanging information between an emitter (100) and a receiver (200) based on the physical layer wiretap channel model, comprising the steps of randomly preparing (710), at the emitter (100), one qubit encoded with one of two possible non-identical quantum states, sending (720) the encoded qubit to the receiver (200) through a physical layer quantum-enhanced wiretap channel (500), such that an eavesdropper (300) tapping said channel is provided with partial information about the said states only, detecting and measuring (730) the received quantum states, key sifting (740) between the emitter and the receiver through a classical channel, calculating (750, 760) an amount of information available to any eavesdropper (300) based on the detected and received quantum states.
US11411721B2
The disclosed embodiments provide a distributed transaction system including a group of validator nodes that are known to each other in a network but are indistinguishable to other network nodes. The validator nodes form a Committee including a Leader node and one or more Associate nodes. The Committee may be dynamically changed, such that new network nodes may be added to the Committee or may replace existing validator nodes. The Associate nodes also may coordinate with each other to select a new Leader node. The disclosed embodiments reduce the distributed system's reliance on the stability of any particular node(s) in the network, as the validator nodes in the Committee may be changed at a sufficient frequency to remove unreliable, unavailable, or otherwise untrusted nodes. Further, the disclosed embodiments provide a scheme that helps ensure the Leader node, as well as the other Committee members, functions properly.
US11411714B2
A method for performing an operation according to an embodiment includes assigning an error value to encrypted data; and performing a homomorphic operation for an approximation function, which is obtained by approximating a target function, by using, as an input value, the encrypted data to which the error value is assigned.
US11411712B2
A criterion method of GCCS (Globally Complete Chaos Synchronization) for three-node VCSEL (Vertical Cavity Surface Emitting Laser) networks with delay coupling is provided, including steps of: providing a delay-coupled VCSEL network consisting of three identical units and dynamic equations of the VCSEL network; providing assumptions of an outer-coupling matrix and a unitary matrix under the dynamic equations of the VCSEL network; in the three-node VCSEL network, determining rate equations of i-VCSEL, determining dynamic equations of a synchronization manifold, and determining a master-stability equation; calculating three maximum Lyapunov exponents; determining a stability of a synchronization state of the three-node VCSEL network, and determining whether the synchronization manifold of the VCSEL network is a chaotic waveform. Through a master-stability function, the method for determining whether the GCCS is achieved among all node lasers is provided, which solves a difficult problem of GCCS criterion for the VCSEL networks.
US11411703B2
Disclosed are a method and a device for transmitting and detecting a signal. The method provided in the present application: includes determining time-frequency resource for sending a dedicated reference signal sequence; sending the dedicated reference signal sequence on the time-frequency resources; and identifying remote interference by detecting the dedicated reference signal sequence. The time-frequency resources include a time slot of a downlink radio frame in a time domain and a frequency sub-band obtained by dividing a maximum frequency bandwidth available to a base station in a frequency domain.
US11411701B2
Embodiments of a User Equipment (UE), Next Generation Node-B (gNB) and methods of communication are generally described herein. A channel state information (CSI) report may include a CSI part 1 transmission and may be configurable to include a CSI part 2 transmission. The UE may determine a first number of coded modulation symbols per layer to be used for the CSI part 1 transmission on a physical uplink shared channel (PUSCH) without uplink shared channel (UL-SCH) data. The first number of coded modulation symbols per layer may be determined as: a minimum of a first term and a second term if the CSI report includes the CSI part 2 transmission; and the second term if the CSI report does not include the CSI part 2 transmission.
US11411696B2
This application provides a resource indication method, a terminal device, and a network device. The method includes: receiving, by the terminal device, the first indication information, and determining time domain positions of demodulation reference signals (DMRSs) based on the mapping type of the physical shared channel and with reference to a position index of the last symbol occupied by the physical shared channel or a quantity of symbols occupied by the physical shared channel in the resource unit, where the position index of the last symbol occupied by the physical shared channel in the resource unit corresponds to the first type, and the quantity of symbols occupied by the physical shared channel in the resource unit corresponds to the second type.
US11411690B2
Disclosed are methods and apparatuses for transmitting and receiving data channels in a communication system. An operation method of a terminal in a communication system may comprise receiving, from a base station, resource allocation information of a plurality of physical uplink shared channels (PUSCHs) used for repetitive transmission of a same transport block (TB); identifying a position of each of the plurality of PUSCHs in a time domain based on the resource allocation information; and repeatedly transmitting the same TB to the base station at the position of each of the plurality of PUSCHs. Therefore, performance of the communication system can be improved.
US11411682B2
A wireless device receives, from a base station, at least one first message comprising a first periodicity of resources of a configured periodic grant of a first type. A request for transmission information associated with the configured periodic grant is received. A response is transmitted. The response comprises: a first value based on a number of transmissions via the resources the configured periodic grant; and a second value based on a number of times that the wireless device received no corresponding acknowledgement from the base station in response to the transmissions.
US11411678B2
Wireless devices may use polar codes for encoding transmissions and may support combining transmissions to improve decoding reliability (e.g., by achieving chase combining and incremental redundancy (IR) gains). For example, an encoding device may puncture a set of mother code bits using different puncturing patterns to obtain different redundancy versions for a first transmission and a re-transmission. Each puncturing pattern may correspond to an equivalent decoding performance. In some cases, to obtain equivalent puncture sets, the encoding device may perform punctured index manipulation procedures on an initial puncturing pattern. A punctured index manipulation procedure may involve switching a binary state for a binary bit at a same binary bit index for each puncture index in a puncturing pattern. A device may receive the transmissions generated using the equivalent puncture sets and may combine the information for improved decoding reliability.
US11411674B2
A transmission device and method for repeatedly transmitting punctured data messages is disclosed. The transmission device is configured to puncture an encoded data message over a plurality of consecutive time slots to provide punctured data messages. The punctured data messages include a first punctured data message and a second punctured data message that are alternately transmitted during the consecutive time slots, the first punctured data message arising from puncturing the encoded data message with a first puncture indices series and the second punctured data message arising from the puncturing of the encoded data message with a second puncture indices series that is complementary to the first puncture indices series. A reception device and method for reassembling the encoded data message based on the punctured data messages is also disclosed.
US11411670B1
A chirp noise generation device for a compressed pulse signal includes: a receiving antenna; a signal analysis unit configured to determine whether to perform an electronic attack by analyzing a receipt signal that is inputted through the receiving antenna; and a digital frequency storage configured to store the receipt signal that is inputted through the receiving antenna, to generate a chirp noise by using the receipt signal, to generate a jamming signal by synthesizing the receipt signal and the chirp noise, and to transmit the jamming signal when a control command indicating that the electronic attack needs to be performed is received from the signal analysis unit.
US11411667B2
A clock source determining method and an apparatus are provided. The method includes: A session management network element receives a session request from a mobility management network element. The session request includes information about a network slice and a DNN, and the session request is used to request to create a session. The session management network element determines clock source information corresponding to both the information about the network slice and the DNN. The session management network element sends the clock source information to an access network device. The clock source information is used by the access network device to perform clock synchronization with a terminal device.
US11411662B2
A calibration system including a signal generator device, at least one calibration receiver and a processing circuit is described. The signal generator device has a signal generation circuit configured to generate a signal, at least one signal path terminating at a signal output port of the signal generator device, and at least one tap provided in the signal path. The at least one calibration receiver is connected with the at least one tap in the signal path. The at least one calibration receiver is connected with the processing circuit. The processing circuit is configured to receive measurement results obtained by the at least one calibration receiver and to analyze the measurement results received, thereby determining analysis results.
US11411659B2
An optical power supply system includes a power sourcing equipment, a powered device, an information obtaining part and a power supply controller. The power sourcing equipment outputs feed light. The powered device converts the feed light into electric power. The electric power is supplied to a communicator. The information obtaining part obtains communication operation information on an operation status of communication that is performed by the communicator. Based on the obtained communication operation information, the power supply controller controls output of the feed light. The communicator is a wireless communicator that performs wireless communication. The communication operation information includes at least one of measured communication load information that is information on an actually measured communication load, potential communication load information that is information on a potential maximum communication load, and predicted communication load information that is information on a predicted communication load.
US11411645B2
A signal switch comprises a switch arrangement for selectively passing optical wireless communication, OWC, signals received from a plurality of photodetectors for output to an external device. A signal strength detector is arranged to measure a signal strength of OWC signals as passed by the switch arrangement. While an OWC signal received from a first one of the photodetectors with a signal strength is being passed by the switch arrangement, a selection unit controls the switch arrangement to pass a combination of the OWC signal from the first photodetector and the OWC signal from another photodetector, determines a signal strength of the combination of OWC signals, and estimates the signal strength of the OWC signal from the other photodetector based on the signal strength of the OWC signal from the first photodetector and the signal strength of the combination of OWC signals.
US11411641B2
Methods, systems, and devices for wireless communications are described in which RF-domain wireless routers may repeat, extend, or redirect beamformed wireless signals received from one or more transmitters to one or more receivers. The router may receive transmissions at a mmW frequency using a first array of antenna elements, and provide the transmissions to a beamforming network, such as a Butler matrix, that outputs one or more a signals to a switching network. The switching network may perform switching to provide the one or more signals to desired inputs of an output beamforming network that outputs beamformed transmission beams via a second array of antenna elements.
US11411637B2
System including a gateway, a non-terrestrial node, a terrestrial node and at least a user equipment and a HARQ controller, the gateway being configured to forward a data packet, the data packet to be transmitted to the user equipment, to the non-terrestrial node, the non-terrestrial node being configured to forward the received data packet to the user equipment using a signal, the user equipment being configured to analyze the received data packet regarding a transmission error and/or to analyze the signal from the non-terrestrial node regarding a signal quality and to generate a negative acknowledgment command or an acknowledgement command dependent on the transmission error or to generate another signal indicating the reception signal quality dependent on the reception signal quality, the user equipment being configured to transmit the acknowledgement command and the non-acknowledgement command or the other signal to the terrestrial node communicating with the non-terrestrial node.
US11411633B2
A transmission device includes a modulation unit that performs chirp-spread modulation on an input information series to generate a modulation signal; a delay unit that provides, to a plurality of modulation signals obtained by duplicating the modulation signal generated by the modulation unit, delays having lengths different from each other, a difference between the delays being an integral multiple of a reciprocal of a bandwidth of the modulation signal; and a plurality of transmission antennas that transmit the plurality of modulation signals, respectively, to which the delays are provided by the delay unit.
US11411632B2
Systems and methods for estimating Signal-to-Noise Ratio (SNR) for Multi-User Multiple-Input and Multiple-Output (MU-MIMO) based on channel orthogonality. In some embodiments, a method performed by a radio access node includes obtaining a SU-MIMO signal quality measurement for at least a first user and an additional user; obtaining an indication of orthogonality between a channel of the first user and a channel of the additional user; and estimating a MU-MIMO signal quality measurement for the first user as if the first user and the additional user are paired with each other for a potential MU-MIMO transmission based on the SU-MIMO signal quality measurements and the indication of orthogonality. In this way, a computational complexity for the SINR estimation of MU-MIMO users can be greatly reduced. This may enable a large number of user pairing alternatives to be evaluated in practical wireless systems to achieve improved MU-MIMO performance.
US11411625B2
A method, a computer-readable medium, and an apparatus are provided that enable use of a full transmission power for a UE having a first set of coherent antenna ports that is non-coherent to a second set of coherent antenna ports. The apparatus determines a transmission power for a data transmission from the UE to a base station based at least in part on power control signaling from the base station, determines at least one antenna port having non-zero data for transmission, and determines a transmission power split for the at least one antenna port. Then, the apparatus transmits the data transmission from the at least one antenna port, wherein a combined transmission power from the at least one antenna port corresponds to the transmission power determined based at least in part on the power control signaled from the base station.
US11411618B2
Embodiments of the present disclosure provide a signal transmission method, network device, and terminal device. The method includes: determining a first time-frequency resource; obtaining a second time-frequency resource and a third time-frequency resource based on the first time-frequency resource and a preset rule, where the third time-frequency resource includes at least one resource element (RE) at a predefined location in the first time-frequency resource, the second time-frequency resource includes a resource other than the third time-frequency resource in the first time-frequency resource, the preset rule indicates the predefined location, the second time-frequency resource is used to carry a beamformed control channel, and the third time-frequency resource is used to carry a reference signal of the beamformed control channel.
US11411613B2
A communication system is disclosed. The communication system includes a plurality of antennas disposed on one or more platforms, at least one transmitter, at least one receiver, and a control module communicatively coupled to the at least one receiver and at least one transmitter, and disposed on a separate platform than at least one antenna of the plurality of antennas. The control module is configured to control received and transmitted signals. The control module includes a controller, one or more processors, and a memory communicatively coupled to the one or more processors and having instructions stored upon. The instructions, when executed by the one or more processors, cause the one or more processors to receive antenna attribute data, and instruct the controller to configure the communication system for at least one of the diversity signal processing, the adaptive antenna processing, or the relay communication processing.
US11411606B2
Disclosed is a technique for estimating crosstalk between a first and second electrical transmission lines. The method comprises obtaining measurements of a received near end crosstalk, NEXT, signal, the NEXT signal being received at a first end of the second transmission line over a time period as a result of an electrical signal sent onto the first transmission line from its first end, the obtained measurements being in the time domain. Subsequently, a crosstalk coupling estimate is obtained per transmission line sub-interval by compensating the obtained measurements in the time domain of the received NEXT signal for round-trip attenuation of the sent signal from the first end of the first line to the sub-interval and back to the first end of the second line, and an estimate of a total crosstalk coupling is obtained by adding together at least some of the obtained crosstalk coupling estimates per transmission line sub-interval.
US11411602B2
An electronic device, which performs ranging by using ultra wide band (UWB) communication, and an operating method of the electronic device, is provided. The operating method includes a first electronic device performing operations including transmitting a ranging control message including block striding information to a second electronic device, determining whether to perform hopping based on a result of transmitting the ranging control message, determining a hopping round value based on a result of determining whether to perform the hopping and the block striding information, and performing ranging with the second electronic device based on the block striding information and the hopping round value.
US11411595B2
Systems, methods, and circuitries are provided for extending the range of an analog-to-digital converter (ADC) associated with interference cancellation. In one example a transceiver includes front end circuitry configured to transmit a radio frequency (RF) transmit signal that includes an intended signal and an interference signal. The transceiver includes self-interference cancellation (SIC) circuitry configured to control the front end circuitry based at least on a digital baseband reference transmit signal that comprises a digital representation of the intended signal. ADC range extension circuitry is provided to: receive the RF transmit signal from the front end circuitry; receive the digital baseband reference transmit signal from the SIC circuitry; approximate the interference signal by generating an analog estimated interference signal that corresponds to a difference between the RF transmit signal and the digital baseband reference transmit signal; and provide the analog estimated interference signal to the ADC.
US11411591B1
A method of tuning a self-interference cancellation circuit, wherein the self-interference cancellation circuit comprises a filtering means configured to vary a phase and an amplitude of a transmit signal based on a first filter weight. The method comprising transmitting a first transmit signal, receiving a first received signal in response to transmitting the first transmit signal; estimating, based on the first received signal, a first derivate of a cost function with respect to the first filter weight; estimating, based on the first received signal, a second derivative of the cost function with respect to the first filter weight; determining a first step size based on the second derivative; calculating an updated first filter weight based on the first filter weight, the first step size, and the first derivative; and updating the filtering means based on the updated first filter weight.
US11411587B2
A signal processing method and system includes a baseband signal baseband signal processing module configured to perform slow envelope processing on a first signal, to obtain an envelope value E(n) of the first signal on which the slow envelope processing has been performed, obtain a phase value θ(n) based on E(n), where θ(n) and E(n) are in a linear relationship, and separate the first signal into a second signal and a third signal based on θ(n), where a phase difference between the second signal and the third signal is 2 θ(n), an amplifier configured to amplify the second signal and the third signal, and a synthesizer is configured to combine the amplified second signal and third signal to obtain a fourth signal.
US11411585B2
A radio-frequency module includes a module substrate having a first principal surface and a second principal surface on opposite sides of the module substrate, a power amplifier capable of amplifying a transmission signal, a low-noise amplifier capable of amplifying a reception signal, a first switch connected to an input terminal of the power amplifier and disposed on the second principal surface, a second switch connected to an output terminal of the low-noise amplifier and disposed on the second principal surface, and a first ground terminal disposed in a region that is on the second principal surface and that is between the first switch and the second switch in plan view of the module substrate.
US11411584B2
A data storage device is disclosed comprising a non-volatile storage medium (NVSM). A first block of data is channel encoded into first channel data based on a channel code constraint, and the first channel data is error correction encoded to generate first redundancy bits. A second block of data is channel encoded into second channel data based on the channel code constraint and the first redundancy bits, and the first channel data and the second channel data are error correction encode to generate second redundancy bits. A third block of data is channel encoded into third channel data based on the channel code constraint and the second redundancy bits. The first, second and third channel data and the first and second redundancy bits are stored in the NVSM.
US11411582B1
A method is provided for determining log-likelihood ratio (LLR) for soft decoding based on information obtained from hard decoding, in a storage system configured to perform hard decoding and soft decoding of low-density parity-check (LDPC) codewords. The method includes performing hard decoding of codewords in a page, the hard decoding including a first hard read and one or more re-reads using predetermined hard read threshold voltages, and grouping memory cells in the page into a plurality of bins based on the read threshold voltages for the first hard read and the one or more re-reads. The method also includes computing parity checksum and one's count for memory cells in each bin, and determining LLR for each bin of memory cells based on read data, checksums, and one's count for each bin.
US11411579B2
Circuits, methods, and apparatus for efficiently implementing encoding and decoding between binary and multilevel data.
US11411576B2
Provided is a data management system which includes a data acquisition unit configured to acquire measurement data obtained by measuring a measurement target, a data storage unit configured to store the acquired measurement data, a data size reduction unit configured to deletes at least a part of the stored measurement data to reduce a data size of the measurement data, and a data compression unit configured to perform data compression on the measurement data reduced in data size.
US11411573B2
An electronic device and method are provided. The electronic device includes a directional coupler, a sense pair connected to the directional coupler, and an analog-to-digital converter (ADC) connected to the sense pair. The ADC directly digitizes a signal current received from the sense pair.
US11411566B2
In described examples, a method of operating a charge pump includes a first control signal deactivating a first transistor, and the first control signal's logical complement activating a second transistor to reset the first transistor's DC bias voltage. The first control signal's logical complement deactivates the second transistor, and the first control signal provides a bias voltage to the first transistor to activate it, causing current to be transmitted from an input voltage to an output terminal. A second control signal deactivates a third transistor, and the second control signal's logical complement activates a fourth transistor to reset the second transistor's DC bias voltage. The second control signal's logical complement deactivates the fourth transistor, and the second control signal provides a bias voltage to the third transistor to activate it, causing current to be transmitted from the output terminal to a ground.
US11411541B2
A device includes an amplifier for amplifying and supplying a high frequency power supplied to a load, a parameter detector for detecting a parameter of a current, a voltage, or a power from the amplifier to the load, a current supply unit for supplying a driving current for the amplifier, and an output unit for outputting a command signal for changing an amplification degree of the amplifier based on the detected parameter such that the parameter becomes a target value. The device further includes a first abnormality detector for detecting an abnormality by monitoring the command signal, and/or a current detector for detecting the driving current, a current data storage unit storing an upper and a lower limit value of the driving current, and a second abnormality detector for detecting the abnormality based on at least one of the upper limit value or the lower limit value.
US11411534B2
A hybrid solar thermal and photovoltaic panel based cogeneration system and heat pump and non-tracking non-imaging solar concentrator based CSP stabilized power generation system comprises a hybrid solar thermal and photovoltaic panel based cogeneration subsystem to cogenerate electricity and heat, a heat pump subsystem to raise the temperature of the cogenerated heat, a non-tracking non-imaging solar concentrator based CSP subsystem to further upgrade the cogenerated thermal energy, a thermal storage to store the cogenerated heat, and a thermal power regeneration system, to take the stored cogenerated heat to regenerate power. The power output of the cogeneration subsystem supplemented with the power output from the thermal power regeneration system realizes stabilized power output.
US11411533B1
A system, method, and solar photovoltaic (PV) network for solar PV variability reduction with reduced time delays and battery storage optimization are described. The system includes a Moving Regression (MR) filter; a State of Charge (SoC) feedback control; and a Battery Energy Storage System (BESS). The MR filter, SoC feedback control and BESS are configured to provide smoothing of solar PV variabilities. The MR filter is a non-parametric smoother that utilizes a machine learning concept of linear regression to smooth out solar PV variations at every time step.
US11411529B2
A solar tracker apparatus includes an adjustable hanger assembly that has a clam shell hanger assembly. The clam shell hanger assembly may hold a torque tube comprising a plurality of torque tubes configured together in a continuous length from a first end to a second end. A center of mass of the solar tracker apparatus may be aligned with a center of rotation of the torque tubes, in order to reduce a load of a drive device operably coupled to the torque tube. Solar modules may be coupled to the torque tubes. The solar tracker includes an energy system that includes solar panel, a DC to DC converter, a battery, and a micro-controller. The energy system may facilitate full operation movement of the tracker apparatus without any external power lines.
US11411524B2
A power conversion system includes an inverter having a three-phase circuit including a plurality of power semiconductor devices and configured to supply driving power to a motor according to an applied torque command, and a controller configured to predict a maximum temperature of the inverter based on an actual measured temperature of any one of the plurality of power semiconductor devices and phase current of the motor, and to actively limit the torque command depending on the predicted maximum temperature of the inverter.
US11411521B2
A system for controlling an operation of an induction motor (IM). A controller processor detects a spectrum of a current signal from received sensor data using a module. Obtain a number of rotor bars and a number of pole pairs of the IM to identify a principle slot harmonics (PSH) type IM from stored IM data. Use the PSH-type IM to identify a static eccentricity (SE) fault signature signal located at a secondary PSH frequency of the PSH-type IM. Determine a level of signal strength in the spectrum of the current signal at a location of the secondary PSH frequency, and compare to a SE fault table database to obtain a SE fault level of the PSH-type IM. Compare the SE fault level to a database to obtain a SE fault threshold, and if the SE fault level is outside the SE threshold, generate an interrupt command to the controller.
US11411518B2
Provided is a method for controlling the cold gas temperature of a cooling gas of a closed generator cooling gas circuit of a generator having at least one cooler through which a cooling fluid flows. The method includes: a) defining cold gas temperature setpoint values in dependence on the stator and rotor current of the generator; b) detecting the current cold gas temperature; c) detecting the current stator and rotor current; d) determining the cold gas temperature setpoint value associated with the stator and rotor current detected in step c); e) regulating the cold gas temperature by changing the volumetric flow of the cooling fluid supplied to the at least one cooler as a function of the difference between the current cold gas temperature detected in step b) and the cold gas temperature setpoint value determined in step d); and f) repeating steps b) to e) at defined time intervals.
US11411513B2
A perpetual self-sustained frictionless maglev generator started from an external power or battery source is disclosed. The power from the generator can be remote at each station avoiding vulnerability from terrorist attacks. All automobiles, airplanes, watercraft, and space ships would be self-sustained and not require any fuel unless for emergency backup purposes only. They all can be measured/controlled by GPS on a distance used and charged for that use accordingly on a monthly basis. Nuclear disaster would not be a threat because the government could use this generator to power their apparatus instead.
US11411511B2
A switchable longitudinal voltage source has a first feed connection for feeding in a first current, a first output connection for outputting the first current, a second feed connection for feeding in a second current, and a second output connection for outputting the second current. An electrical energy store has a first connection and a second connection coupled to the output connections. The switchable longitudinal voltage source further has a center terminal of a first series circuit which directly forms the first output connection or terminal and a center terminal of a second series circuit which directly forms the second output connection or terminal.
US11411507B2
A power conversion apparatus includes: matrix converter circuitry to perform power conversion between a primary side electric power and a secondary side electric power; rectifier circuitry to convert the primary side electric power to charge a capacitor; and control circuitry to: set a changeover reference voltage at a first reference voltage when the primary side voltage magnitude is a first voltage magnitude and set the changeover reference voltage at a second reference voltage when the primary side voltage magnitude is a second voltage magnitude; and select, based on the changeover reference voltage and the terminal voltage, a connection state from: a first connection state in which the rectifier circuitry is connected to the capacitor by a first route including a current limit device; and a second connection state in which the rectifier circuitry is connected to the capacitor by a second route that bypasses the current limit device.
US11411499B2
A power supply circuit includes an inductor, a power transistor configured to control an inductor current flowing through the inductor, and an integrated circuit driving the power transistor. The integrated circuit includes a first terminal that receives a power supply voltage for operating the integrated circuit, generated according to a variation in the inductor current, a second terminal to which a control electrode of the power transistor is coupled, a first drive circuit configured to drive the power transistor via the second terminal during a first time period to turn on the power transistor, and a second drive circuit configured to drive the power transistor via the second terminal during a second time period to turn on the power transistor, the second time period including at least a part of the first time period, driving capability of the second drive circuit being lower than that of the first drive circuit.
US11411495B2
Some demonstrative embodiments include a Metal-Oxide-Semiconductor (MOS) transistor including a split-gate structure. For example, an Integrated Circuit (IC) may include a MOS including a body; a source; a drain; and a split-gate structure including a control gate and at least one voltage-controlled Field-Plate (FP), the control gate is between the source and the voltage-controlled FP, the voltage-controlled FP is between the control gate and the drain, the control gate configured to switch the MOS transistor between an on state and an off state according to a switching voltage; and a voltage controller configured to apply a variable control voltage to the voltage-controlled FP, the variable control voltage based on at least one control parameter, the at least one control parameter including at least one of a load current driven by the MOS transistor or a switching frequency of the switching voltage.
US11411490B2
Charge pumps with accurate output current limiting are provided herein. In certain embodiments, a charge pump includes an output terminal for providing a regulated output voltage, a switched capacitor, and switches that control connectivity of the switched capacitor to selectively charge or discharge the switched capacitor. The switches are operable in two or more phases including a charging phase in which the switched capacitor is charged with a charging current and a discharging phase in which the switched capacitor is coupled to the output terminal. The charge pump further includes an output current limiting circuit that controls the charging current to limit an amount of output current delivered by the charge pump to the output terminal. The output current limiting circuit limits the output current based on comparing a reference signal to an integral of an observation current that changes in relation to the charging current.
US11411485B2
A multi degree-of-freedom electromagnetic machine includes an outer case, an inner case, a stator, stator windings, a voice coil winding, a tilt magnet, a rotor, and rotor magnets. The inner case is disposed within an inner cavity of the outer case and is mounted to rotate relative to the outer case about one or more rotational axes. The stator is fixedly mounted within the inner case, and the stator windings are wound thereon. The voice coil winding is fixedly coupled to either the inner surface of the outer case or the outer surface of the inner case. The tilt magnet is fixedly coupled to either the outer surface of the inner case or the inner surface of the outer case. The rotor is rotationally mounted within the inner case and is operable to rotate, relative to the stator, about a rotational axis.
US11411481B2
An actuator may include a movable body, a support body, a connection body having at least one of elasticity and viscoelasticity, and a magnetic drive circuit having a coil provided in one side member of the movable body and the support body, and a permanent magnet provided in the other side member to vibrate the movable body. The one side member may include a coil holder and a power feeding circuit board fixed to the coil holder in a state that one side face of the circuit board faces an outer side, and the one side face may have a land connected with a coil wire structuring the coil. The circuit board may be fixed to the coil holder in a state that the one side face is retracted from an end face of the coil holder, and the coil wire may have a slack portion fixed to the one side face.
US11411476B2
A method of manufacturing an armature includes: a step of placing a bonding agent on bonding surfaces of the distal ends of a plurality of segment conductors; a step of placing the plurality of segment conductors on an armature core; a step of bonding the distal ends to each other; and a step of increasing a viscosity of the bonding agent placed on the distal ends, after the step of placing the bonding agent on the distal ends, and before the step of bonding the distal ends to each other.
US11411467B2
A power tool includes a housing, a battery connection portion supported by the housing, a drive mechanism configured to operate a working element, and a brushless DC motor positioned within the housing and connected to the drive mechanism. The motor includes a rotor, stator surrounding the motor, and an output shaft fixed to the rotor such that movement of the rotor is transmitted to the output shaft. The motor also includes a fan coupled to the output shaft to rotate with the output shaft and the rotor, and a brass bushing fixed to the output shaft to rotate with the rotor and the output shaft relative to the stator. The bushing includes a balancing feature.
US11411464B2
The invention relates to a braking mechanism (10) for an electric drive motor (1), in particular a drive motor (2) comprising an armature shaft (5) that protrudes from a motor housing (2); the braking mechanism (10) comprises at least one braking element (17) and an energy store, the energy store permanently applying a braking power to a frictional surface of the braking element. The braking mechanism (10) is characterized in that the energy store and the braking element (17) are made of the same material as a single piece.
US11411458B2
A rotating machine lubrication structure is applied to a rotating machine including a cylindrical stator, a rotor and a shaft. A resolver is disposed concentrically with the rotating machine center line between the bearing and the rotor in a direction of the rotating machine center line in the casing, the resolver includes an annular resolver stator fixed to an inner side surface of the casing in an outer circumferential portion of the resolver stator, and a resolver rotor disposed on an inner circumferential side of the resolver stator and fixed to and integrally rotated with the shaft, and the resolver stator is provided with an oil through-hole allowing the lubricating oil to flow through at a portion on an inner circumferential side relative to a part fixed to the casing.
US11411451B2
A rotor includes: a rotor core having: a plurality of magnet insertion holes; and a punched portion; and a plurality of magnetic pole portions. The punched portion is provided so as to pinch a q-axis magnetic path of each magnet pole portion in the radial direction with the plurality of magnet pole portions. The punched portion includes: a first punched hole located on a d-axis of each magnet pole portion; a pair of second punched holes facing each other across the first punched hole in the circumferential direction; and a pair of ribs formed between the first punched hole and the pair of second punched holes. The pair of ribs is provided such that a distance between the pair of ribs is increased from an outer side to an inner side in the radial direction.
US11411447B2
In an axial gap motor, a rotor is rotatably supported and a stator is placed to face the rotor with a gap in a first direction parallel to a shaft of the rotation. A core of the stator is formed by stacking of thin plates that can be penetrated by magnetic flux in a second direction orthogonal to the first direction. A plurality of thus formed cores are fixed to a yoke. Here, each of the plurality of cores includes a plurality of fitting portions in positions at a side facing the yoke, and the yoke includes a plurality of attachment portions corresponding to the plurality of fitting portions of the core in positions in which each core is fixed.
US11411434B2
In a first aspect of the current invention, a receiver circuit for a wireless power transmission link is proposed, wherein while maintaining substantially resonant coupling condition (resonance frequency of the transmitter unit is substantially equal to the resonance frequency of the receiver unit) the coupling is electronically controlled and optimized such that maximal critical coupling occurs. In a further aspect of the invention, the coupling between the transmitter unit and receiver unit is optimized by transforming of at least one receiver load such that maximal critical coupling occurs and overcritical coupling is avoided. In a further aspect of the invention, the coupling between the transmitter unit and the receiver unit is optimized by transforming of at least one receiver load by means of boost- and/or buck converters such that maximal critical coupling occurs.
US11411433B2
A system for power inductively to a portable device is disclosed. In accordance with an embodiment the system includes a first primary coil that provides power inductively at a first power level and a second primary coil that provides power inductively at a second power level different from the first power level. The first primary coil and the second coil area are different in size and overlap one another partially. The system further includes a communication and control circuit that receives current modulated information in the primary coil that provides power. The received information includes information corresponding to a voltage or current induced by the primary coil that provides power, a unique identification code, and a manufacturer code. The system selects which primary coil to use to charge the portable device based on the received information.
US11411427B2
In an uninterruptible power supply apparatus, in a power failure of a commercial AC power supply, a switch is turned off to electrically cut off the commercial AC power supply from an AC input filter, and a DC voltage converter is controlled such that a DC voltage that is the difference between terminal-to-terminal voltages of first and second capacitors is eliminated, and when the DC voltage exceeds a threshold voltage, a converter is controlled to reduce the DC voltage.
US11411420B2
Provided is a method and system for group-based energy harvesting. The group-based energy harvesting method performed by an access point in an energy harvesting system includes allocating an access period in each group including at least one station, receiving an energy state from the station in the group corresponding to the allocated access period, and scheduling stations in each group as a data transmission station or an energy reception station based on the received energy state.
US11411407B1
A battery system with a large-format Li-ion battery pack powers attached equipment by discharging battery cells distributed among a plurality of battery packs. A limp home notification is generated from a smart lithium-ion battery pack to one or more application devices using an analog signal. The battery pack may provide broadcast messages over electronic communication lines, that includes state of charge (SoC), fault status, etc. which can be read by one or more application devices to enter limp home mode. In another example, a “fully charged” notification is generated from the smart lithium-ion battery pack to one or more application devices using an analog signal. The end device powered by the battery pack system receives and reacts to the outputted fully charged signal by modifying the state of the circuitry on the end device.
US11411391B2
An energy storage system (ESS) protection system includes: a battery monitoring system (BMS) configured to transmit a protection signal when an internal state or an external state of a battery cell is abnormal; a power conversion system (PCS) connected to the BMS through a hard wire, and configured to receive the protection signal through the hard wire; and an energy management system (EMS) connected between the BMS and the PCS through a universal communication line, and configured to receive the protection signal from the BMS and transmit the protection signal to the PCS. The PCS may be configured to perform an ESS shutdown when the PCS receives the protection signal through the hard wire or the universal communication line.
US11411377B2
A connection interface includes a base bracket and a cable connection carrier (e.g., module, panel, etc.). The cable connection carrier has a front wall to which one or more cable connection components (e.g., optical components, electrical components, and/or hybrid components) are mounted. The cable connection carrier may angle the cable connection components relative to an open front of the base bracket. Some cable connection carriers may be snap-fit to the base bracket for easy installation. Other cable connection carriers are movable (e.g., pivotal) relative to the base bracket.
US11411376B2
A pull-in head assembly (8) for releasably connecting a pulling arrangement (112) to an elongate flexible structure (4, 6). The pull-in head assembly 8 comprises a pull-in head having a body (30) which defines a pulling axis X of the pull-in head. The body (30) has a front end and a rear end and a bore (48) which extends through the body (30) along the pulling axis X. The bore (48) is configured such that a pulling line (28) can be threaded through the body (30).
US11411372B2
A method of manufacturing a light emitting element includes, at least: (A) forming a stacked structure 20 which includes a GaN-based compound semiconductor and in which a first compound semiconductor layer 21, an active layer 23, and a second compound semiconductor layer 22 are stacked, and forming a concave mirror section 43 on a first surface side of the first compound semiconductor layer 21; then (B) forming a photosensitive material layer 35 over the second compound semiconductor layer 22; and thereafter (C) exposing the photosensitive material layer 35 to light from the concave mirror section side through the stacked structure 20, to obtain a treatment mask layer including the photosensitive material layer 35, and then processing the second compound semiconductor layer 22 by use of the treatment mask layer.
US11411369B2
A method for manufacturing a semiconductor device includes: heating solder to wetly spread toward a first end face or a second end face of a submount substrate under restriction on the wet spreading by a burr to form an extending part, so that the extending part directly connects a laser chip and a barrier layer.
US11411365B2
Systems and methods for a system-level Erbium-Doped Fiber Amplifier (EDFA) optical amplifier efficiency metric. The efficiency metric is a single metric that summarizes optical amplifier behavior and has a predictable behavior over various different optical amplifier settings. Specifically, the efficiency metric is simple and elegant. The simplicity is based on the fact the efficiency metric is determined from available data in an optical amplifier, not requiring external monitoring equipment, dithering, etc. The elegance is based on the fact the efficiency metric covers different optical amplifier settings, multiple pumps, etc. and is shown to reflect degradation with these differences in real-world systems accurately. Specifically, the efficiency metric is designed to reflect health in a multiple pump optical amplifier, providing a single value that represents the total pump currents across all of the multiple pumps.
US11411360B2
The present invention relates to a connection having a joint with a limited range of motion, the connector including: a connection connector including a connection signal pin, a connection dielectric surrounding the connection signal pin, and a connection ground electrically insulated from the connection signal pin by the connection dielectric; and a first fixed connector into which one side of the connection connector is inserted and which allows a joint of the connection connector to move on the basis of the inserted one side of the connection connector, wherein the connection ground includes a connection protruding portion formed so that one end of the connection ground protrudes outward, a connection limiting portion which is adjacent to the connection protruding portion, has a thickness smaller than a thickness of the connection protruding portion, and comes in contact with an inner side of the first fixed connector to limit a range of motion of the joint of the connection connector, a connection elastic portion which is adjacent to the connection limiting portion and has a thickness smaller than a thickness of the connection limiting portion, and a plurality of connection slits which are formed along a circumference of the connection protruding portion and extend from one end of the connection connector in a longitudinal direction of the connection connector so that the connection protruding portion, the connection limiting portion, and the connection elastic portion are separated into a plurality of pieces.
US11411358B2
A power distribution unit including an elongate housing and a power input penetrating said elongate housing. The power input can comprise a ground buss wire, a neutral buss wire and at least one line buss wire. A plurality of electrical outlets can be disposed along the housing. Each electrical outlet can comprise a receptacle and a plurality of spaced apart outlet pins protruding from the receptacle. The plurality of outlet pins can include a ground outlet pin receiving the ground buss wire, a neutral outlet pin receiving the neutral buss wire, and a line outlet pin receiving the line buss wire.
US11411356B2
A cable connector assembly includes a circuit board, a plurality of grounding elements and a plurality of cables. Rear ends of an upper surface and a lower surface of the circuit board are equipped with a plurality of contact pads and a plurality of grounding pads. The plurality of grounding elements are soldered to the plurality of the grounding pads. Two sides of each grounding element have two clamping portions. Each cable includes an inner conductor, an inner insulating layer, a shielding layer and an outer insulating layer arranged in an inside-to-outside direction. The inner conductors of the plurality of the cables are electrically connected with the plurality of the contact pads, the shielding layer of each cable is mounted in one grounding element. The shielding layer of each cable is clamped between the two clamping portions of the one grounding element.
US11411355B2
A receptacle connector for mating with a plug connector having a mating tongue and a latch thereof, includes an insulative housing defining a mating slot extending along a longitudinal direction to receive the mating tongue of the plug connector, and an outer metallic shield defining a primary space to receive the housing and a secondary space communicatively beside the primary space to receive the latch of the plug connector. A plurality of contacts are disposed in the housing to mechanically and electrically connect to the mating tongue. An inner metallic shield is attached upon a long side of the housing to separate the primary space and the secondary space from each other in a transverse direction perpendicular to the longitudinal direction.
US11411351B2
A separable and reconnectable connector for semiconductor devices is provided that is scalable for devices having very small contact pitch. Connectors of the present disclosure include signal pins shielded by pins electrically-coupled to ground. Embodiments provide one or more signal pins in a contact array electrically-shielded by at least one ground pin coupled to a ground plane. Embodiments thereby provide signal pins, either single-ended or a differential pair, usable to transmit signals with reduced noise or cross-talk and thus improved signal integrity. Embodiments further provide inner ground planes coupled to connector ground pins to shield pairs of differential signal pins without increasing the size of the connector. Inner grounding layers can be formed within isolation substrates incorporated into connector embodiments between adjacent pairs of signal pins. These buried ground layers provide additional crosstalk isolation in close proximity to signal pins, resulting in improved signal integrity in a significantly reduced space.
US11411350B2
A class of electrical connectors are described along with methods of manufacturing the same. In one example embodiment, a method of assembling a connector includes extending a twisted pair through a slot in a seal plate; untwisting the twisted pair along a first distance; inserting first and second conductors of the twisted pair through first and second through holes of a seal carrier; coupling first and second electrical terminals to the first and second conductors; re-twisting the twisted pair along a portion of the first distance by rotating the seal carrier; and inserting the seal carrier into the slot of the seal plate.
US11411339B2
An apparatus for modifying an electrical circuit includes a first electrical contact, a second electrical contact, an electrical coupler formed of an electrically conductive material, a first assembly including a cavity, a driving portion, an inhibiting portion, and a second assembly electrically coupled to the second electrical contact. The electrical coupler is moveable within the cavity along a movement axis, a wall of the cavity is electrically coupled to the first electrical contact and to the electrical coupler, and when the electrical coupler is disposed at an initial position within the cavity, the electrical coupler is not electrically coupled to the second electrical contact. The driving portion applies a first force on the electrical coupler in a movement direction along the movement axis. The inhibiting portion inhibits the movement of the electrical coupler along the movement axis.
US11411334B2
An electrical connector for connecting to flat-wire conductors of a flexible circuit (FC) is described. The electrical connector includes an elongated body, a split-blade terminal, and a spring terminal. The elongated body has a longitudinal axis. The split-blade terminal has two prongs separated by a distance and is configured to interface with an electrical terminal of an electrical device. The spring terminal is configured to mate with one or more of the flat-wire conductors within a connection area of the FC. The spring terminal and the split-blade terminal are positioned on the longitudinal axis at opposing ends of the electrical connector.
US11411321B2
An antenna system includes: a ground conductor; a substrate; a pair of planar dipole conductors disposed such that at least a portion of the substrate is disposed between the ground conductor and the pair of dipole conductors; a pair of energy couplers each electrically connected to a respective one of the pair of dipole conductors; and a pair of isolated lobes including electrically-conductive material. The pair of isolated lobes are electrically separate from the pair of dipole conductors and the pair of energy couplers, and disposed between the pair of dipole conductors and the ground conductor.
US11411319B2
An antenna apparatus according to an embodiment includes a linear feed line and a radiating element that protrudes laterally from a first side of the feed line. The radiating element is formed by a conductive pattern, and an opening pattern is located in a portion of the feed line from which the radiating element protrudes. The opening pattern extends into a portion of the radiating element.
US11411314B2
An antenna module includes a dielectric substrate having a multilayer structure, an antenna element and a ground electrode that are arranged at the dielectric substrate, and a matching circuit that is formed in a region between the antenna element and the ground electrode. A radio frequency signal is supplied via the matching circuit to the antenna element.
US11411311B2
An embodiment method for signal path measurement includes providing a first signal at a common node coupled to a plurality of signal paths that each includes a respective phase rotation circuit. The method also includes providing a second signal, over a first test path, to a first node coupled to a first signal path of the plurality of signal paths, providing the second signal, over a second test path, to a second node coupled to a second signal path of the plurality of signal paths, selecting a signal path from the plurality of signal paths, transmitting, over the selected signal path, one of the first signal and the second signal, and mixing the first signal with the second signal to obtain a measurement signal of the selected signal path. A difference in phase delay between the second test path and the first test path includes a first known phase delay.
US11411310B2
Mechanisms for determining an electrical phase relation between antenna elements in an antenna array. A method is performed by a radio transceiver device. The method comprises obtaining measurements of the radio signal as received in two receive beams covering a given angular sector. The two receive beams have different complex beam patterns. The method further comprises estimating the angle of arrival of the radio signal for at least one polarization port of each of the two receive beams using the measurements in the two receive beams. The method also comprises determining, from the angle of arrival estimated for each polarization port, an electrical phase relation between antenna elements in the antenna array that corresponds to the estimated angle of arrival.
US11411308B2
The present disclosure discloses an isolation structure of a large array antenna and an antenna. According to an embodiment of the present disclosure, a boundary plate is disposed between array elements of a large array antenna. The boundary plate has hollowed-out areas and is perpendicular to a plane where the array elements are located. The hollowed-out areas of the boundary plate form sub-areas with staggered patterns in the boundary plate to allow a coupling path of signals of array elements generated at the boundary plate and a radiation path of the array elements to counteract with each other, so as to weaken the coupling between the array elements and improve the isolation between the array elements, especially the isolation between 3-5 db array elements.
US11411307B2
A symmetric, multi-layer, three-way power divider that is equally balanced, with resistors placed between all combinations of legs. This three-way power divider is specifically designed to be used in millimeter wave applications (e.g., 5G in the 20 GHz-40 GHz range for both dual and single polarization), specifically in designs where a common signal is distributed to a multiple of three elements. This three-way power divider also can be useful for addressing space constraints in 5G applications, e.g., due to routing limitations.
US11411304B2
A wearable device includes a wearable body that in use is worn on or proximate a skin of a wearer and a wearable antenna embedded in the wearable body and insulated from the wearable body. The wearable antenna includes a microwave dielectric substrate having a first major surface, a second major surface opposed to the first major surface, and a relative permittivity of at least 90. An electrically conductive patch is disposed on the first major surface, a feed line is connected to a feed point of the electrically conductive patch, and an electrically conductive ground plane is disposed on a far side of the second major surface relative to the first major surface.
US11411297B1
A buried wireless unit measures various soil parameters of surrounding soil and reports them to centralized equipment. In order to provide reliable communication with the centralized equipment, the buried wireless unit may extend a pop-up antenna when transmitting soil parameter data and may subsequently retract the antenna. The wireless unit unwinds and winds a wire, where an electrical cable connects the antenna to a communication module, in order to extend and retract the antenna, respectively. The wireless unit comprises a bendable sleeve enabling the antenna to be flexible so that damage to the wireless unit is avoided if a vehicle (such as a tractor) rolls over the wireless unit. In order to preserve the battery powering the wireless unit, the wireless unit may skip retracting the antenna when the wireless unit determines that charging level of the battery is below a predetermined charging level.
US11411295B2
Methods and apparatus to provide a rectangular N×M antenna element subarray block having opposed first and second major surfaces and first and second ends at opposite ends of the block, wherein the antenna elements are located at the first end of the block. A coldplate between the first inlet connector and the first outlet connector enables flow of the liquid coolant from the first inlet connector to the first outlet connector. The first inlet connector is configured to enable flow of the liquid coolant into the system in a direction that is normal to the first major surface of the block.
US11411294B2
A ceiling antenna includes a first antenna element, a second antenna element, a base plate, a spiral tail and a feeder. The second antenna element is fixedly connected to the first antenna element. The second antenna element is fixed to the base plate. The spiral tail is disposed around the edge of the second antenna element and provided with a notch. The feeder is connected to the first antenna element and the second antenna element, and feeds the first antenna element and the second antenna element.
US11411287B2
Disclosed herein is a three-electrode-system-type electrode potential measurement device for measuring the electrode potential of a cylindrical battery cell in which a beading portion is in a divided condition, the beading portion provided between a top cap assembly and a battery case, a first electrode terminal of the cylindrical battery cell located at the top cap assembly, and a second electrode terminal of the cylindrical battery cell located at the battery case, the electrode potential measurement device including a working electrode connection unit connected to one of the first electrode terminal or the second electrode terminal; a counter electrode connection unit connected to the other of the first electrode terminal or the second electrode terminal; a reference electrode connection unit connected to a reference electrode; a measurement unit connected to the working electrode connection unit; and a short-circuit prevention member located between the top cap assembly and the battery case.
US11411282B2
A porous separator including a porous layer including plate-type inorganic particles, and a first binder polymer located on a part of or all surfaces of the plate-type inorganic particles, wherein the first binder polymer connects and fixes the plate-type inorganic particles, and an electrochemical device including the same.
US11411276B2
A battery pack includes: an assembled battery having battery cells; a battery case that houses the assembled battery; a wiring case assembled to the battery case; and an elastic member held between the battery cell and the wiring case. A safety valve is formed on one surface of the battery cell. The elastic member has a first end surface that comes in contact with a region in which the safety valve is not formed on the one surface of the battery cell, and a second end surface that comes in contact with a facing surface of the wiring case that faces the one surface. The wiring case has a regulation member that comes in contact with a side surface of the elastic member which connects the first end surface to the second end surface.
US11411272B2
A micro-battery is provided in which a metallic sealing layer is used to provide a hermetic seal between an anode side of the micro-battery and the cathode side of the micro-battery. In accordance with the present application, the metallic sealing layer is formed around a perimeter of each metallic anode structure located on the anode side and then the metallic sealing layer is bonded to a solderable metal layer of a wall structure present on the cathode side. The wall structure contains a cavity that exposes a metallic current collector structure, the cavity is filled with battery materials.
US11411269B2
A high-voltage battery for a motor vehicle includes at least one battery module including a cell block with stacked battery cells, wherein the battery cells are embodied as solid-body cells, the internal resistance of which decreases as the temperature rises, a battery housing having a receiving space for receiving the at least one battery module, and a heat-insulating holding device for holding the at least one battery module in the receiving space. The heat-insulating holding device is designed to minimize heat exchange between the at least one battery module and the battery housing for preventing cooling of the battery cells. A motor vehicle with the high-voltage battery is also provided.
US11411268B2
A coolant supplying module of supplying a coolant stored in a reservoir tank to an electrical component cooling circuit and a battery cooling circuit may include a main body connected to the shared reservoir tank, at least one water pump mounting portion formed at the main body to mount at least one water pump provided in the electrical component cooling circuit and the battery cooling circuit, and a valve mounting portion formed at the main body such that a coolant valve for changing flow path of the coolant circulating through the electrical component cooling circuit and the battery cooling circuit is mounted, wherein a main connecting portion and a sub connection portion are respectively formed on the main body to be connected to the shared reservoir tank.
US11411266B2
A vehicle battery pack capable of improving distributivity of a refrigerant to a plurality of battery modules. A vehicle battery pack includes battery modules that are arranged in alignment in a vehicle width direction; two cooling pipes that cool the battery modules when being supplied with the refrigerant; and a flow divider that divides and supplies the refrigerant to the two cooling pipes. The flow divider is arranged between two battery modules in the vehicle width direction.
US11411256B2
A battery pack includes: a battery cell including an electrode assembly connected to an electrode tab, and first and second casings facing each other and coupled to each other to form an accommodation portion accommodating the electrode assembly and to form a terrace portion extending across the electrode tab to seal the accommodation portion, the terrace portion including a first surface on the first casing and a second surface on the second casing; a protective circuit module electrically connected to the battery cell and on the first surface of the terrace portion; and a current breaking device electrically connected to the protective circuit module to form a charge-discharge path of the battery cell and on the second surface of the terrace portion. The current breaking device limits charge-discharge current in response to the battery cell's abnormal state such as overheating, and does not spatially interfere with the protective circuit module.
US11411255B2
A battery pack may include: a battery configured to include a plurality of cells; a cell balancing circuit configured to include a discharge circuit for each of the cells; a controller configured to output a first complete discharge command signal based on a control signal inputted from the outside; a mechanical switch configured to output a second complete discharge signal by mechanical manipulation; and a cell balancing controller configured to control the cell balancing circuit such that complete discharge of each cell is performed through the discharge circuits when the first complete discharge signal and the second complete discharge signal are received.
US11411253B2
A process for merging webs for the production of an electrode assembly for a secondary battery, the process comprising: moving a first web comprising a population of first components for electrode sub-units, the first components delineated by corresponding weakened patterns, and a population of first conveying features. Moving a second web comprising a population of second components for the electrode sub-units, the second components delineated by corresponding weakened patterns, and a population of second conveying features. Conveying a receiving member, the receiving member comprising a plurality of projections. Receiving the first web on the receiving member. Overlaying, the second web on the first web such that the first components are aligned with the second components and the conveying features of the second web are engaged by the plurality of projections on the receiving member. The second web merge location being spaced from the first web merge location.
US11411252B2
A lithium ion secondary battery that includes an electrode assembly having a plate-shaped positive electrode and a plate-shaped negative electrode stacked with a separator interposed therebetween, and an outer package made of a laminate film housing the electrode assembly. The lithium ion secondary battery has a polygonal shape having at least one set of a width and a length in a plan view thereof, and C/(A×B) is 0.50 (N/mm2) to 1.20 (N/mm2), where A is a thickness of the lithium ion secondary battery, B is a width of the lithium ion secondary battery, and C is a three-point bending strength of the lithium ion secondary battery.
US11411235B2
Methods are disclosed for detecting and lessening fuel starvation conditions in an operating fuel cell system. The fuel cell systems comprise a solid polymer electrolyte fuel cell with a regulating apparatus for regulating the pressure of fuel supplied to the anode inlet of the fuel cell, in which the outlet pressure from the regulating apparatus oscillates during operation. The methods involve monitoring an electrical output of the fuel cell during operation, determining the amplitude of oscillation in the electrical output, and then, if the determined amplitude of oscillation in the electrical output exceeds a predetermined amount thereby indicating a fuel starvation condition, taking a remedial action to lessen the fuel starvation condition.
US11411231B2
The invention provides a membrane-free redox cell utilizing auxiliary electrodes that facilitate fast charging and discharging of anolyte and catholyte for electrochemical energy storage. The anode and cathode chambers are ionically separated, and electrically connected through a conductor joining auxiliary electrodes comprised of a redox material. In use, charging/discharging of the galvanic cell takes place between primary electrodes, and the redox material is immersed in the electrolyte in both anode and cathode chambers.
US11411230B2
A gas liquid separator of a fuel cell system includes a first gas liquid separation chamber capable of storing water content separated from an oxygen-containing exhaust gas, a second gas liquid separation chamber positioned above the first gas liquid separation chamber, and connected to the first gas liquid separation chamber, an inlet, an outlet, and a gas inlet channel for guiding a dry gas into the first gas liquid separation chamber. A gas inlet section forming the gas inlet channel includes an inner protrusion protruding into an upper space of the first gas liquid separation chamber, and a bottom surface of the first gas liquid separation chamber is inclined downward in a direction in which the inner protrusion extends.
US11411227B2
Disclosed and described herein are systems and methods of energy generation from fabric electrochemistry. An electrical cell is created when electrodes (cathodes and anodes) are ‘printed’ on or otherwise embedded into fabrics to generate DC power when moistened by a conductive bodily liquid such as sweat, wound, fluid, etc. The latter acts, in turn, as the cell's electrolyte. A singular piece of fabric can be configured into multiple cells by dividing regions of the fabric with hydrophobic barriers and having at least one anode-cathode set in each region. Flexible inter-connections between the cells can be used to scale the generated power, per the application requirements.
US11411225B2
A chambered frame insert (2) for an electrolyte chamber of a battery (200) includes a plurality of ribs (4) laterally and defining a plurality of chambers (6), and a plurality of voids (8) each formed in a corresponding rib and configured to allow gas to travel between the plurality of chambers. The plurality of ribs are angled with respect to a horizontal lateral axis (H) of the frame insert.
US11411220B2
Provided is a binder composition for an electrochemical device that has excellent binding capacity and is capable of forming a functional layer that can improve rate characteristics and cycle characteristics of an electrochemical device (for example, a secondary battery). The binder composition for an electrochemical device contains a binder and an organonitrogen compound. The binder is a polymer including at least one functional group selected from the group consisting of a carboxyl group, a hydroxyl group, a cyano group, an amino group, an epoxy group, an oxazoline group, an isocyanate group, and a sulfo group. The organonitrogen compound includes at least one functional group selected from the group consisting of an azo group, a hydrazino group, a hydrazo group, and a nitroso group, has a 5% mass loss temperature of 140° C. or higher, and has a molecular weight of not less than 80 and not more than 1,000.
US11411206B2
The present application relates to a circularly polarizing plate and a use thereof. The present application can provide a circularly polarizing plate, which can be applied to a display device such as an organic light emitting display device to minimize blocking of light in the visible light region affecting image quality while blocking harmful ultraviolet rays appropriately and also has excellent durability. In addition, the present application can provide a circularly polarizing plate having excellent compensation characteristics at a viewing angle while ensuring process simplification and cost competitiveness.
US11411202B2
A display device includes: a substrate; a display unit on the substrate; a first inorganic layer on the display unit; a first organic layer on an upper portion of the first inorganic layer; a first dam at an edge of the first organic layer; a second dam spaced from the first dam and at an outer area of the first dam with respect to the display unit; and a stress relieving layer between the first dam and the second dam.
US11411201B2
A flexible organic light emitting diode display panel includes a substrate, a first inorganic layer, an organic layer, and a second inorganic layer. The first inorganic layer doped with copper or silver and is disposed on the substrate. A doping concentration of copper or silver in the first inorganic layer is 8-40 atom percent. The organic layer is disposed on the first inorganic layer. The second inorganic layer is doped with copper or silver and is disposed on the organic layer. A doping concentration of copper or silver in the second inorganic layer is 8-40 atom percent.
US11411200B2
A front emission type display device is provided. In the display device, light generated by a light-emitting element which is disposed on a first substrate can be emitted to the outside through a color filter and a second substrate, so that an image can be realized on an outer surface of the second substrate. In the display device, a space between a first device passivation layer on the light-emitting element, and a second device passivation layer on the second substrate can be filled by the color filter and a pixel defining pattern disposed on a side surface of the color filter. Thus, in the display device, the distortion of the first substrate and the second substrate can be prevented or reduced.
US11411196B2
The disclosure provides an OLED device and a manufacturing method thereof to improve structures of conventional OLED devices. Auxiliary cathodes are manufactured on spacers instead of a cathode layer. As a result, widths of the auxiliary cathodes may be precisely controlled, IR drop can be reduced, and quality of the OLED device can be prevented from being affected because of an overly wide auxiliary cathode.
US11411192B2
A device includes a first electrode and a second electrode, an active layer between the first electrode and the second electrode and a plurality of auxiliary layers between the first electrode and the active layer. The auxiliary layers include first and second auxiliary layers, the first auxiliary layer proximate to the active layer, the second auxiliary layer proximate to the second electrode. An energy level of the active layer, an energy level of the first auxiliary layer, an energy level of the second auxiliary layer, and a work function of the first electrode become deeper sequentially or shallower sequentially.
US11411191B2
Selenium-fullerene heterojunction solar cells and techniques for fabrication thereof are provided. In one aspect, a method of forming a solar cell includes: forming a front contact on a substrate; depositing an n-type semiconducting layer on the front contact, wherein the n-type semiconducting layer comprises a fullerene or fullerene derivative; forming a p-type chalcogen absorber layer on the n-type semiconducting layer; depositing a high workfunction material onto the p-type chalcogen absorber layer, wherein the high workfunction material has a workfunction of greater than about 5.2 electron volts; and forming a back contact on the high workfunction material. Solar cells and other methods for formation thereof are also provided.
US11411189B2
The present invention provides a flexible organic light emitting diode (OLED) module stacked structure and a manufacturing method of the flexible OLED module stacked structure. The structure includes a substrate, a thin film transistor (TFT) array layer, an OLED element layer, a thin film encapsulation layer, a cover plate, and a foam layer. The thin film encapsulation layer is disposed on the OLED element layer, and entirely covers the OLED element layer. The foam layer is disposed on one side of the substrate away from the TFT array layer. The protective film in place of a back plate is used and removed, and the foam layer is used to provide a support and buffering function, so an overall thickness is reduced, and less ash is produced.
US11411182B1
A mixed powder for an organic electroluminescence device, including a first organic compound and a different second organic compound, wherein the mixed powder is solid at normal temperature and pressure, and the following formulas (1) and (2) are satisfied: 0
US11411172B2
An apparatus is provided which comprises a full adder including magnetoelectric material and spin orbit material. In some embodiments, the adder includes: a 3-bit carry generation structure and a multi-bit sum generation structure coupled to the 3-bit carry generation structure. In some embodiments, the 3-bit carry generation structure includes at least three cells comprising magnetoelectric material and spin orbit material, wherein the 3-bit carry generation structure is to perform a minority logic operation on first, second, and third inputs to generate a carry output. In some embodiments, the multi-bit sum generation structure includes at least four cells comprising magnetoelectric material and spin orbit material, wherein the multi-bit sum generation structure is to perform a minority logic operation on the first, second, and third inputs and the carry output to generate a sum output.
US11411163B2
Aspects of the embodiments are directed to systems and devices that include a piezo-electric element comprising a top-side electrode and a bottom-side electrode; a metal contact pad electrically connected to the bottom-side electrode; an electrode electrically connected to the top-side electrode; and an encasement encasing the piezo-electric element. The piezo-electric element can be prepared to include steps and metallization for use in one or more types of packaging.
US11411161B2
A piezoelectric system comprises a piezoelectric sensor, a voltage stabilizer, a discharger and an operation sensor. The piezoelectric sensor outputs a sensing signal through a sensor output terminal according to a rate of change of pressure. The voltage stabilizer has a positive terminal electrically connecting with the sensor output terminal. The voltage stabilizer receives the sensing signal, stores the energy of the sensing signal, and keeps the voltage of the sensing signal as a constant when the rate of change of pressure is zero. The discharger has a first terminal connecting with the positive terminal, a second terminal coupled to ground, and a control terminal receiving a trigger signal to control the first terminal to conduct with or not conduct with the second terminal. The operation sensor electrically connects to the control terminal for sensing an operation generating the pressure and outputs the trigger signal accordingly.
US11411157B2
A system, a thermoelectric generator, and a method for generating electricity are provided. The system includes a thermoelectric generator, a cooling system, and a heating system. The cooling system includes a cold side module configured to hold a predetermined volume of air, a subterranean heat exchanger including an underground conduit, the underground conduit having a first end configured to receive ambient air and a second end coupled to the inlet of the cold side module, and an air exhaust coupled to the outlet of the cold side module and having one or more valves configured to control an airflow from the subterranean heat exchanger towards the air exhaust. The heating system includes a first solar concentrator to collect light rays, a hot side module, and a fiber optic cable to transport the collected light rays to the hot side module.
US11411148B2
Solid-state lighting devices including light-emitting diodes (LEDs) and more particularly packaged LEDs with light-altering materials are disclosed. A light-altering material is provided in particular configurations within an LED package to redirect light from an LED chip within the LED package and contribute to a desired emission pattern of the LED package. The light-altering material may also block light from the LED chip from escaping in a non-desirable direction, such as large or wide angle emissions. The light-altering material may be arranged on a lumiphoric material adjacent to the LED chip in various configurations. The LED package may include an encapsulant on the light-altering material and the lumiphoric material.
US11411142B2
A light emitting diode chip includes a substrate; a first conductivity type semiconductor layer disposed on the substrate; a mesa; a transparent electrode; a contact electrode; a current spreader; a first insulating reflection layer; a first pad electrode and a second pad electrode; and a second insulating reflection layer. The first insulating reflection layer covers one end of the substrate, the first conductivity type semiconductor layer, the mesa, the transparent electrode. The second insulating reflection layer is disposed on an opposite end of the substrate and includes a structure of a distributed Bragg reflector (DBR).
US11411139B2
Textured optoelectronic devices and associated methods of manufacture are disclosed herein, in several embodiments, a method of manufacturing a solid state optoelectronic device can include forming a conductive transparent texturing material on a substrate. The method can further include forming a transparent conductive material on the texturing material. Upon heating the device, the texturing material causes the conductive material to grow a plurality of protuberances. The protuberances can improve current spreading and light extraction from the device.
US11411135B2
A gallium and nitrogen containing optical device has a base region and no more than three major planar side regions configured in a triangular arrangement provided from the base region.
US11411127B2
Monolithic multi-dimensional integrated circuits and memory architecture are provided. Exemplary integrated circuits comprise an electronic board having a first side and a second side, a multi-dimensional electronic package having multiple planes, and one or more semiconductor wafers mounted on the first side and the second side of the electronic board and on the multiple planes of the electronic package. Exemplary monolithic multi-dimensional memory architecture comprises one or more tiers, one or more monolithic inter-tier vias spanning the one or more tiers, at least one multiplexer disposed in one of the tiers, and control logic determining whether memory cells are active and which memory cells are active and controlling usage of the memory cells based on such determination. Each tier has a memory cell, and the inter-tier vias act as crossbars in multiple directions. The multiplexer is communicatively coupled to the memory cell in the respective tier. In exemplary embodiments, the one or more semiconductor wafers include one or more solar cells. The solar cells may comprise MEMS and/or on-chip solar cells.
US11411124B2
A semiconductor device includes a first transistor having a first threshold voltage, and including first channels, first source/drain layers connected to opposite sidewalls of the first channels, and a first gate structure surrounding the first channels and including a first gate insulation pattern, a first threshold voltage control pattern, and a first workfunction metal pattern sequentially stacked. The semiconductor device includes a second transistor having a second threshold voltage greater than the first threshold voltage, and including second channels, second source/drain layers connected to opposite sidewalls of the second channels, and a second gate structure surrounding the second channels and including a second gate insulation pattern, a second threshold voltage control pattern, and a second workfunction metal pattern sequentially stacked. A thickness of the second threshold voltage control pattern is equal to or less than a thickness of the first threshold voltage control pattern.
US11411122B2
A display device including: a first thin film transistor (TFT) including a first semiconductor layer and a first gate electrode, the first semiconductor layer including a first channel region, a first source region, and a first drain region; a third TFT including a third semiconductor layer and a third gate electrode, the third semiconductor layer including a third channel region, a third source region, and a third drain region, wherein a leakage current of the third TFT in an off-state is less than a leakage current of the first TFT in an off-state; and a pixel electrode connected to one of the first source region and the first drain region, wherein the one of the first source region and the first drain region is connected to the third TFT.
US11411119B2
Double gated thin film transistors are described. In an example, an integrated circuit structure includes an insulator layer above a substrate. A first gate electrode is on the insulator layer, the first gate electrode having a non-planar feature. A first gate dielectric is on and conformal with the non-planar feature of the first gate electrode. A channel material layer is on and conformal with the first gate dielectric. A second gate dielectric is on and conformal with the channel material layer. A second gate electrode is on and conformal with the second gate dielectric. A first source or drain region is coupled to the channel material layer at a first side of the first gate dielectric. A second source or drain region is coupled to the channel material layer at a second side of the first gate dielectric.
US11411118B2
Some embodiments include integrated memory. The integrated memory includes a first series of first conductive structures and a second series of conductive structures. The first conductive structures extend along a first direction. The second conductive structures extend along a second direction which crosses the first direction. Pillars of semiconductor material extend upwardly from the first conductive structures. Each of the pillars includes a lower source/drain region, an upper source/drain region, and a channel region between the lower and upper source/drain regions. The lower source/drain regions are coupled with the first conductive structures. Insulative material is adjacent sidewall surfaces of the pillars. The insulative material includes ZrOx, where x is a number greater than 0. The second conductive structures include gating regions which are spaced from the channel regions by at least the insulative material. Storage elements are coupled with the upper source/drain regions.
US11411112B2
Provided are a gate structure and a method of forming the same. The gate structure includes a gate dielectric layer, a metal layer, and a cluster layer. The metal layer is disposed over the gate dielectric layer. The cluster layer is sandwiched between the metal layer and the gate dielectric layer, wherein the cluster layer at least includes an amorphous silicon layer, an amorphous carbon layer, or an amorphous germanium layer. In addition, a semiconductor device including the gate structure is provided.
US11411111B2
The present disclosure relates to a field-effect transistor and a method of fabricating the same. A field-effect transistor includes a semiconductor substrate including a first semiconductor material having a first lattice constant, and a fin structure on the semiconductor substrate. The fin structure includes a second semiconductor material having a second lattice constant that is different from the first lattice constant. The fin structure further includes a lower portion that is elongated in a first direction, a plurality of upper portions protruding from the lower portion and elongated in a second direction that is different from the first direction, and a gate structure crossing the plurality of upper portions.
US11411093B2
In a method of manufacturing a silicon carbide semiconductor device that is a silicon carbide diode having a JBS structure including a mixture of a Schottky junction and a pn junction and that maintains low forward voltage through a SBD structure and enhances surge current capability, nickel silicide films are formed in an oxide film by self-alignment by causing a semiconductor substrate and a metal material film to react with one another through two sessions of heat treatment including a low-temperature heat treatment and a high-temperature heat treatment, the metal material film including sequentially a first nickel film, an aluminum film, and a second nickel film, the first nickel film being in contact with an entire area of a connecting region of a FLR and p-type regions respectively exposed in openings of the oxide film.
US11411091B2
A method for manufacturing a stacked gate-all-around nano-sheet CMOS device, including: providing a substrate with a fin structure, where a channel layer for an NMOS is a sacrificial layer for a PMOS, a channel layer for the PMOS is a sacrificial layer for the NMOS; and mobility of holes in the second material is greater than mobility of holes in the first material; forming a dummy gate stack extending across the fin structure; forming source-or-drain regions in the fin structure at two sides of the dummy gate stack; removing the dummy gate stack and the sacrificial layers covered by the dummy gate stack, to expose a surface of a part of the channel layer that is located between the source-or-drain regions, where a nano-sheet array is formed by the channel layer with the exposed surface; and forming a gate stack structure surrounding each nano sheet in the nano-sheet array.
US11411089B2
A semiconductor device and a manufacturing method thereof are provided. The gate structure and the source and drain terminals are located in the insulating dielectric layer, and the source and drain terminals are located respectively at both opposite ends of the gate structure. The channel region is sandwiched between the gate structure and the source and drain terminals and surrounds the gate structure. The channel region extends between the source and drain terminals.
US11411087B2
Embodiments of the disclosure provide an integrated circuit (IC) structure with a high impedance semiconductor material between a substrate and transistor. The IC structure may include: a substrate, a high impedance semiconductor material on a portion of the substrate, and a transistor on a top surface of the high impedance semiconductor material. The transistor includes a semiconductor channel region horizontally between a first source/drain (S/D) region and a second S/D region. The high impedance semiconductor material is vertically between the transistor and the substrate; a first insulator region is on the substrate and horizontally adjacent the first S/D region; and a first doped well is on the substrate and horizontally adjacent the first insulator region. The first insulator region is horizontally between the first doped well and the transistor.
US11411083B2
Semiconductor structures and methods for forming the same are provided. The semiconductor structure includes a substrate and a first fin and a second fin formed over the substrate. The semiconductor structure further includes a first anti-punch through region formed in the first fin and a second anti-punch through region formed in the second fin and first nanostructures formed over the first fin and second nanostructures formed over the second fin. The semiconductor structure further includes a barrier layer formed over the second anti-punch through region and a first gate formed around the first nanostructures. The semiconductor structure further includes a second gate formed around the second nanostructures. In addition, an interface between the barrier layer and the second anti-punch through region is higher than an interface between the first anti-punch through region and the first gate.
US11411076B2
Power transistors relying on planar MOS cell designs suffer from the “hole drainage effect”; addition of an enhancement layer creates significant loss of breakdown voltage capability. The Fortified Enhanced Planar MOS cell design provides an alternative that uses enhancement layers, field oxides, and gate trenches without suffering from the loss of blocking voltage. A low doped P-type “fortifying layer” reduces the high peak electric fields that develop in blocking mode in critical regions. The fortifying layer can be electrically biased through an additional electrical contact, which can be arranged at die level, not at transistor cell level. Due to the low dopant concentration of the fortifying layer, no additional MOS channels need to be formed, and the electrons will flow thru the non-inverted regions of the fortifying layer. The new design shows advantages in performance, ease of processing, and applicability.
US11411061B2
A display device includes signal lines and pixels connected thereto. A first pixel includes a first transistor including a first gate electrode, a first channel region overlapping the first gate electrode, a first source region, and a second drain region facing the first source region, with the first channel region interposed between the first source region and the second drain region. A third transistor includes a third gate electrode, a third channel region overlapping the third gate electrode, a third drain region connected to the first gate electrode, and a third source region facing the third drain region with the third channel region interposed between the third source region and the third drain region. A shielding part overlaps a boundary between the third source region and the third channel region and does not overlap a boundary between the third drain region and the third channel region.
US11411057B2
Embodiments of the present invention relate to an electroluminescent device. The electroluminescent device includes an image sensor structure, a first light blocking structure, a first insulation layer, and an electroluminescent structure, which are sequentially stacked. The electroluminescent structure includes lower electrodes, luminous layers disposed on the lower electrodes, and an upper electrode disposed on the luminous layers. The first light blocking structure has effective pinholes. The image sensor structure includes effective image sensors that overlap the effective pinholes. The lower electrodes do not overlap the effective pinholes. The electroluminescent device has a good fingerprint recognition function.
US11411055B2
A display device includes: a light-emitting substrate including a base substrate having a non-display area and a display area that surrounds the non-display area; an input sensing unit disposed on the light-emitting substrate; and a hole penetrating front and rear surfaces of each of the light-emitting substrate and the input sensing unit, wherein the light-emitting substrate includes a plurality of recesses, the non-display area includes a hole area which overlaps with the hole, a recess area in which the plurality of recesses are disposed and surrounds the hole area, and a peripheral area which surrounds the recess area, and the input sensing unit includes a plurality of first sensor members overlapping the display area and a first connector connecting the first sensor members and overlapping the groove area.
US11411053B2
The invention provides a color filter structure and an OLED display panel. The color filter structure includes a base layer, a color filter, a black matrix, a protective film, and a transparent conductive film, wherein the color filter includes nanoparticles. The OLED display panel includes a base substrate, a TFT structure, a color resistor retaining wall, a light-emitting layer, a pixel definition layer, a black retaining wall, a cathode layer, the color filter structure, and an encapsulation layer, wherein a height of the color filter structure is slightly lower than or equal to a height of the black retaining wall.
US11411046B2
Electrical devices with an integral thermoelectric generator comprising a spin-Seebeck insulator and a spin orbit coupling material, and associated methods of fabrication. A spin-Seebeck thermoelectric material stack may be integrated into macroscale power cabling as well as nanoscale device structures. The resulting structures are to leverage the spin-Seebeck effect (SSE), in which magnons may transport heat from a source (an active device or passive interconnect) and through the spin-Seebeck insulator, which develops a resulting spin voltage. The SOC material is to further convert the spin voltage into an electric voltage to complete the thermoelectric generation process. The resulting electric voltage may then be coupled into an electric circuit.
US11411044B2
A display device comprises a first electrode, a second electrode disposed to be spaced apart from the first electrode and face the first electrode, a first insulating layer disposed to cover the first electrode and the second electrode, a second insulating layer disposed on at least a part of the first insulating layer and exposing at a part of a region where the first electrode and the second electrode overlaps the first insulating layer and at least one light emitting element on the exposed first insulating layer between the first electrode and the second electrode, wherein the second insulating layer includes at least one opening exposing the first insulating layer and disposed to be spaced apart from each other on a region where the first electrode and the second electrode face each other, and a bridge portion between the openings, and the light emitting element is disposed on the opening.
US11411038B2
To achieve a size reduction of a semiconductor package while securing stability in mounting.
Three terminals t1, t2, and t4 are individually arranged on a semiconductor package 10 having a rectangular shape as viewed in plan in such a manner that the center in the longitudinal direction of the semiconductor package 10 of each of the three terminals t1, t2, and t4 and the center in the longitudinal direction of each of the other terminals are not overlapped with each other as viewed from the side of the long side. The terminal t4 and the other terminals t1 and t2 are arranged in such a manner that the terminal t4 and the other terminals t1 and t2 are present on mutually different sides across a line segment M passing through the center in the width direction, an angle θ formed by two line segments connecting the center of gravity of the terminal t4, the position in the longitudinal direction of which is the center, and the center of gravity of each of the other terminals t1 and t2 is 60° or more, and a width L1 of the semiconductor package 10 and a distance Lt between the rightmost end position of the terminal t4 arranged at the rightmost end in the width direction of the semiconductor package 10 and the leftmost end position of the terminal t1 or t2 arranged at the leftmost position in the width direction satisfy Lt/L1≥0.5.
US11411036B2
A solid-state imaging device includes a first substrate including a first semiconductor substrate and a first multi-layered wiring layer stacked on the first semiconductor substrate, a second substrate including a second semiconductor substrate and a second multi-layered wiring layer stacked on the second semiconductor substrate, a third substrate including a third semiconductor substrate and a third multi-layered wiring layer stacked on the third semiconductor substrate, and a first coupling structure for electrically coupling the first substrate and the second substrate. The first substrate, the second substrate, and the third substrate are stacked in this order. The first substrate and the second substrate are bonded together such that the first multi-layered wiring layer and the second multi-layered wiring layer are opposed to each other. The first substrate excludes a coupling structure formed from the first substrate as a base over bonding surfaces of the first substrate and the second substrate.
US11411034B2
A solid-state imaging device according to the present disclosure includes a photoelectric conversion film that is provided outside a semiconductor substrate on a pixel-by-pixel basis, performs photoelectric conversion on light having a predetermined wavelength range, and transmits light having wavelength ranges other than the predetermined wavelength range, and a photoelectric conversion region that is provided inside the semiconductor substrate on a pixel-by-pixel basis and performs photoelectric conversion on the light having the wavelength ranges, the light having the wavelength ranges having passed through the photoelectric conversion film. The photoelectric conversion film includes a film having an avalanche function.
US11411029B2
An image sensing chip package structure includes a chip, an adhesive loop and a light-transmissible substrate member. The chip includes an image sensing region. The adhesive loop is connected to the chip, and has an inner peripheral surface that defines a plurality of protrusions which surround the image sensing region of the chip. The light-transmissible substrate member is connected to the adhesive loop oppositely of the chip to cover the image sensing region of the chip. Methods of manufacturing the image sensing chip package structures are also provided.
US11411011B2
A semiconductor structure includes a substrate, an interconnection structure disposed over the substrate and a first memory cell. The first memory cell is disposed over the substrate and embedded in dielectric layers of the interconnection structure. The first memory cell includes a first transistor and a first data storage structure. The first transistor is disposed on a first base dielectric layer and embedded in a first dielectric layer. The first data storage structure is embedded in a second dielectric layer and electrically connected to the first transistor. The first data storage structure includes a first electrode, a second electrode and a storage layer sandwiched between the first electrode and the second electrode.
US11411001B2
An integrated circuit includes a substrate, at least one n-type semiconductor device, and at least one p-type semiconductor device. The n-type semiconductor device is present on the substrate. The n-type semiconductor device includes a gate structure having a bottom surface and at least one sidewall. The bottom surface of the gate structure of the n-type semiconductor device and the sidewall of the gate structure of the n-type semiconductor device intersect to form an interior angle. The p-type semiconductor device is present on the substrate. The p-type semiconductor device includes a gate structure having a bottom surface and at least one sidewall. The bottom surface of the gate structure of the p-type semiconductor device and the sidewall of the gate structure of the p-type semiconductor device intersect to form an interior angle smaller than the interior angle of the gate structure of the n-type semiconductor device.
US11410981B2
A semiconductor device assembly that includes first and second semiconductor devices connected directly to a first side of a substrate and a plurality of interconnects connected to a second side of the substrate. The substrate is configured to enable the first and second semiconductor devices to communicate with each other through the substrate. The substrate may be a silicon substrate that includes complementary metal-oxide-semiconductor (CMOS) circuits. The first semiconductor device may be a processing unit and the second semiconductor device may be a memory device, which may be a high bandwidth memory device. A method of making a semiconductor device assembly includes applying CMOS processing to a silicon substrate, forming back end of line (BEOL) layers on a first side of the substrate, attaching a memory device and a processing unit directly to the BEOL layers, and forming a redistribution layer on the second side of the substrate.
US11410978B2
A method of manufacturing an optoelectronic device, including: a) transferring, onto a surface of a control circuit, a diode stack including first and second semiconductor layers of opposite conductivity types, so that the second layer is electrically connected to metal pads of the control circuit; b) forming in the active stack trenches delimiting a plurality of diodes connected to separate metal pads of the control circuit; c) depositing an insulating layer on the lateral walls of the trenches; d) partially removing the insulating layer to expose the sides of the portions of the first layer delimited by the trenches; and e) forming a metallization coating the lateral walls and the bottom of the trenches and contacting the sides of the portions of the first layer delimited by the trenches.
US11410965B2
An electronic device having a first component carrier and an electronic component which is surface mounted on or embedded within the first component carrier. The electronic device further has a second component carrier. The first component carrier together with the electronic component is at least partially embedded within the second component carrier.
US11410962B2
A thermocompression bonding (TCB) apparatus can include a wall having a height measured in a first direction and configured to be positioned between a first pressing surface and a second pressing surface of a semiconductor bonding apparatus. The apparatus can include a cavity at least partially surrounded by the wall, the cavity sized to receive a semiconductor substrate and a stack of semiconductor dies positioned between the semiconductor substrate and the first pressing surface, the stack of semiconductor dies and semiconductor substrate having a combined unpressed stack height as measured in the first direction. In some embodiments, the unpressed stack height is greater than the height of the wall, and the wall is configured to be contacted by the first pressing surface to limit movement of the first pressing surface toward the second pressing surface during a semiconductor bonding process.
US11410961B2
This patent application relates to methods and apparatus for temperature modification within a stack of microelectronic devices for mutual collective bonding of the microelectronic devices, and to related substrates and assemblies.
US11410947B2
A package comprises a die and a redistribution layer coupled to the die. The redistribution layer comprises a metal layer, a brass layer abutting the metal layer, and a polymer layer abutting the brass layer. The package is a wafer chip scale package (WCSP). The package further includes a solder ball attached to the redistribution layer.
US11410944B2
A stacked structure includes a lower structure and an upper structure. The lower structure includes at least one lower dielectric layer and at least one lower metal layer in contact with the lower dielectric layer. The upper structure includes at least one upper dielectric layer and at least one upper metal layer in contact with the upper dielectric layer. The upper dielectric layer includes a first upper dielectric layer attached to the lower structure. The first upper dielectric layer includes a first portion and a second portion. A difference between a thickness of the first portion and a thickness of the second portion is greater than a gap between a highest point of a top surface of the first upper dielectric layer and lowest point of the top surface of the first upper dielectric layer.
US11410929B2
Semiconductor devices and methods of manufacture are provided wherein a metallization layer is located over a substrate, and a power grid line is located within the metallization layer. A signal pad is located within the metallization layer and the signal pad is surrounded by the power grid line. A signal external connection is electrically connected to the signal pad.
US11410928B2
Described herein are integrated circuit (IC) structures, devices, and methods associated with device layer interconnects. For example, an IC die may include a device layer including a transistor array along a semiconductor fin, and a device layer interconnect in the transistor array, wherein the device layer interconnect is in electrical contact with multiple different source/drain regions of the transistor array.
US11410926B2
In the present disclosure, a semiconductor structure includes an Mx-1 layer including a first dielectric layer and first metal features, wherein the first metal features include a first set of first metal features in a first region and a second set of first metal features in a second region, wherein the first set has a first pattern density and the second set has a second pattern density being greater than the first pattern density. The structure further includes a Vx layer disposed over the Mx-1 layer, the Vx layer including first vias contacting the first set of the first metal features. The structure further includes an Mx layer disposed over the Vx layer, the Mx layer including a fuse element, wherein the fuse element has a first thickness in the first region less than a second thickness in the second region.
US11410922B2
A capacitor includes a case including a capacitor element, a first connection terminal, a second connection terminal, and a second insulating sheet formed between the first connection terminal and the second connection terminal, and the first connection terminal, the second insulating sheet, and the second connection terminal extend to the outside from the case. A semiconductor module includes a multi-layer terminal portion in which a first power terminal, a first insulating sheet, and a second power terminal are sequentially stacked. The first power terminal includes a first bonding area electrically connected to the first connection terminal, and the second power terminal includes a second bonding area electrically connected to the second connection terminal. The first insulating sheet includes a terrace portion that extends in a direction from the second bonding area towards the first bonding area in a planar view.
US11410914B2
A power module includes: a base plate having a first surface; electrode plate provided at the first surface; a wire connected to a semiconductor chip and the electrode plate; a metal member connected to the electrode plate; a terminal plate; a first resin layer, a connection portion of the wire and the semiconductor chip being disposed inside the first resin layer; and a second resin layer provided on the first resin layer and having a lower elastic modulus than the first resin layer. The terminal plate includes a bonding portion contacting an upper surface of the metal member, a curved portion curved upward from the bonding portion. The curved portion is disposed inside the second resin layer, and a length from the first surface of a lower surface of the bonding portion is greater than a length from the first surface of the connection portion.
US11410913B2
A packaged electrical device that includes a cured adhesive layer and a cured layer of die attach material coupled between a semiconductor die and a substrate. The packaged electrical device may also include wire bonds coupled between the substrate and leads of the semiconductor die. In addition, the packaged electrical device may be encapsulated in molding compound. A method for fabricating a packaged electrical device. The method includes printing a layer of die attach material over a semiconductor wafer and applying a layer of 2-in-1 die attach film over the layer of die attach material. The method also includes singulating the semiconductor wafer to create a semiconductor die and placing the semiconductor die onto a substrate. In addition the method includes wire bonding the substrate to leads of the semiconductor die and encapsulating the device in molding compound.
US11410905B2
A heat spreader is disclosed with regions where material is absent to reduce the mass/weight of the heat spreader without substantially reducing the temperature of the semiconductor chip and without substantially affecting the warpage and mechanical stress/strain in the electronic package.
US11410900B2
The semiconductor device has the CSP structure, and may include a plurality of electrode pads formed on a semiconductor integrated circuit in order to input/output signals from/to exterior; solder bumps for making external lead electrodes; and rewiring. The solder bumps may be arranged in two rows along the periphery of the semiconductor device. The electrode pads may be arranged inside the outermost solder bumps so as to be interposed between the two rows of solder bumps. Each trace of the rewiring may be extended from an electrode pad, and may be connected to any one of the outermost solder bumps or any one of the inner solder bumps.
US11410899B2
A semiconductor package device includes a first substrate, a second substrate and a first spacer. The first substrate includes a first divided pad. The second substrate includes a second divided pad disposed above the first divided pad. The first spacer is disposed between the first divided pad and the second divided pad. The first spacer is in contact with the first divided pad and the second divided pad.
US11410896B2
The present disclosure relates to a glass interposer module, an imaging device, and an electronic apparatus capable of reducing occurrence of distortion caused by thermal expansion during manufacture. A light transmissive member is charged between a glass interposer and a CMOS image sensor (CIS). Since rigidity of the glass interposer can be enhanced by this configuration, it is possible to suppress deflection of the CIS and also reduce influence of distortion given to a gyro sensor and the like which are equipped on the glass interposer, and therefore, erroneous detection of a gyro signal can be reduced. The present disclosure can be applied to a glass interposer module.
US11410893B1
The semiconductor structure includes a substrate, a deep well, a first doped region, a source/drain region, and a first heavily doped region. The substrate has a first conductivity type. The deep well has a second conductivity type disposed on the substrate. The first doped region has the first conductivity type disposed on the deep well. The source/drain region has the second conductivity type disposed on the first doped region. The first heavily doped region has the second conductivity type disposed in a first top region of the source/drain region, in which the first conductivity type is opposite to the second conductivity type.
US11410890B2
A method includes providing a p-type S/D epitaxial feature and an n-type source/drain (S/D) epitaxial feature, forming a semiconductor material layer over the n-type S/D epitaxial feature and the p-type S/D epitaxial feature, processing the semiconductor material layer with a germanium-containing gas, where the processing of the semiconductor material layer forms a germanium-containing layer over the semiconductor material layer, etching the germanium-containing layer, where the etching of the germanium-containing layer removes the germanium-containing layer formed over the n-type S/D epitaxial feature and the semiconductor material layer formed over the p-type S/D epitaxial feature, and forming a first S/D contact over the semiconductor material layer remaining over the n-type S/D epitaxial feature and a second S/D contact over the p-type S/D epitaxial feature. The semiconductor material layer may have a composition similar to that of the n-type S/D epitaxial feature.
US11410882B2
A method of making a semiconductor device includes depositing a second conductive material over a first conductive material, wherein the second conductive material is different from the first conductive material, and the second conductive material defines a redistribution line (RDL). The method further includes depositing a passivation layer over the RDL, wherein depositing the passivation layer comprises forming a plurality of convex sidewalls, and each of the plurality of convex sidewalls extends beyond an edge of the RDL.
US11410872B2
The present disclosure relates to semiconductor structures and, more particularly, to oxidized cavity structures within and under semiconductor devices and methods of manufacture. The structure includes: a substrate material; active devices over the substrate material; an oxidized trench structure extending into the substrate and surrounding the active devices; and one or more oxidized cavity structures extending from the oxidized trench structure and formed in the substrate material under the active devices.
US11410866B2
The present invention is provided with: a base moving linearly relative to a substrate and having a first and second positions that are spaced apart from each other by a predetermined interval a in the movement direction; a linear scale where a plurality of graduations having a predetermined pitch are provided along the movement direction; encoder heads which respectively are disposed at the first and second positions of the base and detect first and second graduation numbers of the linear scale with respect to the first and second positions, wherein, as the base is moved along the linear scale, the first and second graduation numbers are detected in this order in the respective encoder heads, and the movement amount of the base is controlled on the basis of the ratio between the predetermined interval and the distance between the first graduation number and the second graduation number on the scale.
US11410863B2
A substrate processing device is provided with: a spin base disposed below a substrate grasped by a plurality of chuck members, the spin base transmitting the drive force of a spin motor to the chuck members; and a nozzle for supplying a processing fluid for processing the substrate to the top surface and/or bottom surface of the substrate. An IH heating mechanism of the substrate processing device has: a heat-generating member disposed between the substrate and the spin base; a heating coil disposed below the spin base; and an IH circuit for supplying electric power to the heating coil, whereby an alternating magnetic field applied to the heat-generating member is generated, and the heat-generating member is caused to generate heat.
US11410862B2
An apparatus for processing a substrate includes a chamber having a processing space inside, a substrate support unit that supports the substrate in the processing space, and a temperature adjustment unit that is installed in the chamber and that adjusts temperature in the processing space. The temperature adjustment unit includes a heating member that heats the processing space and a cooling member that cools the processing space. The cooling member is located closer to a central axis of the chamber than the heating member.
US11410861B2
A substrate liquid processing apparatus includes a processing tub 34 which is configured to store therein a processing liquid and in which a processing of a substrate is performed by immersing the substrate in the stored processing liquid; a circulation line 50 connected to the processing tub; a pump 51 provided at the circulation line and configured to generate a flow of the processing liquid flowing out from the processing tub and returning back to the processing tub after passing through the circulation line; and a heater 52 provided at the circulation line and configured to heat the processing liquid. At least two temperature sensors 81 to 83 are provided at different positions within a circulation system including the processing tub and the circulation line. Controllers 90 and 100 control a heat generation amount of the heater based on detection temperatures of the at least two temperature sensors.
US11410848B2
A method of forming a pattern of an embodiment includes: forming an etch mask on a film to be processed by using a pattern-forming material containing an organic polymer; and patterning the etch mask. In the method of the embodiment, the organic polymer contains 70 atom % or more carbon atoms having an sp2 orbital and 5 atom % or more carbon atoms having an sp3 orbital among the carbon atoms constituting the organic polymer. The patterned etch mask is used for etching of the film to be processed with a gas containing a fluorine atom.
US11410846B2
The present disclosure provides a method for forming an integrated circuit (IC) structure. The method includes providing a metal gate (MG), an etch stop layer (ESL) formed on the MG, and a dielectric layer formed on the ESL. The method further includes etching the ESL and the dielectric layer to form a trench. A surface of the MG exposed in the trench is oxidized to form a first oxide layer on the MG. The method further includes removing the first oxide layer using a H3PO4 solution.
US11410842B2
Apparatus and method for processing an image-charge/current signal for an ion(s) undergoing oscillatory motion within an ion analyser apparatus. The method comprises: obtaining a recording of the image-charge/current signal (20a-20e) in the time domain. Then, by a signal processing unit, a value for the period (T) of a periodic signal component is determined within the recorded signal. Subsequently, the recorded signal is segmented into a number of successive time segments [0;T] of duration corresponding to the period (T). These lime segments are then co-registered in a first time dimension (t1) defining the period (T). The co-registered time segments are then separated along a second time dimension (t2) transverse to the first time dimension (t1). This generates a stack of time segments collectively defining a 2-dimensional (2D) function. The 2D function varies both across the stack in the first time dimension and along the stack in the second time dimension.
US11410841B2
An accelerator mass spectrometry measuring system is disclosed, including: an ECR high-current positive ion source subsystem; an injector subsystem; a high-current accelerator subsystem; a high-energy analysis subsystem; and a high-resolution detector subsystem; of which, the ECR high-current positive ion source subsystem, the injector subsystem, the high-current accelerator subsystem, high-energy analysis subsystem and a high-resolution detector subsystem are connected sequentially; the ECR high-current positive ion source subsystem is configured for generating high-current positive ions of multi-charge states; the high-current accelerator subsystem is configured for accelerating the high-current positive ions. The AMS system is high in beam, high in overall efficiency, and strong in how-down capability, and can greatly improve the abundance sensitivity of measurement.
US11410836B2
There is provided a method of analyzing data obtained from an etching apparatus for micromachining a wafer using plasma. This method includes the following steps: acquiring the plasma light-emission data indicating light-emission intensities at a plurality of different wavelengths and times, the plasma light-emission data being measured under a plurality of different etching processing conditions, and being obtained at the time of the etching processing, evaluating the relationship between changes in the etching processing conditions and changes in the light-emission intensities at the plurality of different wavelengths and times with respect to the wavelengths and times of the plasma light-emission data, and identifying the wavelength and the time of the plasma light-emission data based on the evaluation result, the wavelength and the time being to be used for the adjustment of the etching processing condition.
US11410834B2
A substrate processing apparatus of the present disclosure includes a processing container capable of being vacuum-exhausted, a lower electrode, and an upper electrode. A target substrate can be placed on the lower electrode. The upper electrode is disposed in the processing container so as to face the lower electrode. A substrate processing method of the present disclosure includes performing a first process on the target substrate using an AC voltage without using a DC pulse voltage, and performing a second process on the target substrate using the DC pulse voltage.