US11552515B2
A rotor includes a rotor core. A permanent magnet constitutes a first magnetic pole, and a part of the rotor core constitutes a second magnetic pole. In the second magnetic pole, a plurality of slits is symmetrically formed with respect to a magnetic pole center line connecting a pole center of the second magnetic pole and the center axis. On one side of the magnetic pole center line in a circumferential direction about the center axis, the plurality of slits has a first slit closest to the magnetic pole center line and a second slit adjacent to the first slit in the circumferential direction. A minimum distance L1 from the first slit to the outer circumference of the rotor core and a minimum distance L2 from the second slit to the outer circumference of the rotor core satisfy L1
US11552505B1
A wireless power system for an implantable device is described. The system includes multiple inductive charging coils to increase an effective area for receiving an electromagnetic charging field from a wireless charging device. The multiple inductive charging coils produce different alternating current signals in response to receiving the electromagnetic charging field. The system includes a rectifying circuit for rectifying the alternating current signals into direct current signals. The system also includes a current combination circuit for combining the multiple direct current signals into a single direct current for powering an operation of the implantable device. Methods and devices for implementing the power system in an implantable device are also described.
US11552503B2
The present disclosure provides a terminal device and a charging control method. The terminal device includes a receiving coil, a wireless charging module, an inverter circuit and a transmitting coil. The receiving coil is configured to receive a wireless charging signal. The wireless charging module is configured to perform a wireless charging to a battery based on the wireless charging signal received by the receiving coil. The inverter circuit is configured to generate an alternating current signal based on a power supply voltage provided by the battery. The transmitting coil is configured to transmit a wireless charging signal to the outside based on the alternating current signal.
US11552489B2
An electrically operable aerosol-generating system is provided, including a charging device including a primary power source; and an elongated aerosol-generating device including a secondary power source and having a proximal end, a distal end, and a body extending between the proximal end and the distal end, the charging device having a docking arrangement configured to engage with the elongated aerosol-generating device and to charge the secondary power source by the primary power source, in which a first coupling member disposed on the body of the elongated aerosol-generating device is configured to engage with a second coupling member disposed on a wall of the charging device.
US11552486B2
A portable vehicle-charging system includes a control-pilot circuit configured to generate a plurality of signals, each of the signals having a unique duty cycle that corresponds to a predetermined charging current to be used during a charging event. The system further includes a global positioning system (GPS) module configured to output GPS data indicative of a location of the portable vehicle-charging system. A controller of the system is programmed to receive the GPS data to determine the location of the portable vehicle-charging system, and command the control-pilot circuit to generate the one of the signals corresponding to the location so that the vehicle charges according to a corresponding one of the charging currents that is compatible with a power grid of the location.
US11552481B2
An information processing terminal 100, which is used for after-sales service of an energy storage facility 10 that includes an energy storage unit U including a plurality of energy storage modules M, includes: a display unit 107; and a control unit 101, in which the control unit 101 acquires, from the energy storage facility, a temperature of each of the energy storage modules M after start of operation, the temperature being measured by a temperature sensor 37 provided in each of the energy storage modules M, and in which the control unit 101 displays a temperature distribution of the energy storage unit U on the display unit 107 by a color distribution of display colors of a plurality of blocks B depicting an arrangement of the plurality of energy storage modules M in the energy storage unit U.
US11552463B2
A flange fitted around a round cylindrical condenser core of a bushing is described. The flange comprises an annular lower flange part arranged to fit around a radial shoulder of the condenser core such that a lower shoulder chamfer of the shoulder rests against lower flange chamfer of the lower flange part around the circumference of the condenser core; and an annular upper flange part fastened to the lower flange part and fits around the condenser core above an upper shoulder chamfer of the shoulder. An upper flange chamfer of the upper flange part is between an upper sealing element and a lower sealing element, forming an annular chamfer space is formed between the upper flange chamfer and the upper shoulder chamfer between the upper and lower sealing elements. The flange comprises an injection through hole for a filler material to be injected there through to fill the chamfer space.
US11552462B2
A wiring member includes a sheet-shaped member and multiple linear transmission members that are fixed on the sheet-shaped member. The plurality of linear transmission members are fixed on the sheet-shaped member such that a portion of the plurality of linear transmission members branches with respect to another said linear transmission member at a branching portion. An intersection location of the plurality of linear transmission members is located at the branching portion.
US11552454B1
Integrated laser sources emitting multi-wavelengths of light with reduced thermal transients and crosstalk and methods for operating thereof are disclosed. The integrated laser sources can include one or more heaters and a temperature control system to maintain a total thermal load of the gain segment, the heater(s), or both of a given laser to be within a range based on a predetermined target value. The system can include electrical circuitry configured to distribute current to the gain segment, the heater(s), or both. The heater(s) can be located proximate to the gain segment, and the distribution of current can be based on the relative locations. In some examples, the central laser can be heated prior to being activated. In some examples, one or more of the plurality of lasers can operate in a subthreshold operation mode when the laser is not lasing to minimize thermal perturbations to proximate lasers.
US11552453B2
A method for the production of a diode laser having a laser bar, wherein a metal layer having raised areas is used which is located between the n-side of the laser bar and the cover. The metal layer can be plastically deformed during installation without volume compression in the solid physical state. As a result the laser module can be reliably installed and a slight deviation (smile value) of the emitters from a centre line is achieved.
US11552449B2
A semiconductor radiation source includes at least one semiconductor chip that generates radiation; and at least one capacitor body, wherein the semiconductor chip and the capacitor body are stacked on top of each other, the semiconductor chip directly electrically connects in a planar manner to the capacitor body, the semiconductor chip is a ridge waveguide laser, and a ridge waveguide of the semiconductor chip is arranged on a side of the semiconductor chip facing away from the capacitor body.
US11552447B2
In various embodiments, laser systems or resonators incorporate two separate cooling loops that may be operated at different cooling temperatures. One cooling loop, which may be operated at a lower temperature, cools beam emitters. The other cooling loop, which may be operated at a higher temperature, cools other mechanical and/or optical components, for example optical elements such as lenses and/or reflectors.
US11552434B2
Certain aspects of the present disclosure generally relate to methods and apparatus for providing overvoltage protection for circuitry coupled to connector ports, such as USB-C ports. One example circuit for overvoltage protection between a connector port and a signal node corresponding to the connector port generally includes a first switch having a first terminal for coupling to the connector port and having a second terminal for coupling to the signal node; a first resistive element coupled in parallel with the first switch; a first transient protection circuit coupled between the signal node and a reference potential node; and a control circuit having an input coupled to the signal node and having a first output coupled to a control input of the first switch.
US11552433B2
An electrical connector is disclosed. The electrical connector has a casing, a terminal seat and a conductive plastic element. The terminal seat is mounted in the casing and has an insulator board and a terminal set. The terminal set has a ground terminal and a high-speed signal terminal set. One side of the conductive plastic element is mounted on an inner wall of the casing and another side thereof passes through the insulator board to be close to the high-speed signal terminal set. When the casing is electrically connected to a ground, the conductive plastic element is electrically connected to the ground through the casing. Therefore, the conductive plastic element may eliminate a noise interference caused by the high-speed signal terminal set during high-speed transmission. A crosstalk and a common-mode interference are also reduced to keep the stability of signal transmission of the electrical connector.
US11552415B2
A system is disclosed that is configured to secure a connection between a component and at least one wire, such as an antenna, within a computer. The system includes a retainer configured to move between a first position and a second position. The retainer in the first position is configured to secure a connection between at least one connector of the component and the at least one wire within the computer. The retainer in the second position is configured to permit release of the connection between the at least one connector of the component and the at least one wire within the computer, such as by providing access to the connection.
US11552412B2
An apparatus includes an aperture layer coupled to a polarizer layer. The aperture layer includes an antenna and a filter. A circuit layer is mechanically and thermally coupled to the aperture layer. The antenna includes a square horn antenna made of a polymer material. The filter includes a waveguide filter having a first and a second piece separately molded. The waveguide filter includes a folded-back waveguide coupled to the horn antenna at one end and to the circuit layer at another end.
US11552409B2
A Yagi-Uda monopolar antenna configured to be mounted on the conductive surface of a vehicle, especially an aircraft. The antenna comprises: a radiating element, taking the form of a conductive plate, for example one having the shape of a disc, which plate is equipped with a return conductor; a reflecting element; and at least one directing element taking the form of a monopole that is folded on itself. The various elements are mounted on a substantially planar surface such as the skin of the fuselage of an aircraft. The antenna simultaneously has a wide operating band, a good compactness and a good directivity. It may especially serve as joint antenna for a plurality of air-ground communication systems of an aircraft.
US11552408B2
A base station antenna (BSA) includes a reflector having a main reflector surface thereon, which extends between first and second sidewalls thereof. First and second choke-within-a-choke assemblies are provided on first and second sides of the reflector, respectively. The first choke-within-a-choke assembly includes: a first relatively low-band choke defined on one side thereof by the first sidewall of the reflector, and a first relatively high-band choke contacting on two sides thereof a rear surface of the reflector and an inner surface of the first sidewall. The second choke-within-a-choke assembly includes: a second relatively low-band choke defined on one side thereof by the second sidewall of the reflector, and a second relatively high-band choke contacting on two sides thereof the rear surface of the reflector and an inner surface of the second sidewall.
US11552405B1
A communication terminal may include an array of antenna modules. Each module may include an array of radiators on a substrate and a radio-frequency lens overlapping the array. The lens may include a tapered base on the substrate and a curved portion on the tapered base. The tapered base and curved portions may be rotationally symmetric about a central axis of the lens. The curved portion may be hemispherical. The tapered base portion may be conical and may have a first radius at the hemispherical portion and a second radius that is less than the first radius at the substrate. At least one radiator in the array may be located beyond the first radius and within the second radius from the central axis. The lens may be formed from lattice having interleaved layers of dielectric segments separated by gaps to reduce the overall weight of the module.
US11552404B2
A multibending antenna structure includes a substrate, a microstrip antenna layer, and at least a decouple unit. The microstrip antenna layer is disposed on one side of the substrate. The microstrip antenna layer includes a plurality of radiation units which are respectively formed in a multibending shape and forming a concave area. The radiation units are sequentially connected to form an antenna array, and a plurality of antenna arrays are disposed in a transversely parallel arrangement, with an interval between each two neighboring antenna arrays. The decouple unit is disposed between the neighboring antenna arrays. When the input end of the radiation unit receives a signal input to emit an electromagnetic wave having a radiation energy, the half-power beam width thereof is increased.
US11552403B2
Embodiments herein disclose techniques for apparatuses and methods for making a slot antenna on a PCB with a cutout. A PCB may include a metal layer. The metal layer may include a cavity to be a first radiating element of an antenna, and a slot to be a second radiating element of the antenna. In addition, the cavity may extend to be the cutout of the PCB through other layers of the PCB. The first and second radiating elements may provide a determined transmission frequency for the antenna. The metal layer may further include a portion of a transmission line of the antenna, and the transmission line is in contact with the cavity and the slot. A package may be affixed to the PCB, where a portion of the package may be within the cutout of the PCB. Other embodiments may be described and/or claimed.
US11552401B2
An antenna system includes a first substrate, a plurality of chips and a waveguide antenna element based beam forming phased array that includes a plurality of radiating waveguide antenna cells for millimeter wave communication. Each radiating waveguide antenna cell includes a plurality of pins where a first pin is connected with a body of a corresponding radiating waveguide antenna cell and the body corresponds to ground for the pins. The first pin includes a first and a second current path, the first current path being longer than the second current path. A first end of the radiating waveguide antenna cells is mounted on the first substrate, where the plurality of chips are electrically connected with the plurality of pins and the ground of each of the plurality of radiating waveguide antenna cells.
US11552396B2
The present disclosure relates to a phase shifter, which includes: a phase shift circuit board with conductive traces printed thereon; and a phase shift circuit board with conductive traces printed thereon; and a slide device with a first tooth section configured to be driven, wherein movement of the first tooth section drives the slide device to slide on the phase shift circuit board. In addition, the present disclosure further relates to a remote electrical tilt system, which includes an actuator, a transmission mechanism, and at least one phase shifter according to the present disclosure, wherein the actuator is configured to drive the transmission mechanism, and the transmission mechanism engages the first tooth section to drive the slide device to slide on the phase shift circuit board. In addition, the present disclosure also relates to a base station antenna which includes the remote electrical tilt system according to the present disclosure. The base station antenna according to the present disclosure may improve the stability of the transmission of the remote electrical tilt system and increase the space utilization of the remote electrical tilt system.
US11552385B2
The present disclosure relates to stripline cavity structures. One example stripline cavity structure is disposed on a back surface of a reflecting plate, and first avoidance holes are provided on the reflecting plate. The stripline cavity structure includes at least one second conductor strip, the stripline cavity structure is disposed on the back surface of the reflecting plate, and the second conductor strip passes through the first avoidance holes to be connected to the first conductor strip in a microstrip circuit.
US11552384B2
An apparatus is provided that includes a ground plane having a perimeter, at least one support positioned within the perimeter of the ground plane and extending outwardly from the ground plane and at least one multi-port antenna supported by the support at a distance from the ground plane. The multi-port antenna has a different radiation pattern associated with each port. The multi-port antenna operates with a first radiation pattern when a first port is used and operates with a second radiation pattern, different to the first radiation pattern, when a second port, different to the first port, is used. The at least one support defines a slot positioned between the multi-port antenna and the ground plane and/or the ground plane defines a slot.
US11552382B2
A radio frequency (RF) loopback substrate or printed circuit board (PCB) which contains receive and transmit antennas located on the bottom of the loopback substrate which are aligned with the complementary transmit and receive antennas on an antenna on package (AOP) device under test. The loopback substrate receive and transmit antennas are coupled to each other. The device under test contacts are driven by a conventional tester, which causes RF circuitry in the integrated circuit to drive an AOP transmit antenna. The corresponding loopback substrate receive antenna receives the RF signal from the AOP transmit antenna and provides it to the loopback substrate transmit antennas. The integrated circuit package AOP receive antennas then receive the RF signals from the loopback substrate transmit antennas. The signals at the integrated circuit package AOP receive antennas are monitored through the integrated circuit contacts to monitor the received RF signals.
US11552379B2
The invention relates to a transition from a stripline to a waveguide, wherein: the stripline, preferably a microstrip line, is located on a substrate; an upper side of the substrate has a metallised surface and the lower side of the substrate has a metal layer, preferably a high-frequency ground-potential layer; the upper side and the lower side are connected to vias; and at least part of the metallised surface on the upper side of the substrate acts as a waveguide wall.
US11552376B2
The present invention provides a single electrode assembly, in which a plurality of negative electrodes and positive electrodes are stacked alternately and repeatedly, and separators are disposed between the plurality of negative electrodes and positive electrodes, the electrode assembly including: a negative electrode tab part formed on one end of the electrode assembly and extending from the plurality of negative electrodes; a positive electrode bus bar spaced apart from the negative electrode tab part on the one end of the electrode assembly and electrically connecting the plurality of the positive electrodes; a positive electrode tab part formed on the other end of the electrode assembly opposite to the one end and extending from the plurality of positive electrodes; and a negative electrode bus bar spaced apart from the positive electrode tab part on the other end of the electrode assembly and electrically connecting the plurality of the negative electrodes.
US11552374B2
The present disclosure provides a non-aqueous electrolyte secondary battery having a stable open-circuit voltage. An electrode for a non-aqueous electrolyte secondary battery according to one embodiment includes a belt-like current collector, a mixture layer formed on each surface of the current collector, and a lead bonded to an exposed portion of the current collector where the surfaces of the current collector are exposed, the lead extending from one end of the current collector, the one end and another end constituting both ends of the current collector in the width direction. In an electrode for a non-aqueous electrolyte secondary battery according to one embodiment, a mixture layer is formed on at least one surface of a current collector in the width direction of the current collector and adjacent to an exposed portion on one end side.
US11552370B2
In accordance with at least selected embodiments or aspects, the present invention is directed to improved, unique, and/or complex performance lead acid battery separators, such as improved flooded lead acid battery separators, batteries including such separators, methods of production, and/or methods of use. The preferred battery separator of the present invention addresses and optimizes multiple separator properties simultaneously. It is believed that the present invention is the first to recognize the need to address multiple separator properties simultaneously, the first to choose particular multiple separator property combinations, and the first to produce commercially viable multiple property battery separators, especially such a separator having negative cross ribs.
US11552359B2
A power storage device includes a plurality of power storage modules laminated, a conductive plate and a sealing member. The conductive plate and the sealing member are provided between the power storage modules adjacent to each other in a laminating direction of the power storage modules. The plurality of power storage modules each have an electrode laminate, an electrolytic solution, and a sealing body. The electrode laminate has electrode exposed portions exposed from the sealing body at one end and the other end in the laminating direction. Between the power storage modules adjacent to each other in the laminating direction, the conductive plate is disposed between the electrode exposed portions opposing each other to be in contact with the electrode exposed portions, and at least a portion between the sealing bodies opposing each other is filled with the sealing member.
US11552346B2
A battery system includes a can with a lip around an opening. At least an interior surface of the can is anodized and the lip of the can includes a longer and shorter side. The can further includes a flange on the longer side of the lip and a plurality of layers that are inserted into the can. The plurality of layers includes a battery cell and a thermally conducting layer with a fin and the fin has a spring force that pushes the fin towards the anodized interior surface. The battery system further includes a lid that is configured to cover the opening of the can, where the flange is configured to wrap around the lid when the lid covers the opening of the can.
US11552340B2
A battery pack may be configured to power any of a plurality of different outdoor power equipment device types. The battery pack may include one or more rechargeable battery cells configured to power a device to which the battery pack is operably coupled, and processing circuitry. The processing circuitry may include at least a processor and memory. The processing circuitry may be configured to enable configuration of the device or another device of a same device type as the device based on a set of configuration settings stored in the memory.
US11552336B2
A battery pack includes a cell block including battery cells electrically connected to each other, the cell block having a pair of long sides and a pair of short sides which surround lateral surfaces of the battery cells and are tangent to the lateral surfaces of the battery cells, and a flexible wiring surrounding the cell block in a direction parallel to the pair of long sides of the cell block, the flexible wiring including sensors to detect state information from the battery cells.
US11552334B1
Additives for energy storage devices comprising nitrogen-containing compounds are disclosed. The energy storage device comprises a first electrode and a second electrode, where at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Nitrogen-containing compounds may serve as additives to the first electrode, the second electrode, and/or the electrolyte, as well as the separator.
US11552331B2
A solid electrolyte composition includes: an inorganic solid electrolyte (A) having ion conductivity of a metal belonging to Group 1 or Group 2 in the periodic table; a binder (B); and a dispersion medium (C), in which the binder (B) includes a first binder (B1) that precipitates by a centrifugal separation process and a second binder (B2) that does not precipitate by the centrifugal separation process, the centrifugal separation process being performed in the dispersion medium (C) at a temperature of 25° C. at a centrifugal force of 610000 G for 1 hour, and a content X of the first binder (B1) and a content Y of the second binder (B2) satisfy the following expression, 0.01≤Y/(X+Y)<0.10.
US11552319B2
The present disclosure is directed towards the design of electrochemical cells for use in high pressure or high differential pressure operations. The electrochemical cells of the present disclosure have non-circular external pressure boundaries, i.e., the cells have non-circular profiles. In such cells, the internal fluid pressure during operation is balanced by the axial tensile forces developed in the bipolar plates, which prevent the external pressure boundaries of the cells from flexing or deforming. That is, the bipolar plates are configured to function as tension members during operation of the cells. To function as an effective tension member, the thickness of a particular bipolar plate is determined based on the yield strength of the material selected for fabricating the bipolar plate, the internal fluid pressure in the flow structure adjacent to the bipolar plate, and the thickness of the adjacent flow structure.
US11552314B2
To provide a fuel-efficient fuel cell system configured to eliminate flooding in a fuel-based gas flow path, etc. The fuel cell system is a fuel cell system comprising a first fuel cell stack, a second fuel cell stack, a fuel gas supplier, a first supply flow path, a first circulation flow path, a second supply flow path, a second circulation flow path, a first bypass flow path which includes a first on-off valve, a second bypass flow path which includes a second on-off valve, a temperature detector, a current detector, a voltage detector and a controller.
US11552312B2
A fuel cell system includes a fuel cell stack, an anode tail gas oxidizer (ATO), an ATO injector configured to mix a first portion of an anode exhaust from the fuel cell stack with a cathode exhaust from the fuel cell stack and to provide a mixture of the first portion of the anode exhaust and the cathode exhaust into the ATO, an anode exhaust conduit which is configured to provide the first portion of the anode exhaust into the ATO injector, and cathode exhaust conduit which is configured to provide at least a portion of the cathode exhaust from the fuel cell stack into the ATO injector. The ATO injector includes injector tubes or injection apertures.
US11552307B2
A gas liquid separator of a fuel cell system includes a first channel forming section forming a first channel for allowing an oxygen-containing exhaust gas to flow in a horizontal direction, and a second channel forming section forming a second channel connected to the first channel. The first channel forming section is provided with an inlet for guiding the oxygen-containing exhaust gas into the first channel. The second channel forming section is provided with an outlet for discharging the oxygen-containing exhaust gas flowing through the second channel. The second channel includes a bent channel for guiding upward the oxygen-containing exhaust gas guided from the first channel.
US11552305B2
An alkaline electrochemical cell has a central cathode having a corresponding cathode current collector electrically connected with a positive terminal of the electrochemical cell. The cathode current collector has a tubular shape, such as a cylindrical shape or rectangular shape, extending parallel with the length of the central cathode. The cathode current collector is embedded within the central cathode, such as at a medial point of a radius of the central cathode, thereby minimizing the distance between the cathode current collector and any portion of the central cathode, thereby increasing the mechanical strength of the cathode and facilitating charge transfer to the cathode current collector.
US11552304B2
An alkaline electrochemical cell has a central cathode having a corresponding cathode current collector electrically connected with a positive terminal of the electrochemical cell. The cathode current collector has a tubular shape, such as a cylindrical shape or rectangular shape, extending parallel with the length of the central cathode. The cathode current collector is embedded within the central cathode, such as at a medial point of a radius of the central cathode, thereby minimizing the distance between the cathode current collector and any portion of the central cathode, thereby increasing the mechanical strength of the cathode and facilitating charge transfer to the cathode current collector.
US11552297B2
Provided is a binder composition for lithium ion secondary battery electrode-use that reduces internal resistance of a lithium ion secondary battery while also providing the lithium ion secondary battery with excellent life characteristics. The binder composition contains a copolymer X and a solvent. The copolymer X is obtained from a monomer composition X that contains at least 20.0 mass % and no greater than 75.0 mass % of an ethylenically unsaturated carboxylic acid compound (A) composed of either or both of an ethylenically unsaturated carboxylic acid and an ethylenically unsaturated carboxylic acid salt, and at least 20.0 mass % and no greater than 75.0 mass % of a copolymerizable compound (B) that has an ethylenically unsaturated bond and a solubility of at least 7 g in 100 g of water at 20° C. The copolymer X has a degree of swelling in electrolysis solution of less than 120 mass %.
US11552294B2
Provided are a nickel-based active material for a lithium secondary battery, a method of preparing the nickel-based active material, and a lithium secondary battery including a positive electrode including the nickel-based active material. The nickel-based active material includes at least one secondary particle that includes at least two primary particle structures, the primary particle structures each including a porous inner portion and an outer portion having a radially arranged structure, and the secondary particle including at least two radial centers.
US11552286B2
The present disclosure provides a lithium-ion battery, the lithium-ion battery comprises a positive electrode plate, a negative electrode plate, a separator and an electrolyte. The positive active material comprises a material having a chemical formula of LiaNixCoyMzO2, the negative active material comprises a graphite-type carbon material, the lithium-ion battery satisfies a relationship 58%≤KYa/(KYa+KYc)×100%≤72%. In the present disclosure, by reasonably matching the relationship between the anti-compression capability of the positive active material and the anti-compression capability of the negative active material, it can make the positive electrode plate and the negative electrode plate both have good surface integrity, and in turn make the lithium-ion battery have excellent dynamics performance and excellent cycle performance at the same time.
US11552283B2
A method of coating a flexible substrate in a roll-to-roll deposition system is described. The method includes unwinding the flexible substrate from an unwinding roll, the flexible substrate having a first coating on a first main side thereof; measuring a lateral positioning of the first coating while guiding the flexible substrate to a coating drum; adjusting a lateral position of the flexible substrate on the coating drum depending on the measured lateral positioning of the first coating; and depositing a second coating on the flexible substrate, particularly on a second main side of the flexible substrate opposite the first main side. Further described is a vacuum deposition apparatus for conducting the methods described herein.
US11552281B2
A method for manufacturing a display device includes providing a panel substrate including a panel area, a peripheral area, and a dummy pattern disposed at a boundary between the panel area and the peripheral area. A protection part is disposed on the panel substrate. A first processing line overlaps a first outline of the panel area extending from a first point of an outline of the panel area. A second processing line overlaps a second outline extending from the first point in a direction different from the first outline are defined. The protection part is partially cut along the first processing line. The protection part is fully cut along the second processing line. The dummy pattern overlaps the first point.
US11552278B2
Embodiments of the disclosed subject matter may provide a display device or display surface including at least one emissive layer and a near-infrared (NIR) emissive layer disposed in a stack arrangement between a first electrode and a second electrode, where NIR light is emitted from the NIR emissive layer through the at least one emissive layer, or visible light is emitted from the at least one emissive layer through the NIR emissive layer, and where the NIR light output by the NIR emissive layer has a peak wavelength of 740 nm-1000 nm. Embodiments of the disclosed subject matter may provide a near infrared (NIR) light source disposed behind or in front of an active-matrix organic light emitting diode (AMOLED), where the NIR light source has an area greater than 25% of an active area of the display device or display surface.
US11552269B2
The present disclosure relates to a display substrate, a method for preparing the same, and a display device. The display substrate of the present disclosure includes a base substrate, a pixel definition layer located on the base substrate, and a first pixel and a second pixel that are adjacent to each other and defined by the pixel definition layer, in which a spacer function layer for blocking hole transport between adjacent pixels is arranged at at least a part of a contact interface between the second hole transport layer in the second pixel and the light function layer in the first pixel. By providing the spacer function layer, the present disclosure effectively prevents the migration of holes between the hole transport layers of adjacent pixels or between the hole transport layer and the light emitting layer, thereby avoiding accompanying light emission between adjacent pixels.
US11552268B2
A solid-state imaging element including: a photoelectric conversion layer, a first electrode and a second electrode opposed to each other with the photoelectric conversion layer interposed therebetween, a semiconductor layer provided between the first electrode and the photoelectric conversion layer, an accumulation electrode opposed to the photoelectric conversion layer with the semiconductor layer interposed therebetween, an insulating film provided between the accumulation electrode and the semiconductor layer, and a barrier layer provided between the semiconductor layer and the photoelectric conversion layer.
US11552266B2
The present application relates to an organic electronic device, said electronic device comprising a multi-layer electrode as well as an organic semiconducting layer, as well as to a method for producing such organic electronic device.
US11552262B2
The invention relates to an organic molecule, in particular for use in organic optoelectronic devices. According to the invention, the organic molecule has one first chemical moiety with a structure of formula I, and one second chemical moiety with a structure of formula II, wherein the first chemical moiety is linked to the second chemical moiety via a single bond.
US11552256B2
To provide a light-emitting element with an improved reliability, a light-emitting element with a high current efficiency (or a high quantum efficiency), and a novel dibenzo[f,h]quinoxaline derivative that is favorably used in a light-emitting element which is one embodiment of the present invention. A light-emitting element includes an EL layer between an anode and a cathode. The EL layer includes a light-emitting layer; the light-emitting layer contains a first organic compound having an electron-transport property and a hole-transport property, a second organic compound having a hole-transport property, and a light-emitting substance; the combination of the first organic compound and the second organic compound forms an exciplex; the HOMO level of the first organic compound is lower than the HOMO level of the second organic compound; and a difference between the HOMO level of the first organic compound and the HOMO level of the second organic compound is less than or equal to 0.4 eV.
US11552253B2
Provided is a novel compound capable of improving the luminous efficiency, stability and lifespan of a device, an organic electronic device using the same, and an electronic device.
US11552246B2
Memristors, including memristors comprising a Schottky barrier, and related systems and methods are generally described.
US11552234B2
A thermoelectric conversion element includes: a thermoelectric member that is columnar; an insulator formed around the thermoelectric member; and a metal layer formed continuously on an edge surface of the thermoelectric member and an edge surface of the insulator. An edge portion of the thermoelectric member and an edge portion of the insulator define a gap covered with the metal layer. The inner portion of the gap covered with the metal layer is a void.
US11552233B2
A thermionic energy converter, preferably including an anode and a cathode. An anode of a thermionic energy converter, preferably including an n-type semiconductor, one or more supplemental layers, and an electrical contact. A method for work function reduction and/or thermionic energy conversion, preferably including inputting thermal energy to a thermionic energy converter, illuminating an anode of the thermionic energy converter, thereby preferably reducing a work function of the anode, and extracting electrical power from the system.
US11552232B2
Provided is a ultra-small light-emitting diode (LED) electrode assembly including a base substrate; an electrode line formed on the base substrate, and including a first electrode and a second electrode formed in a line shape to be interdigitated with each other while being spaced apart from each other; and at least one ultra-small LED device connected to the electrode line. A cross section of at least one of the first and second electrodes in a vertical direction has a height variation such that the first and second electrodes easily come in contact with the at least one ultra-small LED device.
US11552227B2
A method of manufacturing a light emitting device includes: providing a wiring substrate on which a light emitting element and a frame body surrounding the light emitting element are disposed; forming a support column member in contact with at least one of an inner peripheral surface and a top surface of a corresponding portion of the frame body, an outermost edge of the support column member being positioned at a same position or inwardly of an outermost edge of the frame body in a top plan view; and forming a light-transmissive member at least partially in contact with the frame body and the support column member with at least a part of the light-transmissive member being positioned above the frame body and the support column member.
US11552217B2
A semiconductor device is provided, which includes a first semiconductor structure, a second semiconductor structure and a light-emitting structure. The light-emitting structure is located between the first semiconductor structure and the second semiconductor structure. The light-emitting structure includes a multiple quantum well structure. The multiple quantum well structure contains aluminum and includes a plurality of semiconductor stacks. Each of the semiconductor stacks is stacked by a well layer and a barrier layer. In each semiconductor stack, the well layer has a thickness larger than a thickness of the barrier layer.
US11552215B2
A method of manufacturing a display device includes: forming a first electrode on a substrate; forming an insulating layer on the substrate and on the first electrode; providing light emitting elements in the insulating layer, each of the light emitting elements having a long axis and a short axis crossing the long axis and being configured to emit light; aligning the light emitting elements such that one end of each of the light emitting elements faces the substrate and the long axis of each of the light emitting elements is arranged in a direction from the substrate toward the insulating layer; patterning the insulating layer to form an insulating pattern exposing another end of each of the light emitting elements; and forming a second electrode electrically connected to the exposed other end of each of the light emitting elements.
US11552207B2
Photovoltaic (PV) cell structures are disclosed. In one example embodiment, a PV cell includes an emitter layer, a base layer adjacent to the emitter layer, and a back surface field (BSF) layer adjacent to the base layer. The BSF layer includes a first layer, and a second layer adjacent to the first layer. The first layer includes a first material and the second layer includes a second material different than the first material.
US11552203B2
A PCSS comprises a photoconductive semiconductor block that exhibits electrically-conductive behavior when exposed to light of a predetermined wavelength; two or more electrodes fixed to the photoconductive semiconductor block and connectable to a power supply; a resonance cavity enveloping the photoconductive semiconductor block, the resonance cavity having a reflective outer surface to trap light within the resonance cavity and the photoconductive semiconductor block, the resonance cavity having a window through the reflective outer surface to admit light of the predetermined wavelength, the resonance cavity being transmissive to light of the predetermined wavelength within the reflective outer surface; and a light source directed toward the photoconductive semiconductor block and through the window, and emitting light at the predetermined wavelength. The photoconductive semiconductor block may include Si, GaAs, GaN, AlN, SiC, and/or Ga2O3. The resonance cavity may include glass, crystal, Au, Ag, Cr, Ni, V, Pd, Pt, Ir, Rh, and/or Al.
US11552201B2
Disclosed is an optical package assembly. The optical package assembly includes a substrate (100), a light sensor chip (200), and a protection portion. The protection portion and the light sensor chip (200) both are fixed to the substrate (100), the light sensor chip (200) is packaged in the protection portion, a plane on which the light sensor chip (200) is located intersects with a plane of the substrate (100), and the protection portion includes a light entering region. Further disclosed is a mobile terminal.
US11552197B2
Nanowire structures having non-discrete source and drain regions are described. For example, a semiconductor device includes a plurality of vertically stacked nanowires disposed above a substrate. Each of the nanowires includes a discrete channel region disposed in the nanowire. A gate electrode stack surrounds the plurality of vertically stacked nanowires. A pair of non-discrete source and drain regions is disposed on either side of, and adjoining, the discrete channel regions of the plurality of vertically stacked nanowires.
US11552190B2
A modified structure of an n-channel lateral double-diffused metal oxide semiconductor (LDMOS) transistor is provided to suppress the rupturing of the gate-oxide which can occur during the operation of the LDMOS transistor. The LDMOS transistor comprises a dielectric isolation structure which physically isolates the region comprising a parasitic NPN transistor from the region generating a hole current due to weak-impact ionization, e.g., the extended drain region of the LDMOS transistor. According to an embodiment of the disclosure, this can be achieved using a vertical trench between the two regions. Further embodiments are also proposed to enable a reduction in the gain of the parasitic NPN transistor and in the backgate resistance in order to further improve the robustness of the LDMOS transistor.
US11552185B2
There is provided a semiconductor device comprising: a semiconductor substrate including a drift region of a first conductivity type; an emitter region of the first conductivity type provided above the drift region inside the semiconductor substrate and having a doping concentration higher than the drift region; a base region of a second conductivity type provided between the emitter region and the drift region inside the semiconductor substrate; a first accumulation region of the first conductivity type provided between the base region and the drift region inside the semiconductor substrate and having a doping concentration higher than the drift region; a plurality of trench portions provided to pass through the emitter region, the base region and first accumulation region from an upper surface of the semiconductor substrate, and provided with a conductive portion inside; and a capacitance addition portion provided below the first accumulation region to add a gate-collector capacitance thereto.
US11552183B2
A method to fabricate a transistor includes implanting dopants into a semiconductor to form a drift layer having majority carriers of a first type; etching a trench into the semiconductor; thermally growing an oxide liner into and on the trench and the drift layer; depositing an oxide onto the oxide liner on the trench to form a shallow trench isolation region; implanting dopants into the semiconductor to form a drain region in contact with the drift layer and having majority carriers of the first type; implanting dopants into the semiconductor to form a body region having majority carriers of a second type; forming a gate oxide over a portion of the drift layer and the body region; forming a gate over the gate oxide; and implanting dopants into the body region to form a source region having majority carriers of the first type.
US11552182B2
Integrated circuit devices and methods of forming the same are provided. The methods may include forming a dummy channel region and an active region of a substrate, forming a bottom source/drain region on the active region, forming a gate electrode on one of opposing side surfaces of the dummy channel region, and forming first and second spacers on the opposing side surfaces of the dummy channel region, respectively. The gate electrode may include a first portion on the one of the opposing side surfaces of the dummy channel region and a second portion between the bottom source/drain region and the first spacer. The methods may also include forming a bottom source/drain contact by replacing the first portion of the gate electrode with a conductive material. The bottom source/drain contact may electrically connect the second portion of the gate electrode to the bottom source/drain region.
US11552181B2
A method for fabricating a semiconductor device includes the steps of: forming a fin-shaped structure on a substrate, forming a gate material layer on the fin-shaped structure, performing an etching process to pattern the gate material layer for forming a gate structure and a silicon residue, performing an ashing process on the silicon residue, and then performing a cleaning process to transform the silicon residue into a polymer stop layer on a top surface and sidewalls of the fin-shaped structure.
US11552177B2
Metal gate stacks and integrated methods of forming metal gate stacks are disclosed. Some embodiments comprise NbN as a PMOS work function material at a thickness in a range of greater than or equal to 5 Å to less than or equal to 50 Å. The PMOS work function material comprising NbN has an effective work function of greater than or equal to 4.75 eV. Some embodiments comprise HfO2 as a high-κ metal oxide layer. Some embodiments provide improved PMOS bandedge performance evidenced by improved flatband voltage. Some embodiments exclude transition metal niobium nitride materials as work function materials.
US11552176B2
An integrated circuit device includes a fin-type active area that extends on a substrate in a first direction, a gate structure that extends on the substrate in a second direction and crosses the fin-type active area, source/drain areas arranged on first and second sides of the gate structure, and a contact structure electrically connected to the source/drain areas. The source/drain areas comprise a plurality of merged source/drain structures. Each source/drain area comprises a plurality of first points respectively located on an upper surface of the source/drain area at a center of each source/drain structure, and each source/drain area comprises at least one second point respectively located on the upper surface of the source/drain area where side surfaces of adjacent source/drain structures merge with one another. A bottom surface of the contact structure is non-uniform and corresponds to the first and second points.
US11552173B2
A silicon carbide device includes a stripe-shaped trench gate structure extending from a first surface into a silicon carbide body. The gate structure has a gate length along a lateral first direction. A bottom surface and an active first gate sidewall of the gate structure are connected via a first bottom edge of the gate structure. The silicon carbide device further includes at least one source region of a first conductivity type. A shielding region of a second conductivity type is in contact with the first bottom edge of the gate structure across at least 20% of the gate length.
US11552171B2
A substrate structure and a method for fabricating a semiconductor structure including the substrate structure are provided. The substrate structure includes a substrate, a bow adjustment layer, and a silicon layer. The bow adjustment layer is on the top surface of the substrate. The silicon layer is on the bow adjustment layer. The substrate structure has a total bow value, and the total vow value is from −20 μm to −40 μm.
US11552163B2
What is disclosed is structures and methods to integrate microdevices into system or receiver substrates. The integration of microdevices is facilitated by adding staging pads to microdevices before or after transferring. Creating stages after the transfer of a first microdevice to a substrate for the subsequent microdevice transfer to the first (or the second) microdevice transfer. The stage improves the surface profile of the substrate so that next microdevice can be transferred without the first microdevice on the substrate get damaged by or interfere with the surface of the donor or transfer head. Some embodiments further relate to tiled display device and more particularly, to stacking tiles to a backplane to form the tiled display device.
US11552162B2
In a transparent display panel, a layer of each of a VSS voltage connection line and a VDD voltage connection line as a power line in a display region is different from a layer of a data line and a reference voltage connection line, while each of the VSS voltage connection line and the VDD voltage connection line partially overlaps the data line and the reference voltage connection line. Thus, an overall width of a line region may be reduced. Thus, an area of a pixel circuit region is reduced, such that an area of a transmissive region increases, thereby to increase an overall transmittance of the panel. Further, a width of each of the VSS voltage connection line and the VDD voltage connection line is large while reducing or minimizing an area of the line region in the display region. This reduces or minimizes occurrence of VDD drop or VSS rise, thereby to reduce luminance non-uniformity of the panel.
US11552156B2
An array substrate, a display panel, and a display device are provided. The array substrate includes a substrate, a semiconductor layer, a gate insulation layer, a gate layer, an interlayer insulation layer, and data lines, wherein the semiconductor layer is directly below the data lines.
US11552143B1
Embodiments described herein generally relate to sub-pixel circuits that may be utilized in a display such as an organic light-emitting diode (OLED) display. The device includes substrate, pixel-defining layer (PDL) structures disposed over the section of the substrate, inorganic or metal overhang structures disposed on an upper surface of the PDL structures, and a plurality of sub-pixels. The PDL structures include a trench disposed in the top surface of the PDL structure. Each sub-pixel includes an anode, an OLED material disposed over and in contact with the anode, and a cathode disposed over the OLED material. The inorganic or metal overhang structures have an overhang extension that extends laterally over the trench. An encapsulation layer is disposed over the cathode and extends under at least a portion of the inorganic or metal overhang structures and along a top surface of the PDL structures.
US11552140B2
A top emission organic EL element includes a substrate, an insulating layer including a hole portion, a lower electrode, a light emitting layer, a bank surrounding the lower electrode and the light emitting layer, and an upper transparent electrode. The insulating layer, the lower electrode, the light emitting layer, the bank, and the upper transparent electrode are disposed above the substrate. The bank is arranged on the insulating layer so as to surround the hole portion. The lower electrode is configured to cover an inner side of the hole portion and an area, where the bank is not arranged, of an upper surface of the insulating layer, and a thickness at a center area of the lower electrode is 150 nm or more.
US11552133B2
Various embodiments of the disclosure relate to an electronic device including a display and a camera. The electronic device may include a camera overlapping the display and configured to photograph external light passing through the display, wherein the display may include: a colorless and transparent substrate, a pixel layer disposed in a first direction from the substrate and comprising organic light-emitting diode (OLED) type pixels, an organic encapsulation layer (e.g., thin film encapsulation (TFE)) disposed in the first direction from the pixel layer, and a color filter layer disposed in the first direction from the organic encapsulation layer, wherein the display may include: a first area overlapping at least a portion of the camera and a second area not overlapping the camera, wherein an arrangement density of a first group of pixels in the first area may be lower than an arrangement density of a second group of pixels in the second area, and wherein the color filter layer may include first color filters overlapping the pixels of the first group, second color filters overlapping the pixels of the second group, a black matrix disposed between the second color filters in the second area, and a transmission area disposed between the first color filters in the first area.
US11552130B2
A display device includes a first subpixel including a light-emitting layer of a first color, a second subpixel adjacent to the first subpixel in a row direction or a column direction, the second subpixel including a light-emitting layer of a second color, and a third subpixel adjacent to the first subpixel and the second subpixel in a diagonal direction, the third subpixel including a light-emitting layer of a third color, wherein the first subpixel to the third subpixel include light-emitting regions that are geometrically similar to one another, the light-emitting regions of two of the first subpixel to the third subpixel are in the same size, and a light-emitting region of remaining one of the first subpixel to the third subpixel is larger than the light-emitting regions of the two of the first subpixel to the third subpixel.
US11552125B2
A method of manufacturing an optoelectronic device, including the steps of: a) providing an active diode stack comprising a first doped semiconductor layer of a first conductivity type and a second doped semiconductor layer of the first conductivity type, coating the upper surface of the first layer; b) arranging a third semiconductor layer on the upper surface of the active stack; c) after step b), forming at least one MOS transistor inside and on top of the third semiconductor layer; and d) after step b), before or after step c), forming trenches vertically extending from the upper surface of the third layer and emerging into or onto the upper surface of the first layer and delimiting a plurality of pixels, each including a diode and an elementary diode control cell.
US11552123B2
A front-side type image sensor may include a substrate successively including: a P− type doped semiconducting support substrate, an electrically insulating layer and a semiconducting active layer, and a matrix array of photodiodes in the active layer of the substrate. The substrate may include, between the support substrate and the electrically insulating layer, a P+ type doped semiconducting epitaxial layer.
US11552113B2
A moiré pattern imaging device includes a light-transmitting film and an optical sensor. The light-transmitting film includes a plurality of microlenses, and a light-incident surface and a light-exit surface opposite to each other. The plurality of microlenses are disposed on the light-incident surface, the light-exit surface or a combination thereof, and the plurality of microlenses are arranged in two dimensions to form a microlens array. The optical sensor includes a photosurface. The photosurface faces the light-exit surface of the light-transmitting film, the photosurface is provided with a plurality of pixels, and the plurality of pixels are arranged in two dimensions to form a pixel array. The microlens array and the pixel array correspondingly form a moiré pattern effect to produce an imaging magnification effect, and the photosurface of the optical sensor senses light and forms a moiré pattern magnification image.
US11552110B2
According to one embodiment, a display device includes first semiconductor layers crossing a first scanning line in a non-display area, the first semiconductor layers being a in number, second semiconductor layers crossing a second scanning line in the non-display area, the second semiconductor layers being b in number, and an insulating film disposed between the first and second semiconductor layers and the first and second scanning lines, wherein a and b are integers greater than or equal to 2, and a is different from b, and the first and second semiconductor layers are both entirely covered with the insulating film.
US11552107B2
Provided is a display device with extremely high resolution, a display device with higher display quality, a display device with improved viewing angle characteristics, or a flexible display device. Same-color subpixels are arranged in a zigzag pattern in a predetermined direction. In other words, when attention is paid to a subpixel, another two subpixels exhibiting the same color as the subpixel are preferably located upper right and lower right or upper left and lower left. Each pixel includes three subpixels arranged in an L shape. In addition, two pixels are combined so that pixel units including subpixel are arranged in matrix of 3×2.
US11552106B2
An array substrate and a manufacturing method thereof are provided. A patterned metal member of the array substrate includes a patterned first metal layer, a patterned second metal layer, and a patterned copper layer which are sequentially disposed on a substrate. An etching rate at which an etching solution etches the second metal layer is less than another etching rate at which the etching solution etches the first metal layer. An adhesion force between the patterned first metal layer and the substrate is greater than another adhesion force between the patterned copper layer and the substrate.
US11552103B2
A method of forming a ferroelectric random access memory (FeRAM) device includes: forming a first layer stack and a second layer stack successively over a substrate, where the first layer stack and the second layer stack have a same layered structure that includes a layer of a first electrically conductive material over a layer of a first dielectric material, where the first layer stack extends beyond lateral extents of the second layer stack; forming a trench that extends through the first layer stack and the second layer stack; lining sidewalls and a bottom of the trench with a ferroelectric material; conformally forming a channel material in the trench over the ferroelectric material; filling the trench with a second dielectric material; forming a first opening and a second opening in the second dielectric material; and filling the first opening and the second opening with a second electrically conductive material.
US11552102B2
A method of manufacturing a semiconductor device includes forming holes passing through a stacked structure, surrounding channel structures, and replacing some of the materials of the stacked structure through the holes.
US11552099B2
A vertical-type nonvolatile memory device including: a substrate including a cell array area and an extension area, the extension area extending in a first direction from the cell array area and including contacts; a channel structure extending in a vertical direction from the substrate; a first stack structure including gate electrode layers and interlayer insulating layers alternately stacked along sidewalls of the channel structure; a plurality of division areas extending in the first direction and dividing the cell array area and the extension area in a second direction perpendicular to the first direction; in the extension area, two insulating layer dams are arranged between two division areas adjacent to each other; a second stack structure including sacrificial layers and interlayer insulating layers alternately stacked on the substrate between the two insulating layer dams; and an electrode pad connected to a first gate electrode layer in the extension area.
US11552089B2
Embodiments of 3D memory devices and methods for forming the same are disclosed. In an example, a 3D memory device includes a substrate having a first side and a second side opposite to the first side. The 3D memory device also includes a memory stack including interleaved conductive layers and dielectric layers at the first side of the substrate. The 3D memory device also includes a plurality of channel structures each extending vertically through the memory stack. The 3D memory device also includes a first insulating structure extending vertically through the memory stack and extending laterally to separate the plurality of channel structures into a plurality of blocks. The 3D memory device further includes a first doped region in the substrate and in contact with the first insulating structure. The 3D memory device further includes a first contact extending vertically from the second side of the substrate to be in contact with the first doped region.
US11552085B2
A semiconductor device includes at least one memory cell and at least one logic cell. The at least one logic cell is disposed next to the at least one memory cell and includes a plurality of fins. The plurality of fins are separated into a plurality of fin groups for forming transistors. A distance between two adjacent groups of the plurality of fin groups is different from a distance between another two adjacent groups of the plurality of fin groups. A method is also disclosed herein.
US11552074B2
A package structure and a method of fabricating the same are provided. The method includes bonding a first die and a second die to a wafer in a first die region of the wafer hybrid bonding; bonding a first dummy structure to the wafer in the first die region and a first scribe line of the wafer; and singulating the wafer and the first dummy structure along the first scribe line to form a stacked integrated circuit (IC) structure.
US11552071B2
Aspects of the present disclosure include one or more semiconductor electrostatic discharge protection devices. At least one embodiment includes a semiconductor electrostatic discharge device with one or more fingers divided into two segments with alternating p-diffusion and n-diffusion regions, with each region being associated with at least one of a portion of a diode and/or silicon-controlled rectifier (SCR).
US11552054B2
A package structure includes a semiconductor device, a circuit substrate and a heat dissipating lid. The semiconductor device includes a semiconductor die. The circuit substrate is bonded to and electrically coupled to the semiconductor device. The heat dissipating lid is bonded to the circuit substrate and thermally coupled to the semiconductor device, where the semiconductor device is located in a space confined by the heat dissipating lid and the circuit substrate. The heat dissipating lid includes a cover portion and a flange portion bonded to a periphery of the cover portion. The cover portion has a first surface and a second surface opposite to the first surface, where the cover portion includes a recess therein, the recess has an opening at the second surface, and a thickness of the recess is less than a thickness of the cover portion, where the recess is part of the space.
US11552052B2
A semiconductor device includes a first metal-oxide semiconductor (MOS) transistor on a first substrate, a first interlayer dielectric (ILD) layer on the first MOS transistor, a second substrate on the first ILD layer, and a second MOS transistor on a second substrate. Preferably, the semiconductor device includes a static random access memory (SRAM) and the SRAM includes a first pull-up device, a second pull-up device, a first pull-down device, a second pull-down device, a first pass-gate device, a second pass-gate device, a read port pull-down device, and a read port pass-gate device, in which the read port pull-down device includes the first MOS transistor and the read port pass-gate device includes the second MOS transistor.
US11552036B2
The present disclosure relates to a radio frequency (RF) device that includes a mold device die and a multilayer redistribution structure underneath the mold device die. The mold device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion, and a first mold compound. The FEOL portion includes an active layer formed from a strained silicon epitaxial layer, in which a lattice constant is greater than 5.461 at a temperature of 300K. The first mold compound resides over the active layer. Herein, silicon crystal does not exist between the first mold compound and the active layer. The multilayer redistribution structure includes a number of bump structures, which are at a bottom of the multilayer redistribution structure and electrically coupled to the FEOL portion of the mold device die.
US11552033B2
A semiconductor package includes a first connection structure, a first semiconductor chip on an upper surface of the first connection structure, a first molding layer on the upper surface of the first connection structure and surrounding the first semiconductor chip, a first bond pad on the first semiconductor chip, a first bond insulation layer on the first semiconductor chip and the first molding layer and surrounding the first bond pad, a second bond pad directly contacting the first bond pad, a second bond insulation layer surrounding the second bond pad; and a second semiconductor chip on the second bond pad and the second bond insulation layer.
US11552031B2
A bonding apparatus includes a bond head structure, an optical unit and an actuator unit. The bond head structure includes a bond head collet, a connecting unit to which the bond head collet is attached and a look-through passage extending through the bond head collet and the connecting unit along a central axis of the bond head structure. In use, the bond head collet holds an electrical component to be bonded to a bonding area of a base member and the optical unit is positioned relative to the bond head structure to view and inspect the electrical component through the look-through passage of the bond head structure. The actuator unit moves the connecting unit of the bond head structure based on the inspection of the electrical component by the optical unit, to align the electrical component with the bonding area of the base member.
US11552027B2
Various embodiments of the present application are directed towards a semiconductor packaging device including a shield structure configured to block magnetic and/or electric fields from a first electronic component and a second electronic component. The first and second electronic components may, for example, be inductors or some other suitable electronic components. In some embodiments, a first IC chip overlies a second IC chip. The first IC chip includes a first substrate and a first interconnect structure overlying the first substrate. The second IC chip includes a second substrate and a second interconnect structure overlying the second substrate. The first and second electronic components are respectively in the first and second interconnect structures. The shield structure is directly between the first and second electronic components. Further, the shield structure substantially covers the second electronic component and/or would substantially cover the first electronic component if the semiconductor packaging device was flipped vertically.
US11552015B2
A substrate that includes a core layer comprising a first surface and a second surface, a plurality of core interconnects located in the core layer, a high-density interconnect portion located in the core layer, a first dielectric layer coupled to the first surface of the core layer, a first plurality of interconnects located in the first dielectric layer, a second dielectric layer coupled to the second surface of the core layer, and a second plurality of interconnects located in the second dielectric layer. The high-density interconnect portion includes a first redistribution dielectric layer and a first plurality of high-density interconnects located in the first redistribution dielectric layer. The high-density interconnect portion may provide high-density interconnects.
US11552014B2
A semiconductor package structure includes a chip, a conductive pillar, a dielectric layer, a first patterned conductive layer and a second patterned conductive layer. The chip has a first side with at least a first metal electrode pad and a second side with at least a second metal electrode pad. The conductive pillar, which has a first end and a second end, is disposed adjacent to the chip. The axis direction of the conductive pillar is parallel to the height direction of the chip. The dielectric layer covers the chip and the conductive pillar and exposes the first and second metal electrode pads of the chip and the first and second ends of the conductive pillar. The first patterned conductive layer is disposed on a second surface of the dielectric layer and electrically connected between the second metal electrode pad and the second end of the conductive pillar. The second patterned conductive layer is disposed on a first surface of the dielectric layer and electrically connected between the first metal electrode pad and the first end of the conductive pillar.
US11552003B2
The present disclosure relates to a radio frequency device that includes a transfer device die and a multilayer redistribution structure underneath the transfer device die. The transfer device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion and a transfer substrate. The FEOL portion includes isolation sections and an active layer surrounded by the isolation sections. A top surface of the device region is planarized. The transfer substrate resides over the top surface of the device region. Herein, silicon crystal does not exist within the transfer substrate or between the transfer substrate and the active layer. The multilayer redistribution structure includes a number of bump structures, which are at a bottom of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die.
US11551997B2
A thermal interface material may be formed comprising a polymer material and a self-healing constituent. The thermal interface material may be used in an integrated circuit assembly between at least one integrated and a heat dissipation device, wherein the self-healing constituent changes the physical properties of the thermal interface material in response to thermo-mechanical stresses to prevent failure modes from occurring during the operation of the integrated circuit assembly.
US11551992B2
A device includes plural semiconductor fins, a gate structure, an interlayer dielectric (ILD) layer, and an isolation dielectric. The gate structure is across the semiconductor fins. The ILD surrounds the gate structure. The isolation dielectric is at least between the semiconductor fins and has a thermal conductivity greater than a thermal conductivity of the ILD layer.
US11551983B2
A semiconductor device includes: a case having an opening; a semiconductor element contained in the case; a control substrate which is disposed above the semiconductor element in the case and on which a control circuit to control the semiconductor element is disposed; a lid to cover the opening of the case; and a control terminal having one end portion connected to the control circuit disposed on the control substrate and the other end portion protruding out of the case. The control terminal has a bend in the case, and a side portion of the case or the lid is provided with a support capable of supporting the bend.
US11551980B2
A dynamic misregistration measurement amelioration method including taking at least one misregistration measurement at multiple sites on a first semiconductor device wafer, which is selected from a batch of semiconductor device wafers intended to be identical, analyzing each of the misregistration measurements, using data from the analysis of each of the misregistration measurements to determine ameliorated misregistration measurement parameters at each one of the multiple sites, thereafter ameliorating misregistration metrology tool setup for ameliorated misregistration measurement at the each one of the multiple sites, thereby generating an ameliorated misregistration metrology tool setup and thereafter measuring misregistration at multiple sites on a second semiconductor device wafer, which is selected from the batch of semiconductor device wafers intended to be identical, using the ameliorated misregistration metrology tool setup.
US11551979B2
A method for manufacturing a semiconductor structure includes etching trenches in a semiconductor substrate to form a semiconductor fin between the trenches; converting sidewalls of the semiconductor fin into hydrogen-terminated surfaces each having silicon-to-hydrogen (S—H) bonds; after converting the sidewalls of the semiconductor fin into the hydrogen-terminated surfaces, depositing a dielectric material overfilling the trenches; and etching back the dielectric material to fall below a top surface of the semiconductor fin.
US11551976B2
A method includes transferring a layer onto a flexible substrate, the layer being located in a stack on the front face of the substrate. The substrate includes at least one supplementary stack interposed between the stack and the bulk layer of the substrate. This supplementary stack includes at least two layers with thicknesses decreasing in the direction of the front face. The method makes provision, after bonding the flexible substrate on the front face, for successively and gradually removing the various layers of the substrate. Such gradualness makes it possible to transfer a thin layer of silicon, with a thickness of less than 50 nm, onto a flexible substrate.
US11551974B2
A manufacturing process of an element chip comprises a preparing step for preparing a substrate having first and second sides opposed to each other, the substrate containing a semiconductor layer, a wiring layer and a resin layer formed on the first side, and the substrate including a plurality of dicing regions and element regions defined by the dicing regions. Also, the manufacturing process comprises a laser grooving step for irradiating a laser beam onto the dicing regions to form grooves so as to expose the semiconductor layer along the dicing regions. Further, the manufacturing process comprises a dicing step for plasma-etching the semiconductor layer along the dicing regions through the second side to divide the substrate into a plurality of the element chips. The laser grooving step includes a melting step for melting a surface of the semiconductor layer exposed along the dicing regions.
US11551965B2
Implementations of the present disclosure provide a process kit for an electrostatic chuck. In one implementation, a substrate support assembly is provided. The substrate support assembly includes an electrostatic chuck having a first recess formed in an upper portion of the electrostatic chuck. A process kit surrounds the electrostatic chuck. The process kit includes an inner ring and an outer ring disposed radially outward of the inner ring. The outer ring includes a second recess formed in an upper portion of the upper ring. The inner ring is positioned within and is supported by the first recess and the second recess. An upper surface of the inner ring and an upper surface of the outer ring are co-planar.
US11551962B2
A ceramic substrate made of a dielectric material including silicon carbide particles, which is used as a forming material, in which the number of the silicon carbide particles per unit area on the surface of the substrate is smaller than the number of the silicon carbide particles per unit area in a cross section of the substrate.
US11551959B2
A system and an operating method for automated wafer carrier handling are provided. The system includes a storage rack including a standby position and a storage position separated from each other, a first and second moving mechanism, and a controller operatively coupled to the first and second moving mechanism to control operations of the first and second moving mechanism. The storage position is for buffering a wafer carrier awaiting transfer to a load port. The first moving mechanism is movably coupled to the storage rack and provides at least one degree of freedom of movement to transfer the wafer carrier from the storage position to the standby position. The second moving mechanism is disposed over the storage rack, operatively coupled the storage rack to the load port, and provides at least one degree of freedom of movement to transfer the wafer carrier from the standby position to the load port.
US11551958B2
An illustrative embodiment disclosed herein is an apparatus including a first loading tray configured to couple to a first wafer holding device holding a plurality of wafers. The first wafer holding device includes a first opening. The apparatus includes a second loading tray configured to couple to a second wafer holding device. The second wafer holding device includes a second opening. The apparatus includes a first motor coupled to the first loading tray and configured to rotate the first wafer holding device until the first opening faces the second opening to allow transfer of the plurality of wafers from the first wafer holding device to the second wafer holding device.
US11551954B2
An advanced process control system including a first process tool, a second process tool, and a measurement tool is provided. The first processing tool is configured to process each of a plurality of wafers by one of a plurality of first masks, and provide a first process timing data. The second processing tool is configured to process the wafer processing by the first process tool by one of a plurality of second masks to provide a plurality of works. The second process tool provides a measurement trigger signal according to the first process timing data. The measuring tool is configured to determine whether to perform a measuring operation on each works in response to the measurement trigger signal, and correspondingly provide a measurement result.
US11551951B2
A method for controlling a temperature of a substrate support assembly is provided. A first direct current (DC) power is supplied to a heating element embedded in a zone of the substrate support assembly included in a processing chamber. A voltage is measured across the heating element. Similarly, a current is measured through the heating element. A temperature of the zone of the substrate support assembly is determined based on the voltage across the heating element and the current through the heating element. A temperature difference between the determined temperature of the zone and a target temperature for the zone is determined. A second DC power to deliver to the heating element is determined to achieve the target temperature based at least in part on the temperature difference. The second DC power is supplied to the heating element to cause the temperature of the zone to be modified to the target temperature.
US11551942B2
Methods and apparatus for removing substrate contamination are provided herein. In some embodiments, a multi-chamber processing apparatus includes: a processing chamber for processing a substrate; a factory interface (FI) coupled to the processing chamber via a load lock chamber disposed therebetween; and a cleaning chamber coupled to the FI and configured to rinse and to dry the substrate, wherein the cleaning chamber includes a chamber body defining an interior volume and having a first opening at an interface with the FI for transferring the substrate into and out of the interior volume.
US11551923B2
A Taiko wafer ring cut process method is provided. The Taiko wafer ring cut process method includes the following steps. A Taiko wafer is disposed on the platform. The Taiko wafer is performing by laser ring cutting so that a Taiko ring and an edge portion of the Taiko wafer are separated from a wafer portion of the Taiko wafer. The wafer portion of the Taiko wafer is adhered to a frame.
US11551917B2
One or more embodiments described herein relate to abatement systems for reducing Br2 and Cl2 in semiconductor processes. In embodiments described herein, semiconductor etch processes are performed within process chambers. Thereafter, fluorinated greenhouse gases (F-GHGs), HBr, and Cl2 gases exit the process chamber and enter a plasma reactor. Reagent gases are delivered from a reagent gas delivery apparatus to the plasma reactor to mix with the process gases. Radio frequency (RF) power is applied to the plasma reactor, which adds energy and “excites” the gases within the process chamber. When HBr is energized, it forms Br2. Br2 and Cl2 are corrosive and toxic. However, the addition of H2O in the plasma reactor quenches the Br2 and Cl2 emissions, as the H atoms recombine with the Br atoms and the Cl atoms to form HBr and HCl. HBr and HCl are readily water-soluble and removed through a wet scrubber.
US11551915B2
Provided are a method of manufacturing a ring-shaped member and the ring-shaped member. A method of manufacturing a ring-shaped member to be placed in a process chamber of a substrate processing apparatus includes arranging one silicon member and another silicon member to cause one abutting surface of the one silicon member and another abutting surface of the other silicon member to abut on each other, heating the one abutting surface and the other abutting surface through optical heating to melt silicon on a surface of the one abutting surface and silicon on a surface of the other abutting surface such that silicon melt is caused to flow into a gap between the one abutting surface and the other abutting surface, and cooling the one abutting surface and the other abutting surface to crystallize the silicon melt forming a silicon adhesion part.
US11551914B2
There is provided a plasma generating device that includes a first electrode connected to a high-frequency power supply, and a second electrode to be grounded, a buffer structure configured to form a buffer chamber that accommodates the first and second electrodes wherein the first electrode and the second electrode are alternately arranged such that a number of electrodes of the first electrode and the second electrode are in an odd number of three or more in total, and wherein the second electrode is used in common for two of the first electrode being respectively adjacent to the second electrode used in common, and wherein a gas supply port that supplies gas into a process chamber is installed on a wall surface of the buffer structure.
US11551906B1
Electron beam modulation in response to optical pump pulses applied to a sample is measured using SPAD elements. Individual detection events are used to form histograms of numbers of events in time bins associated with pump pulse timing. The histograms can be produced at a SPAD array, simplifying data transfer. In some examples, two SPAD arrays are stacked and a coincidence circuit discriminates signal events from noise events by determining corresponding events are detected within a predetermined time window.
US11551901B2
The invention relates to a surge protection device ensemble comprising a surge protection device having an overvoltage protection means in a first housing, wherein the first housing has at least two connections for contacting the overvoltage protection means, characterized in that the surge protection device ensemble also has a fuse module having a fuse in a second housing, wherein the second housing has at least two connections for contacting the fuse, characterized in that the second housing having one of the connections of the fuse module is inserted in a form-fitting manner into one connection of the at least two connections of the surge protection device, wherein the fuse module provides an electrical connection on the inserted side between the fuse module and the surge protection device.
US11551899B2
A circuit breaker comprises a solid-state bidirectional switch, a switch control circuit, current and voltage sensors, and a processor. The solid-state bidirectional switch is connected between a line input terminal and a load output terminal of the circuit breaker, and configured to be placed in a switched-on state and a switched-off state. The switch control circuit control operation of the bidirectional switch. The current sensor is configured to sense a magnitude of current flowing in an electrical path between the line input and load output terminals and generate a current sense signal. The voltage sensor is configured to sense a magnitude of voltage on the electrical path and generate a voltage sense signal. The processor is configured to process the current and voltage sense signals to determine operational status information of the circuit breaker, a fault event, and power usage information of a load connected to the load output terminal.
US11551892B2
A switch assembly according to an example of this disclosure includes a disk rotatable about a disk axis in a first circumferential direction and a second circumferential direction opposite the first circumferential direction. A U-shaped spring is fixed to the disk. Rotation of the disk in the first circumferential direction moves the disk in a first axial direction, and rotation of the disk in the second circumferential direction moves the disk in the first axial direction.
US11551889B2
A key switch is provided, which includes a base, a cap, a first linkage rod, a second linkage rod, an elastic contraction element, at least one activate member and a thin film circuit unit. The base includes a plurality of first connection portions and a plurality of second connection portions. The first linkage rod is movably connected to the first connection portions and the cap. The second linkage rod is movably connected to the second connection portions and the cap. One end of the elastic contraction element is connected to the first linkage rod, and the other end thereof is connected to the second linkage rod. The activate member is disposed on one of the first linkage rod, the second linkage rod and the cap. The thin film circuit unit includes an activate portion.
US11551886B2
An enhanced push-button includes a keycap disposed on an elastic member and having a top surface and an opposing bottom surface, and a reinforcing member mounted on the bottom surface of the keycap and having an outer surface facing the elastic member and an abutting portion located on the outer surface. The abutting portion has a contact surface recessed on the outer surface. The elastic member extends into the abutting portion such that the contact surface is abutted against the elastic member for allowing the keycap to be pressed with the reinforcing member against the elastic member to trigger a circuit switch. The invention can have better overall structural rigidity and operating feel and can maintain the pressing quality of the push-button and is suitable for low profile keyboards.
US11551883B2
Axis orientation compensation is provided in a system in which movement of a controlling device is used to control navigational functions of a target appliance by determining which one of plural sides of the controlling device is an active side of the controlling device and by causing navigational functions of the target appliance made relative to at least one of an X, Y, and Z axis of the target appliance to be dynamically aligned with movements of the controlling device made relative to at least one of an A, B, and C axis of the controlling device as a function of the one of the plural sides of the controlling device that is determined to be the active side of the controlling device.
US11551881B2
A flexible switch has a deformable body and a plurality of electrodes, at least one of the electrodes being provided on the deformable body. The switch has a first state in which the electrodes are spaced apart and a second state in which the electrodes are in electrical contact, and the switch is configured to allow movement between the states when a force is applied to or removed from the deformable body.
US11551880B2
A poly(vinylphosphonic acid) (PVPA)-(NH4)2MoO4), gel polymer electrolyte can be prepared by incorporating redox-mediated Mo, or similar metal, into a PVPA, or similar polymer, matrix. Gel polymer electrolytes including PVPA/MoX, x representing the percent fraction Mo in PVPA, can be used to make supercapacitors including active carbon electrodes. The electrolytes can be in gel form, bendable and stretchable in a device. Devices including this gel electrolyte can have a specific capacitance (Cs) of 1276 F/g, i.e., a more than 50-fold increase relative to a PVPA system without Mo. A PVPA/Mo10 supercapacitor can have an energy density of 180.2 Wh/kg at power density of 500 W/kg, and devices with this hydrogel structure may maintain 85+% of their initial capacitance performance after 2300 charge-discharge cycles.
US11551879B2
Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”). Additional components, such as additional electrolytes and solvents, may also be included.
US11551877B2
An object of the present invention is to provide a carbonaceous material used for an electric double layer capacitor having a high electrostatic capacity and capable of maintaining the high electrostatic capacity and energy density over a long period and a method for producing the same. The present invention relates to a carbonaceous material having a specific surface area of 1,200 m2/g to 1,800 m2/g according to a BET method, an R-value of 1.2 or more and a G-band half-value width of 70 cm−1 or more according to a Raman spectrum.
US11551871B2
A dielectric composition includes a ceramic powder, a high polymerization binder, and a low polymerization binder type dispersant having a degree of polymerization between 100 and 1,000.
US11551869B2
A multilayer electronic component that includes a plurality of stacked dielectric layers, each of the plurality of stacked dielectric layers having a plurality of crystal grains, at least some of the plurality of crystal grains having a trap portion therein, and at least one element selected from the group consisting of Ni, Cu, Pt, Sn, Pd and Ag is present locally in the trap portion; and a plurality of internal electrode layers arranged between adjacent dielectric layers of the plurality of stacked dielectric layers.
US11551861B2
An ignition coil includes a primary coil, a secondary coil, a center core, a side core, a core cover, a case, and an insulating resin. The core cover is formed in a form that covers an inner side face, one thickness direction end face, and an other thickness direction end face of the side core. Wall portions that divide a mass of the insulating resin into portions, or reduce an amount thereof, are provided in the core cover on an aperture portion side of the case, which is the one thickness direction end face side of the side core.
US11551860B2
An ignition coil includes a center core, a first core member, and a second core member. The first core member includes a first core-facing portion facing a front core surface of the center core and a first core side portion extending rearward from the first core-facing portion. The second core member includes a second core-facing portion facing a rear core surface of the center core and a second core side portion extending frontward from the second core-facing portion. The first core-facing portion has an end surface contacting a portion of the second core side portion to create a first contact region. Similarly, the second core-facing portion has an end surface contacting a portion of the first core side portion to create a second contact region. The first and second contact regions are shaped to approach frontward close to the first core side portion. This structure enhances productivity of the ignition coil.
US11551856B2
A coil component according to one or more embodiments includes a base body having first to sixth surfaces, and a coil conductor including a winding portion that extends around a coil axis intersecting the first and second surfaces. The winding portion includes first, second, third, and fourth portions facing the third, fourth, fifth, and sixth surfaces, respectively when viewed from a direction of the coil axis. The radii of curvature of the first and second portions are both smaller than the radii of curvature of the third and fourth portions. When viewed from the direction of the coil axis, the distance between the first portion and the third surface and the distance between the second portion and the fourth surface are both larger than the distance between the third portion and the fifth surface and the distance between the fourth portion and the sixth surface.
US11551847B2
An inductor includes a coil that is provided in a component body. A first end of the coil is connected to a first outer electrode, and a second end of the coil is connected to a second outer electrode. The coil includes a plurality of coil conductor layers that are provided in a width direction. Each coil conductor layer is substantially spirally formed with the number of turns being greater than or equal to about one turn. The height of the component body is greater than the width of the component body.
US11551841B2
A superconducting magnet device including a plurality of superconducting magnet coils; a structural element mechanically and thermally linked to respective magnet coils to retain them in respective relative positions; and a cooling station thermally connected to a cryogenic refrigerator and to the structural element. A thermally conductive path, which passes through the structural element, is established between the cryogenic refrigerator and the superconducting magnet coils through the structural element.
US11551834B2
A cable-laying device for producing wiring or cable harnesses of different types includes a laying plane for positioning lines of a wiring or cable harness, a plurality of transport units which can be moved relative to the laying plane in an at least partially automated manner, and a control device which is configured to control the transport units. A method for producing cable harnesses of different types by using a cable laying device is also provided.
US11551830B2
A telecommunications cable includes a plurality of twisted pairs of insulated conductors, a separator, a first jacket, one or more barriers and a second jacket. In addition, the plurality of twisted pairs of insulated conductors extends substantially along a longitudinal axis of the telecommunications cable. Further, the plurality of twisted pairs of insulated conductors includes an electrical conductor and an insulation layer. Furthermore, the separator separates each of the plurality of twisted pairs of insulated conductors. Moreover, the first jacket and the second jacket extend substantially along the longitudinal axis of the telecommunications cable. Also, the one or more barriers are positioned between the first jacket and the second jacket.
US11551813B2
A next-best-action system includes real-time operation and off-line training and processes. During off-line training databases of medical conditions and associated diagnostic factors, tests and treatments are used to create models used for later natural language processing of input electronic text. Diagnostic factors are ranked according to the probability that they indicate conditions and are stored in a matrix. Treatments corresponding to conditions are also stored in a matrix. During real-time operation electronic text is received from patient history of an EHR system, from a transcribed conversation between a physician and a patient, or from input that the physician makes in the EHR system or in an overlaid diagnostic user interface. The electronic text is processed by an NLP pipeline that derives clinical diagnostic factors and test results for the patient. The factors and test results are matched against the matrix of factors to produce a list of likely conditions, along with an ordered list of factors and tests that are either unknown or not yet performed for that patient.
US11551807B2
In some embodiments, an example method or system consistent with the present disclosure may: obtain a desired property of a simulated trajectory of a virtual camera; receive a first video of a wound captured by a moving camera, the first video including a plurality of frames; use the desired property of the simulated trajectory of the virtual camera to analyze the first video to select at least two frames of the plurality of frames corresponding to the simulated trajectory of the virtual camera; use the desired property of the simulated trajectory of the virtual camera to select an order for the selected at least two frames; and rearrange the at least two frames based on the selected order to create a new video of the wound that represents the simulated trajectory of the virtual camera.
US11551803B1
The present disclosure relates to a computer-implemented process for generating and providing simulated user absorption information pertaining to users and based on target profiles and target situations, thereby providing user targeted and situationally targeted content recommendations. It is an object of the present disclosure to provide a technological solution to the long felt need in small scale content recommendation systems caused by the technical problem of generating situationally targeted and user profile targeted content recommendations for users of an interactive electronic system.
US11551802B2
Disclosed are examples of a device, a system, methods and computer-readable medium products operable to implement functionality to determine and respond to a purpose of a meal. An algorithm or application may receive data that may include data related to a meal purpose from data sources and determine whether any of the data received from the plurality of data sources was received from a direct data source or an indirect data source. The data may be evaluated to determine a purpose of the meal. Based on the results of the evaluation, instructions may be generated to provide an appropriate response based on the determined purpose of the meal. The generated instructions to provide the appropriate response based on the determined purpose of the meal may be output.
US11551799B1
The present disclosure provides a pharmaceutical composition for multi-stage release of psychoactive substances including cannabinoids. The pharmaceutical composition comprises two or more staged compositions having different release profiles or different release time such that the one or more active agents in each of the two or more staged compositions are released into the subject's blood stream at different time points.
US11551798B2
Use of improved image acquisition for a medical dose preparation system. The medical dose preparation system may include a work station for capturing medical dose preparation images (e.g., to document preparation of a mediation dose). The medical dose preparation image may be captured by a video data stream processor capable of performing an auto cropping technique on a video data stream received from an image device. Accordingly, memory resources may be more efficiently employed while maintaining high quality medical dose preparation images.
US11551796B2
Systems and methods for management of a distributed ledger including prescription information are disclosed. An example apparatus includes a processor and a logical data structure to configure a device according to an electronic prescription defining an action for a patient, the electronic prescription organized as record(s) in a distributed ledger and processible by the device to apply the action to the patient. The electronic prescription is to cause the device to at least: configure the device to apply the action to the patient; validate the action for the patient using the distributed ledger; and propagate a record of the action to the distributed ledger.
US11551792B2
Methods, systems, and computer-readable media are provided for identifying, stratifying, and prioritizing patients who are eligible for care management services. For each patient, patient health data is used to determine one or more of a disease burden associated with the patient, an amount of health system utilization by the patient, and an amount of money spent on healthcare services for the patient. It is further determined if the patient exceeds a respective threshold value associated with each of these criteria. If the patient exceeds the respective threshold value, the patient is stratified into a category comprising one of high-risk senior, high-risk adult, high-risk pediatrics, or high-risk maternity. The patient may also be prioritized based on one or more factors, and a notification may be sent to the patient informing the patient of his/her eligibility for care management services.
US11551780B2
A semiconductor apparatus may include a repair circuit configured to activate a redundant line of a cell array region by comparing repair information and address information. The semiconductor apparatus may include a main decoder configured to perform a normal access to the cell array region by decoding the address information. The address information may include both column information and row information.
US11551778B2
One embodiment provides a memory module that enables online repair of defective memory cells. The memory module includes a memory array storing data, a self-test controller coupled to the memory array and configured to perform a self-test on a region within the memory array without interrupting operations of the memory module, and a memory-repair module configured to repair a defective memory cell identified by the self-test controller.
US11551775B2
A semiconductor memory device includes a memory cell array, an error correction code (ECC) circuit and a control logic circuit to control the ECC circuit. The memory cell array includes memory cells and a normal cell region and a parity cell region The ECC circuit, in a normal mode, receives a main data, performs an ECC encoding on the main data to generate a parity data and stores the main data and the parity data in the normal cell region and the parity cell region. The ECC circuit, in a test mode, receives a test data including at least one error bit, stores the test data in one of the normal cell region and the parity cell region and performs an ECC decoding on the test data and one of the main data and the parity data to provide a decoding result data to an external device.
US11551760B2
A semiconductor memory device includes memory cells, a first circuit that includes a first latch group including first and second data latch circuits and a second latch group including third and fourth data latch circuits, and a control circuit configured to control a write operation during which first and second data to be written into the memory cells are stored in the first and second data latch circuits, respectively, wherein the first and second data are also stored in the third and fourth data latch circuits, respectively, while the first and second data stored in the first and second data latch circuits, respectively, are being written in the memory cells.
US11551747B2
A computation apparatus includes a plurality of memory cells and a plurality of sense amplifiers, in which each of the memory cells includes a memory circuit and a calculation circuit. The memory circuits of the memory cells are configured to receive input values from a plurality of word lines, generate a computation result based on the input values and output the computation result to a bit line. The calculation circuits of the memory cells are configured to receive calculation input values from a plurality of calculation word lines, generate calculation output values based on the calculation input values, and output the calculation output values to a plurality of calculation bit lines. The sense amplifiers are configured to sense the calculation output values from the calculation bit lines to generate sensed values, wherein a value of the computation result is determined based on the sensed values and the calculation output values.
US11551742B2
Examples of the present disclosure relate to a device, method, and medium storing instructions for execution by a processor for refreshing memory blocks of solid state memory through a temperature compensated refresh rate. Techniques discussed herein include a solid state memory to store data and a temperature sensor to identify a temperature of the solid state memory. The memory device with solid state memory also includes a memory controller that periodically refreshes memory blocks of the solid state memory at an adjustable refresh rate, wherein memory controller is to adjust the adjustable refresh rate based on the temperature of the solid state memory.
US11551737B2
A magnetic storage element and an electronic apparatus having a reduced writing current while retaining a magnetism retention property of a storage layer. The magnetic storage element includes a spin orbit layer extending in one direction, a writing line that is electrically coupled to the spin orbit layer, and allows a current to flow in an extending direction of the spin orbit layer, a tunnel junction element including a storage layer, an insulator layer, and a magnetization fixed layer that are stacked in order on the spin orbit layer, and a non-magnetic layer having a film thickness of 2 nm or less, and disposed at any stack position between the spin orbit layer and the insulator layer.
US11551735B2
Memory controllers, devices, modules, systems and associated methods are disclosed. In one embodiment, a memory module includes a pin interface for coupling to a memory controller via a bus. The module includes at least two non-volatile memory devices, and a buffer disposed between the pin interface and the at least two non-volatile memory devices. The buffer receives non-volatile memory access commands from the memory controller that are interleaved with DRAM memory module access commands.
US11551727B2
A graphical user interface for framing a video may include a framing element. Responsive to user interaction with the framing element, a framing of the video at a moment may be determined. The framing of the video may define viewing direction, viewing size, viewing rotation, and/or viewing projection for a viewing window. The framing of the video at the moment may be determined based on how the video is being presented when the user interacted with the framing element.
US11551718B2
A recording and reproducing device includes: a reading unit that reads production information from a recording medium of a magnetic tape cartridge, the magnetic tape cartridge including a magnetic tape, and the recording medium other than the magnetic tape and on which the production information is recorded, the production information being information regarding the magnetic tape obtained in a production process of the magnetic tape cartridge; and a control unit that performs, as an initialization process of the magnetic tape cartridge, control of recording the production information on the magnetic tape and invalidating the production information in the recording medium.
US11551715B2
A cartridge memory is a cartridge memory used in a recording medium cartridge and includes an antenna section that induces an induced voltage by means of electromagnetic induction, a load modulation section including a load whose magnitude is variable, and a control section that measures the induced voltage and controls the load modulation section on the basis of the measured induced voltage.
US11551710B1
According to an embodiment, a magnetic disk has a plurality of second servo sectors and a plurality of third servo sectors each arranged between two second servo sectors of the plurality of second servo sectors, in which the second and third servo sectors are arranged in a circumferential direction. A controller performs a first demodulation for detecting a servo mark and demodulating a burst pattern on the servo data in each second servo sector. The controller performs a second demodulation for demodulating the burst pattern without detecting the servo mark, on the servo data in each third servo sector. The controller performs the second demodulation on the servo data in a fourth servo sector which is one of the plurality of second servo sectors in a case where the detection of the servo mark fails when the first demodulation is performed on the servo data in the fourth servo sector.
US11551707B2
Disclosed is a method for speech processing, an information device, and a computer program product. The method for speech processing, as implemented by a computer, includes: obtaining a mixed speech signal via a microphone, wherein the mixed speech signal includes a plurality of speech signals uttered by a plurality of unspecified speakers at the same time; generating a set of simulated speech signals according to the mixed speech signal by using a Generative Adversarial Network (GAN), in order to simulate the plurality of speech signals; determining the number of the simulated speech signals in order to estimate the number of the speakers in the surroundings and providing the number as an input of an information application.
US11551704B2
A method and device for automatically increasing the spectral bandwidth of an audio signal including generating a “mapping” (or “prediction”) matrix based on the analysis of a reference wideband signal and a reference narrowband signal, the mapping matrix being a transformation matrix to predict high frequency energy from a low frequency energy envelope, generating an energy envelope analysis of an input narrowband audio signal, generating a resynthesized noise signal by processing a random noise signal with the mapping matrix and the envelope analysis, high-pass filtering the resynthesized noise signal, and summing the high-pass filtered resynthesized noise signal with the original an input narrowband audio signal. Other embodiments are disclosed.
US11551703B2
The invention provides a concept for combined dynamic range compression and guided clipping prevention for audio devices. An audio decoder for decoding an audio bitstream and a metadata bitstream related to the audio bitstream according to the concept includes an audio processing chain including a plurality of adjustment stages including a dynamic range control stage for adjusting a dynamic range of the audio output signal and a guided clipping prevention stage for preventing clipping of the audio output signal; and a metadata decoder configured to receive the metadata bitstream and to extract dynamic range control gain sequences and guided clipping prevention gain sequences from the metadata bitstream, at least a part of the dynamic range control gain sequences being supplied to the dynamic range control stage, and at least a part of the guided clipping prevention gain sequences being supplied to the guided clipping prevention stage.
US11551701B2
Various embodiments provide a method and an apparatus for determining a weighting factor during stereo signal encoding. In those embodiments, a parameter value corresponding to the encoding mode of the to-be-encoded signal is determining based on an encoding mode of a to-be-encoded signal in a stereo signal and a correspondence between an encoding mode and a parameter value. Based on the determined parameter value and an energy spectrum of a linear prediction filter corresponding to an original line spectral frequency parameter of the to-be-encoded signal is a weighting factor for calculating a distance between the original line spectral frequency parameter and a target original line spectral frequency parameter is calculated.
US11551697B2
Some aspects disclosed herein are directed to, for example, a system and method comprising a client device receiving an input of at least a portion of a message. The client device may display, on a display of the client device, the at least the portion of the message. The client device may transmit, to a server device, the at least the portion of the message for display via a second client device. The client device may receive, from a user of the client device or a user of the second client device, a request to generate a marker for the at least the portion of the message. In response to the receiving the request to generate the marker, the client device may determine, based on a lexicon, a name for the marker for the at least the portion of the message. The client device may store, at a storage location, the name for the marker for the at least the portion of the message, an identifier for the at least the portion of the message, and an association between the name for the marker for the at least the portion of the message and the identifier for the at least the portion of the message.
US11551692B2
In one aspect, a server that receives, from a client terminal via a network, a request to initiate a verbal conversation using natural language that is in a spoken or textual format, extracts information during the verbal conversation, determines a context of the verbal conversation, receives an inquiry during the verbal conversation, processes the inquiry, acquires response information based on the determined appropriate response, and transmits to the client terminal the response information.
US11551691B1
Systems and techniques for adaptive conversation support bot are described herein. An audio stream may be obtained including a conversation of a first user. An event may be identified in the conversation using the audio stream. A first keyword phrase may be extracted from the audio stream in response to identification of the event. The audio stream may be searched for a second keyword phrase based on the first keyword phrase. An action may be performed based on the first keyword phrase and the second keyword phrase. Results of the action may be out via a context appropriate output channel. The context appropriate output channel may be determined based on a context of the conversation and a privacy setting of the first user.
US11551690B2
In one aspect, a playback deice is configured to identify in an audio stream, via a second wake-word engine, a false wake word for a first wake-word engine that is configured to receive as input sound data based on sound detected by a microphone. The first and second wake-word engines are configured according to different sensitivity levels for false positives of a particular wake word. Based on identifying the false wake word, the playback device is configured to (i) deactivate the first wake-word engine and (ii) cause at least one network microphone device to deactivate a wake-word engine for a particular amount of time. While the first wake-word engine is deactivated, the playback device is configured to cause at least one speaker to output audio based on the audio stream. After a predetermined amount of time has elapsed, the playback device is configured to reactivate the first wake-word engine.
US11551687B2
An electronic device for recognizing a user's speech and a speech recognition method therefor are provided. The electronic device includes a microphone configured to receive a user's speech, a memory for storing speech recognition models, and at least one processor configured to select a speech recognition model from among the speech recognition models stored in the memory based on an operation state of the electronic device, and recognize the user's speech received by the microphone based on the selected speech recognition model.
US11551683B2
Various embodiments of the present invention pertain to an electronic device and an operation method therefor. The electronic device comprises: a housing that includes a circular upper end surface comprising a plurality of openings having a selected pattern, a flat circular lower end surface and a side surface surrounding a space between the upper end surface and the lower end surface; an audio output interface that is formed on the side surface; a power input interface that is formed on the side surface; a microphone that is located inside the housing, and that faces the openings; a wireless communication circuit; a processor that is operatively connected to the audio output interface, the power input interface, the microphone and the communication circuit; and a memory that is operatively connected to the processor, wherein the memory, when the electronic device is executed, can store instructions for the processor to receive a wake-up command through the microphone, to recognize the wake-up command, to transmit to a server information regarding reception of the wake-up command using the communication circuit, to receive a response from the server using the communication circuit, to generate a first audio signal based on the response, and to output the first audio signal using the audio output interface when the microphone is available, wherein the audio signal can be a non-language sound. Various embodiments are also possible.
US11551678B2
A first electronic device is provided. While a media content item provided by a media-providing service is emitted by a second electronic device that is remote from the first electronic device, the first electronic device receives, from the media-providing service, data that includes an audio stream that corresponds to the media content item. The first electronic device detects ambient sound that includes sound corresponding to the media content item emitted by the second electronic device. The first electronic device generates a cleaned version of the ambient sound, which includes: using the data received from the media-providing service to align the audio stream with the ambient sound; and performing a subtraction operation to subtract the audio stream from the ambient sound. The first electronic device detects a voice command in the cleaned version of the ambient sound.
US11551674B2
Aspects of the disclosure relate to systems and methods for increasing the speed, accuracy, and efficiency of language processing systems. A provided method may include storing a plurality of distinct rule sets in a database. Each of the rule sets may be associated with a different pipeline from a set of pipelines. The method may include receiving the utterance. The method may include tokenizing and/or annotating the utterance, determining a pipeline for the utterance, and comparing the utterance to the rule set that is associated with the pipeline. When a match is achieved between the utterance and the rule set, the method may include resolving the intent of the utterance based on the match. The method may include transmitting a request corresponding to the intent to a central server, receiving a response, and transmitting the response to the system user.
US11551666B1
Example embodiments provide techniques for configuring a natural-language processing system to perform a new function given at least one sample invocation of the function. The training data consisting of the sample invocation may be augmented by determining which subset of available training data most closely resembles the sample invocation and/or function. The effect of re-training a component this this augmented training data may be determined, and an annotator may review any annotations corresponding to the invocation if the effect is large.
US11551659B2
Systems and methods for communicating information related to a wearable device are disclosed. Exemplary information includes audio information.
US11551655B2
A sound absorption structure and a method of manufacturing the same are provided. The sound absorption structure includes a first sound absorption layer comprising first elements of which longitudinal directions are misaligned in a thickness direction of the sound absorption structure, the first sound absorption layer having a first internal filling density and absorbing sound waves of a first reactance frequency; and a second sound absorption layer disposed on the first sound absorption layer, having a second internal filling density different from the first internal filling density, and absorbing sound waves of a second reactance frequency different from the first reactance frequency.
US11551654B2
Systems and methods are disclosed for a multi-layered sound absorption structure. The multi-layered sound absorption structure may include a form material, an acoustic material disposed on a surface of the form material, and a construction material disposed on the acoustic material. The acoustic material may couple to the construction material during curing of the construction material. After the construction material is cured, the form material may be removed exposing a least a portion of the acoustic material.
US11551639B2
A display device includes a display panel having a display region, and including a light transmission region overlapping an electronic element within an edge portion of the display region, and a panel driver configured to drive the display panel, and configured to perform an edge-dimming operation that gradually decreases a luminance of an area of the display region excluding the light transmission region from a center portion of the display region to the edge portion of the display region while not decreasing a luminance of the light transmission region.
US11551637B2
An electronic device comprises a plurality of display devices, a designation unit that designates one of a plurality of predetermined color balances for which adjustment values of the plurality of display devices are set in advance, and an adjustment unit that adjusts color balances of the plurality of display devices. The adjustment unit performs a first adjustment for adjusting the color balances of the plurality of display devices using adjustment values of the color balance designated by the designation unit, and a second adjustment for adjusting the color balances of the plurality of display devices that have undergone the first adjustment, wherein resolution of the second adjustment is higher than resolution of the first adjustment.
US11551628B2
Disclosed are a driving method including: acquiring a first preset scanning driving signal, a second preset scanning driving signal and a preset data driving signal, and shortening the driving time of the second preset scanning driving signal so as to shorten the driving time of the second preset scanning driving signal compared to the driving time of the preset data driving signal. The even-numbered column pixels in the first row and the odd-numbered column pixels in the second row in the driving period are driven by a first preset scanning driving signal, and the odd-numbered column pixels in the first row and the even-numbered column pixels in the second row in the driving period are driven by a second preset scanning driving signal.
US11551627B2
An array substrate and a display panel are provided. The array substrate includes pixel units arranged in an array, and the pixel units include at least two sub-pixels in a same row. Driving polarities of sub-pixels in a same pixel unit are same. The driving polarities include a positive frame driving and a negative frame driving, wherein in a row direction, driving polarities of sub-pixels of adjacent pixel units are different, and in a column direction, driving polarities of adjacent first-row pixel units and second-row pixel units are different.
US11551623B2
According to one embodiment, a display device includes a controller. The controller is configured to control voltages between the common electrode and pixel electrodes in first periods included in one frame period and control an operation of a light source in second periods included in the one frame period. The controller controls, in a first first period of the first periods included in the one frame period, the voltages between the common electrode and the pixel electrodes to write, following an immediately preceding one frame period, a video component of a same color as a color of a video component written by applying voltages between the common electrode and the pixel electrodes in a last first period of the first periods included in the immediately preceding one frame period.
US11551622B2
A display apparatus includes a display panel, a compensator, a controller, and a data driver. The compensator determines a degradation grayscale of a compensation region of the display panel. The degradation grayscale may be determined based on a driving time of at least one pixel in the compensation region and degradation data corresponding to the at least one pixel. The controller generates compensated image data for input image data based on the degradation grayscale. The data driver provides a data voltage to the at least one pixel based on the compensated image data.
US11551621B2
The present disclosure relates to an electroluminescence display device including a display panel including a pixel driving circuit and a light emitting element, a power supply circuit for generating a logic voltage to be applied to the pixel driving circuit, and a timing controller for supplying a voltage control signal to the power supply circuit. The power supply circuit may include a power IC, a booster circuit, and a voltage regulator. In the electroluminescence display device, degradation noise of the pixel can be reduced, and thereby, the image quality of the display panel can be improved.
US11551604B2
A scan driver of a display device includes a plurality of stages. Each stage includes a clock line configured to receive a first clock signal and a second clock signal having different phases, a shared input circuit configured to transfer an input signal to a shared control node, a first output circuit coupled to the shared control node, configured to transfer a voltage of the shared control node to a first control node, and configured to output a first scan signal in response to a voltage of the first control node and the first clock signal, and a second output circuit coupled to the shared control node, configured to transfer the voltage of the shared control node to a second control node, and configured to output a second scan signal in response to a voltage of the second control node and the second clock signal.
US11551598B2
The present disclosure may provide a display apparatus including a display panel configured to display an image, a shift register configured to supply a scan signal to the display panel, a level shifter configured to output clock signals for driving the shift register, a power supply configured to supply a gate voltage to the level shifter, and a controller configured to sense a node voltage of a circuit generating the gate voltage, detect a short circuit between the clock signals based on a sensed value and an internal reference value, and control the power supply when the short circuit occurs between the clock signals.
US11551593B2
An organic light-emitting diode (OLED) display device includes a display panel including a plurality of pixels, the plurality of pixels being grouped into a plurality of pixel blocks, a nonvolatile memory configured to store previous accumulated block degradation information for the plurality of pixel blocks up to a previous driving period, a controller configured to calculate current block degradation information for the plurality of pixel blocks in a current driving period, to calculate current accumulated block degradation information for the plurality of pixel blocks up to the current driving period by adding the current block degradation information to the previous accumulated block degradation information in response to a power control signal indicating a power-off, and to determine whether a sensing operation for each of the plurality of pixel blocks is to be performed by comparing the current accumulated block degradation information for each of the plurality of pixel blocks with a sensing reference degradation amount, and a sensing circuit configured to selectively perform the sensing operation for each of the plurality of pixel blocks.
US11551592B2
An example device includes a main display panel that includes a main array of pixels and an opening within the main array of pixels. The example device further includes a beam splitter positioned to communicate light through the opening within the main array of pixels, a sensor positioned with respect to the beam splitter to capture light incident on the opening within the main array of pixels, and a subarray including a pixel. The subarray is positioned with respect to the beam splitter to output light through the opening within the main array of pixels.
US11551591B2
An electronic device includes a housing and an array of LEDs deposited on a substrate disposed in the housing. The array of LEDs is disposed to form an indicia via which a logo is displayable.
US11551588B2
A display device includes: a first pixel including a first light emitting diode (LED) and a first capacitor including a first electrode connected to a first power source voltage providing a driving voltage to an anode of the first light emitting diode (LED) or to an initialization voltage, and a second electrode connected to the anode of the first light emitting diode (LED); and a second pixel including a second light emitting diode (LED) and a second capacitor including a first electrode connected to the first power source voltage providing the driving voltage to an anode of the second light emitting diode (LED) or to an initialization voltage, and a second electrode connected to the anode of the second light emitting diode (LED), wherein capacitance of the second capacitor is less than capacitance of the first capacitor.
US11551580B2
A resettable injection training device for simulating an injection is provided in an embodiment herein. The device may include an outer housing, a safety shield having a proximal end and a distal end, the distal end for engaging with a target surface during an injection simulation, the safety shield comprising a retracted position, an extended unlocked position and an extended locked position, a plunger; and a locking tab for interfacing with the safety shield for interfacing with the safety shield the extended locked position, wherein if the safety shield distal end disengages from the target surface during an injection simulation, the safety shield extends to the extended, locked position until the device is reset.
US11551574B1
Systems and methods for objectively assessing physical performance of a subject and generating programs specifically tailored to correct any physical deficiencies identified during that assessment. Generally, the assessments may produce results in binary format so that the assessments may be conducted objectively. Additionally, the recommended exercise programs may be generated based on the results of those assessments so that the recommended exercise programs target the identified physical deficiencies.
US11551569B2
A system and method for characterizing, selecting, ordering and rendering discrete elements of digitized video content helpful to learn or teach various skills. Each of a plurality of observed or computer-generated instances of modeling of distinguishable skills are recorded as digitized assets. Microskills are identified and deconstructed in the abstract from one or more of the visual and audible recordings of skills modeling moments. Identifiers of microskills are associated by a human editor with recorded modeling instances and/or portions thereof. Modeling presentations are dynamically generated by a user asserting one or more microskill identifiers and a network-enabled selection, ordering and rendering of portions of modeling instances that are associated with the asserted microskill identifiers.
US11551567B2
The embodiments herein disclose a system and a method for providing an online web-based interactive audio-visual platform for note creation, presentation, sharing, organizing, and analysis. The system provides a conceptual and interactive interface to content; analyses a student's notes and instantly determines the accuracy of the conceptual connections made and a student's understanding of a topic. The system enables the student to add and use audio, visual, drawing, text notes, and mathematical equations in addition to those suggested by the note taking solution; to collate notes from various sources in a meaningful manner by grouping concepts using colors, images, and text; and to personalize other maps developed within the same environment while maintaining links back to the original source from which the notes are derived. The system highlights keywords in conjunction with spoken text to complement the advantages of using visual maps to improve learning outcomes.
US11551563B2
A system and method for reliably and efficiently monitoring and arbitrating the performance of one or more UTM infrastructure systems are provided herein. The method for monitoring and arbitrating a plurality of UTM infrastructure networks involves monitoring and arbitrating a plurality of unmanned traffic management (UTM) infrastructure networks comprising integrating a UTM arbitration system between the plurality of UTM infrastructure networks, wherein the UTM arbitration system is operably configured to simultaneously monitor the UTM infrastructure networks; monitoring information and/or data associated with one or more UTM systems associated with the UTM infrastructure networks; detecting the presence or absence thereof of one or more inconsistencies in the data and/or information associated with the one or more UTM systems; and initiating a reconciliation activity in response to detecting the presence of at least one inconsistency in the data and/or information associated with the one or more UTM systems.
US11551556B2
A network computer system receives request data from computing devices of requesting users in a sub-region of a service area. The system further receives location data from computing devices of drivers operating in the sub-region. Based on the request data and the location data, the system determines a service condition for the sub-region. Based on the service condition indicating that the sub-region is in a driver oversupply state, the system transmits a service instruction to computing devices of a plurality of drivers within the sub-region, the service instruction being associated with a target outside the sub-region and a set of progress conditions. The system then periodically determines, for each driver of the plurality of drivers, an estimated time of arrival (ETA) to the target from a current position of the driver to determine whether the driver is satisfying the set of progress conditions of the service instruction.
US11551548B1
An apparatus, method and computer program product are provided for predicting wrong-way-driving events. A WWD event defines an event in which a vehicle travels in a direction opposing a traffic direction designated for a portion of a road. In one example, the apparatus estimates a likelihood of portion of the road inducing a wrong-way-driving (WWD) event by using a machine learning model as a function of map data, sensor data, or a combination thereof. If the likelihood satisfies a threshold, the apparatus updates a map layer to indicate the WWD event at the portion of the road.
US11551544B2
A system for preventing unauthorized access to a network can include a secure container having an access portal for controlling access to contents of the secure container and a security checkpoint configured to determine a state of the access portal and to receive an authorization code for opening the access portal. The security checkpoint can also include a logical lock module that switches to a breach mode of operation in response to a signal from the security checkpoint indicating that the access portal has been opened without receipt of the authorization code within a predetermined amount of time. The system can also include a network switch disposed within the secure container. The network switch is configured to communicate on a network and disable outgoing network communications to the network in response to a breach signal indicating that the logical lock module has switched to the breach mode.
US11551534B2
A refuse vehicle comprising a chassis, a body assembly coupled to the chassis, the body assembly defining a refuse compartment, and a thermal event monitoring system comprising a sampling element configured to detect a thermal event associated with the refuse vehicle indicating at least one of a fire or an overheating component and transmit a notification in response to detecting the thermal event.
US11551532B2
A haptic system is described. The haptic system includes a linear resonant actuator (LRA), a receiver, and a transmitter. The LRA has a characteristic frequency and provides a vibration in response to an input signal. The receiver is configured to sense received vibration from the LRA. The transmitter is configured to provide the input signal to the LRA. The receiver is coupled with the transmitter and provides vibrational feedback based on the received vibration. The input signal incorporates the vibrational feedback.
US11551530B2
A method and system based on betting using an enhanced roulette game are provided with more exciting game play with differing odds as compared to traditional roulette. The roulette game has a two-track roulette wheel, each track having cross-sectional curvatures allowing for the simultaneous use of two separate balls that do not interfere with each other during game play, with an increased number of betting numbers of 63 (1-60, 0, 00, and 000) or 75 (0, 00, 000, 1-72) around a single course of pockets or cassettes. One of the two roulette balls may be a “gold” ball that represents a bonus payout or bonus for hitting both numbers for one or more players. A set of playing chips have radio frequency identification (RFID), or other locating devices that interact with the grid to determine chip placement on the betting layout to automatically calculate a bet payoff.
US11551526B2
An electronic gaming machine (EGM) is provided. The EGM includes a processor circuit and a memory device which stores a plurality of instructions, which when executed by the processor circuit, cause the processor circuit to perform operations. Operations include causing a display, by a display device and for a first play of a game, of a first plurality of symbols at a first plurality of symbol display positions associated with a plurality of reels. Operations include, responsive to an occurrence of a symbol display location modification event associated with a reel of the plurality of reels, modifying a location of symbol display positions associated with that reel. Operations include, responsive to a modified location of symbol display positions associated with that reel being a designated location, triggering a secondary event associated with an event zone associated with that reel.
US11551522B2
The present disclosure relates generally to gaming systems and methods for facilitating an automatic transfer of funds to and from an electronic gaming machine via a mobile device.
US11551520B2
Systems and methods are disclosed for associating a player identifier with a financial account. The financial account can holds funds that are accessible through the player's use of a payment vehicle. The payment vehicle can be, for example, a credit payment vehicle or a debit payment vehicle. The player can load funds from the financial account to a wagering account.
US11551519B2
Systems and methods that provide one or more mobile device facilitated non-cash avenues to redeem a ticket voucher associated with an amount of funds.
US11551499B2
A method includes transmitting, by a handler device associated with a package handler, a message to an access control system requesting access to a secure container secured by an electronic lock mechanism; determining, by the access control system, whether the package handler is authorized to access the secure container based on the received message; transmitting, by the access control system, an unlock command to the secure container in response to a determination that the package handler is authorized to access the secure container; and unlocking the electronic lock mechanism of the secure container in response to successful authentication of the unlock command.
US11551498B2
A locking system and method for a movable freight container door comprises an electronic module and a mechanical lock element. The mechanical lock element comprises a shaft, at least of portion of which is configured to be inserted through an aperture in the electronic module, across a door handle retention region, and into a cavity in the electronic module. The shaft is securely retained in the electronic module by moving a lock mechanism to a locked position. At least one magnetic field sensor in the electronic module is used to read the position of the shaft in the cavity by sensing or not sensing one or more magnets in the shaft. A wireless communication component in the electronic module wirelessly transmits magnetic field sensor information.
US11551497B2
In example implementations, an apparatus is provided. The apparatus includes a connection interface, a local area network (LAN) interface, a wide area network (WAN) interface, and a processor. The connection interface is to connect to a printed circuit board (PCB) of a door controller. The LAN interface is to communicate with a plurality of door sensors, wherein each one of the plurality door sensors is to monitor operation of a respective door of a plurality of doors. The WAN interface is to communicate with a remote server of a service provider. The processor is communicatively coupled to the connection interface, the LAN interface, and the WAN interface. The processor is to receive door data from the plurality of door sensors via the LAN interface, transmit the door data to the remote server for analysis via the WAN interface, receive a correction action from the remote server over the WAN interface in response to the door data, and execute the corrective action on a door of the plurality of doors via the LAN interface.
US11551495B2
An information processing apparatus for managing an electronic key compatible with a locking/unlocking apparatus, the information processing apparatus comprises a controller configured to: acquire terminal data that is data for notifying of a state of a first mobile terminal that uses the electronic key, and transmit, based on the terminal data, the electronic key corresponding to the first mobile terminal to a second mobile terminal different from the first mobile terminal.
US11551492B2
An unmanned aerial vehicle manages storage of data and transfer between other connected devices. The unmanned aerial vehicle captures sensor data from sensors on the unmanned aerial vehicle. The unmanned aerial vehicle transfers the captured sensor data from the unmanned aerial vehicle to a remote controller via a wireless interface. The captured data may be transferred via a TCP link, a UDP link, or a combination thereof. If a loss of link is detected, the captured sensor data is stored to a buffer and a battery level of the unmanned aerial vehicle and a flight status of the unmanned aerial vehicle is monitored. The stored sensor data is transferred from the buffer to a non-volatile storage responsive to the battery level dropping below a predefined threshold or detecting that the unmanned aerial vehicle is stationary and a shutdown may be imminent.
US11551488B2
A method of using an adaptive fault diagnostic system for motor vehicles is provided. A diagnostic tool collects unlabeled data associated with a motor vehicle, and the unlabeled data is transmitted to a central computer. An initial diagnostic model and labeled training data associated with previously identified failure modes and known health conditions are transmitted to the central computer. The central computer executes a novelty detection technique to determine whether the unlabeled data is novelty data corresponding with a new failure mode or normal data corresponding with one of the previously identified failure modes or known health conditions. The central computer selects an informative sample from the novelty data. A repair technician inputs a label for the informative sample, and the central computer propagates the label from the informative sample to the associated novelty data. The central computer updates the labeled training data to include the labeled novelty data.
US11551481B2
Exemplary embodiments of this disclosure provide a living body detection method and apparatus, an electronic device, a storage medium, and a payment system, a video surveillance system, and an access system to which the living body detection method is applied, and generally belong to the field of biometric recognition technologies. The living body detection method can include obtaining an image of a to-be-detected object performing key point detection on a biometric feature corresponding to the to-be-detected object in the image, and constructing a constraint box in the image according to detected key points. Further, the method can include capturing a shape change of the constraint box constructed in the image, and determining the to-be-detected object as a prosthesis in response to capturing an abnormal deformation of the constraint box or detecting no key points.
US11551477B2
Disclosed is a process for performance monitoring and feedback for facial recognition systems. A first image for image matching from a camera capture device at a first location is received for purposes of image matching. A highest match confidence score of the first image to a particular stored enrollment image is determined. One or more image or user characteristics associated with the first image or first user is identified. The identified image or user characteristics and highest match confidence score are added to a facial recognition monitoring and feedback model. Subsequently, a particular one of the stored image or user characteristics consistently associated with a below-threshold highest match confidence score is identified, and a notification is displayed or transmitted including an indication of an identified facial recognition low match pattern and identifying the particular one of the stored image characteristics or user characteristics.
US11551472B1
A method of fingerprint recognition for a fingerprint sensing circuit includes steps of: performing a first fingerprint sensing process including a first exposure operation and a first readout operation under a first light spot setting; and performing a second fingerprint sensing process including a second exposure operation and a second readout operation under a second light spot setting. Wherein, a host performs a first fingerprint recognition in response to the first fingerprint sensing process; and wherein, the second light spot setting and the first fingerprint recognition are performed simultaneously.
US11551467B2
Various example embodiments are directed towards systems, apparatuses, and/or methods of obtaining a reference image for optical object recognition, the method including driving a subset of light sources of a plurality of light sources, receiving, using an object recognition sensor, light reflected off a first target object, obtaining a first reference image based on the reflected light, obtaining a first target image associated with the first target object based on the reflected light, obtaining at least one first environment information using at least one environmental sensor while driving the subset of light sources, the first environment information associated with a surrounding environment, storing the first reference image and the first environment information together, and obtaining a first effective image for the first target object based on the first target image and the first reference image.
US11551461B2
A text classifying apparatus (100), an optical character recognition unit (1), a text classifying method (S220) and a program are provided for performing the classification of text. A segmentation unit (110) segments an image into a plurality of lines of text (401-412; 451-457; 501-504; 701-705) (S221). A selection unit (120) selects a line of text from the plurality of lines of text (S222-S223). An identification unit (130) identifies a sequence of classes corresponding to the selected line of text (S224). A recording unit (140) records, for the selected line of text, a global class corresponding to a class of the sequence of classes (S225-S226). A classification unit (150) classifies the image according to the global class, based on a confidence level of the global class (S227-S228).
US11551451B2
A system for monitoring and recording and processing an activity includes one or more cameras for automatically recording video of the activity. A processor and memory associated and in communication with the camera is disposed near the location of the activity. The system may include AI logic configured to identify a user recorded within a video frame captured by the camera. The system may also detect and identify a user when the user is located within a predetermined area. The system may include a video processing engine configured to process images within the video frame to identify the user and may modify and format the video upon identifying the user and the activity. The system may include a communication module to communicate formatted video to a remote video processing system, which may further process the video and enable access to a mobile app of the user.
US11551449B2
An apparatus including an interface and a processor. The interface may be configured to receive pixel data generated by a capture device. The processor may be configured to generate video frames in response to the pixel data, perform computer vision operations on the video frames to detect objects, perform a classification of the objects detected based on characteristics of the objects, determine whether the classification of the objects corresponds to a user-defined event and a user-defined identity and generate encoded video frames from the video frames. The encoded video frames may comprise a first sample of the video frames selected at a first rate when the user-defined event is not detected and a second sample of the video frames selected at a second rate while the user-defined event is detected. The video frames comprising the user-defined identity without a second person may be excluded from the encoded video frames.
US11551446B2
A video detection device includes a video acquisition interface, a video recognition interface, and a tilt angle estimation interface. The video acquisition interface acquires a video of the face of an imaging subject. The video recognition interface recognizes the left and right eyes from the video acquired by the video acquisition interface. The tilt angle estimation interface estimates a tilt angle with respect to the horizontal based on the position of the left and right eyes recognized by the video recognition interface.
US11551441B2
Methods, apparatus, and database management systems are disclosed for providing, organizing, and present database search results and, more specifically, systems and methods for a chronological-based search engine. One method includes presenting live image data being captured by a camera of the end-user device. The method also includes determining a pose of the end-user device. The pose including a location of the end-user device. Additionally, the method includes sending the pose of the end-user device to an augmented reality platform entity and receiving closed captioning data from the augmented reality platform entity. The closed captioning data is based on the location of the end-user device and includes indications of first topics within the closed captioning data. The method includes superimposing the closed captioning data onto the live image data.
US11551439B2
A system for vector extraction comprising a vector extraction engine stored and operating on a network-connected computing device that loads raster images from a database stored and operating on a network-connected computing device, identifies features in the raster images, and computes a vector based on the features, and methods for feature and vector extraction.
US11551436B2
Provided is a method and processing unit for computer-implemented analysis of a classification model which is adapted to map, as a prediction, a number of input instances, each of them having a number n of features, into a number of probabilities of output classes, as a classification decision, according to a predetermined function, and which is adapted to determine a relevance value for each feature resulting in a saliency map. The disclosure includes the step of identifying an effect of each feature on the prediction of the instance by determining, for each feature, a relevance information representing a contextual information for all features of the instance omitting the considered feature. Then, the relevance value for each feature is determined. Finally, the plurality of relevance values for the features of the instance is evaluated to identify the effect of each feature on the prediction of the instance.
US11551432B1
Systems and methods for training an artificial intelligence (AI) classifier of scanned items. The items may include a training set of sample raw scans. The set may include in-class objects and not-in-class raw scans. An AI classifier may be configured to sample raw scans in the training set, measure errors in the results, update classifier parameters based on the errors, and detect completion of training.
US11551430B2
A cross reality system enables any of multiple devices to efficiently and accurately access previously persisted maps, even maps of very large environments, and render virtual content specified in relation to those maps. The cross reality system may quickly process a batch of images acquired with a portable device to determine whether there is sufficient consistency across the batch in the computed localization. Processing on at least one image from the batch may determine a rough localization of the device to the map. This rough localization result may be used in a refined localization process for the image for which it was generated. The rough localization result may also be selectively propagated to a refined localization process for other images in the batch, enabling rough localization processing to be skipped for the other images.
US11551422B2
Various implementations disclosed herein include devices, systems, and methods that generate floorplans and measurements using a three-dimensional (3D) representation of a physical environment generated based on sensor data.
US11551417B2
A method for generating a more accurate mesh that represents a 3D printed part based on a model includes slicing the model into layers and identifying an infill-wall boundary and an exterior-interior boundary of each layer of the model. Layers of the model may be identified as critical by iterative comparison with adjacent layers. An interior voxel mesh may be constructed based on common two-dimensional reference grids imposed on the critical layers. The interior voxel mesh may be augmented to an augmented mesh and then extended to a protomesh. The protomesh may be extruded to construct the final mesh, which may be analyzed by finite element analysis. The part may be 3D printed based on the layers output by the slicing operation.
US11551416B1
Systems, methods, and computer-readable media for using full waveform inversion for imaging surveyed mediums are provided. The full waveform inversion uses a Sifrian functional to fully leverage Hessian information and update a model by augmenting and assembling data derived from the Sifrian functional when equilibrated. The Sifrian inversion produces high resolution images of the surveyed medium typically only seen with full Hessian inversions and can produce such images without requiring supercomputer computation power or extremely long computation time.
US11551389B2
Systems, apparatuses and methods may a performance-enhanced computing system comprising a sensor for measuring luminance values corresponding to light focused onto the sensor at a plurality of pixel locations, a memory including a set of instructions, and a processor. The processor executes a set of instructions causing the system to generate a multi-segment tone mapping curve, generate a set of tone mapping values corresponding to the multi-segment tone mapping curve for equally spaced input values between zero and one for storage into a look up table, and process the luminance values using the look up table to apply the tone mapping curve to the luminance values of the pixels.
US11551371B2
A method for analyzing an image to assess a degree of asymmetry in an object having a presumed mirror symmetry includes: retrieving an image of the object; obtaining a mirrored image by flipping along an axis that has an a-priori unknown spatial relation to the presumed plane of symmetry; obtaining a mapping between the retrieved image and the mirrored image; determining a measure of asymmetry in the object by considering element pairs of a first element of the retrieved image and a second element of the mirrored image according to the mapping. Obtaining the mapping comprises performing a rigid registration followed by a non-rigid registration of the retrieved image to the mirrored image. The measure of asymmetry is determined by calculating the Jacobian of the non-rigid deformation in each element of the image. The invention also pertains to a computer program product and an image processing system.
US11551357B2
Systems and methods are disclosed for receiving a target electronic image corresponding to a target specimen, the target specimen comprising a tissue sample of a patient, applying a machine learning system to the target electronic image to determine at least one characteristic of the target specimen and/or at least one characteristic of the target electronic image, the machine learning system having been generated by processing a plurality of training images to predict at least one characteristic, the training images comprising images of human tissue and/or images that are algorithmically generated, and outputting the target electronic image identifying an area of interest based on the at least one characteristic of the target specimen and/or the at least one characteristic of the target electronic image.
US11551354B2
An interlobar position specifying unit specifies an interlobar position in a lung field area included in a three-dimensional image. An expansion unit expands a plane area at the interlobar position in a thickness direction to generate an expansion area including an interlobar membrane. A projection processing unit processes the expansion area by a projection method that emphasizes the interlobar membrane to generate a projection image. The display control unit displays the projection image on a display.
US11551349B2
A method is disclosed that includes receiving, by a processing device, a plurality of images of a test assembly. The processing device selects a component in the test assembly and an image of the plurality of images of the test assembly as received. For the component as selected and the image as selected, the processing device compares a plurality of portions of the image as selected to a corresponding plurality of portions of a corresponding profile image and computing a matching score for each of the plurality of portions. The processing device selects a largest matching score from the matching score for each of the plurality of portions as a first matching score for the component as selected and the image as selected. The first matching score is stored for the component as selected and the image as selected.
US11551346B2
A computer system is provided for processing ultrasonic data of an ultrasonic probe applied to an area of an aircraft component that includes carbon fiber reinforced polymer. C-scan data is obtained and a preliminary mesh is defined over the C-scan data by taking into account the underlying structural or mechanical characteristics of the analyzed component. The mesh is further refined and data gathered for each mesh cell. A heat map is generated based on the mesh.
US11551343B2
An apparatus acquires a plurality of candidate correct answer images for generating a correct answer image that is used for image quality evaluation, and detects a candidate correct answer image to be excluded from the acquired plurality of candidate correct answer images, based on differences between the acquired plurality of candidate correct answer images.
US11551335B2
Methods and systems are disclosed using camera devices for deep channel and Convolutional Neural Network (CNN) images and formats. In one example, image values are captured by a color sensor array in an image capturing device or camera. The image values provide color channel data. The captured image values by the color sensor array are input to a CNN having at least one CNN layer. The CNN provides CNN channel data for each layer. The color channel data and CNN channel data is to form a deep channel image that stored in a memory. In another example, image values are captured by sensor array. The captured image values by the sensor array are input a CNN having a first CNN layer. An output is generated at the first CNN layer using the captured image values by the color sensor array. The output of the first CNN layer is stored as a feature map of the captured image.
US11551330B2
The present disclosure relates to image processing systems and methods. The method may include obtaining a first image and a second image. The first image may be captured by a first camera lens of a panorama device and the second image may be captured by a second camera lens of the panorama device. The method may also include performing an interpolation based on a center of the first image to obtain a first rectangular image, and performing an interpolation based on a center of the second image to obtain a second rectangular image. The method may further include generating a fused image based on the first rectangular image and the second rectangular image, and mapping the fused image to a spherical panorama image.
US11551328B2
A method for profiling energy usage in graphics user interfaces (UI) in handheld mobile devices is disclosed, which includes quantifying the central processing unit (CPU) energy drain of each UI update, quantifying the graphics processing unit (GPU) energy drain of each UI update, quantifying the number of pixels changed due to each UI update, identifying an UI update that consumes energy drain but results in no pixel changes to the displayed frame as a graphics energy bug.
US11551326B2
A tile-based graphics system has a rendering space sub-divided into a plurality of tiles which are to be processed. Graphics data items, such as parameters or texels, are fetched into a cache for use in processing one of the tiles. Indicators are determined for the graphics data items, whereby the indicator for a graphics data item indicates the number of tiles with which that graphics data item is associated. The graphics data items are evicted from the cache in accordance with the indicators of the graphics data items. For example, the indicator for a graphics data item may be a count of the number of tiles with which that graphics data item is associated, whereby the graphics data item(s) with the lowest count(s) is (are) evicted from the cache.
US11551324B2
A device, system and method for role based data collection and public-safety incident response is provided. A computing device receives a call to report a public-safety incident. The computing device determines a role of a caller on the call, the role of the caller being relative to the public-safety incident. The computing device retrieves, from one or more memories, data dependent on the role of the caller. The computing device controls a notification device to provide the data dependent on the role of the caller.
US11551316B1
A system and method for developing a secondary market for transferring and acquiring mortgages is disclosed. The system offers an alternative to the expensive and wasteful proposition of foreclosures. Using the disclosed system, mortgagees holding a security interest in distressed properties can harness the power of computer technology and intelligent processing of data to rapidly perform actuarial analysis and generate documents that enable interested buyers to acquire mortgages through a mortgage transfer process. The system disclosed creates a secondary market of transferrable mortgages and is designed to be beneficial for new buyers where the equity in the existing mortgage is used for down-payment; or excess equity is used to make a one time payment to the original property owner. The system disclosed offers benefits to all key players—investors, banks, purchasers and realtors, and prevents waste and enables distressed properties to command their market value.
US11551309B1
System, apparatus, and methods are disclosed for determining, through vehicle-to-vehicle communication, a drafting characteristic of a drafting relationship using vehicle operational data, where the drafting characteristic may include one or more of a vehicle spacing between a first vehicle and a second vehicle, vehicle speed, and vehicle type. Vehicle driving data and other information may be used to calculate an autonomous droning reward amount. In addition, vehicle involved in a drafting relationship in addition to, or apart from, an autonomous droning relationship may be financially rewarded. Moreover, aspects of the disclosure related to determining ruminative rewards and/or aspects of vehicle insurance procurement/underwriting.
US11551306B2
Techniques for displaying market depth information for a financial instrument including a plurality of bid and ask order metrics at corresponding prices of the market instrument and associated time information. A graphical representation of the market depth information, with axes corresponding to time and price, is aligned with color gradients corresponding to one or more metrics including, for example, bid and ask order volume, order count, or order consideration, generated based on the market depth information. The graphical representation of the market depth information and the color gradients are displayed using a display device.
US11551298B1
The present invention generally relates to systems, methods and program products for use with Exchange-Traded Funds (“ETF”) holding one or more secured notes backed by one or more precious metals.
US11551291B1
A computer-implemented method includes managing bank accounts respectively associated with a plurality of account holders for a bank, including processing transactions for the bank accounts where a transaction includes at least credit card transactions and checking transactions and where the first user has full access to a first bank account. The method includes providing a second user restricted access to the first bank account, establishing a connection with the second user via the Internet, providing the second user, according to the restricted access, a user interface to display at least a portion of a plurality of budget categories and at least a portion of transactions associated with the first bank account, receiving an input from the second user to flag a transaction, and responsive to the input, updating the user interface to reflect the flag and notifying the first user of the flag.
US11551284B2
A session-based recommendation method and device according to one or more embodiments of this disclosure are provided, which use a pre-trained recommendation model to perform item recommend. The method includes following contents: a directed session graph is constructed according to a session to be predicted; the directed session graph is then input into a gated graph neural network which outputs the item embedding vector; a user's dynamic preference is determined according to a user's current preference and a first long-term preference, the current preference is an item embedding vector of a last item in the session and the first long-term preference is determined according to the item embedding vector and an importance score of the item; a prediction score of a respective item is determined according to the dynamic preference and the item embedding vector; and a recommended item is output according to the prediction score of the respective item.
US11551283B2
Methods and systems are disclosed for providing a vehicle suggestion to a user based on image analysis. The method may include: receiving one or more vehicle images via website data associated with the user; identifying one or more first-level traits from the one or more vehicle images; obtaining one or more vehicle identifications from the one or more vehicle images based on the one or more first-level traits; determining a value of each of the one or more first-level traits and/or the one or more vehicle identifications via one or more algorithms; determining the vehicle suggestion based on the value of each of the one or more first-level traits and/or the one or more vehicle identifications; and transmitting, to a device associated with the user, a notification indicating the vehicle suggestion.
US11551279B2
A vehicle includes a system for recording and analyzing user preferences during a vehicle test drive. The system includes a processor and a memory that stores processor-readable instructions. When executed by the processor, the processor-readable instructions cause the system to: determine a user identity; create a user preference profile based on the user identity; communicate a prerecorded message describing one or more vehicle options to the user; record a user response of the user in response to the prerecorded message; analyze the recorded user response; and update the user preference profile based on the analysis of the recorded user response.