A network capacity planning system for forecasting and scheduling of network capacity for electronic devices is provided. A server monitors usage of a network associated with the electronic devices. The server analyzes a frequency of a transmission of data packets between the electronic devices and the network, and a time duration of a network busy time based on predetermined thresholds. The server uses results of the analysis to drive a dynamic mechanism, which identifies when a bandwidth associated with the network needs to be upgraded to support the growing network bandwidth requirements. The server adjusts a network capacity value of a network routing device associated with the network to support the required bandwidth for an operation of the electronic devices.
Examples described herein relate to systems and methods for tiered updating of configuration data. Updated configuration data is transmitted to different tiers of nodes. The nodes of a first tier are commanded to use the updated configuration data. After waiting to see if any nodes of the first tier communicate a fault after using the updated configuration data, for each of the additional tiers in the CDN it is sequentially repeated to: transmit a command to the nodes of that additional tier to use the updated configuration data; and after waiting to see if any nodes of any tier communicate a fault after using the updated configuration data, transmitting a command to the nodes of another additional tier to use the updated configuration data.
A computer implemented method of network monitoring and control. The method includes receiving alerts related to monitored devices; analyzing the alerts to identify a first alert related to a first monitored device; automatically performing at least one predefined action for the first monitored device based on the first alert; and after a first predefined period of time, checking whether the first alert has reappeared and responsively taking a further action.
A method is performed by a wireless device for transmitting Hybrid Automatic Repeat Request (HARQ) feedback. The wireless device, for an uplink transmission to be transmitted on an uplink channel, applies a modified modulation constellation for a HARQ feedback. The modified modulation constellation has a modified Acknowledgment/Non-Acknowledgment (ACK/NACK) assignment as compared to a normal modulation constellation having a normal ACK/NACK assignment. The wireless device further transmits HARQ feedback in the uplink transmission according to the modified modulation constellation.
To appropriately communicate even when a shortened TTI is applied. A user terminal that communicates using a first Transmission Time Interval (TTI) and a second TTI whose TTI length is shorter than a TTI length of the first TTI, includes a receiving section that receives an L1/L2 control channel transmitted from a radio base station, and a control section that controls receiving of a first L1/L2 control channel transmitted for each first TTI and a second L1/L2 control channel transmitted at the second TTI.
There are provided an orthogonal frequency division multiplexing (OFDM) demodulator, a demodulation method and a receiver. The OFDM demodulator includes a phase analog-to-digital converter and a determiner, wherein the phase analog-to-digital converter is configured to acquire an OFDM analog signal, extract and quantize phase information of a modulated signal on each subcarrier in the OFDM analog signal, and output a phase quantified value corresponding to the phase information of the each subcarrier; and the determiner is configured to perform determination according to the phase quantified value, to obtain modulation information corresponding to the each subcarrier.
Aspects of the present disclosure disclose techniques for the indication of the allocation of the downlink (DL) demodulation reference signal (DM-RS) ports for the data channel in NR communications. In some examples, the channel state information (CSI) reference signal (CSI-RS) may be associated with a corresponding DM-RS for a DL data channel. The transmitting device, in some examples, may further transmit a notification that provides resource allocations (e.g., port allocations) that minimize the redundant information that is required to be transmitted from the base station to the user equipment (UE) when the DM-RS port allocation is the same as the CSI-RS port allocation received by the UE in an earlier time slot.
UEs are configured to transmit feedback related to data received on a multicast traffic channel on dedicated resources. Network nodes are configured to retransmit the data based on the received feedback.
The present disclosure provides systems and methods for improving provision of secret data on programmable devices. An appliance receives physical unclonable function (PUF) data pertaining to an integrated circuit. Secret data is provided to the appliance from a secret vault. Public and private PUF keys are derived based upon the PUF data. Further, ephemeral public and private keys are derived by the appliance. The public and private PUF keys, along with the ephemeral public and private keys are used to establish a secure channel for programming the secret data on the programmable device.
Exemplary embodiments are directed to a blockchain-based communication system. The system includes a public blockchain, a private blockchain and a processing device in communication with the public and private blockchains. The public blockchain includes a database configured to electronically store registration data associated with an originator and at least one recipient. The private blockchain is configured to allow for transmission of data between the originator and the at least one recipient. The processing device is configured to receive a request from the originator to compose a message to be transmitted from the originator to the least one recipient, receive as input and associate at least one digital rights management (DRM) parameter with content of the message, and generate a micro-blockchain within the private blockchain having an originator node associated with the originator and a recipient node associated with the at least one recipient.
A key management device for data encryption/decryption is provided. The key management device includes a static random-access memory (SRAM), a register, and a control circuit. The control circuit can set a key lookup table in the SRAM or the register, and manage a key database. The key database includes the SRAM and an one-time programmable (OTP) memory disposed outside the key management device, and the key database stores at least one key. The key lookup table includes a key number and metadata of each of the at least one key stored in the key database. According to a specific key number contained in a key read command or a key delete command from the processor, the control circuit reads or deletes a specific key corresponding to the specific key number in the key database.
In aspects of quantum-based security for hardware devices, a computing device includes a processor for application processing in a trusted execution environment, and includes a quantum random number generator to generate quantum random numbers sourced by multiple hardware devices in the computing device. The computing device also includes an embedded secure element that manages connection security of the multiple hardware devices, and is a single root of trust as a secure controller of the quantum random number generator. The computing device also includes a secure switch controlled by the embedded secure element, the secure switch being switchable to connect at least one of the multiple hardware devices to obtain a quantum random number from the quantum random number generator. The secure switch may be a virtualized secure switch implemented in the embedded secure element.
A secure computation device obtains a first concealed verification value [z]i=[w−ω]i with secure computation by using concealed authentication information [w]i which is preliminarily stored and concealed authentication information [ω]i which is inputted, obtains a concealed extension field random number [rm]i∈[Fε] which is a secret sharing value of an extension field random number rm, obtains a second concealed verification value [ym]i in which ym is concealed with secure computation by using the first concealed verification value [z]i, and obtains a third concealed verification value [rmym]i with secure computation by using the concealed extension field random number [rm]i and the second concealed verification value [ym]i and outputs the third concealed verification value [rmym]i.
A digital communication method over an optical channel. Bob modulates a coherent optical signal with a random envelope phase φr, known to him and not to Alice, and transmits the modulated coherent optical signal (envelope) over the optical channel to Alice. Alice further modulates the envelope with a key phase φk, based on a secret key and a selected modulation scheme, to create a cipher envelope, and sends the cipher envelope towards Bob along the optical channel. Bob then demodulates a received version of the cipher envelope by removing the random envelope phase φr (known to Bob) and then measures the phase of the resulting demodulated coherent optical signal with the coherent detector to extract, to within a certain margin of error, the key phase φk, from which Alice's secret key can be decoded. Bob then uses the secret key for encrypting messages sent to Alice over any digital network.
A method and an apparatus for determining an RBG size are provided. In the method, a network device or a terminal determines an RBG size set, where the RBG size set may include one or more possible RBG sizes; and determines a first RBG size included in the RBG size set. The network device allocates a resource to the terminal by using the determined first RBG size. The terminal determines, based on the determined first RBG size, the resource allocated by the network device to the terminal.
A method, performed by a User Equipment (UE), includes receiving, from a cell, configuration signaling configuring the UE with one or more PUCCH resources on an active UL BWP, the one or more PUCCH resources not being configured with PUCCH-SpatialRelationInfo, and the configuration signaling indicating that a default spatial relation behavior for PUSCH transmission scheduled by a DCI format 0_0 is enabled; receiving, from the cell, the DCI format 0_0 on an active DL BWP, the DCI format 0_0 providing scheduling information for a PUSCH; and transmitting the PUSCH according to the default spatial relation behavior which determines a spatial relation with reference to a QCL-TypeD RS corresponding to a QCL assumption of a pre-determined CORESET on the active DL BWP of the cell.
Methods, systems, and devices for wireless communications are described. A first device may identify that a first set of transmission resources in a transmission time interval (TTI) has a higher priority at a second device than a second set of transmission resources in the TTI. The first device may identify that a message is to be transmitted from the first device to the second device via the TTI and process the message into a bit sequence based on the identification of the second set of transmission resources in the TTI, where the processing increases a likelihood that systematic bits of the message are received at the second device despite presence of the second set of transmission resources in the TTI. The first device may transmit the bit sequence to the second device via the TTI.
A method and system for minimizing the control overhead in a multi-carrier wireless communication network that utilizes a time-frequency resource is disclosed. In some embodiments, one or more zones in the time-frequency resource are designated for particular applications, such as a zone dedicated for voice-over-IP (VoIP) applications. By grouping applications of a similar type together within a zone, a reduction in the number of bits necessary for mapping a packet stream to a portion of the time-frequency resource can be achieved. In some embodiments, modular coding schemes associated with the packet streams may be selected that further reduce the amount of necessary control information. In some embodiments, packets may be classified for transmission in accordance with application type, QoS parameters, and other properties. In some embodiments, improved control messages may be constructed to facilitate the control process and minimize associated overhead.
Embodiments of the disclosure provide a method and device for performing communication. The method comprises: determining a target transmission pattern from a set of candidate transmission patterns, wherein the target transmission pattern is indicated by a signal including one or more of: a reference signal, a signal for performing CRC, and a feedback signal; and performing communication between a network device and a terminal device by using the target transmission pattern.
The present invention relates to a resource allocation method and apparatus, and a signal transmission method, which are applicable to various technical scenarios of 5G New Radio (NR). A method for operating a communication node for resource allocation in a communication network includes: allocating first data and a first pilot for a first type service to a first block period of a first subframe; allocating second data and a second pilot for a second type service to a second block period overlapping with the first block period; and transmitting the first subframe to another communication node. Here, at least one of the second data and the second pilot is allocated to an area to which the first data is allocated.
Disclosed are a data transmission method and device, and a computer storage medium. The method comprises: a first terminal sends a physical sidelink control channel (PSCCH) and/or a physical sidelink shared channel (PSSCH) to a second terminal, the PSCCH or the PSSCH comprising feedback information and/or measurement information.
The disclosed subject matter is directed towards highly reliable Hybrid Automatic Repeat Request (HARQ) retransmission procedures, including to provide different levels of reliability for Sidelink transmissions. A scheduler node schedule a data transmission by a transmitter node, and can receive (and store) the data packet transmission. If the scheduler node receives a negative acknowledgement (NAK) from the receiver node, the scheduler node can allocate resources to the transmitter node to perform a retransmission of the data packet, and/or retransmit a copy of the data packet from the scheduler node to the receiver node. The scheduler node can inform the receiver node that a retransmission is being sent by the transmitter node and the scheduler node.
An indicator (6011, 6012, 6013) associated with transmission of a plurality of repetitions (351) of data (6001, 6001-1, 6001-2, 6005) to a second device (112) is broadcasted on an open spectrum. The indicator (6011, 6012, 6013) is for control of contention-based access to the open spectrum by at least one further device (131). In response to said transmitting of the indicator (6011, 6012, 6013): a subset (6021, 6022, 6023) of the plurality of repetitions (351) of the data (6001, 6001-1, 6001-2, 6005) is transmitted on the open spectrum to the second device (112).
An error correction device includes a first correction unit which performs error correction decoding of data by a repetitive operation, having a full operation state in which the error correction decoding is repeated until convergence is obtained and a save operation state in which the number of times of the repetitive operation is restricted to a predetermined number. An error information estimation unit estimates an input error rate or an output error rate of the first correction unit using a decoding result of the first correction unit, and a control unit which controls transition between the full operation state and the save operation state based on at least one piece of information of the input error rate, the output error rate, and an operation time of the first correction unit. It is thus possible to provide an error correction device that can improve a transmission characteristic while suppressing power consumption.
A bandwidth allocation device is included in a communication system having a terminal station device and a terminal device and relaying upstream data, which is received from a communication terminal by a lower device connected to the terminal device, to an upper device connected to the terminal station device. The bandwidth allocation device includes a transmission-permitted period start position determining unit configured to estimate a start position of an arrival period in which the upstream data arrives at the terminal device from the lower device; a transmission-permitted period length determining unit configured to estimate a length of the arrival period based on an amount of upstream data to be transmitted from the lower device to the terminal device; and a bandwidth allocation unit configured to allocate a bandwidth to the terminal device based on the estimated start position and the estimated length of the arrival period.
Provided are a service transmission method and device using a FlexO, equipment and a storage medium. The method includes: customer service data is mapped into N FlexO frames on M Physical Layer links of a FlexO transmission group, and then the N FlexO frames are sent through the FlexO transmission group; and a receiving end sequentially extracts the customer service data from the N FlexO frames. The FlexO transmission group comprises M PHY links. The customer service data occupies the same number of cells in the FlexO frame of each PHY link, and cell locations of the occupied cells are the same. A set of logic is used to directly map the customer service data into the N FlexO frames on the M PHY links of the FlexO transmission group, so as to minimize complexity and logical resources needing to be occupied.
Apparatuses, methods, and systems for dynamically estimating a propagation time between a first node and a second node of a wireless network are disclosed. One method includes receiving, by the second node, from the first node a packet containing a first timestamp representing the transmit time of the packet, receiving, by the second node, from a local time source, a second timestamp corresponding with a time of reception of the first timestamp received from the first node, calculating a time difference between the first timestamp and the second timestamp, storing the time difference between the first timestamp and the second timestamp, calculating a predictive model for predicting the propagation time based the time difference between the first timestamp and the second timestamp, and estimating the propagation time between the first node and the second node at a time by querying the predictive model with the time.
In a transmission system of an audio signal etc., circuit enlargement is suppressed and deterioration of transmitting signal is reduced. A transmission system including a transmitting apparatus including a first delta-sigma modulator outputting first multi-bit delta-sigma modulated signals of three or more bits and a first code modulator code-modulating first signals of two or more bits located in bit positions higher than a predetermined bit position of the first multi-bit delta-sigma modulated signals based on at least part of a second signal located in one or more bit positions not higher than the predetermined bit position and outputting a plurality of modulated signals; a transmission path transmitting the second signal and the plurality of modulated signals; and a receiving apparatus including a first demodulator demodulating the plurality of the received modulated signals based on at least part of the received second signal is provided.
A device for transmitting a signal according to some embodiments of the present disclosure relates to a device for transmitting a signal using a hybrid waveform. The device may include a modulator configured to modulate an input signal and a signal transmitter configured to transmit the modulated final transmission signal through an LED light source, wherein the modulator is configured to modulate first information into a pulse signal based on frequency shift keying (FSK), and modulate second information into an orthogonal frequency division multiplexing (OFDM) signal, wherein the first information and the second information are different from each other and mix the pulse signal and the OFDM signal into one waveform to generate the final transmission signal.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless communication device, such as a repeater, may select a polarization configuration for multiple antennas that form beams for forwarding wireless communications between a first wireless device and a second wireless device. The repeater may forward wireless communications between the first wireless device and the second wireless device according to the polarization configuration. Numerous other aspects are described.
This specification provides a beam failure recovery method in a wireless communication system. In this specification, a beam failure recovery method performed by a UE includes: receiving, from a base station, control information related to a candidate beam configuration for the beam failure recovery; selecting an RS having a quality of the threshold or more among the RSs related to the candidate beam identification; and; transmitting, to the base station, a beam failure recovery request based on an uplink (UL) resource related to the selected RS.
A multi-input multi-output (MIMO) Bluetooth module with effectively suppressed mutual interference is disclosed. The MIMO Bluetooth module has multiple Bluetooth transceivers which operate in a synchronized transmission mode, in which no Bluetooth transceiver is permitted to transmit data when any of the Bluetooth transceivers are receiving data.
A power supply apparatus includes a power supply unit configured to wirelessly supply power to an electronic apparatus, a communication unit configured to communicate with the electronic apparatus, and a control unit configured to perform control whether to supply power to the electronic apparatus according to whether the electronic apparatus is capable of updating information about the electronic apparatus.
A first mobile device including a connection terminal configured to electrically connect to a second mobile device, a variable impedance device connected to the connection terminal, the variable impedance device configured to vary an impedance, processing circuitry configured to determine a power line communication (PLC) mode between the first mobile device and the second mobile device to be one of a low-speed PLC mode or a high-speed PLC mode, and control the impedance of the variable impedance device according to the determined PLC mode, and a PLC modem configured to receive power from the second mobile device or communicate data with the second mobile device based on the determined PLC mode.
The present disclosure provides computer-based methods and a system for synthesizing a NoC that advantageously generate balanced NoC topologies without end-to-end fairness or local credit-based arbitration, and improve NoC performance when destination device bridge ports support only one incoming physical link per channel. More particularly, a clock domain is assigned to certain routers that satisfies the minimum frequency for the router while reducing clock domain transitions to neighboring routers, and the traffic flows received by these routers are balanced based on the traffic flow packet rates.
Systems and method are provided for canceling unwanted transmitter-to-receiver leakage in a coherent wireless system using a feedforward waveform that overcomes the limitations of purely analog or purely digital cancelation systems and methods. Systems and methods in accordance with embodiments of the present disclosure generate a software-defined waveform that, when fed forward into the receiver, effectively cancels the leakage. Embodiments of the present disclosure can use a defined cancelation waveform (e.g., a software-defined cancelation waveform) that can cancel multiple leakage paths at the same time.
A signal transceiver apparatus includes at least one plug-in card and a backplane. The plug-in card includes two waveguide boards, a multi-layer circuit board disposed between the two waveguide boards, and an antenna array and a first waveguide interface that are mounted on each of the two waveguide boards. A waveguide slot is provided on one side, facing the multi-layer circuit board, of each of the two waveguide boards. A metal layer corresponding to the waveguide slot is disposed on each of two sides of the multi-layer circuit board, wherein the metal layers and the waveguide slots cooperate to form two waveguide channels that are respectively located on two sides of the multi-layer circuit board and that each are connected to the antenna array and the first waveguide interface.
A receiving device is provided. The receiving device includes an antenna device, a filter circuit, a transceiver, an adjustable attenuator, a circulator, and a processor. The antenna device receives a received signal. The filter circuit separates an in-band signal and an out-band signal from the received signal. The adjustable attenuator adjusts the attenuation value corresponding to the in-band signal and transmits the adjusted in-band signal to the transceiver. The circulator receives the received signal from the antenna device and transmits the received signal to the filter circuit, and the circulator receives a reflected signal from the filter circuit. The processor determines how to adjust the attenuation value corresponding to the in-band signal according to information related to the out-band signal and information related to the in-band signal that has been processed by the adjustable attenuator and the transceiver.
Disclosed approaches for performing a Burrows-Wheeler transform (BWT) of a sequence of data elements, S, include determining sets of less-than values and sets of equal-to values for the data elements. Index values are determined for the data elements based on the sets of less-than values. Each index value indicates a count of data elements of S that a data element is lexicographically greater than. Rank values are determined for the data elements of S based on the sets of less-than values and the sets of equal-to values. Each rank value indicates for the data element an order of the data element in the BWT relative to other ones of the data elements of equal value. Positions in the BWT of S for the data elements are selected based on the index values and rank values, and the data elements are output in the order indicated by the respective positions in the BWT.
An apparatus and method for analog to digital conversion of analog input signals are disclosed herein. In some embodiments, an analog-to-digital (ADC) may comprise: a first successive approximation register (SAR) circuit comprising a fast SAR (FSAR) circuit and a residue digital-to-analog converter (RDAC) circuit and a residue amplifier circuit, coupled to the RDAC circuit, comprising an amplifier circuit that is configured to amplify a residual signal generated by the RDAC circuit, wherein the amplifier circuit comprises a deadzone control circuit and a first, second and third inverter stages, wherein the third stage is biased to operate in a sub-threshold region.
A delay circuit of a delay-locked loop (DLL) circuit includes: a phase splitter configured to split a phase of a reference clock signal to output a first reference clock signal and a second reference clock signal having a phase difference of 180 degrees; a logic gate configured to delay the second reference clock signal to output a delayed reference clock signal; and a delay line circuit including a plurality of delay cells that are cascade-connected, the delay line circuit configured to delay the first reference clock signal and the delayed reference clock signal based on a control code set, and to output a first delayed clock signal and a second delayed clock signal having a delay amount corresponding to a delay of one logic gate included in the plurality of delay cells.
Transformer-driven power switch devices are provided for switching high currents. These devices include power switches, such as Gallium Nitride (GaN) transistors. Transformers are used to transfer both control timing and power for controlling the power switches. These transformers may be coreless, such that they may be integrated within a silicon die. Rectifiers, pulldown control circuitry, and related are preferably integrated in the same die as a power switch, e.g., in a GaN die, such that a transformer-driven switch device is entirely comprised on a silicon die and a GaN die, and does not necessarily require a (large) cored transformer, auxiliary power supplies, or level shifting circuitry.
A driver circuit controls an output unit that switches whether or not to supply a current to an output line, in accordance with a potential difference between a first control signal to be input and a voltage of the output line. The driver circuit has a control line transmitting the first control signal to the output unit; a connection switching unit switching whether or not to connect the control line and the output line; a pre-stage control unit that is provided between a high potential line and a low potential line and selects and outputs a potential of any one of the high potential line and the low potential line in accordance with a second control signal; and a post-stage control unit causing the connection switching unit to connect the control line and the output line when the pre-stage control unit outputs a voltage higher than a predetermined threshold value.
A switch module includes a first terminal, first and second filters, and first and second switches. Impedance of the first filter for a signal in a stop band is capacitive. When the first switch is turned OFF, impedance of the first switch is capacitive, and impedance of the first filter seen from an end portion of the first switch connected to the first filter is not in a short state and impedance of the first filter seen from the first terminal is in an open state.
A method for calibrating gain in a multi-path subsystem having a first processing path, a second processing path, and a mixed signal return path, may include low-pass filtering an input signal and a mixed signal return path signal generated from the input signal at subsonic frequencies to generate a filtered input signal and a filtered mixed signal return path signal and tracking and correcting for a gain difference between the first processing path and the second processing path based on the filtered input signal and the filtered mixed signal return path signal.
Methods and apparatuses for providing a reduction in output power of a balanced amplifier configuration are presented. According to one aspect, reduction of the output power is provided by deactivating one of the two amplification paths of the balanced amplifier. According to another aspect, impedances seen at ports of input and output couplers of the balanced amplifier configuration part of a deactivated amplification path are selectively switched in dependence of operation according to the reduced output power or according to normal output power. In addition, or in the alternative, impedance seen at an isolated/terminated port of the input and/or the output coupler is selectively switched in dependence of the operation. When operating according to the reduced output power, values of the switched impedances can be adjusted to tune a frequency response of the balanced amplifier.
A motor control device includes an optimal voltage calculation part configured to calculate an input voltage that is a lowest total of electric power losses generated by an inverter, a motor and a converter, a lowest voltage calculation part configured to calculate a lowest value of the input voltage required at a motor operating point, and a target value setting part configured to set any one of the optimal input voltage and the lowest input voltage as the target input voltage, and the target value setting part sets the lowest input voltage lower than the optimal input voltage to the target value when the element temperature of the inverter and the converter is equal to or greater than a predetermined value.
A current sourced control topology is provided for an AC motor controller that eliminates many of the problems associated with prior art motor controllers that use voltage source inverter (VSI) technologies. By controlling the output of AC current sources such as synchronously controlled down converters to directly drive each motor phase, significant efficiency gains and a reduction in electromagnetic interference is achievable.
A control device applies voltages to an AC rotating machine based on voltage command values on stationary coordinates. Currents in a plurality phases flowing the rotating machine are detected as detection currents. Coordinate conversion is applied to those detection currents based on any phase in the rotating machine, for generate detection currents on rotational coordinates. Voltage command values on the rotational coordinates are generated based on current command values on the rotational coordinates and the detection currents. Coordinate conversion is applied to those voltage command values based on the any phase, for generate first voltage command values on the stationary coordinates. Phases of one of the first voltage command values and generated second voltage command values on the stationary coordinates are corrected to generate the second voltage command values. One of the second and the first voltage command values are selected as the voltage command values on the stationary coordinates.
A generalized frequency conversion system for a steam turbine generator unit. The system comprises at least a variable speed steam turbine with an adjustable rotating speed, a water feeding pump, a variable frequency generator operating at a variable speed, a speed increasing gearbox with a fixed rotating speed ratio, a variable frequency bus and an auxiliary machine. With a change in load of the unit, parameters of steam entering the variable speed steam turbine and an extracted steam amount are adjusted (changed) accordingly, so that the rotating speed of the steam turbine changes accordingly. In this way, on one hand, the rotating speed of the water feeding pump is changed through the speed increasing gearbox; and on the other hand, the frequency of alternating current outputted by the variable frequency generator is changed. In the present invention, there is no need to additionally provide other types of frequency converters, and the system is simple, reliable, low in cost and high in efficiency.
A motor control apparatus includes: an excitation unit configured to excite a plurality of excitation phases of a motor; a measurement unit configured to measure a physical amount that changes according to an inductance of a plurality of coils that make up the plurality of excitation phases when the plurality of excitation phases are excited; and a control unit configured to control the excitation unit to excite the plurality of excitation phases sequentially, determine a first excitation phase by comparing a measurement value measured by the measurement unit in excitation of each of the plurality of excitation phases with a first threshold, and determine that a rotational position of a rotor of the motor is a rotational position at which the rotor stops when the first excitation phase is excited. The first excitation phase is determined, the control unit stops excitation.
A device for driving a plurality of motors and an electric apparatus having the same is disclosed. The device includes an inverter connected to a DC terminal, a multi-phase motor connected to the inverter, a single-phase motor serially connected to the multi-phase motor, and a first capacitor and a second capacitor connected in series between a first end and a second end of the DC terminal, wherein the single-phase motor is connected to the multi-phase motor, and a node between the first capacitor and the second capacitor. Accordingly, a plurality of motors serially connected with each other can be driven by using a single inverter.
A system and a method for an energy harvesting and storage apparatus including a flexible substrate, an energy harvesting device disposed on the flexible substrate, the energy harvesting device is configured to convert mechanical energy into electrical energy, an energy storage device disposed on the flexible substrate and in electrical communication with the energy harvesting device and configured to receive and store the electrical energy from the energy harvesting device.
A power conversion system according to the present disclosure includes a plurality of power converters for performing power conversion on AC power and is connected to a power grid of multi-phase power that is a combination of multiple alternating current sources with mutually different phases. Each of the plurality of power converters includes a power converter circuit, a setting unit, and a control circuit. The power converter circuit performs power conversion between either DC power or AC power and AC power supplied from any of the multiple alternating current sources. The setting unit selects one of the multiple alternating current sources as a target of the power conversion to be performed by the power converter circuit. The control circuit controls operation of the power converter circuit in accordance with selection made by the setting unit.
Provided is a semiconductor device that has a configuration provided with: a driving unit for driving an upper switching element and a lower switching element according to a control signal for controlling the driving of the upper switching element and the lower switching element, which are connected in series to constitute a bridge circuit; an insulating unit having an insulating transformer; and a package for sealing at least a part of the insulating unit and the driving unit. The insulating unit transmits a signal corresponding to the control signal to the driving unit side while insulating the signal.
A control system for a battery system is provided. The control system includes: an N-phase DC-DC converter including N single phase DC-DC converters (wherein N is a whole number greater than one); a first microcontroller configured to control a first fraction of the N single phase DC-DC converters; and a second microcontroller configured to control a second fraction of the N single phase DC-DC converters. The first and second microcontrollers are connected to each other via a data line. In a first operation mode, control operations of the first microcontroller and the second microcontroller are synchronized via the data line to commonly control the N single phase DC-DC converters, and in a second operation mode, the first microcontroller and the second microcontroller independently control the first fraction and the second fraction, respectively.
A buck-boost converter working in a buck mode with buck switching cycles, a boost mode with boost switching cycles or a buck-boost mode with buck-boost switching cycles. Each of the buck-boost switching cycles has an AC phase, an AD phase and a BD Phase, and the duty cycle of the AC phase is determined by a reference signal, a feedback signal and an inductor current sense signal, the duty cycle of the AD phase is controlled and maintained at a preset duty threshold, the time period of the buck-boost switching cycle equals the time period of the buck switching cycle and the time period of the boost switching cycle.
A multi-input single output power system for outputting an output voltage on an output node. It includes a first integrated circuit (IC) converter device and a second IC converter device. The first IC converter device has a first pin to receive a first input voltage, a second pin to output the output voltage, and a first power unit coupled between the first pin and the second pin. The second IC converter device has a first pin to receive a second input voltage, a second pin to output the output voltage, a second power unit coupled between the first pin of the second IC converter device and the second pin of the second IC converter device, and a third pin. The third pin receives an external phase shedding control signal to determine whether to stop the second power unit from providing power to the output node.
A charge pump circuit arrangement includes a multitude of capacitors of a first and a second group controlled by non-overlapping clock pulses. The capacitors are partly realized in a semiconductor substrate including a deep well doping region and a high voltage doping region surrounded by the deep well doping region. Switches are connected to a pair of capacitors to control the deep well doping regions with signals in phase with the corresponding clock signal.
A power sensing and switching circuit, using voltage and current sensors, integrated circuits and logic gates that detects reverse power flow, from reactive loads, non-linear loads or dispersed electrical generators, and mitigates reverse power flow by functioning as a power factor correction device and by diverting the reverse power flow as recycled power to storage, local usage, or remote usage via a recovery line that mitigates distribution grid instability and speeds up the growth of dispersed electrical generators.
A device includes a driving portion, a transformer having a primary winding and a secondary winding, the secondary winding generating an output voltage, the driving portion being connected across the secondary winding so that the output voltage is applied to the driving portion, a switching element connected in series to the primary winding, a first controller provided in a primary side of the transformer for controlling the switching element, and a second controller supplied with the output voltage. The second controller is configured to perform, during implementation of a burst switching control, transmitting a stop signal to the first controller when the output voltage exceeds a first voltage, and transmitting, after transmission of the stop signal, a resumption signal to the first controller when the output voltage falls below a second voltage lower than the first voltage. The first controller controls the switching element to stop performing switching operations in response to the stop signal, and further controls the switching element to resume performing the switching operations in response to the resumption signal.
A system including a generator and a controller. The generator includes a permanent magnet generator (PMG), and an exciter. The controller manages operations of the generator. The controller includes an alternating current to direct current (AC-to-DC) converter that generates a direct current (DC) voltage, an exciter drive that provides a DC current to the exciter of the generator using the DC voltage created by the AC-to-DC converter in accordance with the control signal, and a regulator controller that drives the active AC-to-DC converter.
The disclosure relates to a valve for controlling the circulation of a fluid, having a valve body and a housing containing an electric motor composed of a stator and of a rotor, a needle, a sealing bell and also a fixed screw or a fixed nut. The fixed screw or the fixed nut is secured to the valve body, and the stator is secured to the valve body via the housing. The sealing bell is positioned at the interface between the rotor and the stator in such a way that the screw/nut, the rotor and the needle are within this bell and submerged in the fluid, the stator being isolated from the fluid. Furthermore, the rotor has the function of a nut or of a screw, and has a helical movement imposed by the fixed screw or the fixed nut and drives the needle axially. The motor is a brushless polyphase motor with radial principal magnetic flux.
A system and method for providing power to independent movers traveling along a track in a motion control system without requiring a fixed connection between the mover and a power source external to the mover. In one embodiment, a sliding transformer transfers power between the track and each mover. In another embodiment, an optical transmitter transfers power between the track and an optical receiver mounted on each mover. In yet another embodiment, a generator includes a drive wheel engaging the track as each mover travels along the track. A power converter on the mover receives the power generated on and/or transmitted to the mover to control an actuator or a sensor mounted on the mover or to activate drive coils mounted on the mover to interact with magnets mounted along the track and, thereby, control motion of each mover.
A load control device may be used to control and deliver power to an electrical load. The load control device may comprise a control circuit for controlling the power delivered to the electrical load. The load control device may comprise multiple actuators, where each of the actuators is connected between a terminal of the control circuit and a current regulating device. The number of the actuators may be greater than the number of the terminals. The control circuit may measure signals at the terminals and determine a state configuration for the actuators based on the measured signals. The control circuit may compare the state configuration to a predetermined dataset to detect a ghosting condition.
A method and system are provided for controlling transfer switch operations in a power distribution system. The method and system involve monitoring an electrical parameter of an electrical signal from a first power source associated with supplying power to a load; determining whether the electrical parameter satisfies a parameter threshold; selecting to increment or decrement a count value in accordance with the determination; and responsive to determining that the count value satisfies a first count threshold, initiating a start signal to start operation of a second power source to supply power to the load. The electrical parameter can be voltage or frequency, or other parameter(s) from which a power quality of the electrical signal may be evaluated. The electrical signal can be a single or polyphase electrical signal.
Charging control techniques for a vehicle including an engine that drives an alternator configured to charge a battery of the vehicle comprise modeling a fuel consumption of the alternator for each load level across a range of alternator loads using an engine torque model and a set of operating parameters of the engine, determining an energy output from the alternator for each load level across the range of alternator loads, calculating a cost-to-charge metric based on the modeled alternator fuel consumption and the determined alternator energy output for each duty cycle across a range of duty cycles of the alternator, determining an optimal cost-to-charge from the calculated cost-to-charge metrics, determining a target cost-to-charge metric based on a state of charge of the battery, and operating the alternator accordingly at an optimal duty cycle based on the metrics and current engine operating conditions.
A rechargeable battery is coupled to a power delivery unit or an external load unit. In a charging mode, the power delivery unit converts an input power to a converted voltage and/or current. A charging circuit converts the converted voltage and/or current to a charging voltage and/or current for charging the rechargeable battery. Power data is communicated between the power delivery unit and the rechargeable battery by: 1) the power delivery unit adjusting the converted voltage, wherein the power data is expressed by plural voltage levels of the converted voltage; and/or 2) the rechargeable battery adjusting a battery input current, wherein the power data is expressed by plural current levels of the battery input current. At least one of the converted voltage, the converted current, the charging voltage, or the charging current is adjusted according to the power data.
The disclosure relates to an electrical energy-supply device including several usage units, wherein each usage unit is adapted to generate or temporarily store electrical energy, and wherein a control means is adapted to control an exchange of power (E) between the energy-supply device and at least one device, The invention provides that the usage units of the energy-supply device are divided into strands and the usage units of each strand are connected to a series connection and the series connection is connected via a DC converter and at least one galvanically isolable switching unit is connected to a busbar arrangement.
A method for protecting an electrical transmission system having an electrical transmission line coupled to electrical equipment from hazardous EMI comprises receiving at least one pulse of hazardous EMI on the transmission line, and shunting current induced on the electrical transmission line by the at least one pulse of hazardous EMI to ground through at least one static series spark gap apparatus in such manner as to bypass high speed transient voltages from the electrical equipment to ground via a low impedance means and prevent damage thereto, wherein the static series spark gap apparatus has a rise time that is typically 2 nanoseconds or less.
A multi-level over-current protection circuit includes: a signal amplification circuit configured to receive a set of detection signals and output a first signal; a comparison circuit to compare the first signal with a first reference signal and a second reference signal respectively; and a time delay counting circuit. The time delay counting circuit adjusts a first count value when the first signal is higher than or equal to the first reference signal and smaller than the second reference signal, and the time delay counting circuit activates a protection mode when the first count value reaches a first protection time delay. The time delay counting circuit adjusts a second count value when the first signal is higher or equal to the second reference signal, and activates the protection mode when the second count value reaches a second protection time delay.
A surface emitting laser includes a substrate, a mesa of semiconductor layers including a lower reflector layer, an active layer, an upper reflector layer, and an upper contact layer that are successively laminated on the substrate, and an electrode provided on the upper contact layer. The upper contact layer includes GaAs. The electrode includes an alloy layer including Pt, in contact with the upper contact layer.
A tunable laser device based on silicon photonics includes a substrate configured with a patterned region comprising one or more vertical stoppers, an edge stopper facing a first direction, a first alignment feature structure formed in the patterned region along the first direction, and a bond pad disposed between the vertical stoppers. Additionally, the tunable laser includes an integrated coupler built in the substrate located at the edge stopper and a laser diode chip including a gain region covered by a P-type electrode and a second alignment feature structure formed beyond the P-type electrode. The laser diode chip is flipped to rest against the one or more vertical stoppers with the P-type electrode attached to the bond pad and the gain region coupled to the integrated coupler. Moreover, the tunable laser includes a tuning filter fabricated in the substrate and coupled via a wire waveguide to the integrated coupler.
A semiconductor laser device includes: a housing including: a first upward-facing surface, at least one inner lateral surface, a recess defined by at least the first upward-facing surface and the at least one inner lateral surface, a second upward-facing surface surrounding the first upward-facing surface in a top view and located above the first upward-facing surface, and at least one third upward-facing surface formed outward of the second upward-facing surface in the top view, wherein a height of the at least one third upward-facing surface is different from a height of the second upward-facing surface; at least one first wiring part located in the recess; at least one second wiring part located on the at least one third-upward facing surface and electrically connected to the at least one first wiring part thorough an insulating part of the housing; a semiconductor laser element disposed on the first upward-facing surface of the housing; and a cap fixed to the second upward-facing surface and covering the semiconductor laser element.
A fluid-cooled laser amplifier module (100) is disclosed which comprises: a casing; a plurality of slabs (110) of optical gain medium oriented in parallel in the casing for cooling by a fluid stream (154, 156); a polarisation rotator (120) disposed between a first group of one or more slabs (111) of the optical gain medium and a second group of one or more slabs (112) of the optical gain medium; optical windows (150, 152) for receiving an input beam or pulse (130) for amplifying by the slabs and for outputting the amplified beam or pulse (140); and fluid stream ports (155, 157) for receiving and discharging the fluid stream for cooling the slabs.
A laser system comprising two phase-locked solid-state laser sources is described. The laser system can be phase-locked at a predetermined offset between the operating frequencies of the lasers. This is achieved with high precision while exhibiting both low noise and high agility around the predetermined offset frequency. A pulse generator can be employed to generate a series of optical pulses from the laser system, the number, duration and shape of which can all be selected by a user. A phase-lock feedback loop provides a means for predetermined frequency chirps and phase shifts to be introduced throughout a sequence of generated pulses. The laser system can be made highly automated. The above features render the laser system ideally suited for use within coherent control two-state quantum systems, for example atomic interferometry, gyroscopes, precision gravimeters gravity gradiometers and quantum information processing and in particular the generation and control of quantum bits.
An apparatus includes an amplified spontaneous emission source, which in turn includes an optical fiber. The optical fiber includes a solid core and a first end. The solid core includes a silica matrix. The silica matrix includes a rare-earth element and a glass co-dopant. The rare-earth element includes dysprosium or neodymium. The glass co-dopant includes Al2O3. The apparatus further includes a laser pump diode coupled to the first end of the optical fiber. The laser pump diode and the optical fiber cooperate to generate a spontaneous spectral emission confined to the solid core. The spontaneous spectral emission includes a simultaneous plurality of spectral regions.
A fault location in an optical cable at a long distance is easily measured and detected with low-cost equipment in a configuration in which an isolator is disposed in the vicinity of an optical amplifier for improved optical transmission performance and for stabilization. An optical amplifier has a configuration in which multiplexing/demultiplexing units as first WDM filters and that multiplex/demultiplex main signal light and OTDR light and (measurement light) for submarine cable fault measurement transmitted to a submarine cable in opposite directions from a transmission device side and a reception device side, transmit the multiplexed/demultiplexed main signal light to a main path passing through an isolators and an EDF, and transmit the multiplexed/demultiplexed OTDR light to a bypass path bypassing the isolators and the EDF are included on both sides of a set of the isolators and the EDF of the submarine cable.
To solve the problem that the power consumption of optical amplifiers is not optimized over the life time of an amplifier, the optical amplifier includes a gain medium for amplifying a plurality of optical channels, the gain medium including a plurality of cores through which the plurality of optical channels to propagate respectively and a cladding area surrounding the plurality of cores, a monitor that monitors the temperature of the optical amplifier and producing a monitoring result, a first light source that emits a first light beam to excite the cladding area, a second light source that emits a plurality of second light beams to excite each of the plurality of cores individually, and a controller that controls the first light source and the second light source based on the produced monitoring result.
A moving plate moves from a protection position for protecting a tip part of a male tab to a connection position in a receptacle according to a connecting operation of a female housing. A male housing includes a male housing lock, and the female housing includes a female housing lock. The moving plate includes a plate male lock for locking the male housing lock at the protection position to restrict a movement to the connection position, and a plate female lock for locking the female housing-side locking portion to restrict separation of the female housing when locking of the male housing lock and the plate male lock is maintained.
A shielded board connector (20) includes a terminal holding member for shielding (21) and left and right terminal fittings (31). An unshielded board connector (35) includes a terminal holding member for unshielding (36) and left and right terminal fittings (31). In the pair of terminal fittings (31) in the shielded board connector (20), an interval (Pw) of tab-like connecting portions (32) is wider than an interval (Po) of board connecting portions (34). In the pair of terminal fittings (31) of the unshielded board connector (35), an interval (Pn) of tab-like connecting portions (32) is narrower than an interval (Po) of board connecting portions (34). The interval (Po) of the board connecting portions for shielding (34) and the interval (Po) of the board connecting portions for unshielding (34) are substantially equal.
A female terminal has a mating segment, and the mating segment includes a pair of channels. Each of the channels has a base wall, an upper side wall and a lower side wall. Each of the channels has a base part, a port part, and a connection part connecting the base part and the port part. A base wall of the connection part of each of the channels is connected to a base wall of the base part. An upper side wall and a lower side wall of the connection part respectively have a cantilever contact component connected to the base wall of the connection part. In each of the channels, a base wall of the port part is connected to the base wall of the connection part. The port part of each of the channels and a port part of another channel together form a frame port.
This electrical connection socket for relaying exchange of electrical signals between a first electrical component and a second electrical component, is provided with: a signal pin which is inserted in a communication hole of a metallic casing so as to form a coaxial line path between the inner wall surface of the communication hole and the outer circumferential surface of the signal pin so that one end of the signal pin is electrically connected to a terminal of the first electrical component while the other end is electrically connected to a terminal of the second electrical component; and a holding member which holds the signal pin in the communication hole such that the outer circumferential surface of the signal pin is separated from the inner wall surface of the communication hole, wherein the characteristic impedance of a signal path formed by the signal pin in a first region where the signal pin is held by the holding member is smaller than a predetermined characteristic impedance which is a reference, and the characteristic impedance in a second region adjacent to the first region is larger than the predetermined characteristic impedance.
A post insulator, a post insulator keeper, and a method of securing a conductor on a post insulator are provided. A post insulator includes: an electrically insulative case including an abutment surface defining a recess; and a keeper rotatably coupled to the case between an open position in which a conductor is receivable into the recess, and a closed position to maintain the conductor in the recess.
A bail for forming a mechanical and electrical connection includes an inboard section and an outboard section. The inboard section includes an elongate, electrically conductive multi-strand conductor. The outboard section includes an elongate, electrically conductive solid rod conductor electrically connected to the multi-strand conductor.
The disclosure concerns an antenna assembly having a substrate with an antenna radiating element and a ground conductor disposed on the substrate, the ground conductor further characterized by a plurality of ground resonators, wherein a length associated with each of the ground resonators increases as the ground resonators are distanced from the antenna radiating element. Additionally, a coaxial cable is routed around the antenna assembly for configuring the coaxial cable as an additional ground resonator associated with the antenna assembly. The resulting antenna provides wide band performance between 700 MHz and 2700 MHz with improved efficiency compared with conventional antennas.
An antenna includes a first dielectric substrate and a first feeding element. The first dielectric substrate includes a first insulating layer, and a first radiation plate including a first opening that exposes an upper surface of the first insulating layer. The first feeding element is disposed in the first opening to penetrate the first insulating layer in a direction extending toward a lower surface of the first dielectric substrate. The first feeding element is insulated from the first radiation plate by the first insulating layer. The first feeding element includes a first conductive plate having an upper surface located on a same plane as an upper surface of the first radiation plate.
A radiation pattern of a phased array antenna, comprising a plurality of antenna elements, may be dynamically modified using phase shifters to apply variable phase shifts between antenna elements. In a phased array antenna designed for airborne applications, the phase shifters may be required to enable a fine phase-shifting resolution and to operate over a wide temperature range. The phase shifters may also be required to perform while exhibiting small process variations, small form factor, low power consumption, and low loss. One possible solution to this is a passive vector-interpolating phase shifter configured to exhibit such characteristics.
An antenna device includes a substrate, a feed line and an antenna. The substrate is formed with a non-opaque material. The feed line is disposed at the substrate and has a first terminal and a second terminal. The antenna is disposed at the substrate, electrically connected to the first terminal of the feed line, and is used to access a wireless signal. The second terminal of the feed line is electrically connected to a chip disposed on the substrate.
A communication device with an RF (Radio Frequency) node and a detection node includes a first radiation element, a second radiation element, a first inductor, a second inductor, a third inductor, a first capacitor, and a second capacitor. The first radiation element is coupled to a first node. The second radiation element is coupled to a second node. The first inductor is coupled between the RF node and the ground voltage. The first capacitor is coupled between the RF node and the first node. The second inductor is coupled between the first node and the second node. The second capacitor is coupled between the second node and the ground voltage. The third inductor is coupled between the detection node and the second node. An antenna structure and a sensing pad are formed by the first radiation element and the second radiation element.
An antenna unit includes a case having a base and a lid. An antenna assembly is located within the lid and is IP67 compliant, being waterproof. A plurality of antenna components are situated within the base separate from the antenna assembly. An optional barrier is located within the base to divide the antenna components from the lid. The antenna assembly include different types of antenna operable at least between 600 MHz to 39 GHz. The lid is separable from the base and is divided from other components to minimize interference so that all antenna may operate simultaneously while the lid is in a closed position.
An electrochemical-type power supply source for use in marine environment, is provided with: an electrochemical stack, which generates electric power in the presence, internally, of an electrolytic fluid; a first tank, designed to contain electrolytic fluid at a first temperature; a second tank, designed to contain electrolytic fluid at a second temperature, lower than the first temperature; a thermostatic valve, that mixes electrolytic fluid at a lower temperature with electrolytic fluid at a higher temperature, for generating a mixed electrolytic fluid to be introduced into the electrochemical stack at a controlled temperature for generating a desired electric power. The electrochemical power supply is further provided with an auxiliary tank, adapted to contain electrolytic fluid at a third temperature, higher than the first temperature; and the thermostatic valve is connected to the auxiliary tank and receives, at an input, the electrolytic fluid at the third temperature.
A battery cell for an electric vehicle battery pack is provided. A housing of the battery cell can define a cavity. An electrolyte material can be housed within the cavity. A first polarity terminal of the battery cell can be disposed at an open end of the housing. A first conductive tab can be disposed at a closed end of the housing and electrically coupled with a first polarity portion of the electrolyte material. A conductive rod can extend through a core of the electrolyte material and can include a first end disposed at the closed end of the housing and electrically coupled with the first conductive tab. A receptacle can be electrically coupled with the first polarity terminal and can extend towards the electrolyte material to engage with a second end of the conductive rod at the open end of the housing.
A metal air battery cell has a sealed pouch defined by a metallocene film and a gas and liquid impermeable flexible layer, and an electrochemical cell contained within the pouch. The metallocene film and gas and liquid impermeable flexible layer are sealed to each other and around the electrochemical cell.
An energy storage system has one or more energy storage units, each energy storage unit including one or more energy storage modules, and each energy storage module including a plurality of electrochemical energy storage devices connected in series. A DC switching device is provided in series with the or each energy storage unit. The DC switching device includes a semiconductor device and a rectifying unit in parallel with the semiconductor device.
Disclosed is an all-solid-state lithium ion secondary battery including an anode that contains, as an anode active material, at least one selected from the group consisting of a metal that is able to form an alloy with Li, an oxide of the metal, and an alloy of the metal and Li, and being excellent in cycle characteristics. The all-solid-state lithium ion secondary battery may be an all-solid-state lithium ion secondary battery, wherein an anode comprises an anode active material, an electroconductive material and a solid electrolyte; wherein the anode active material comprises at least one active material selected from the group consisting of a metal that is able to form an alloy with Li, an oxide of the metal, and an alloy of the metal and Li; and wherein the solid electrolyte is particles with a BET specific surface area of from 1.8 m2/g to 19.7 m2/g.
A wound electrode assembly, including a first electrode plate including a first current collector and a second electrode plate including a second current collector, wherein the second electrode plate includes a second empty foil segment, the second empty foil segment surrounds the first electrode plate, the second empty foil segment is configured as a tail segment of the second electrode plate, in the second empty foil segment, a surface of the second current collector opposite to the first electrode plate is coated with active substance, a surface of the second current collector away from the first electrode plate is coated with the active substance. The wound electrode assembly to effectively avoids lithium dendrite while improving the utilization of the battery material and the energy density of the battery, thereby improving the safety performance of the battery.
A method for assembling a secondary battery cell module by using an assembling jig including a plurality of guide rods disposed on a jig plate includes: mounting a lower frame on the jig plate while the guide rods are inserted into a plurality of arranging through-holes of the lower frame; disposing a plurality of battery cells on the lower frame; mounting an upper frame on the battery cells while the guide rods are inserted into a plurality of arranging through-holes of the upper frame; fastening the upper frame and the lower frame together; and separating the assembling jig from the upper frame and the lower frame.
To precisely measure and control the amount of a cathode gas supplied to a fuel cell, a fuel cell system includes a fuel cell, a first flow passage through which a cathode gas is supplied to the fuel cell, a second flow passage through which a cathode off-gas is discharged from the fuel cell, a bypass flow passage which is bifurcated from the first flow passage and which is connected to the second flow passage, a compressor provided in the first flow passage, a first flowmeter provided in the first flow passage, a flow amount regulation valve provided in the bypass flow passage, a second flowmeter provided in the bypass flow passage, and a controller which controls the flow amount of the cathode gas supplied to the fuel cell, wherein the compressor is arranged on the upstream side of the bypass flow passage, the first flowmeter is arranged on the upstream side of the compressor, the second flowmeter is arranged on the downstream side of the flow amount regulation valve, and the controller controls the flow amount of the cathode gas supplied to the fuel cell based on the flow amount measured by the first flowmeter and the flow amount measured by the second flowmeter.
A porous body with a framework having an integrally continuous, three-dimensional network structure, the framework comprising an outer shell and a core including one or both of a hollow or a conductive material, the outer shell including nickel and cobalt, the cobalt having a ratio in mass of 0.2 or more and 0.4 or less or 0.6 or more and 0.8 or less relative to the total mass of the nickel and the cobalt.
Disclosed are an electrode assembly, and a secondary lithium battery including the same. The electrode assembly is configured by alternately stacking two or more positive electrodes and one or more negative electrodes using a separator as a boundary therebetween, outermost positive electrodes are positioned on outermost opposite surfaces of the electrode assembly, respectively, each of the outermost positive electrodes includes a positive electrode current collector, a positive active material layer formed on one surface of the positive electrode current collector, and a non-reversible material coating layer formed on the other surface of the positive electrode current collector and including lithium oxide, and the non-reversible material coating layer is positioned on an outermost surface of the electrode assembly.
The present invention relates to a secondary battery negative electrode binder composition with which a stable negative electrode active material layer can be formed, which can follow volumetric changes in the negative electrode, whereby a secondary battery can be manufactured that achieves a high charge/discharge capacity and allows for improvement in charge/discharge cycle characteristics. Provided is a binder composition for fabricating a secondary battery negative electrode, containing an element capable of forming an alloy with lithium as an active material, which is a secondary battery negative electrode binder composition comprising an emulsion in which polymer particles derived from an ethylenically unsaturated monomer are dispersed in an aqueous solution of a polyvinyl alcohol-based resin, wherein the ratio of the polyvinyl alcohol-based resin/polymer particles is 60/40 to 99/1, as a weight ratio of resin solids.
A method for producing a positive electrode active material for nonaqueous electrolyte secondary batteries, includes: a mixing step of adding a W compound powder having a solubility A adjusted to 2.0 g/L or less to a Li-metal composite oxide powder and stirring in water washing of the composite oxide powder, the solubility A being determined by stirring the W compound in water having a pH of 12.5 at 25° C. for 20 minutes, the composite oxide powder being represented by the formula: LicNi1-x-yCoxMyO2 and composed of primary and secondary particles, followed by solid-liquid separation, to thereby obtain a tungsten-containing mixture with the tungsten compound dispersed in the composite oxide powder; and a heat-treating step of heat-treating the mixture to uniformly disperse W on the surface of primary particles and thereby form a compound containing W and Li from the W and Li in the mixture, on the surface of primary particles.
Systems and methods are provided for heat treatment of whole cell structures. A battery may be formed based on applying of heat treatment to a whole cell composition that includes, at least, both anode material and cathode material, such that the anode material and the cathode material are heat treated at the same time. The heat treatment may include pyrolysis. The whole cell composition, and the corresponding cell formed based thereon, may include solid state electrolyte.
A display panel and method of fabricating thereof. The display panel includes a capacitor structure, a first plate of the capacitor structure includes an active region and a light shielding metal layer which are electrically connected, and a second plate of the capacitor structure includes an anode and a capacitor metal layer which are electrically connected. The anode and the active region are disposed correspondingly, and at least two insulating layers are disposed between the anode and the active region, the light shielding metal layer and the capacitor metal layer are disposed correspondingly, and at least two insulating layers are disposed between the light shielding metal layer and the capacitor metal layer.
A display device is disclosed, wherein the display device comprises a hole area on a substrate, a buffer area configured to surround the hole area, and a display area configured to surround the buffer area, wherein the display area includes a thin film transistor including a gate electrode, a source electrode, and a drain electrode on the substrate, the buffer area is provided with a damage preventing portion configured to control damages generated in a process of forming the hole area from extending to the display area, and the damage preventing portion is formed of a same material as a material of the source and drain electrodes.
A display panel and a display device are provided and have a base substrate, a blocking wall, an encapsulation layer, and a touch capacitor layer. By forming a second-layer blocking wall and a first-layer blocking wall to form a second blocking wall, a height of the second blocking wall is increased. Further, a blocking block is disposed between the second blocking wall and the first blocking wall, thereby increasing a thickness and a height of the blocking wall. When inkjet printing an organic layer, a slope at edges of a display area is relatively smooth, which can make an entire encapsulation layer relatively flat, thereby reducing a height difference of wirings at the edges and avoiding a problem of inaccurate exposure and focus.
An electron transport thin film is comprised of nano-zinc oxide doped with metal ions. The nano-zinc oxide doped with the metal ions is nano-zinc oxide having a surface enriched with the metal ions.
The present invention provides a quantum dot light-emitting diode device, which includes a substrate, a first electrode disposed on the substrate, a hole layer vertically disposed on an anode, wherein the hole layer includes a sidewall, an electron transport layer disposed on the sidewall, a quantum dot layer disposed on the electron transport layer, and a second electrode disposed on the electron transport layer. A density of the zinc oxide nanowire is high in the present disclosure, causing high light current density, which greatly improves a brightness of light to achieve a purpose of increasing a light-emitting performance of the light-emitting diode device.
A flexible organic light emitting diode (OLED) display panel and a foldable display device are provided. The flexible OLED display panel includes a flexible substrate and an elastic material layer. The flexible substrate includes a folding zone and two non-folding zones located on left and right sides of the folding zone. The elastic material layer is disposed over a bottom surface corresponding to the folding zone of the flexible substrate.
Provided are a novel compound capable of improving the luminous efficiency, stability and lifespan of an element, an organic electronic element using the same, and an electronic device thereof.
Provided are an organic light-emitting device including an arylamine-based compound including a thermally decomposable group, and an arylamine-based compound including a thermally decomposable group. The organic light-emitting device includes: a first electrode; a second electrode facing a first electrode; and an organic layer between the first electrode and the second electrode and including an emission layer, the organic layer including an arylamine-based compound in which the thermally decomposable group has been thermally decomposed and removed from the arylamine-based compound including the thermally decomposable group.
In a method of manufacturing a magnetoresistive random access memory, a memory structure may be formed on a substrate. The memory structure may include a lower electrode, a magnetic tunnel junction (MTJ) structure, and an upper electrode sequentially stacked. A protection layer including silicon nitride may be formed to cover a surface of the memory structure. The protection layer may be formed by a chemical vapor deposition process using plasma and introducing deposition gases including a silicon source gas, a nitrogen source gas containing no hydrogen and a dissociation gas. Damages of the MTJ structure may be decreased during forming the protection layer. Thus, the MRAM may have improved characteristics.
A sensing device is provided. The sensing device includes a heat regulation mechanism to regulate a temperature of a piezoelectric resonator corresponding to a voltage, and uses a sensing sensor to cause a sensing object to adsorb to and desorb from the piezoelectric resonator by increase and decrease of the temperature. A drive voltage is regulated to regulate an amplification factor of a heat regulation voltage input to a drive voltage regulator that regulates the temperature of the heat regulation mechanism corresponding to the type of a sensing sensor connected to a device main body. Therefore, when a CQCM sensor that heats a crystal resonator using a heater circuit and a TQCM sensor that regulates a heat of the crystal resonator sing a Peltier element are each used, regulation ranges of the driving powers supplied to the respective heater circuit and Peltier element can be changed.
Instead of discrete LED chips, monolithic LED strips reduce manufacturing time and inaccuracy when building high-resolution displays with small LED pixels of less than 100 micrometers. Guide strips next to LED strips align the monolithic LED strips and increase light emission area. A monolithic LED strip formed on a substrate has a P contact and an N contact. A first transfer layer is on an upper surface of the monolithic LED strip. The first transfer layer separates the monolithic LED strip from the substrate. A second transfer layer applied to the lower surface of the monolithic LED strip separates the monolithic LED strip from the first transfer layer. A display backplane is prepared with positive electrodes, negative electrodes, positive contact pads, and negative contact pads.
A light emitting device package according to an embodiment may include first and second frames, a body, a light emitting device, first and second conductive parts, and first and second conductors. According to the embodiment, first and second frames may be spaced apart from each other and include first and second openings, respectively. The body may be disposed between the first and second frames. The light emitting device may be disposed on the body and include first and second bonding parts. The first and second conductive parts may be disposed under the first and second bonding parts. The first and second conductors may be disposed in the first and second openings, respectively. According to the embodiment, the first and second conductive parts may extend into the first and second openings from the first and second bonding parts, respectively, and the first and second conductors may be disposed between the first and second conductive parts and the first and second frames, respectively.
A micro light emitting diode (LED), including a first semiconductor layer doped with an n-type dopant; a second semiconductor layer doped with a p-type dopant; an active layer arranged between the first semiconductor layer and the second semiconductor layer, and configured to provide light; a first side surface including a vertical side surface of the first semiconductor layer; a second side surface tilted with respect to the first side surface, and including a first tilted side surface of the active layer and a second tilted side surface of the second semiconductor layer; an insulating layer arranged to surround the first side surface and the second side surface; and a reflective layer arranged to partially surround the insulating layer in an area of the insulating layer corresponding to the second side surface.
A light emitting device includes: a light emitting element comprising: a semiconductor multilayer structure that has an electrode formation surface, a light-emitting surface opposite to the electrode formation surface, and side surfaces between the electrode formation surface and the light-emitting surface, and a pair of electrodes provided on the electrode formation surface; a covering member covering the side surfaces of the light emitting element; and an optical member disposed over the light-emitting surface of the light emitting element and an upper surface of the covering member, the optical member comprising: a light-reflective portion disposed above the light emitting element, and a light-transmissive portion disposed between the light-reflective portion and the covering member and forming a part of an outer side surface of the light emitting device.
An optoelectronic semiconductor chip, a method for manufacturing an optoelectronic component and an optoelectronic component are disclosed. In an embodiment an optoelectronic semiconductor chip includes a semiconductor layer sequence having an emission side, the emission side comprising a plurality of emission fields, partition walls on the emission side in a region between two adjacent emission fields and a conversion element on one or more emission fields, wherein the conversion element includes a matrix material with first phosphor particles incorporated therein, wherein the first phosphor particles are sedimented in the matrix material such that a mass fraction of the first phosphor particles is greater in a lower region of the conversion element facing the semiconductor layer sequence than in a remaining region of the conversion element, and wherein the partition walls are attached to the emission side without any additional connectors.
A display panel and a display device are provided. When manufacturing a first electrode, by depositing a first transparent electrode layer, a first metal layer, and a second transparent electrode layer on a region of the display panel, and etching the first transparent electrode layer, the first metal layer, and the second transparent electrode layer on the thinned-down region; and afterwards, depositing a third transparent electrode layer, a second metal layer, and a fourth transparent electrode layer, a first electrode of the display panel is formed.
A method of aligning micro LEDs and a method of manufacturing a micro LED display using the same are provided. The method of aligning micro LEDs includes providing micro LEDs, each having a first surface that has a first maximum width and a second surface opposite to the first surface and has a second maximum width that is greater than the first maximum width, providing a transfer substrate including a transfer mold that has an array of openings, each of the openings being configured to accommodate the first surface of a corresponding micro LED and not accommodate the second surface of the corresponding micro LED and aligning the micro LEDs in one direction in the openings of the transfer mold by inserting the micro LEDs into the openings of the transfer mold so that the first surface of each of the micro LEDs is positioned within a corresponding opening.
An apparatus (201) comprises a light emitter (202) and a photodetector (203) formed on a single fluid-permeable substrate (206) such that the photodetector (203) is able to detect light emitted by the light emitter (202) after interaction of the light with a user of the apparatus (201). The photodetector comprises a channel member (207) which may be made from graphene, respective source and drain electrodes (208, 209), a layer of photosensitive material (210) configured to vary the flow of electrical current through the channel member (207) on exposure to light from the light emitter (202), and a gate electrode (211). The apparatus (201) further comprises a layer of fluid-impermeable dielectric material (212) configured to inhibit a flow of electrical current between the channel member (207) and the gate electrode (211) of the photodetector (203) to enable the electrical conductance of the channel member (207) to be controlled by a voltage applied to the gate electrode (211) and to inhibit exposure of the light emitter (202) to fluid which has permeated through the fluid-permeable substrate (206). The layer of fluid-impermeable dielectric material (212) allows resilient substrates made from polymeric material to be used without the risk of damage to the overlying components caused by the permeated fluid. The dual functionality of the layer of fluid-impermeable dielectric material (212) reduces the number of fabrication steps used to form the apparatus (201) and results in a thinner, more compact device.
A multijunction solar cell including an upper first solar subcell having a first band gap and positioned for receiving an incoming light beam; a second solar subcell disposed directly below and adjacent to the upper first solar subcell, and having a second band gap smaller than said first band gap; wherein a light scattering layer is provided below the upper first solar subcell and adjacent to the upper first solar subcell for redirecting the incoming light to be scattered along longer path lengths into the second solar subcell.
The present disclosure provides interconnect elements and methods of using interconnect elements. In one embodiment, the interconnect element includes: a first end including at least three members, each member having a pair of parallel gap weld positions for mounting an adjoining first component; a second opposing end including at least two members, each member having a pair of parallel gap weld positions for mounting an adjoining second component; and one or more interconnect connecting portions to attach the first end of the interconnect element to the second end of the interconnect element.
A multi-negative differential transconductance device includes a substrate conductive portion; a gate insulating layer formed by being laminated on the substrate conductive portion; a first semiconductor, a second semiconductor, and a third semiconductor which have different threshold voltages and are formed to be horizontally connected in series on the gate insulating layer; and an electrode formed at both ends of the first semiconductor and the third semiconductor. The multi-negative differential transconductance device forms a junction of three or more semiconductor materials in one device to have a plurality of peaks and valleys so that the multi-negative differential transconductance device is utilized to implement a multi-valued logic circuit which is capable of representing four or more logical states without significantly increasing an area of the negative differential transconductance device which occupies the chip. Therefore, effects of low power consumption, a reduced size, and high speed of a chip may be achieved.
Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises a first semiconductor stack and a second semiconductor stack over a substrate, wherein each of the first and second semiconductor stacks includes semiconductor layers stacked up and separated from each other; a dummy spacer between the first and second semiconductor stacks, wherein the dummy spacer contacts a first sidewall of each semiconductor layer of the first and second semiconductor stacks; and a gate structure wrapping a second sidewall, a top surface, and a bottom surface of each semiconductor layer of the first and second semiconductor stacks.
A method is presented for reducing sagging effects in nanosheet devices. The method includes forming at least two nanosheet structures over a substrate, wherein each nanosheet structure includes alternating layers of a first semiconductor material and a second semiconductor material, depositing a dielectric layer over the at least two nanosheet structures, depositing a dummy gate over the dielectric layer, etching the first semiconductor material to create voids filled with inner spacers, removing the dummy gate and the dielectric layer such that a supporting dielectric section remains between the at least two nanosheet structures, and removing the etched first semiconductor material such that a supporting structure is defined including the supporting dielectric section and the second semiconductor material.
In a method of manufacturing a semiconductor device, a fin structure is formed. The fin structure includes a stacked layer of first semiconductor layers and second semiconductor layers disposed over a bottom fin structure, and a hard mask layer over the stacked layer. An isolation insulating layer is formed so that the hard mask layer and the stacked layer are exposed from the isolation insulating layer. A sacrificial cladding layer is formed over at least sidewalls of the exposed hard mask layer and stacked layer. A first dielectric layer is formed, and a second dielectric layer made of a different material than the first dielectric layer is formed over the first dielectric layer. The second dielectric layer is recessed, and a third dielectric layer made of a different material than the second dielectric layer is formed on the recessed second dielectric layer, thereby forming a wall fin structure.
A field effect transistor includes a substrate and spacers over the substrate. The field effect transistor includes a channel recess cavity between the spacers, wherein a bottom-most surface of the channel recess cavity is parallel to the substrate top surface. The field effect transistor includes a gate stack, wherein the gate stack includes a bottom portion in the channel recess cavity and a top portion outside the channel recess cavity, the gate stack further includes a gate dielectric layer extending from the channel recess cavity along sidewalls of each of the pair of spacers, and the gate dielectric layer directly contacts the substrate below substrate top surface. The field effect transistor includes a strained source/drain (S/D) below the substrate top surface, wherein the strained S/D extends below the gate stack. The field effect transistor further includes a source/drain (S/D) extension substantially conformably surrounding the strained S/D.
A two-terminal biristor in which a polysilicon emitter layer is inserted and a method of manufacturing the same are provided. The method of manufacturing the two-terminal biristor according to an embodiment of the present disclosure includes forming a first semiconductor layer of a first type on a substrate, forming a second semiconductor layer of a second type on the first semiconductor layer, forming a third semiconductor layer of the first type on the second semiconductor layer, and forming a polysilicon layer of the first type on the third semiconductor layer.
There are provided a vertical semiconductor device, a method of manufacturing the same, and an electronic device including the same. According to an embodiment, the semiconductor device may include a vertical active region disposed on a substrate and comprising a first source/drain layer, a channel layer and a second source/drain layer which are stacked in sequence; a gate stack surrounding at least a part of a periphery of the channel layer; and at least one of: a first electrical connection component for the first source/drain layer, comprising a first contact portion disposed above a top surface of the active region and a first conductive channel in contact with the first contact portion and extending from the top surface of the active region to be in contact with at least a part of sidewalls of the first source/drain layer; and a second electrical connection component for the gate stack, comprising a second contact portion disposed above the top surface of the active region and a second conductive channel in contact with the second contact portion and extending from the top surface of the active region to be in contact with at least a part of sidewalls of a gate conductor layer in the gate stack.
A method for manufacturing a semiconductor device includes forming a fin on a semiconductor substrate, and forming a bottom source/drain region adjacent a base of the fin. In the method, a dielectric layer, a work function metal layer and a first gate metal layer are sequentially deposited on the bottom source/drain region and around the fin. The dielectric layer, the work function metal layer and the first gate metal layer form a gate structure. The method also includes removing the dielectric layer, the work function metal layer and the first gate metal layer from an end portion of the fin, and depositing a second gate metal layer around the end portion of the fin in place of the removed dielectric layer, the removed work function metal layer and the removed first gate metal layer. The second gate metal layer contacts the end portion of the fin.
Self-aligned gate endcap (SAGE) architectures having gate endcap plugs or contact endcap plugs, or both gate endcap plugs and contact endcap plugs, and methods of fabricating SAGE architectures having such endcap plugs, are described. In an example, a first gate structure is over a first of a plurality of semiconductor fins. A second gate structure is over a second of the plurality of semiconductor fins. A first gate endcap isolation structure is laterally between and in contact with the first gate structure and the second gate structure and has an uppermost surface co-planar with an uppermost surface of the first gate structure and the second gate structure. A second gate endcap isolation structure is laterally between and in contact with first and second lateral portions of the first gate structure and has an uppermost surface below an uppermost surface of the first gate structure.
A method for manufacturing a semiconductor device according to an embodiment includes: forming a first silicon oxide film on a surface of a silicon carbide layer; and performing first heat treatment at 1200° C. or more in an atmosphere including nitrogen gas and carbon dioxide gas.
An IGBT chip having a mixed gate structure includes a plurality of mixed gate units. Each of the mixed gate units includes a source region (3) and a gate region. The gate region includes a planar gate region (1) and a trench gate region (2), which are respectively disposed at both sides of the source region (3). A planar gate and a trench gate are compositely disposed on the same cell (16), thereby greatly improving chip density while retaining both trench gate's features of low on-state energy loss and high current density and planar gate's feature of wide safe operating area.
A display panel or a display device with high display quality is provided. The display panel includes a light-emitting element, an insulating layer, a protective layer, and a conductive layer. The light-emitting element includes a first electrode, a light-emitting layer, and a second electrode. The light-emitting element emits light to the protective layer side. The insulating layer includes a first opening overlapping with the first electrode. The insulating layer covers an end portion of the first electrode. The light-emitting layer overlaps with the first electrode through the first opening. The second electrode is positioned over the light-emitting layer. The protective layer is over and in contact with the second electrode. The protective layer functions as a protective layer of the light-emitting element. The protective layer includes a second opening overlapping with the insulating layer. The conductive layer is connected to the second electrode through the second opening. The conductive layer functions as an auxiliary wiring of the second electrode.
A display substrate and a manufacture method thereof are provided. The display substrate includes a pixel definition layer and a controllable deformation layer; the pixel definition layer includes a plurality of openings for defining a plurality of pixel units; and the controllable deformation layer is on the pixel definition layer, and a horizontal extension of at least a portion of the controllable deformation layer in a direction parallel to the pixel definition layer is controllable. The organic functional layer of the display substrate has uniform morphology, so the display substrate has better display effect.
The present invention provides a display panel and a display device, the display panel has an array substrate, and the array substrate has a substrate, a first inorganic film layer, at least one auxiliary cathode, a second inorganic film layer, and at least one via hole. The via hole is arranged in at least two voltage drop regions that are arranged sequentially. The via hole in each of the voltage drop regions is distributed evenly. A first voltage drop region is disposed opposite to a center or a side edge of the substrate.
Provide a resistive random-access memory device having an optimized 3D construction. A resistive random-access memory includes a plurality of pillars, a plurality of bit lines, and a memory cell. The pillars extend vertically along the main surface of the substrate. The bit lines extend in a horizontal direction. The memory cell is formed at the intersection of the pillars and the bit lines. The memory cell includes a gate insulating film, a semiconductor film, and a resistive element. The gate insulating film is formed on the circumference of the pillar. The semiconductor film is formed on the circumference of gate insulating film and provides a channel area. The resistive element is formed on the circumference of the semiconductor film. A first electrode area on the circumference of the resistive element and a second electrode area facing the first electrode area are electrically connected to a pair of adjacent bit lines.
A fingerprint sensing module including an image sensor, a microlens array and a light-shielding layer is provided. The image sensor has multiple pixels. Each of the pixels has multiple light-sensing regions physically separated. Each of the light-sensing regions is adapted to receive an image beam coming from a fingerprint of user. The microlens array is disposed above the image sensor. The microlens array includes multiple microlens. A focus region of each of the microlens covers a portion of the light-sensing regions. The light-shielding layer is disposed between the image sensor and the microlens array. The light-shielding layer has multiple openings, and the positions of the openings are corresponded to the positions of the pixels.
A photodetection device includes a pixel matrix in which each pixel includes a barrier photodetector. The pixel matrix includes an absorption layer, a barrier layer, a contact layer, and at least one separation element to delimit the pixels. At least one separation element extends above the contact layer, and forms at least one depletion zone that extends locally in the contact layer, to block the lateral circulation of charge carriers.
The present disclosure relates to a semiconductor device, a manufacturing method of the semiconductor device, and electronic equipment that are directed to improving quality and reliability of a semiconductor device including a through electrode, or electronic equipment. The semiconductor device includes a first semiconductor substrate including a through electrode, a first insulating film laminated on a first surface of the first semiconductor substrate, and a second insulating film laminated on the first insulating film, in which an inner wall and a bottom surface of the through electrode are covered with a conductor, the first insulating film and the second insulating film are laminated on the conductor, and the through electrode includes a groove which reaches the first insulating film on the bottom surface from the first surface of the first semiconductor substrate. The present technology may be applied to a packaged solid-state imaging device or the like, for example.
A pixel array includes a semiconductor substrate, a plurality of isolation layer segments, and a plurality of photodiodes. Each of the plurality of isolation layer segments extends through the semiconductor substrate in a first direction. Each of the plurality of isolation layer segments encloses a portion of the semiconductor substrate in a plane perpendicular to the first direction. The plurality of isolation layer segments form a grid that defines a plurality of isolated sections of the semiconductor substrate. The plurality of isolated sections of the semiconductor substrate include the portions of the semiconductor substrate. Each of the photodiodes is formed in a respective one of the plurality of isolated sections of the semiconductor substrate.
The present disclosure relates to a solid state imaging element and an electronic device that make it possible to improve sensitivity to light on a long wavelength side. A solid state imaging element according to a first aspect of the present disclosure has a solid state imaging element in which a large number of pixels are arranged vertically and horizontally, the solid state imaging element includes a periodic concave-convex pattern on a light receiving surface and an opposite surface to the light receiving surface of a light absorbing layer as a light detecting element. The present disclosure can be applied to, for example, a CMOS and the like installed in a sensor that needs a high sensitivity to light belonging to a region on the long wavelength side, such as light in the infrared region.
An imaging device including a semiconductor substrate; a photoelectric converter stacked on the semiconductor substrate, the photoelectric converter being configured to generate a signal through photoelectric conversion of incident light; a multilayer wiring structure located between the semiconductor substrate and the photoelectric converter; and circuitry located in the multilayer wiring structure and the semiconductor substrate, the circuitry being configured to detect the signal. The circuitry includes a first capacitance element and a second capacitance element; and a first transistor including a first source and a first drain in the semiconductor substrate and a first gate. The first capacitance element includes a first electrode, a second electrode, and a dielectric film between the first electrode and the second electrode, the multilayer wiring structure includes an insulating layer adjacent to the first capacitance element, and a permittivity of the dielectric film is greater than a permittivity of the insulating layer.
A display substrate includes a plurality of pixel units. Each of the plurality of pixel units is provided with a plurality of sub-pixels. Each of the plurality of sub-pixels is correspondingly provided with a thin film transistor TFT. At least two TFTs are symmetrical about a geometric center point of the pixel unit.
A display panel includes: a substrate; a thin film transistor layer, wherein the thin film transistor layer is disposed on the substrate an organic layer; and a via, wherein the via is disposed on the thin film transistor layer, and a part of the organic layer extends to the via.
A SRAM device includes a substrate, at least one two-transistor static random access memory (2T-SRAM), an inner dielectric layer, a plurality of contacts, an inter-layer dielectric (ILD) layer, a plurality of vias, and a conductive line. The 2T-SRAM is disposed on the substrate, the inner dielectric layer covers the 2T-SRAM, and the contacts are disposed in the inner dielectric layer and coupled to the 2T-SRAM. The ILD layer covers the inner dielectric layer and the contacts, and the vias are disposed in the ILD layer and respectively coupled to the 2T-SRAM trough the corresponding contacts. The conductive line is disposed on the ILD layer and connects with the plurality of vias, wherein the thickness of the conductive line is less than or equal to one-tenth of the thickness of the via such that it can significantly reduce the coupling effect compared with the traditional bit line.
Systems, methods and apparatus are provided for a three-node access device in vertical three-dimensional (3D) memory. An example method includes a method for forming arrays of vertically stacked memory cells, having horizontally oriented access devices and vertically oriented access lines. The method includes depositing alternating layers of a dielectric material and a sacrificial material to form a vertical stack. Forming a plurality of first vertical openings to form elongated vertical, pillar columns with sidewalls in the vertical stack. Conformally depositing a gate dielectric in the plurality of first vertical openings. Forming a conductive material on the gate dielectric. Removing portions of the conductive material to form a plurality of separate, vertical access lines. Repairing a first side of the gate dielectric exposed where the conductive material was removed. Forming a second vertical opening to expose sidewalls adjacent a first region of the sacrificial material. Selectively removing the sacrificial material in the first region to form first horizontal openings. Repairing a second side of the gate dielectric exposed where the sacrificial material was removed in the first region. Depositing a first source/drain region, a channel region, and a second source/drain region in the first horizontal openings.
A semiconductor memory device includes a substrate having a memory cell region where a plurality of active regions are defined; a word line having a stack structure of a lower word line layer and an upper word line layer and extending over the plurality of active regions in a first horizontal direction, and a buried insulation layer on the word line; a bit line structure arranged on the plurality of active regions, extending in a second horizontal direction perpendicular to the first horizontal direction, and having a bit line; and a word line contact plug electrically connected to the lower word line layer by penetrating the buried insulation layer and the upper word line layer and having a plug extension in an upper portion of the word line contact plug, the plug extension having a greater horizontal width than a lower portion of the word line contact plug.
A DRAM memory cell and memory cell array incorporating a metal silicide bit line buried within a doped portion of a semiconductor substrate and a vertical semiconductor structure electrically connected with a memory element such as a capacitive memory element. The buried metal silicide layer functions as a bit buried bit line which can provide a bit line voltage to the capacitive memory element via the vertical transistor structure. The buried metal silicide layer can be formed by allotaxy or mesotaxy. The vertical semiconductor structure can be formed by epitaxially growing a semiconductor material on an etched surface of the doped portion of the semiconductor substrate.
A field effect transistor structure includes a connection hole leading out a gate structure arranged on the formation area of one of a plurality of fins, and connection holes leading out a source electrode and a drain electrode, wherein the connection hole leading out the gate structure is located on formation areas of different fins; a gate cap layer formed at the top of the gate structure formed on the same fin body and adjacent to the connection holes leading out the source electrode and the drain electrode, wherein the gate cap layer protects the corresponding gate structure; buried holes formed on the source electrode and the drain electrode at both sides of the connection hole leading out the gate structure; a buried hole cap layer formed on the buried holes, and the buried hole cap layer protects the buried holes connecting the source and the drain electrode.
Various embodiments of the present disclosure are directed towards an integrated chip (IC). The IC includes a first fin projecting vertically from a semiconductor substrate. A second fin projects vertically from the semiconductor substrate, where the second fin is spaced from the first fin, and where the first fin has a first uppermost surface that is disposed over a second uppermost surface of the second fin. A nanostructure stack is disposed over the second fin and vertically spaced from the second fin, where the nanostructure stack comprises a plurality of vertically stacked semiconductor nanostructures. A pair of first source/drain regions is disposed on the first fin, where the first source/drain regions are disposed on opposite sides of an upper portion of the first fin. A pair of second source/drain regions is disposed on the second fin, where the second source/drain regions are disposed on opposite sides of the nanostructure stack.
An integrated circuit includes first and second active regions, first and second standard cells on the first active region and the second active region, and a filler cell between the first and second standard cells and including first and second insulating isolations. The filler cell has a one-pitch dimension. The first and second insulating isolations are spaced the one-pitch dimension apart from each other. The first insulating isolation of the filler cell is disposed at a first boundary between the first standard cell and the filler cell. The second insulating isolation of the filler cell is disposed at a second boundary between the second standard cell and the filler cell. The first and second insulating isolations separate at least a part of the first active region, and at least a part of the second active region.
A semiconductor module includes a base substrate; a plurality of light emitting elements; a plurality of color conversion layers being in contact with each upper portion of the plurality of light emitting elements adjacent to each other; and a light shielding layer disposed between the plurality of light emitting elements adjacent each other and between the color conversion layers adjacent to each other, and separating the plurality of light emitting elements and a plurality of color conversion layers.
The present application discloses a semiconductor device with a recessed pad layer and a method for fabricating the semiconductor device. The semiconductor device includes a first die, a second die positioned on the first die, a pad layer positioned in the first die, a filler layer including an upper portion and a recessed portion, and a barrier layer positioned between the second die and the upper portion of the filler layer, between the first die and the upper portion of the filler layer, and between the pad layer and the recessed portion of the filler layer. The upper portion of the filler layer is positioned along the second die and the first die, and the recessed portion of the filler layer is extending from the upper portion and positioned in the pad layer.
Apparatuses and methods for internal heat spreading for packaged semiconductor die are disclosed herein. An example apparatus may include a plurality of die in a stack, a bottom die supporting the plurality of die, a barrier and a heat spreader. A portion of the bottom die may extend beyond the plurality of die and a top surface of the bottom die extending beyond the plurality of die may be exposed. The barrier may be disposed alongside the plurality of die and the bottom die, and the heat spreader may be disposed over the exposed top surface of the bottom die and alongside the plurality of die.
A multi-chip isolation (ISO) device package includes a leadframe including leads, an interposer substrate including a top copper layer and a bottom metal layer, with a dielectric layer in-between. A first IC die and a second IC die include circuitry including a transmitter or a receiver, and first and second bond pads are both attached top side up in the package. A laminate transformer is attached to the top copper layer positioned lateral to the IC die. Bondwires wirebond the first bond pads to first pads on the laminate transformer and to a first group of the leads or the lead terminals, and bondwires wirebond the second bond pads to second pads on the laminate transformer and to a second group of the leads or the lead terminals. A mold compound provides encapsulation.
A semiconductor device and method for fabricating a semiconductor device, comprising a paste layer is disclosed. In one example the method comprises attaching a substrate to a carrier, wherein the substrate comprises a plurality of semiconductor dies. A layer of a paste is applied to the substrate. The layer above cutting regions of the substrate is structured. The substrate is cut along the cutting regions.
A semiconductor device package includes a carrier, an emitting device, a first building-up circuit and a first package body. The carrier has a first surface, a second surface opposite to the first surface and a lateral surface extending from the first surface to the second surface. The emitting element is disposed on the first surface of carrier. The first building-up circuit is disposed on the second surface of the carrier. The first package body encapsulates the lateral surface of the carrier.
A semiconductor package includes: a connection structure including one or more redistribution layers; a core structure disposed on a surface of the connection structure; a semiconductor chip disposed on the surface and including connection pads electrically connected to the redistribution layers of the connection structure; a first encapsulant disposed on the surface and covering at least a portion of each of the core structure and the semiconductor chip; an antenna substrate disposed on the first encapsulant and including one or more wiring layers, at least a portion of the wiring layers including an antenna pattern; and a through via penetrating at least a portion of each of the connection structure, the core structure, the first encapsulant, and the antenna substrate.
A technique for activating a fuse function in a semiconductor device in a relatively short time is provided. The semiconductor device includes a second bonding material provided on the upper surface of the insulating substrate, a third bonding material provided on an upper surface of the semiconductor element, a through hole extending from the first circuit pattern to the second circuit pattern via the core material, a conductive film provided on an inner wall of the through hole, and a heat insulating material provided inside the through hole and surrounded by the conductive film in plan view. The conductive film allows the first circuit pattern and the second circuit pattern to be conductive.
The present disclosure relates to a radio frequency device that includes a transfer device die and a multilayer redistribution structure underneath the transfer device die. The transfer device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion and a transfer substrate. The FEOL portion includes isolation sections and an active layer surrounded by the isolation sections. A top surface of the device region is planarized. The transfer substrate resides over the top surface of the device region. Herein, silicon crystal does not exist within the transfer substrate or between the transfer substrate and the active layer. The multilayer redistribution structure includes a number of bump structures, which are at a bottom of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die.
The present disclosure includes a semiconductor device and a method of manufacturing the same. The semiconductor device includes a substrate including a first area and a second area, a vertical insulating film passing through the substrate between the first area of the substrate and the second area of the substrate, an interlayer insulating structure disposed on the substrate, and a conductive pad formed on the interlayer insulating structure and overlapping the first area of the substrate. The semiconductor device &so includes a through electrode passing through the conductive pad, the interlayer insulating structure, and the substrate in the first area.
A device package and a method of forming a device package are described. The device package includes a plurality of posts disposed on a substrate. Each post has a top surface and a bottom surface that is opposite from the top surface. The device package also has one or more dies disposed on the substrate. The dies are adjacent to the plurality of posts on the substrate. The device package further includes a lid disposed above the plurality of posts and the one or more dies on the substrate. The lid has a top surface and a bottom surface that is opposite from the top surface. Lastly, an adhesive layer attaches the top surfaces of the plurality of posts and the bottom surface of the lid. The device package may also include one or more thermal interface materials (TIMs) disposed on the dies.
A method includes filling a trench formed in a first integrated circuit carrier with temporary bonding material to form a temporary bonding layer. At least one chip is bonded over the temporary bonding layer.
A chip-stacked semiconductor package includes a first chip including a first detection pad and a second detection pad; a second chip provided on the first chip, the second chip including a third detection pad facing the first detection pad and a fourth detection pad facing the second detection pad; and a first medium provided between the first detection pad and the third detection pad to connect the first detection pad to the third detection pad through the first medium, and a second medium, different from the first medium, provided between the second detection pad and the fourth detection pad to connect the second detection pad to the fourth detection pad through the second medium.
In an embodiment, a system includes: a pad comprising a first side and a second side opposite the first side, wherein the first side is configured to receive a wafer during chemical mechanical planarization (CMP), and a platen adjacent the pad along the second side, wherein the platen comprises a suction opening that interfaces with the second side; a pump configured to produce suction at the suction opening to adhere the second side to the platen; and a sensor configured to collect sensor data characterizing a uniformity of adherence between the pad and the platen, wherein the pump is configured to produce the suction at the suction opening based on the sensor data.
Methods, systems, and non-transitory computer readable medium are described for prescriptive analytics in highly collinear response space. A method includes receiving film property data associated with manufacturing parameters of manufacturing equipment. The method further includes determining that the film property data is correlated and is different from target data. The method further includes selecting a set of data points of the film property data that are orthogonal to the target data. The method further includes performing feature extraction on the set of data points. The method further includes determining, based on the feature extraction, updates to one or more of the manufacturing parameters to meet the target data.
A method of fabricating a device includes forming a dummy gate over a plurality of fins. Thereafter, a first portion of the dummy gate is removed to form a first trench that exposes a first hybrid fin and a first part of a second hybrid fin. The method further includes filling the first trench with a dielectric material disposed over the first hybrid fin and over the first part of the second hybrid fin. Thereafter, a second portion of the dummy gate is removed to form a second trench and the second trench is filled with a metal layer. The method further includes etching-back the metal layer, where a first plane defined by a first top surface of the metal layer is disposed beneath a second plane defined by a second top surface of a second part of the second hybrid fin after the etching-back the metal layer.
A device includes a first transistor, a second transistor, and a contact. The first transistor includes a first source/drain, a second source/drain, and a first gate between the first and second source/drains. The second transistor includes a third source/drain, a fourth source/drain, and a second gate between the third and fourth source/drains. The contact covers the first source/drain of the first transistor and the third source/drain of the second transistor. The contact is electrically connected to the first source/drain of the first transistor and electrically isolated from the third source/drain of the second transistor.
Embodiments of the present invention disclose a method forming a via and a trench. By utilizing a first etching process, a first metal layer of a multi-layered device to form a via, wherein the multi-layered device comprises the first metal layer and a second metal layer, wherein the first metal layer is formed directly on top of the second metal layer, wherein the second metal layer acts as an etch stop for the first etching process, wherein the first etching process does not affect the second metal layer. By utilizing a second etching process, the second metal layer of the multi-layered device to form a trench, wherein first metal layer is not affected by the second etching process, wherein the first etching process and the second etching process are two different etching process.
A device, structure, and method are provided whereby an insert layer is utilized to provide additional support for surrounding dielectric layers. The insert layer may be applied between two dielectric layers. Once formed, trenches and vias are formed within the composite layers, and the insert layer will help to provide support that will limit or eliminate undesired bending or other structural motions that could hamper subsequent process steps, such as filling the trenches and vias with conductive material.
A semiconductor device includes a substrate, a first fin, and a second fin. The first and second fins are spaced apart from each other in a first direction on the substrate and extend in a second direction intersecting the first direction. The semiconductor device further includes a first shallow trench formed between the first and second fins, and a field insulating film which fills at least a part of the first shallow trench. The field insulating film includes a first portion, a second portion adjacent to the first portion, and a third portion adjacent to the second portion and adjacent to a side wall of the first shallow trench. The first portion includes a central portion of an upper surface of the field insulating film in the first direction. The upper surface of the field insulating film is in a shape of a brace recessed toward the substrate.
An aligner apparatus according to one or more embodiments may include a first rotating base, a second rotating base, and a detection apparatus. The first rotating base on which a wafer placed thereon rotates around a first rotation axis line. The second rotating base on which a wafer placed thereon rotates around a second rotation axis whose position is different from that of the first rotation axis line. The detection apparatus includes one sensor for detecting the edge of the wafer, and the detection range of the sensor includes the edge of the wafer placed on the first rotating base and the edge of the wafer placed on the second rotating base, and detects the edges of the two wafers.
A pick-up head assembly comprises a body of a liquid crystalline elastomer (LCE) that undergoes a reversible expansion when exposed to a first frequency of light and contracts when exposed to a second frequency of light. Selective portions of the LCE in the pick-up head assembly are irradiated with the first frequency to cause an expansion in the selective portions. The adhesive forces of the expanded portions of the LCE are used to pick-up semiconductor devices from a first substrate. The semiconductor devices are placed on a second substrate by exposing the expanded portions of the LCE to the second frequency of light, causing the expanded portions to contract.
Provided is an etching method performed in a substrate-processing apparatus having: a first electrode on which a substrate is placed; and a second electrode facing the first electrode, the method comprising: a first step for introducing a first gas and halfway etching a target film into a pattern of a predetermined film on the target film formed on the substrate; a second step for introducing a second gas including Ar gas, H2 gas, and deposition gas and applying DC voltage to the second electrode to form a protective film, the second step being performed after the first step; and a third step for introducing a third gas and etching the target film, the third step being performed after the step for forming the protective film.
Methods, apparatuses, and systems for substrate processing for lowering contact resistance in at least contact pads of a semiconductor device are provided herein. In some embodiments, a method of substrate processing for lowering contact resistance of contact pads includes: circulating a cooling fluid in at least one channel of a pedestal; and exposing a backside of the substrate located on the pedestal to a cooling gas to cool a substrate located on the pedestal to a temperature of less than 70 degrees Celsius. In some embodiments in accordance with the present principles, the method can further include distributing a hydrogen gas or hydrogen gas combination over the substrate.
A method of fabricating a semiconductor structure includes providing an engineered substrate including a polycrystalline substrate, a barrier layer encapsulating the polycrystalline substrate, and a bonding layer coupled to the barrier layer. The method further includes forming a first silicon layer coupled to the bonding layer, forming a dielectric layer coupled to the first silicon layer, forming a second silicon layer coupled to the dielectric layer, removing a portion of the second silicon layer and a corresponding portion of the dielectric layer to expose a portion of the first silicon layer, forming a gallium nitride (GaN) layer coupled to the exposed portion of the first silicon layer, forming a gallium nitride (GaN) based device coupled to the GaN layer, and forming a silicon-based device coupled to a remaining portion of the second silicon layer.
Provided is a method for manufacturing a semiconductor wafer and a semiconductor wafer. The method includes: disposing a sacrificial layer on a first surface and a second surface of a patterned substrate, the patterned substrate comprising the first surface and the second surface having different normal directions; exposing the first surface by removing the first portion of the sacrificial layer disposed on the first surface; growing an original nitride buffer layer on the first surface and the second portion of the sacrificial layer; partially lifting off the second portion of the sacrificial layer disposed on the second surface such that at least one sub-portion of the second portion of the sacrificial layer remains on the second surface of the patterned substrate; and growing an epitaxial layer on the original nitride buffer layer, where a crystal surface of the epitaxial layer grows along a normal direction of the patterned substrate.
A quadrupole mass filter includes: four electrodes arranged to surround a central axis and constituting a quadrupole; attachment portions to which a plurality of electrical conductors are attached, at least one of the electrical conductors being arranged at a position that lies in a direction toward an area between each of the adjacent electrodes among the four electrodes, as viewed from the central axis; and a holder having a hollow portion and holding the four electrodes and the plurality of electrical conductors, wherein the electrical conductors are attached to the respective attachment portions and held by the holder with elasticity of a material constituting the electrical conductors.
An ion source includes a base, a first chamber, a second chamber and an extractor. The first chamber is disposed downstream of the base and defines a first internal volume having a first pressure. The second chamber is disposed downstream of the first chamber and defines a second internal volume having a second pressure. The second pressure is less than the first pressure. The repeller electrode is disposed within the first chamber. The extractor is disposed downstream of the second chamber.
A MALDI ion source is disclosed comprising: a target plate (2) having a front surface (4), a rear surface (6), and at least one sample receiving well (9) for receiving a liquid sample or at least one sample receiving channel (8) extending from an opening (12) in the rear surface (6) to an opening (14) in the front surface (4) for receiving a liquid sample (10), wherein each well (9) or channel (8) has a volume of ≥1 μL. The ion source also comprise a laser (16) for ionising a liquid sample (10) on or in the target plate (2), wherein the laser (16) is a pulsed laser set up and configured to have a pulsed repetition rate of ≥20 Hz, or is a continuous laser.
A mass spectrometry method comprising steps of generating an ion beam from an ion source; directing the ion beam into a collision cell; introducing into the collision cell through a gas inlet on the collision cell a charge-neutral analyte gas or reaction gas; ionizing the analyte gas or reaction gas in the collision cell by means of collisions between the analyte gas or reaction gas and the ion beam; transmitting ions from the ionized analyte gas or reaction gas from the collision cell into a mass analyzer; and mass analyzing the transmitted ions of the ionized analyte or reaction gas. The methods can be applied in isotope ratio mass spectrometry to determine the isotope abundance or isotope ratio of a reaction gas used in mass shift reactions between the gas and sample ions, to determine a corrected isotope abundance or ratio of the sample ions.
Provided is a substrate processing apparatus, including: transportation chamber maintained in an atmospheric environment where a substrate is transported; a vacuum processing chamber connected with the transportation chamber through a load lock chamber; a substrate placing table installed in the vacuum processing chamber and having a body part and a surface part that is attachable to/detachable from the body part; a storage unit installed in the load lock chamber or the transportation chamber and configured to receive the surface part; and a transportation mechanism configured to transport the substrate from the transportation chamber to the vacuum processing chamber through the load lock chamber and transport the surface part between the storage unit and the body part of the vacuum processing chamber.
According to one embodiment, an electrostatic chuck includes a ceramic dielectric substrate, a base plate, and a first electrode layer. The ceramic dielectric substrate has a first major surface and a second major surface. The first electrode layer is provided inside the ceramic dielectric substrate and connected to a high frequency power supply. The first electrode layer is provided between the first major surface and the second major surface. The first electrode layer has a first surface and a second surface. The first electrode layer includes a first region including the first surface, a second region including the second surface, and a third region positioned between the first region and the second region. A porosity of the first region is lower than a porosity of the third region.
A substrate processing apparatus, for generating a plasma from a gas by a high frequency energy and etching a substrate in a processing chamber by radicals in the plasma, includes a high frequency power supply configured to supply the high frequency energy into the processing chamber, a gas supply source configured to introduce the gas into the processing chamber, a mounting table configured to mount the substrate thereon, and a partition plate provided in the processing chamber and configured to divide an inner space of the processing chamber into a plasma generation space and a substrate processing space and suppress passage of ions therethrough. The partition plate and a portion of an inner wall surface of the processing chamber which is positioned at least above the mounting table are covered by a dielectric material having a recombination coefficient of 0.002 or less.
A charged particle beam device according to the present invention changes a signal amount of emitted charged particles by irradiating the sample with light due to irradiation under a plurality of light irradiation conditions, and determines at least any one of a material of the sample or a shape of the sample according to the changed signal amount.
An electromagnetic relay includes a fixed contact; a movable contact movable between a first position at which the movable contact contacts the fixed contact to form a closed state, and a second position at which the movable contact does not contact the fixed contact to form a opened state; an electromagnet that includes a coil, a magnetic core, and a yoke coupled to the magnetic core, and generates magnetic field; and an actuator that includes a pair of armatures, and a permanent magnet sandwiched by the pair of armatures, and moves the movable contact by the magnetic field generated by the electromagnet, wherein a magnetic circuit formed by the magnetic core, the yoke and the pair of armatures is closed at the opened state, and is opened at the closed state.
A key includes a substrate, a keycap, a connection component, and protruding structures. The connection component includes a first connection member and a second connection member, and the first connection member and the second connection member are between the substrate and the keycap. The protruding structures are disposed on the upper surface of the first connection member and disposed on the upper surface of the second connection member. When the keycap is pressed to a pressed position, the protruding structures on the first connection member and on the second connection member abut against the bottom surface of the keycap, so that a gap is formed between the keycap and the connection component. Therefore, the bottom surface of the keycap does not contact the upper surface of the first connection member and the upper surface of the second connection member so as to prevent from generating keystroke noises.
A light-absorbing material contains a compound represented by the composition formula HC(NH2)2SnI3 and having a perovskite structure. A solid-state 1H-NMR spectrum, which is obtained by 1H-14N HMQC measurement in two-dimensional NMR at 25° C., of the compound includes a first peak at 6.9 ppm and a second peak at 7.0 ppm. A peak intensity of the first peak is equal to 80% or more of a peak intensity of the second peak.
An LC composite component includes a non-magnetic substrate, a magnetic layer with magnetism, capacitors, inductors, and core parts with magnetism. The non-magnetic substrate includes a first surface and a second surface on a side opposite to the first surface. The magnetic layer is disposed to face the first surface of the non-magnetic substrate. The inductors and the capacitors are disposed between the first surface of the non-magnetic substrate and the magnetic layer. The core parts are disposed between the first surface of the non-magnetic substrate and the magnetic layer and connected to the magnetic layer. The thickness of the core parts is 1.0 or more times the thickness of the magnetic layer in a direction perpendicular to the first surface of the non-magnetic substrate, and each of the magnetic layer and the core parts contains magnetic metal particles and resin.
Disclosed herein is a coil component that includes a conductor plate; and a magnetic core comprising a magnetic material having conductivity, the magnetic core having a through hole into which the conductor plate is inserted. The conductor plate includes: a metal element body having a body part positioned inside the through hole and a terminal part positioned outside the through hole; a metal film formed on the terminal part, the metal film comprising a metal material having a lower melting point than the metal element body; and an insulating film formed on a surface of the body part without the metal film interposed.
An electronic component includes a ceramic element body including glass, and outer electrodes provided on the ceramic element body. Each of the outer electrodes includes a base electrode layer on the ceramic element body and a buffer portion to buffer an impact. The base electrode layer includes a first region that is disposed on the ceramic element body and includes the buffer portion of equal to or more than about 15 vol % and equal to or less than about 50 vol %, and a second region that covers the first region and includes the buffer portion of equal to or more than about 1 vol % and equal to or less than about 10 vol %.
A soft magnetic alloy including a compositional formula of ((Fe(1−(α+β))X1αX2β)(1−(a+b+c+e))MaBbPcCue)1−fCf, wherein X1 is one or more selected from the group consisting Co and Ni, X2 is one or more selected from the group consisting of Al, Mn, Ag, Zn, Sn, As, Sb, Bi, N, O, and rare earth elements, “M” is one or more selected from the group consisting of Nb, Hf, Zr, Ta, Ti, Mo, W, and V, 0.030
A wiring protection device includes a main body that defines a cavity for receipt of an associated lug of an associated wiring harness. The wiring protection device also includes a first locking member that is slidably received in the main body to define a lock, position that engages the associated lug to prevent removal of the associated lug from the main body and an unlock position that does not engage the associated lug and allows removal and installation of the associated lug out of and into the main body.
Systems and methods for designing and assembling form boards with attached wire routing devices for use in wire bundle assembly. The assembly method comprises: (a) establishing a coordinate system of a form board having a multiplicity of holes; (b) using a computer system to determine locations of form board devices of different types with reference to the coordinate system of the form board based on engineering data specifying a wire bundle configuration; and (c) fastening the form board devices of different types to respective holes of the form board having centers closest to respective locations determined in step (b). The form board devices may be inserted robotically or manually.
Aspects relate to patterned nanostructures having a feature size not including film thickness of below 5 microns. The patterned nanostructures are made up of nanoparticles having an average particle size of less than 100 nm. A nanoparticle composition, which, in some cases, includes a binder, is applied to a substrate. A patterned mold used in concert with electromagnetic radiation function to manipulate the nanoparticle composition in forming the patterned nanostructure. In some embodiments, the patterned mold nanoimprints a pattern onto the nanoparticle composition and the composition is cured through UV or thermal energy, Three-dimensional patterned nanostructures may be formed. A number of patterned nanostructure layers may be prepared and joined together. In some cases, a patterned nanostructure may be formed as a layer that is releasable from the substrate upon which it is initially formed. Such releasable layers may be arranged to form a three-dimensional patterned nanostructure for suitable applications.
A system for non-invasive examination of a user's blood environment parameters that includes having at least four user-input sensors (1, 2, 3, 4) operably configured to measure a partial pressure of O2 and CO2 in a user's blood, a temperature of the user, and a hemoglobin content in the user's blood, an external electronic display unit (11), and a computing unit (9) with a communication interface (12) and communicatively coupled to the external electronic display unit (11) and the least four user-input sensors (1, 2, 3, 4), the computing unit (9) operably configured to cause a user's blood environment parameters to display on the external electronic display unit (11) through use of a mathematical software application resident thereon and employing a model of the user's internal environment based on a mathematical expression of an equation for hemoglobin buffer and utilizing the data from the user-input sensors.
A system, a method and non-transitory computer readable medium are provided. The method includes receiving a message from a gateway. The message includes an identification parameter associated with the gateway that received a ping from a beacon. The message also includes a beacon identifier of the beacon that transmitted the ping, the ping included the beacon identifier. The message further includes a derived signal strength parameter that indicates a proximity of the beacon to the gateway when the beacon transmitted the ping. The method also includes acquiring an outcome associated with medical-care that is provided by a medical provider to a patient. The method further includes identifying a cost associated with the medical-care provided by the medical provider based in part on the received message. The method additionally includes generating a value score that relates the identified cost of providing the medical-care to the patient, to the acquired outcome.
There is provided a medical image processing apparatus including: an association processing section configured to associate multiple medical captured images in which an observation target is imaged by each of multiple imaging devices including imaging devices in which one or both of an in-focus position and an in-focus range are different; and a compositing processing section configured to depth-composite each of a medical captured image for a right eye and a medical captured image for a left eye among the multiple medical captured images by using an associated other medical captured image.
A distributed system can include a server outside of a clinical environment and a connectivity adapter and a plurality of infusion pumps within the clinical environment. The connectivity adapter can monitor microservices that measure the quality of connectivity adapter's performance. If the performance is below a threshold level, a message indicating poor performance can be sent to the server. The message can be sent when a prior message relating to poor performance has not already been sent within a predetermined time period.
Provided herein are biomarkers of endogenous biological time (e.g. circadian time). In particular compositions and methods are provided for assessing the biological time of a subject, and diagnosis of diseases/conditions and/or providing treatments based thereon.
A test rack includes two or more memory device test boards where each memory device test boards includes two or more memory device test resources. Each of the two or more memory device test boards includes a separate processing device allocated to the memory device test resources of a corresponding memory device test boards. A processing device of a test board detects that a first memory sub-system has engaged with a first memory device test resource of the corresponding memory device test board. The processing device identifies a first test to be performed for a first memory device of the first memory sub-system, where the first test includes one or more first test instructions to be executed in performance of the first test. The processing device causes the one or more first test instructions to be transmitted to the first memory sub-system, where the first test is performed by the one or more first test instructions executing at the first memory sub-system.
A semiconductor device includes a first word line configured to perform a writing operation or a programing operation, a second word line configured to perform a read operation, a first switching device including a first gate electrode and a first node, a second switching device comprising a second gate electrode and a second node, an electrical fuse (e-fuse) disposed between the first node and the second node, and a diode coupled to the first node and the first word line, wherein the first gate electrode and the second gate electrode are coupled to the second word line.
Memory might have a controller configured to program a first portion of memory cells of a string of series-connected memory cells closer to a particular end of the string than a second portion of memory cells of the string in an order from a different end of the string to the particular end, and program the second portion of memory cells in an order from the particular end to the different end. Memory might further have a controller configured to increment first and second read counts in response to performing a read operation on a memory cell of a block of memory cells, reset the first read count in response to performing an erase operation on a first portion of the block of memory cells, and reset the second read count in response to performing an erase operation on the second portion of the block of memory cells.
A method for page writes for triple or higher level cell flash memory is provided. The method includes receiving data in a storage system, from a client that is agnostic of page write requirements for triple or higher level cell flash memory, wherein the page write requirements specify an amount of data and a sequence of writing data for a set of pages to assure read data coherency for the set of pages. The method includes accumulating the received data, in random-access memory (RAM) in the storage system to satisfy the page write requirements for the triple or higher level cell flash memory in the storage system. The method includes writing at least a portion of the accumulated data in accordance with the page write requirements, from the RAM to the triple level cell, or the higher level cell, flash memory in the storage system as an atomic write.
A memory cell comprising includes a silicon-on-insulator (SOI) substrate, an electrically floating body transistor fabricated on the silicon-on-insulator (SOI) substrate, and a charge injector region. The floating body transistor is configured to have more than one stable state through an application of a bias on the charge injector region.
In some examples, a device includes a dielectric material, a ferromagnetic material, and a topological material positioned between the dielectric material and the ferromagnetic material. The device is configured to trap electric charge inside the dielectric material or at an interface of the dielectric material and the topological material. The device is configured to switch a magnetization state of the ferromagnetic material based on a current through the topological material or based on a voltage in the topological material.
A data producer stores input data in a buffer in response to a slow clock signal and provides read data from the buffer in response to a read pointer signal. A data movement circuit reads the input data from the buffer using the read pointer signal and provides an update read pointer signal in response to reading the input data. The data movement circuit operates in response to a fast clock signal, and includes a metastable-free synchronizer circuit having inputs for receiving the update read pointer signal, the slow clock signal, and the read pointer signal, and an output for providing a synchronized read pointer signal equal to the read pointer signal except between a change in the read pointer signal while the slow clock signal is active until an inactivation of the slow clock signal. The buffer provides the read data in response to the synchronized read pointer signal.
A semiconductor device includes: a first buffer circuit configured to receive a chip select signal in a power-down mode in response to a first select signal, a second buffer circuit configured to receive the chip select signal in an active mode in response to the first select signal, a power supply circuit configured to supply external power to a plurality of logic elements in the active mode in response to a second select signal, and not supply the external power to the plurality of logic elements in the power-down mode, and a select control circuit configured to transition a logic level of the second select signal at a first edge of a first chip select signal in the power-down mode, and then transition a logic level of the first select signal at a following second edge of the first chip select signal to exit from the power-down mode and enter the active mode.
An apparatus comprises a slider comprising an air bearing surface (ABS). The slider comprises a reader, a writer, and a reader heater. The reader heater is configured to cause a protrusion of the ABS proximate the reader, and the reader heater comprises a first planar loop and a second planar loop, wherein the first and second loops are in the same plane.
A cartridge memory used for a tape cartridge includes: a communication unit that communicates with a recording and reproducing device using a wireless communication method defined by an ISO 14443-2 standard which is a wireless communication standard; a non-volatile memory with a storage capacity exceeding 16 KB; and a control unit that writes or reads data to or from the non-volatile memory on a word-by-word basis (2 bytes at a time) or on a block-by-block basis (32 bytes at a time). The non-volatile memory includes a plurality of memory banks each having a storage capacity of 128 KB or less. The control unit writes or reads data defined by a magnetic tape standard to or from one or two or more first memory banks among the plurality of the memory banks, and writes or reads additional data to or from one or two or more second memory banks other than the first memory bank.
Systems and methods for speaker verification comprise optimizing a neural network by minimizing a generalized negative log likelihood function, including receiving a training batch of audio samples comprising a plurality of utterances for each of a plurality of speakers, extracting features from the audio samples to generate a batch of features, processing the batch of features using a neural network to generate a plurality of embedding vectors configured to differentiate audio samples by speaker, computing a generalized negative log-likelihood loss (GNLL) value for the training batch based, at least in part, on the embedding vectors, and modifying weights of the neural network to reduce the GNLL value. Computing the GNLL may include generating a centroid vector for each of a plurality of speakers, based at least in part on the embedding vectors.
Provided is a system for recording a voice about a working state, etc., linking the recorded voice to position information, and converting the recorded voice into a text. In a voice detail recording system (1), a control unit (10) executes an acquisition module (11) to acquire a voice and a position where the voice is uttered. In addition, the control unit (10) executes a voice recognition module (12) to perform voice recognition on the acquired voice. In addition, the control unit (10) executes a specification module (13) to specify Web content linked to the position acquired by executing the acquisition module (11). In addition, the control unit (10) executes a recording module (14) to record details obtained by executing the voice recognition module (12) to perform the voice recognition in the Web content specified by executing the specification module (13).
A system and method are disclosed for ignoring a wakeword received at a speech-enabled listening device when it is determined the wakeword is reproduced audio from an audio-playing device. Determination can be by detecting audio distortions, by an ignore flag sent locally between an audio-playing device and speech-enabled device, by and ignore flag sent from a server, by comparison of received audio played audio to a wakeword within an audio-playing device or a speech-enabled device, and other means.
An electronic device and a method for controlling the electronic device is provided. The electronic device includes a microphone, a memory configured to include at least one instruction, and a processor configured to execute the at least one instruction. The processor is configured to control the electronic device to perform voice recognition for an inquiry based on receiving input of a user inquiry through the microphone, and acquire a text for the inquiry, generate a plurality of inquiries for acquiring response data for the inquiry from a plurality of databases using a relation graph indicating a relation between the acquired text and data stored in the plurality of databases, acquire response data corresponding to each of the plurality of inquiries from each of the plurality of databases, and generate a response for the inquiry based on the response data acquired from each of the plurality of databases and output the response.
Systems and method for automatically assigning cooperative platform tasks to appropriate participants are disclosed. In embodiments, a method includes receiving new task data for a new task posted to a remote server; transforming the new task data by natural language processing to produce transformed new task data; representing the new task as a vector in a vector space based on the transformed new task data, wherein the vector space includes representations of completed tasks, and the completed tasks are associated with respective participants; calculating distances between the new task and the respective completed tasks represented in the vector space; ranking the respective participants based on the distances between the new task and the completed tasks associated with respective participants; determining a select participant of the respective participants to be assigned to the new task based on the ranking; and initiating automatic assignment of the new task to the select participant.
A string instrument has a body and a neck. The body has a top plate joined to a bottom plate forming an interior volume therebetween. The neck is attached to the body and extends outwardly therefrom. A tailpiece is joined to the body. A first soundpost is located within the interior volume of the body and joins the top plate with the bottom plate. A second soundpost is also located within the interior volume and also joins the top plate with the bottom plate.
A method of displaying an image on a display panel includes displaying an image of a grayscale value A, imaging the image of the grayscale value A with a camera, displaying an image of a grayscale value B, imaging the image of the grayscale value B with the camera, determining a compensation parameter P of the grayscale value A for each pixel in the display panel using the imaged data of the grayscale value A, determining a representative value Q of probability distribution of the compensation parameters of the grayscale value A from the image of the grayscale value A, determining a representative value R of probability distribution of compensation parameters of the grayscale value B from the image of the grayscale value B and compensating an input image data for each pixel using the value P, the value Q and the value R.
A method for adjusting brightness of a display screen includes: in response to a brightness adjustment trigger operation, determining a target brightness level of the display screen based on a current brightness level of the display screen; obtaining a corresponding physical brightness and a corresponding display coefficient based on the target brightness level, wherein the display coefficient is smaller than 1, and the physical brightness is included in a physical brightness range in high brightness mode of the display screen; and controlling the display screen to display at a target display brightness based on the obtained physical brightness and the obtained display coefficient.
This invention corrects, with consideration to the luminance of a display device, an image artifact related to the luminance or a color that originates from a high-luminance region set as the display target. To achieve this, the invention comprises an obtainment unit which obtains information corresponding to a luminance range which can be displayed by the display device, a derivation unit which derives a correction amount for correcting an artifact of display-target image data based on a maximum luminance value indicated by the obtained information, and a correction unit which corrects the image data based on the derived correction amount and generates display image data.
The present disclosure provides a shift register unit, a driving method thereof, and a gate driving circuit. The shift register unit includes: an input circuit configured to receive an input signal from an input signal terminal and output the input signal to a voltage stabilizer node; a voltage-stabilizing circuit configured to input potential of the voltage stabilizer node to a pull-up node and control potential of the voltage stabilizer node under control of potential of the pull-up node; an output circuit configured to receive a clock signal from a clock signal terminal and provide an output signal to an output signal terminal based on the clock signal received under control of the potential of the pull-up node; and a control circuit configured to control potential of the output signal terminal under control of the potential of the pull-up node.
A display device according to an exemplary embodiment of the present inventive concept includes: pixels; scan lines extending in a row direction and connected to the pixels; a data lines extending in a column direction and connected to the pixels; a receiving lines extending in the column direction and connected to the pixels; and a compensation circuit portion that generates first sensing data by receiving a current flowing to the pixels through the receiving lines, and generates a compensation value that compensates a characteristic of a driving transistor included in each of the pixels by multiplying the first sensing data by a calibration factor that corresponds to a position of each of the pixels, wherein the calibration factor includes a line calibration factors that correspond to the receiving lines.
A shift register unit and a driving method thereof, a gate driving circuit, and a display device are provided. The shift register unit includes: a first input circuit, a second input circuit, an output circuit, and a compensation circuit, the first input circuit is configured to write a first input signal to the first node in response to a first control signal; the second input circuit is configured to input a second input signal to the second node in response to a detection control signal and configured to transmit a level of the second node to the first node in response to a second control signal; the compensation circuit is configured to compensate the level of the second node; and the output circuit is configured to output a composite output signal to the output terminal under control of a level of the first node.
The display control method according to some embodiments of the present disclosure includes: acquiring an M-primary-color input signal from each pixel in an original image, the original image including a plurality of pixels corresponding to the plurality of pixel units respectively, each pixel being configured to display a colored image in M primary colors, M being an integer greater than 1 and smaller than N; and calculating an N-primary-color input signal for a corresponding pixel unit of the N-primary-color display panel in accordance with color coordinates of each primary color for the N-primary-color display panel and the M-primary-color input signal.
Provided are an array substrate and a display panel. The array substrate includes: gate lines and data lines on a substrate, the gate lines extending in a first direction, the data lines extending in a second direction, and the gate lines and the data lines crossing over each other to define pixel regions arranged in a matrix; pixel electrodes respectively in the plurality of pixel regions and on a side of the gate lines away from the substrate; common electrode lines at least partially surrounding the plurality of pixel regions; and a shielding electrode on a side of the gate lines away from the substrate and electrically connected to the common electrode lines, an orthographic projection of the shielding electrode on the substrate covering an orthographic projection of a portion, between the pixel electrodes adjacent in the second direction, of at least one of the gate lines on the substrate.
The present disclosure provides a gate driving unit, a gate driving method, a gate driving circuitry and a display device. The gate driving unit includes a reverse-phase gate driving signal output end, a normal-phase gate driving signal output end, an input circuitry, an output control circuitry, an input node control circuitry and an output circuitry. The input circuitry is configured to control an input end to be electrically connected to an input node under the control of a first clock signal. The output control circuitry is configured to control a potential at an output node under the control of a potential at the input node and a second clock signal. The input node control circuitry is configured to control the potential at the input node in accordance with the potential at the output node under the control of the second clock signal. The output circuitry is configured to output a reverse-phase gate driving signal and output a normal-phase gate driving signal in accordance with the potential at the output node.
An object including a final target that is equivalent to an object obtained by a superposition of three objects of a target, a dark object, and a light object with approximately the same shape, a superposition of two objects of a target and a dark object with approximately the same shape or approximately similar shapes, or a superposition of two objects of a target and a light object with approximately the same shape or approximately similar shapes is arranged in a background of which luminance periodically varies over time. However, luminance of the dark object is lower than luminance of the target, luminance of the light object is higher than the luminance of the target, and the superposition described above is an incomplete superposition in which a part of the dark object and/or a part of the light object is hidden by the target.
The projection device includes a light source, a liquid crystal on silicon (LCoS) panel, and a circuit. The circuit is configured to obtain a target image including a target pattern, and generate two content images. Each content image includes a duplicated pattern of the target pattern, and the duplicated patterns are off-axis shifted to the same coordinate when performing a computer-generated hologram (CGH) algorithm, so as to generate a phase image. The LCoS panel is driven according to the phase image to display a reconstructive image at a reconstructive distance.
In various embodiments, the present invention is directed to an interior-light-utilizing display obtained by laminating a reflection structure and a light diffusion film, in which the light diffusion film has an internal structure including a plurality of regions having a relatively high refractive index in a region having a relatively low refractive index in the film. The interior-light-utilizing display provides improved luminance and is capable of stably maintaining constant display characteristics even where the incident angle of the external light changes.
A modular collapsible shadowbox system for creating customizable decorative tables. The system comprises a plurality of individual units, each displaying a letter, number, symbol, or shape, which, when combined, form a desired word, phrase, expression, or design. The units may be folded for storage and transport, then assembled in any desired combination for use. The desired units may be aligned in a row with a tabletop secured thereon for use as a table. The units may be individually lit from within, backlighting the letter, number, symbol, or shape and creating a shadowbox effect. The individual units, combined with color-customizable lighting, allow a user to create a custom table with any desired message and color scheme and is thus ideal for weddings, parties, and other events.
Provided is a display device. The display device includes a stretchable display device. The stretchable display device includes a lower substrate including a display area and a non-display area. The stretchable display device further includes a plurality of lower connection lines on the lower substrate. The stretchable display device further includes a plurality of first substrates disposed on the display area, the plurality of first substrates defines sub pixels, and a modulus of the plurality of first substrates is larger than a modulus of the lower substrate. The stretchable display device further includes a plurality of connection substrates connecting adjacent first substrates among the plurality of first substrates. The stretchable display device further includes a plurality of upper connection lines disposed on the plurality of connection substrates. Therefore, various connection lines are configured in a limited space to improve an image quality of a stretchable display device.
The present application provides a flexible display apparatus. The flexible display apparatus includes a flexible display panel; and a hardness-enhancing layer on the flexible display panel, the hardness-enhancing layer for enhancing surface hardness and mechanical strength of the flexible display panel. The hardness-enhancing layer includes an inorganic material sublayer and a composite material sublayer, the composite material sublayer including a polymer matrix and an inorganic material dispersed in the polymer matrix.
Provided are apparatus and method for management of electronic shelf label. The apparatus for management of electronic shelf label, ESL, including an ESL mainboard and a plurality of ESL small boards, wherein the ESL mainboard sends task commands to the plurality of ESL small boards through a first logic signal; and each ESL small board of the plurality of ESL small boards includes a receiving portion and a display portion, the receiving portion receives, through the first logic signal, a command for a task corresponding to the ESL small board as sent by the ESL mainboard, and the display portion displays the task.
Disclosed herein are embodiments of a vessel cutdown simulant, and methods of making and using such a vessel cutdown simulant, whereby the vessel cutdown simulant includes a first layer; a second layer underlying the first layer, the second layer movably engaged with the first layer; a first conduit underlying the first layer; whereby the first layer, the second layer, and the first conduit together provide a simulated body tissue; and a housing including a side wall which defines an interior cavity configured to house the simulated body tissue.
An assembly system includes: a tool including a sensor; a wearable device including a display, and a computing device. The computing device is programmed to: a. provide visual instructions on the display of the device; b. monitor an input from the sensor; and c. in response to the input from the sensor: i. provide feedback to the user through the display, indicating a status of an operation of the tool; and ii. store a record of a status of an operation of the tool.
A method of presenting an interactive story including displaying an illustration on a display without a corresponding narrative; receiving a user's input; determining whether the user's input corresponds to at least one word in a hidden narrative associated with the illustration; and displaying the word in the hidden narrative on the display in response to determining that the user's input corresponds to the word.
Route planning and movement of an aircraft on the ground based on a navigation model trained to improve aircraft operational efficiency is provided herein. A system comprises a memory that stores executable components and a processor, operatively coupled to the memory, that executes the executable components that comprise an assessment component, a sensor component, and a route planning component. The assessment component accesses runway data, taxiway data, and gate configuration data associated with an airport. The sensor component collects, from a plurality of sensors, sensor data related to performance data of an aircraft and respective conditions of the runway, the taxiway, and the gate configuration data. The route planning component employs a navigation model that is trained to analyze the sensor data, the runway data, the taxiway data, and the gate configuration data, and generate a taxiing protocol to navigate the aircraft to improve aircraft operational efficiency.
Systems and methods include communicating with a plurality of passenger drones via one or more wireless networks comprising at least one cellular network; receiving updates related to an obstruction status of each of a plurality of waypoints from a plurality of passenger drones, wherein the plurality of waypoints are defined over a geographic region under control of the ATC system; and managing flight paths, landing, and take-off of the plurality of passenger drones in the geographic region based on the obstruction status of each of the plurality of waypoints, wherein the plurality of waypoints each comprise a latitude and longitude coordinate defining a point about which an area is defined for covering a portion of the geographic region.
A hazardous behavior determining unit (3) determines a vehicle that is conducting or is likely to conduct hazardous driving from among one or more vehicles around a host vehicle and a type of the hazardous driving using information indicating states of the host vehicle and the vehicles and a surrounding situation and behavior information stored in an onboard database (2). A registered vehicle identifying unit (5) identifies a vehicle that corresponds to hazardous vehicle information stored in the onboard database (2) by collating numbers of a license plate detected by a number detecting unit (4) with numbers stored in the onboard database (2). A hazard predicting unit (6) predicts a risk to the host vehicle using the determination result from the hazardous behavior determining unit (3) and the identification result from the registered vehicle identifying unit (5).
The disclosure includes embodiments for adjusting a blind spot monitor on a vehicle to improve safety of the vehicle. In some embodiments, a method for the vehicle includes detecting a change in a heading of the vehicle. The method includes modifying an operation of the blind spot monitor on the vehicle based on the change in the heading of the vehicle so that performance of the blind spot monitor is enhanced to improve safety of the vehicle in a scenario when the vehicle changes the heading.
An information processing apparatus determines a pickup point and a drop-off point for a first user traveling to a destination in a vehicle carrying a plurality of unspecified users. The apparatus includes a controller that obtains information on the place of departure and the destination of the first user; determines a pickup point for the first user based on the place of departure of the first user; defines a predetermined field including the destination of the first user and determines a drop-off point for the first user from a plurality of points except the destination, the points being included in the predetermined field; and transmits the determined pickup point and drop-off point for the first user to a device associated with the vehicle.
A traffic control system for controlling traffic at interconnected intersections is provided, where the system comprises a receiver that receives traffic data that indicates states of vehicles approaching an intersection of the interconnected intersections and directions of the vehicles exiting the intersection. Further, the system comprises a processor that determines intersection crossing times and velocities of vehicles approaching the intersection by minimizing at least one of a total travel time or a maximum travel time of the vehicles for crossing the intersection. The contribution of each vehicle of the vehicles approaching the intersection in the at least one of a total travel time or a maximum travel time is weighted based on directions of the vehicles and traffic at next intersection. Further, the system comprises a transmitter that transmits the intersection crossing times and velocities to the vehicles exiting the intersection for controlling the traffic at the interconnected intersections.
One variation of a method for managing parking within a parking structure includes: after detecting a license plate number on a vehicle in an image captured by an entry camera unit arranged near an entry of the parking structure, labeling the license plate as unverified in a data log associated with the parking structure; in response to absence of validation of the license plate within a grace period after entry of the vehicle, relabeling the license plate as in-violation in the data log; in response to detecting the license plate in an image captured by a mobile enforcement unit moving through the parking structure, querying the data log for a status of the license plate; and, in response to the license plate labeled as in-violation in the data log, serving a prompt to an enforcement personnel to issue a citation to a vehicle carrying the license plate.
A system for confirming the identity of a vehicle. The device includes: a vehicle control unit in the vehicle to be identified; a vehicle identification device; an external service device designed to interact with the vehicle; a vehicle sensor in the vehicle; and an external sensor. The vehicle identification device establishes a data connection with the vehicle control unit and triggers a physical interaction between the vehicle control unit and the external service device. The vehicle sensor detects the physical interaction and transmits a corresponding vehicle detection value to the vehicle identification device. The external sensor detects the physical interaction and transmits a corresponding external detection value to the vehicle identification device; and the vehicle identification device compares the vehicle detection value and the external detection value with one another and confirms the identity of the vehicle if the two detection values coincide with one another within a predefined tolerance.
Methods and systems for processing vehicle to everything (V2X) messages for use by machine learning applications are disclosed. From each of a plurality of vehicles, one or more V2X messages are received, each V2X message including vehicle-related data associated with the vehicle and the received message. A sequence of frames is generated based on the vehicle-related data from at least a subset of vehicles in the plurality of vehicles. Slices of the sequence of frames are aggregated to generate a plurality of time-lapse images. One or more time-lapse images are processed using a machine learning algorithm to generate an output indicative of a traffic-related prediction.
A facility creates a dynamic gauge for indicating the status of equipment. The facility causes a gauge to be displayed with an initial satisfactory range and an initial unsatisfactory range. The facility accesses historical data describing the status of a sensor attached to equipment. The facility determines a new satisfactory range and a new unsatisfactory range, and alters the gauge to visually indicate the new satisfactory range and the new unsatisfactory range.
A remote-control security monitoring system, including an access permissions receiver operable for receiving, from a first entity having first access permissions to the premises automation system, second access permissions to the premises automation system, a premises monitoring selector operable for receiving, from the first entity, a selection of a second entity which provides remote monitoring services, a premises monitoring remote-control provider operable, responsive to the selection of the second entity, for subscribing the first entity to receive remote monitoring services of the premises from the second entity, and a premises monitoring activator operable, responsive to subscribing the first entity to receive the remote monitoring services from the second entity and responsive to receiving an instruction from the first entity, for instructing the second entity to monitor the premises on behalf of the first entity.
An interactive wireless life safety communications system is disclosed. A central coordination server is linked to a first network, over which there is a connection to at least one resident life safety device at a specific location or for specific resident. An alarm signal is generated by the resident life safety device upon detection of an alarm condition and transmitted to the central coordination server. A caregiver communications device is connected to the central coordination server over a second network, and is receptive to an alarm notification that is generated by the central coordination server in response to the alarm signal. The caregiver communications device is also receptive to a caregiver user input, from which an action status response is generated for transmission to the central coordination server.
Embodiments of the present disclosure provide a method and apparatus for generating information, a device for human-computer interaction, and a computer readable medium. The method may include: acquiring gravity sensing data of a shelf carrying an item; and identifying, in response to determining that the item on the shelf is taken based on the gravity sensing data, the taken item based on the gravity sensing data and an acquired image of the taken item, and generating order information of the taken item.
A luminaire whose primary operation is to provide ambient or focused lighting in a hazardous environment is further configured to communicate, within the hazardous environment, alert and/or detected events or conditions via visual sequences. Different visual sequences uniquely identify respective alerts and/or detected conditions, which may include conditions occurring at the luminaire and/or conditions occurring within the hazardous environment. Different visual sequences are defined by respective blink sequences stored in a blink sequence library at the luminaire. Blink sequences are configurable, are distinguished by different amplitudes, frequencies, duty cycles, and other energization/de-energization waveform characteristics, and are applied to one or more illumination sources of the luminaire to thereby generate corresponding visual sequences in the hazardous environment. Visual sequences generated by hazardous environment luminaires allow personnel within the hazardous environment to be informed or alerted to critical conditions upon their occurrences, even without the use of a portable computing device.
A unified wallet manager (UWM) virtualized as a single virtual service in which all transactions relative to the UWM are treated as immutable facts permanently stored in append-only queues or ledgers from the time of their creation. A rules engine reads conversion requests in request calls to the service, and determines which rule or rules to apply to convert funds from one ledger to another, in the same or different vertically scaled gaming systems. The UWM is a peer of other vertical gaming systems, and the gaming systems access the UWM via an API server and data egresses from the UWM through an ETL process from a database cluster. The immutable queues allow for data reconstruction using any desired data model. The ledger stores funds of many different types, including real money, points, play money, and others. Third parties can integrate with the UWM through an integration hub connected to the UWM.
Embodiments of the present disclosure relate to a method and apparatus for outputting information. The method may include: acquiring point cloud data and image data collected by a vehicle during a driving process; determining a plurality of time thresholds based on a preset time threshold value range; executing following processing for each time threshold: identifying obstacles included in each point cloud frame and each image frame respectively; determining a similarity between the obstacles; determining, in response to the similarity being greater than a preset similarity threshold, whether a time interval between the point cloud frame and the image frame corresponding to two similar obstacles is less than the time threshold; and processing recognized obstacles based on a determining result, to determine the number of obstacles; and determining, based on a plurality of numbers, and outputting a target time threshold.
A device may receive sensor data and video data associated with a vehicle, and may process the sensor data, with a rule-based detector model, to determine whether a probability of a vehicle accident satisfies a first threshold. The device may preprocess acceleration data of the sensor data to generate calibrated acceleration data, and may process the calibrated acceleration data, with an anomaly detector model, to determine whether the calibrated acceleration data includes anomalies. The device may filter the sensor data to generate filtered sensor data, and may process the filtered sensor data and anomaly data, with a decision model, to determine whether the probability of the vehicle accident satisfies a second threshold. The device may process the filtered sensor data, the anomaly data, and the video data, with a machine learning model, to determine whether the vehicle accident has occurred, and may perform one or more actions.
An image-processing device includes: a reliability calculation unit configured to calculate reliability of a character recognition result on a document image which is a character recognition target on the basis of a feature amount of a character string of a specific item included in the document image; and an output destination selection unit configured to select an output destination of the character recognition result in accordance with the reliability.
A platform for design of a lighting installation generally includes an automated search engine for retrieving and storing a plurality of lighting objects in a lighting object library and a lighting design environment providing a visual representation of a lighting space containing lighting space objects and lighting objects. The visual representation is based on properties of the lighting space objects and lighting objects obtained from the lighting object library. A plurality of aesthetic filters is configured to permit a designer in a design environment to adjust parameters of the plurality of lighting objects handled in the design environment to provide a desired collective lighting effect using the plurality of lighting objects.
This disclosure provides methods for generating a vehicle wrap design. The method includes: obtaining customer information corresponding to an entity; generating, using the computing device, a vehicle wrap design for covering a vehicle based on the obtained customer information; generating, using the computing device, a three-dimensional rendering of the vehicle, wherein the vehicle wrap design is applied to the three-dimensional rendering of the vehicle; and causing a client device to display the three-dimensional rendering with the applied vehicle wrap.
An image processing apparatus in an embodiment of the present disclosure includes: an obtaining unit configured to obtain viewpoint information indicating a change over time in a viewpoint corresponding to a virtual image; and a generation unit configured to generate the virtual image from the viewpoint according to the viewpoint information obtained by the obtaining unit such that among a plurality of objects included in the generated virtual image, an object whose position in the virtual image changes by a first amount according to the change of the viewpoint indicated by the viewpoint information is lower in clearness than an object whose position in the virtual image changes by a second amount smaller than the first amount according to the change of the viewpoint.
There is disclosed an augmented reality user interface including dual representation of a physical location including generating two views for viewing the augmented reality objects, a first view includes the video data of the view including the augmented reality objects superimposed thereover in augmented reality locations and a second view that includes data derived from the physical location to generate a map with the augmented reality objects from the first view visible as objects on the map in the augmented reality locations, combining the location, the motion data, the video data, and the augmented reality objects into an augmented reality video such that when the computing device is in a first position, the first view is visible and when the computing device is in a second position, the second view is visible, and displaying the augmented reality video on a display.
A method includes receiving a first image including color data and depth data, determining a viewpoint associated with an augmented reality (AR) and/or virtual reality (VR) display displaying a second image, receiving at least one calibration image including an object in the first image, the object being in a different pose as compared to a pose of the object in the first image, and generating the second image based on the first image, the viewpoint and the at least one calibration image.
A method of displaying an augmented reality (AR) image includes controlling an AR display to display the AR image as being at least partially overlaid over a view through a microscope while the view is visible to a user of the microscope, wherein the AR image includes a cursor; receiving a user input from a user interface; setting an anchor point based on the user input; updating the AR image to include the anchor point; controlling the AR display to display the updated AR image; detecting a motion of a slide of the microscope; adjusting the AR image by moving at least one from among the cursor and the anchor point within the AR image based on the detected motion; and controlling the AR display to display the adjusted AR image.
A method for structure inspection includes the steps of: selecting a structure; providing a vehicle having an imaging device; moving the vehicle in proximity of the structure; capturing two-dimensional images of surfaces of the structure with the imaging device; storing the two-dimensional images, wherein each image includes associated position information related to the surface; producing a three-dimensional virtual model from the stored two-dimensional images; displaying the three-dimensional virtual model on a user device; selecting a location on the display of the three-dimensional model; using the selected location to identify a corresponding one of the stored position information associated with at least one of the two-dimensional images; and displaying the at least one two-dimensional image on the user device.
An information processing apparatus obtains constraint information representing constraints in placing a plurality of image capturing apparatuses that capture images for generating a virtual viewpoint image, obtains placement information based on the obtained constraint information and relating to placement of the plurality of image capturing apparatuses, and outputs the obtained placement information of the plurality of image capturing apparatuses.
Automatic generation of a road map of a site can be performed. Data records collected by vehicles with a GNSS-positioning system while driving are provided, each data record having a position information representing a two-dimensional or three-dimensional position of the vehicle, an identification reference specific to a corresponding vehicle, a time tag, and a heading information. The data records are assigned to corresponding trips based on the time tag and the identification reference. The trips are mapped within an area and the area is divided into a plurality of uniform tiles. For each tile, a heading information variance of the data records covered by the respective tile is determined. A tile is defined as junction tile, if the tile has a heading information variance higher than a computed threshold variance. An area of interest (AoI) having a perimeter is determined by which a plurality of junction tiles is surrounded.
An X-ray CT system includes an X-ray tube, an X-ray detector and processing circuitry. The processing circuitry is configured to cyclically change energy of the X-rays during one rotation of the X-ray tube around a subject. The processing circuitry is configured to perform a process including a correcting process addressing a difference in a transmission amount between X-rays having first energy and X-rays having second energy, on at least one selected from between: a plurality of first projection data sets acquired when the X-rays having the first energy were radiated; and a plurality of second projection data sets acquired when the X-rays having the second energy were radiated. The processing circuitry is configured to reconstruct an image on the basis of a combined data set generated on the basis of a plurality of projection data sets including the projection data sets resulting from the process.
In some embodiments, a computing system generates a color gradient for data visualizations by displaying a color selection design interface. The computing system receives a user input identifying a start point of a color map path and an end point of a color map path. The computing system computes a color map path between the start point and the end point constrained to traverse colors having uniform transitions between one or more of lightness, chroma, and hue. The computing system selects a color gradient having a first color corresponding to the start point of the color map path and a second color corresponding to the end point of the color map path, and additional colors corresponding to additional points along the color map path. The computing system generates a color map for visually representing a range of data values.
A method and apparatus for generating a face model, a storage medium, a processor, and a terminal are provided. The method includes that: feature extraction is performed on a currently input face image from at least one dimension to obtain a plurality of facial features; classification and identification are performed according to the plurality of facial features to obtain a facial feature identification result; a mapping relationship between the multiple facial features and face pinching parameters set in a current face pinching system is acquired; and a corresponding face model is generated according to the facial feature identification result and the mapping relationship. The present disclosure solves the technical problem that a manual face pinching function provided in a game in the related art is time-consuming and laborious, and it is difficult to obtain a face pinching effect that fully meets psychological expectations.
In one example, the present disclosure describes a device, computer-readable medium, and method for enabling secure video sharing by exploiting data sparsity. In one example, the method includes applying a transformation to a video dataset containing a plurality of video samples, to produce a plurality of sparse vectors in a first dimensional space, wherein each sparse vector of the plurality of sparse vectors corresponds to one video sample of the plurality of video samples, and multiplying each sparse vector of the plurality of sparse vectors by a transformation matrix to produce a plurality of reduced vectors in a second dimensional space, wherein the dimension of the second dimensional space is smaller than a dimension of the first dimensional space, and wherein the plurality of reduced vectors in the second dimensional space hides information about the video dataset while preserving relational properties between the plurality of video samples.
The present invention relates to an image processing device and method enabling noise removal to be performed according to images and bit rates. A low-pass filter setting unit 93 sets, from filter coefficients stored in a built-in filter coefficient memory 94, a filter coefficient corresponding to intra prediction mode information and a quantization parameter. A neighboring image setting unit 81 uses the filter coefficient set by the low-pass filter setting unit 93 to subject neighboring pixel values of a current block from frame memory 72 to filtering processing. A prediction image generating unit 82 performs intra prediction using the neighboring pixel values subjected to filtering processing, from the neighboring image setting unit 81, and generates a prediction image. The present invention can be applied to an image encoding device which encodes with the H.264/AVC format, for example.
An information processing device includes a detection unit and a calculation unit. The detection unit detects, as a measurement use point, a portion that is used for prescribed length measurement of the object, in each of sectioned regions, in an object image included in the photographed image, set on both sides with respect to a reference line which is set for the object image and by which the object image is sectioned. The calculation unit calculates the length of a segment, in each of the sectioned regions, between the measurement use point and the intersection point between the reference line and a perpendicular line passing through the measurement use point and being perpendicular to the reference line. Further, the calculation unit calculates a length, in the object, to be measured, by adding together the calculated lengths of the segments.
A method for determining a foreground image and a background image, the method includes the following steps, generating a characteristic data of each of N sub-region images of in an interested region of N parent images, classifying the N sub-region images to image groups of in M image groups according to the characteristic data of each of the N sub-region images, obtaining a motion level of each of the M image groups according to a motion area of in the N sub-region images, determining whether each the image group belongs to a background image group or a foreground image group according to each the motion level of each the image group and an image quantity of in each the image group. The method can correctly determine a foreground image and a background image, even a foreground object stops moving and stays in a viewable range of an image apparatus.
The present solution can segment tracts by performing two-pass tractography. The system can first perform deterministic tractography and then probabilistic tractography. The system can use the result from the deterministic tractography to update and refine initial identified regions of interest. The refined regions of interest can be used to filter and select streamlines identified through the probabilistic tractography.
Provided are an image processing apparatus, an image processing method, and a storage medium that can distinguish an anomaly while reducing influence of an individual difference of images. The image processing apparatus includes: a generation unit that uses a part of an inspection image including an inspection target to generate an estimation image including at least a predetermined region of the inspection target; a comparison unit that compares the estimation image generated by the generation unit with the inspection image; and an output unit that outputs a comparison result obtained by the comparison unit.
A portable biological microscopic image analysis system is suitable for analyzing a sample on a slide in real time, and the sample comes from an animal. The portable biological microscopic image analysis system includes a handheld electronic device and a microscope kit; the handheld electronic device includes an image capture unit, an image analysis module electrically connected to the image capture unit, and a real-time state analysis module electrically connected to the image analysis module; the microscope kit is detachably mounted on the handheld electronic device; wherein the image capture unit is used to obtain an image related to the sample through the microscope kit, the image analysis module is used to obtain cell information corresponding to the animal according to the image, and the real-time state analysis module is used to obtain state information corresponding to the animal according to the cell information.
Disclosed is a method for vein recognition, the method includes: performing a difference operation and a channel connection on two to-be-verified target vein images respectively to obtain a difference image and a two-channel image of the two target vein images; performing the channel connection on the obtained difference image and two-channel image to obtain a three-channel image, so as to use the three-channel image as an input of a CNN network; fine-tuning a pre-trained model SqueezeNet that completes training on an ImageNet; integrating the difference image and the three-channel image through a cascade optimization framework to obtain a recognition result; regarding a pair of to-be-verified images as a sample, transforming the sample, taking the transformed sample as the input of the CNN network, obtaining a recognition result by supervised training on the network.
As saturation enhancement processing, first saturation enhancement processing or second saturation enhancement processing different from the first saturation enhancement processing is executed. A high saturation range Ry(rc)Ry(r2) after the second saturation enhancement processing is greater than a high saturation range Rx(rc)Rx(r2) after the first saturation enhancement processing. A value Ry(r) included in the high saturation range Ry(rc)Ry(r2) after the second saturation enhancement processing is smaller than a value Rx(r) included in the high saturation range Rx(rc)Rx(r2) after the first saturation enhancement processing.
Systems and methods are provided for performing medical imaging analysis. Input medical imaging data is received for performing a particular one of a plurality of medical imaging analyses. An output that provides a result of the particular medical imaging analysis on the input medical imaging data is generated using a neural network trained to perform the plurality of medical imaging analyses. The neural network is trained by learning one or more weights associated with the particular medical imaging analysis using one or more weights associated with a different one of the plurality of medical imaging analyses. The generated output is outputted for performing the particular medical imaging analysis.
Methods and systems for selecting a mode of a tool used for a process performed on a specimen are provided. One system includes one or more computer subsystems and one or more components executed by the one or more computer subsystems. The one or more components include a generative adversarial network (GAN), e.g., a conditional GAN (cGAN). The computer subsystem(s) are configured for modifying a portion of design data for a specimen to generate an artificially defective portion of the design data and generating simulated images for the specimen by inputting the portion of the design data and the artificially defective portion of the design data into the GAN. The computer subsystem(s) are also configured for determining one or more characteristics of the simulated images and selecting a mode of a tool used for a process performed on the specimen based on the determined one or more characteristics.
Various examples are provided related to face identification of material. An image can be captured by a vision system and feature parameters determined and compared to a material feature database to determine which face of the material is being presented. The vision system can employ a set of parameters for configuration to acquire the image. The system can communicate the identification to downstream processes in real time. A near-universal, color agnostic, angular orientation independent identification of material faces can be determined without the need for physical manipulation of the material.
A computer-implemented method for assessing material microstructure of a machine component involves obtaining a raw image of a section of the component captured via a microscope. The method further includes pre-processing the raw image to generate a ternary image defined by pixel data including three levels of intensities. The method further includes identifying, from the ternary image, phase boundaries delineating at a phase in a primary constituent material of the component. The method further includes determining a volume associated with the phase based on the identified phase boundaries. The proposed method may be utilized, for example, as an automated tool for assessing material degradation and for quality control of gas turbine engine components.
The disclosure relates to method and system for image scaling. The method includes determining a nature of image scaling required to be performed on an input image based on a vertical scaling ratio and a horizontal scaling ratio and includes determining if the image scaling is an upscaling or a downscaling, a symmetric scaling or an asymmetric scaling. The method further includes determining an overall scaling ratio based on a lower or an equal of the vertical scaling ratio and the horizontal scaling ratio. The method further includes scaling an input image to a target image using a polyphase finite impulse response (FIR) scaling filter based on the nature of the image scaling, the overall scaling ratio, and a structure of the polyphase FIR scaling filter. The scaling includes dynamically performing at least one of duplication of lines, addition of filler lines, duplication of pixels, and addition of filler pixels.
A graphics processing architecture in one example performs vertex manipulation operations and pixel manipulation operations by transmitting vertex data to a general purpose register block, and performing vertex operations on the vertex data by a processor unless the general purpose register block does not have enough available space therein to store incoming vertex data; and continues pixel calculation operations that are to be or are currently being performed by the processor based on instructions maintained in an instruction store until enough registers within the general purpose register block become available.
The present disclosure generally relates to machine vision systems, illumination sources for use in machine vision systems, and components for use in the illumination sources. More specifically, the present disclosure relates to machine vision systems incorporating multi-function illumination sources, multi-function illumination sources, and components for use in multi-function illumination sources.
Systems and methods for engagement mapping based on counterfactual experiments are provided. In example embodiments, a network system receives parameters for one or more counterfactual experiments or tests. Based on the parameters, the network system selects one or more users of a social network platform to subject to the test(s) and selects edges of a social network of each of the one or more users to block. The network system then filters out notifications and feed items from the selected edges of the one or more users. Behavior data of the one or more users based on the filtering out of the notifications and feed items is aggregated, whereby the behavior data indicates engagement of the one or more users on the social networking platform based on the filtering of the notifications and feed items. Recommendations are derived based on the aggregated behavior data and presented to the users.
A system configured to: (a) retrieve structured and unstructured data from one or more external data sources, the structured data including time-series data on a financial instrument and the unstructured data including words; (b) analyze the unstructured data to determine a sentiment measure for the financial instrument; (c) analyze the structured data to obtain a training dataset; (d) train a neural network model with the training dataset such that the neural network can provide a predicted price of the financial instrument for a future timestamp; and (e) provide a decision for managing the financial instrument based at least in part on the sentiment measure for the financial instrument, the predicted price of the financial instrument, and a current holding of the financial instrument.
Systems and methods for controlling an automated electronic networked central clearinghouse for clearing and reversing reversible exchanges of digital assets are disclosed. Exemplary implementations may: execute an instance of a game; receive an exchange request that indicates a first user offers a first digital asset for a reversible exchange on a fiat-currency-based online exchange platform; access a decentralized database to obtain asset-specific distribution rights for the first digital asset; generate publication information of the first digital asset for publication on the online exchange platform; receive exchange information regarding the reversible exchange; temporarily transferring the ownership of the first digital asset; determine whether to reverse the reversible exchange, and either (i) transfer the ownership of the first digital asset to the first user, or (ii) clear the reversible exchange by non-temporarily transferring the ownership to the exchanging user, and by distributing benefits in accordance with the asset-specific distribution rights.
Described herein is an identity network for authenticating a user for a relying party and providing access to the user's credit report. The identity network may receive an unlock request for the digital identity and credit report of a user from a relying party. In response, the identity network may provide an identity provider link for accessing the identity provider application. The user may login to the identity provider application and provide consent for obtaining the user's credit report. The identity provider provides the identity network with verification of the digital identity of the user and the consent response from the user. The identity network can request access from a credit reporting agency and receive a credit report key in response. The identity network can provide the credit report key to the relying party, which can use the key to access the user's credit report from the credit reporting agency.
Systems and methods are provided for providing an adjustment to a value estimate for a property that is considered distressed. In one embodiment, a method includes receiving the estimate of value for the property; determining, based on a model, the adjustment to the estimate of value, such that the model accounts for a characteristic of the property and a characteristic of the loan; and providing the adjustment.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, to present a video. One of the methods includes obtaining loan transfer information for a user. The method includes selecting non-personalized content, at least some of the non-personalized content selected based on the loan transfer information. The method includes generating a user specific video using the loan transfer information and the selected non-personalized content. The method also includes providing the user specific video to the user.
In some embodiments, exemplary user interfaces for provisioning an electronic device with an account are described. In some embodiments, exemplary user interfaces for providing usage information of an account are described. In some embodiments, exemplary user interfaces for providing visual feedback on a representation of an account are described. In some embodiments, exemplary user interfaces for managing the tracking of a category are described. In some embodiments, exemplary user interfaces for managing a transfer of items are described. In some embodiments, exemplary user interfaces for managing an authentication credential connected with an account are described. In some embodiments, exemplary user interfaces for activating a physical account object are described. In some embodiments, exemplary user interfaces for managing balance transfers are described.
A first type of data regarding an unidentified product is collected. A first type of analysis on the first type of data is performed. A second type of data regarding an unidentified product is collected. A second type of analysis on the second type of data is performed. Based upon the first type of analysis on the first type of data and the second type of analysis on the second type of data, product identification for the unidentified product is performed. Based on the product identification, an identity of the unidentified product is output. A user is enabled to perform a business interaction with a product matching the identity of the unidentified product.
An integrated platform and associated interface(s) facilitate a transaction, such as a purchase of a vehicle or other item. The platform integrates information of multiple types received from various sources. Such information may be associated with a transaction, or possible future transaction, to purchase an item such as a vehicle. For example, the platform may receive and integrate information regarding user vehicle preferences, financing for the vehicle, insurance to cover the vehicle, total cost of ownership for the vehicle, prior vehicle trade-in information, dealer availability and price comparison information, user budget analysis, and/or other information. The platform presents information through interface(s), which are accessible through interface elements that each corresponds to a stage in the process to select and purchase an item. The displayed characteristics of each element are changeable to reflect the current status of the stage corresponding to the element.
Novel system, methods, which include machine learning, and device for providing color and fashion recommendations, including for persons with visual impairment such as color blindness or complete blindness. Also, methods providing a data storage system for storing digital renditions of garments; providing a portable communication device to extract color and/or pattern from garments through use of a camera and at least one algorithm; providing a processor capable of accessing locally stored and/or remote information about or learning the preferred matching set of garments; assigning each garment in the set of garments a red-green-blue (RGB) value; providing a suitability ranking for matching compatibility of the garment or the set of garments; and providing recommendations for preferred matching garment or set of garments by organizing the garments in at least one queue selected from the group consisting of audial, tactile, visual or a combination thereof, wherein the individual imports garments or set of garments, through a series of photos or video, for bulk import into a virtual closet for the identification and assignment of type of garments or set of garments using human or computational methods.
This specification describes technologies relating to content presentation. In general, one aspect of the subject matter described in this specification can be embodied in methods that include the actions of receiving ad information from a seller; generating, using one or more processors, a single conversion ad using the received ad information, where the single conversion ad has an available inventory of one such that only a single conversion of the ad can be performed; transmitting the single conversion ad to one or more potential buyers; receive an input from one of the one or more potential buyers; and notifying the seller of the user input. Other embodiments of this aspect include corresponding systems, apparatus, and computer program products.
A computer-implemented method for incentivizing user behavior including identifying an action for a user to perform, providing the number of credits that can be earned by the user for performing the action, verifying that the user has carried out the action and awarding the credits to the user.
A system and method includes an authorization request message configured with information about transaction amounts of items aggregated according to item categories and applicable rates for the items in the respective categories. Based on the information provided in the authorization request, a transaction handler is configured to compute a modified transaction amount for the transaction by reducing the transaction amount of items in one or more of the categories, without reducing the transaction amount(s) of items in one or more other categories, and computing a total transaction amount based on the reduction and the applicable rates.
A network gateway includes a gateway authenticator, a first network interface for interfacing the network gateway with a first computer network, and a second network interface for interfacing the network gateway with a second computer network that is distinct from the first computer network. The gateway authenticator receives from a pin-pad terminal, via the first computer network, an activation credential request that includes a first administrator credential. The pin-pad terminal receives the first administrator credential from a hardware token that is interfaced with the pin-pad terminal. The gateway authenticator is configured to (i) verify that, before the pin-pad terminal received the first administrator credential from the hardware token, the first computer network associated the first administrator credential with the pin-pad terminal; and (ii) install in the pin-pad terminal a digital authentication certificate that facilitates authentication of the pin-pad terminal to the second computer network via the network gateway.
A distributed enhanced payment processing system includes a merchant point of sale (POS) terminal system and a remote payment management system. The POS terminal system initiates a transaction that includes receiving a payment amount, a purchaser account identifier, a virtual electronic payment indicator, and a merchant ID via a payment client. Subsequently, the POS terminal system outputs the transaction to the remote payment management system which generates a token for the transaction. The payment management system then provides the purchaser account identifier, a merchant account identifier, and the payment amount to a remote virtual electronic payment (VEP) entity system. Upon receiving a VEP entity system response, the payment management system outputs the response and token to the POS terminal system.
An in-application content transfer system that generates receiver IDs to categorize a given exchange between two users where one does not execute a local instance of the application. One user executes the application on their mobile device and makes use of near-field communication protocols with a neighboring mobile device that is not executing the subject application. The content transfer is linked to the receiver's phone number and a unique ID is assigned to the content transfer. The receiving user is made aware of the content transfer via a push notification received via near field communication or via an SMS text message. The received message or notification enables the user to retrieve the content from the transfer at a later time.
The disclosed technology includes a distributed ledger system that can include one or more transaction blocks that are associated with one or more transaction records of an account corresponding to the primary account number. The system may allocate a first type block in a first distributed ledger, and the first type block may be utilized to identify a classification type associated with the first primary account number. The system may receive, at the first node, a first transaction indication associated with the first primary account number. Responsive to receiving the first transaction indication, the system may bind a first transaction block to the first distributed ledger. Transaction blocks may be configured for selective control and/or selective replicated to other nodes of the system. In response to an end-of-cycle indication, the first transaction block may be locked to prevent further modification.
A wearable payment device, such as a finger ring worn by a user, communicates payment data to a payment reader that uses the payment data in order to request a payment transaction. Such wearable payment device may be conveniently carried by and accessible to the user such that utilization of the payment device for the payment transaction is less burdensome for the user, thereby encouraging use of the payment device for payments. Indeed, in some cases, such as when the payment device is implemented as a finger ring or other type of jewelry, the user may be encouraged to carry the payment device in an exposed manner such that it is readily available for the payment transaction without the user having to search in a wallet, pocket, or purse.
Techniques associated with a dual state merchant-facing device are described herein. A point-of-sale system can comprise multiple devices, such as a customer-facing device and a merchant-facing device that is coupled to the customer-facing device and can operate in a first state or a second state. In at least one example, the merchant-facing device operating in the first state can present a graphical user interface (GUI) on a display. The merchant-facing device can transition from the first state to the second state, the second state enabling the merchant-facing device to perform at least one additional functionality that is not available to the merchant-facing device in the first state, and can update the GUI based at least in part on the at least one additional functionality.
Disclosed is a system for authenticating checks using a mixed reality environment. The system includes a financial instrumentation central database for storing financial and identification data related to the checks, and a reality glasses coupled to the financial instrumentation central database. The reality glass includes a memory unit for storing a plurality of modules, a camera to capture the image of the check, a reality display; and a wearable processor coupled to the memory unit for processing the stored plurality of modules. The wearable processor is coupled to the financial instrumentation central database, to the camera to process captured images of the check. The plurality of modules includes a first level authentication module to authenticate a bank routing number, a second level authentication module to authenticate an account number on the check captured by the camera, a third level authentication module to authenticate an appropriate amount on the check, and a fourth level authentication module to authenticate a signature style on the check.
A system, method, and computer program product are provided to allow a user to define a list of user-defined important senders; receive an e-mail; identify information associated with the sender of the e-mail, in response to the receipt of the e-mail; perform a comparison, utilizing one or more processors, involving the information associated with the sender of the e-mail, and the list of user-defined important senders, to determine whether the information associated with the sender of the e-mail is on the list of user-defined important senders; and organize the e-mail in a single user-defined important sender(s) folder, based on the comparison.
The present invention provides a takt system and method for the collaboration of production processes with uncertain time, which relates to the technical field of task collaboration. The present invention measures the collaboration efficiency of the production processes with indices such as estimated wasted time, and calculates the estimated wasted time by the expectation of the weighted sum of wasted time. For the collaboration of the production processes with uncertain time, the propagation of uncertainty factors and occurrence of wasted time in the collaborative production process are limited in a manner of takt. In different scenarios focusing on the collaboration efficiency and completion probability of the production processes, two takt control models are established, and takt solutions for the collaboration of production processes with uncertain time are obtained by solving the models. The method proposed effectively reduces the wasted time in the production processes and improves the collaboration efficiency.
In some embodiments, the systems and methods built in accordance with the present disclosure may analyze audience engagement with a presentation displayed during a meeting and provide feedback to a presenter during and/or after the presentation. In some embodiments, the provided feedback may include determining metrics indicative of participant engagement levels. Participant engagement levels may then be used to adjust meetings in real-time and/or after the meeting has ended. In some embodiments, the system may include a hybrid configuration where a subset of the presenters, participants and moderators are physically present in the same environment. In some embodiments, the system may include a fully virtual configuration where all of the presenters, participants and moderators are physically remote from each other. A system may include presenter computing devices, participant computing devices and a server system including a data analytics module configured to determine metrics indicative of participant engagement levels.
A vending device has at least one display area and an evaluator. The display area is formed by a rigid body, and has at least two, spatially-separated product areas, the rigid body of the display area being held by force transmission areas of at least two weighing cells. The evaluator is configured to, at periodic intervals or when a total weight detected by the at least two weighing cells changes: determine new coordinates of a center of gravity from data of the weighing cells, and transmit the new coordinates to a controller. The controller is configured to: determine a product area within the display area based upon changes in the coordinates of the center of gravity, determine, from the change in a total weight, the weight of goods removed from or added to the determined product area, and update an inventory, stored in a memory, for the product.
An operation control apparatus of the invention includes a KPI tree preparation field for accepting an issues-structure tree indicating a causal relation of an issue of an organization having a plurality of departments, and KPI definition information having a KPI for evaluating the issue mutually associated with the department responsible for the KPI, and a KPI tree generation field for generating a KPI tree indicating the causal relation of the KPI from the issues-structure tree indicating the causal relation of the issue by accepting a user's association of the KPI with the issue constituting the issues-structure tree.
A method of facilitating a match between an employer with at least one job opening and job seekers is provided. The employer has a set of position preferences related to the job opening. The job seekers have suitability data, resumes, etc., that are provided to the employer. The suitability data includes normalized assessment data. The method includes the steps of: determining a position quotient based on the position preferences; deriving a performance quotient for each job seeker, the performance quotient including normalized assessment data; comparing each the performance quotient to the position quotient; and ranking each the job seeker based on the comparison of the performance quotient to the position quotient.
A system and method are disclosed for solving a supply chain planning problem modeled as a linear programming (LP) problem. Embodiments further include receiving a multi-period matrix formulation of a least a portion of an LP supply chain master planning problem representing a supply chain planning problem for a supply chain network and having a planning horizon divided into time buckets separated by time-bucket boundaries, mapping constraints of the LP supply chain master planning problem and variables of the LP supply chain master planning problem to the time buckets, calculating a quantity of cross-over variables for the constraints and the time buckets, selecting one or more decomposition boundaries from the time-bucket boundaries, and formulating at least two time-based decomposed subproblems by decomposing the LP supply chain master planning problem at the one or more decomposition boundaries.
In an approach location allocation planning, one or more computing units determine at least one location matching model for a first current participating entity of a plurality of current participating entities of a current event, wherein an output of the location matching model indicates a matching degree between the first current participating entity and a current event location. The one or more computing units create at least one initial location allocation plan for the plurality of current participating entities of the event based, at least in part, on the at least one location matching model. The one or more computing units receive feedback from at least one of the plurality of current participating entities. Responsive to the feedback indicating acceptance of the initial location allocation plan, the one or more computing units determine a final location allocation plan based on the initial location allocation plan.
The invention provides a method of efficiently determining the effectiveness of managing a chemical or industrial facility. The method involves identifying various industrial site assets and recording various specs of those assets over time. The various assets are grouped according to some hierarchy such as location, problem to be solved, or just asset type. The specs are compared to acceptable ranges and are scored positively or negatively. The system allows a user to determine trends by asset type, spec type, or by position within the hierarchy. This system allows both small scale and large-scale perspective, and can be used for both reactive and preemptive decision making.
Distributed machine learning systems and other distributed computing systems are improved by embedding compute logic at the network switch level to perform collective actions, such as reduction operations, on gradients or other data processed by the nodes of the system. The switch is configured to recognize data units that carry data associated with a collective action that needs to be performed by the distributed system, referred to herein as “compute data,” and process that data using a compute subsystem within the switch. The compute subsystem includes a compute engine that is configured to perform various operations on the compute data, such as “reduction” operations, and forward the results back to the compute nodes. The reduction operations may include, for instance, summation, averaging, bitwise operations, and so forth. In this manner, the network switch may take over some or all of the processing of the distributed system during the collective phase.
A system and method for identifying and predicting subjective attributes for entities (e.g., media clips, movies, television shows, images, newspaper articles, blog entries, persons, organizations, commercial businesses, etc.) are disclosed. In one aspect, subjective attributes for a first media item are identified based on a reaction to the first media item, and relevancy scores for the subjective attributes with respect to the first media item are determined. A classifier is trained using (i) a training input comprising a set of features for the first media item, and a target output for the training input, the target output comprising the respective relevancy scores for the subjective attributes with respect to the first media item.
The disclosure describes aspects of using multiple species in trapped-ion nodes for quantum networking. In an aspect, a quantum networking node is described that includes multiple memory qubits, each memory qubit being based on a 171Yb+ atomic ion, and one or more communication qubits, each communication qubit being based on a 138Ba+ atomic ion. The memory and communication qubits are part of a lattice in an atomic ion trap. In another aspect, a quantum computing system having a modular optical architecture is described that includes multiple quantum networking nodes, each quantum networking node including multiple memory qubits (e.g., based on a 171Yb+ atomic ion) and one or more communication qubits (e.g., based on a 138Ba+ atomic ion). The memory and communication qubits are part of a lattice in an atomic ion trap. The system further includes a photonic entangler coupled to each of the multiple quantum networking nodes.
A vehicle having the first ANN model initially installed therein to generate outputs from inputs generated by one or more sensors of the vehicle. The vehicle selects an input based on an output generated from the input using the first ANN model. The vehicle has a module to incrementally train the first ANN model through unsupervised machine learning from sensor data that includes the input selected by the vehicle. Optionally, the sensor data used for the unsupervised learning may further include inputs selected by other vehicles in a population. Sensor inputs selected by vehicles are transmitted to a centralized computer server, which trains the first ANN model through supervised machine learning from sensor received inputs from the vehicles in the population and generates a second ANN model as replacement of the first ANN model previously incrementally improved via unsupervised machine learning in the population.
An apparatus for automatic radio-frequency identification (RFID). In an embodiment, the apparatus comprises a flexible strap comprising a plurality of holes and a buckle configured to buckle to any one of the plurality of holes, such that, when the buckle is buckled to one of the plurality of holes, the strap forms a closed loop. The apparatus further comprises one or more tag enclosures. Each tag enclosure comprises one or more buckles and a RFID tag configured to communicate identifying data to a reader device. The one or more buckles of each tag enclosure are each configured to buckle to any one of the plurality of holes on the strap such that the tag enclosure may be attached to the strap at any one of a plurality of positions on the strap.
A dual-mode RFID tag and related system for storing, monitoring, and recovering data regarding an object, the system including a dual mode tag including a case, a UHF tag inside the case and structured to store at least a first portion data about the object, and an HF tag inside the case and to store at least a second portion of data about the object; the system further including a UHF reader to communicate with the UHF tag, an HF reader on a personal device to communicate with the HF tag, and a remote management system having a memory and a communication system that is communicatively coupleable to one or both of the HF reader and the UHF reader to receive a communication signal from one or both of the HF reader and the UHF tag and to store and modify data about the object in the remote management system, and to transmit data about the object to one or both of the UHF tag and the HF tag after determining the authorization of the HF reader user.
According to a first aspect of the invention, there is provided a method of deriving information from an optically readable security element, the method comprising: optically reading the optically readable security element, the optically readable security element comprising one or more optically readable structures, optically readable in response to excitation of the one or more optically readable structures, the one or more optically readable structures being arranged to interact with one or more proximal structures of the optically readable security element, the interaction being such that an excitation-emission relationship for the one or more optically readable structures interacting with the one or more proximal structures, is different to an excitation-emission relationship for the one or more optically readable structures and the one or more proximal structures in isolation; the reading comprising: determining data indicative of an optical property of the optically readable security element using first emission electromagnetic radiation, emitted in response to first excitation of the one or more optically readable structures; and deriving the information from the determined data.
A non-transitory machine-readable storage medium, having encoded thereon program code is provided. When the program code is executed by a machine, the machine implements the following method for validating the identification of a person: receiving an input listing an identification-issuing entity from a first application; receiving an input of an identification number provided by the identification-issuing entity; displaying a picture of an identification card issued by the identification-issuing party; and saving the picture to a database associated with a user name on the identification card and the identification-issuing entity.
An information processing apparatus performs acquiring measurement results obtained by measuring a characteristic of a recording medium a plurality of times; inputting information corresponding to a type of the recording medium; acquiring an extraction range of the type indicated by the information, among extraction ranges set to respective types of recording media for determination of a type; setting, based on the measurement results and the type, a parameter for correcting the measurement results to reduce difference between the measurement results and the extraction range; correcting, by using the parameter, measurement results obtained by measuring a characteristic of a recording medium to be recorded; and extracting a candidate type of the recording media, the measurement results, based on the corrected measurement results and the extraction range.
The present disclosure provides a target-image acquisition method. The target-image acquisition method includes acquiring a visible-light image and an infrared (IR) image of a target, captured at a same time point by a photographing device; weighting and fusing the visible-light image and the IR image to obtain a fused image; and obtaining an image of the target according to the fused image. The present disclosure also provides a photographing device and an unmanned aerial vehicle (UAV) using the method above.
Disclosed are an image classification and conversion method, apparatus, image processor and training method thereof, and medium. The image classification method includes receiving a first input image and a second input image; performing image encoding on the first input image by utilizing n stages of encoding units connected in cascades to produce a first output image, wherein n is an integer greater than 1, and wherein as for 1≤i
A temporal propagation network (TPN) system learns the affinity matrix for video image processing tasks. An affinity matrix is a generic matrix that defines the similarity of two points in space. The TPN system includes a guidance neural network model and a temporal propagation module and is trained for a particular computer vision task to propagate visual properties from a key-frame represented by dense data (color), to another frame that is represented by coarse data (grey-scale). The guidance neural network model generates an affinity matrix referred to as a global transformation matrix from task-specific data for the key-frame and the other frame. The temporal propagation module applies the global transformation matrix to the key-frame property data to produce propagated property data (color) for the other frame. For example, the TPN system may be used to colorize several frames of greyscale video using a single manually colorized key-frame.
An image recognition method and apparatus are provided. The method includes: acquiring a first brightness of a target side of an electronic device when an image recognition triggering operation for the electronic device is detected, wherein the electronic device is provided with an image capturing circuit and a light-emitting circuit; controlling the light-emitting circuit to complement the target side with light when the first brightness is less than a preset brightness threshold; controlling the image capturing circuit to capture a target image of the target side during light complement; and recognizing the target image.
In a method for performing operating a fingerprint sensor, an image of a fingerprint of a finger is captured at a fingerprint sensor. A force applied by the finger at the fingerprint sensor is determined, where the force is a measure of pressure applied by the finger on the fingerprint sensor during capture of the image. The force is compared to a pressure threshold. Provided the force satisfies a pressure threshold, a spoof detection operation is performed to determine whether the finger is a real finger. Provided the force does not satisfy the pressure threshold, fingerprint authentication using the image of the fingerprint is performed without performing the spoof detection operation.
Disclosed are an extended reality (XR) device and a control method thereof, which are applicable to all of 5G communication technology field, a robot technology field, an autonomous driving technology field, and an AI technology field.
Methods for accurate object tracking are disclosed herein. An example the method includes receiving, from a first optical imaging assembly having a first field of view (FOV), a first image captured over the first FOV and based on a decode of an indicia associated with an object of interest, identifying the object of interest within the first image. The method further includes determining a location of the object of interest within the first image and mapping the location of the object of interest within the first image to a predicted location of the object of interest within a second image, the second image being received from a second optical imaging assembly having a second FOV and the second image being captured over the second FOV.
An information collection system includes a sensor terminal group including first sensor terminals and second sensor terminals and an information collection terminal capable of wireless communication with the sensor terminals. The information collection terminal includes a transmission unit that transmits data requests to the sensor terminals and a receiving unit that executes processing of receiving measurement data from the first sensor terminals in a first period, executes processing of receiving reception requests from the second sensor terminals in a second period, and when the reception requests are given, executes processing of receiving measurement data from the second sensor terminals in a third period. The second sensor terminal includes a transmission unit that, when the data requests are given, and when the control unit determines to transmit the measurement data, transmits the reception requests in the second period and transmits the measurement data in the third period.
Disclosed are an optical communication device and a method for transmitting and receiving information. The optical communication device includes at least two light sources including a first light source and a second light source, and a controller configured to drive the first light source and the second light source in one or more driving modes. The first light source and the second light source are driven in a same driving mode for transmitting first information, and the first light source and the second light source are driven in different driving modes including a first driving mode and a second driving mode which have the same or different frequencies for transmitting other information different from the first information.
This application discloses example radio frequency identification systems and example methods for constructing a relay network, a reader, and a repeater. One example radio frequency identification system includes a reader, a repeater, and a target tag. The reader can be configured to send a first signal to the repeater. The repeater can be configured to send an excitation signal to the target tag based on the first signal. The target tag can be configured to send a target backscatter signal based on excitation of the excitation signal, where the target backscatter signal carries electronic product code information. The reader can be further configured to receive the target backscatter signal and obtain the electronic product code information in the target backscatter signal.
A translation-engine suggestion method, system, and computer program product include identifying probes for third-party translation-engines for an input text, segmenting sections of the input text into a plurality of segments according to the identified probes, fragmenting the input text into fragments according to the segments, applying each fragment to the identified probe using the corresponding third-party translation-engine, and outputting a translation by combining each fragment.
The present disclosure is directed to systems, methods and devices for providing real-time translation for group communications. A speech input may be received from a first group communication device associated with a first language. One or more groups to distribute the speech input may be determined, wherein each of the one or more groups comprises at least one group communication device associated with a language that is different than the first language. The received speech input may be translated into a corresponding language for each of the one or more groups, and the translated speech may be sent to each group communication device of the one or more groups in a language corresponding to each of the one or more groups.
A business-to-consumer (B2C) cloud service hosts web applications of various businesses as an instance of a cloud service. The B2C cloud service provides an identity management engine that manages the sign-in of consumers of the businesses to a respective cloud service. The identity management engine dynamically creates a security token for the sign-in request that includes claims customized for the hosted cloud service. The claims are based on directives provided by the business and obtained from the consumer via a user interface dynamically created by the identity management engine at a sign-in request.
In order to expedite testing (such as silicon chip testing), a test pattern that indicates a timing, order, and frequency (e.g., speed) of signals sent during the test may be divided into different portions. Also, a frequency at which each portion of the test pattern is to be run is determined. Each portion is run at a frequency that can be supported by only that portion. As a result, the slowest portion of the test pattern only limits the frequency at which its portion is run, while other portions are run at a faster frequency. This reduces a time taken to run the test pattern in a testing environment.
An integrated circuit includes at least one first area including logic circuitry. The logic circuitry includes library blocks selected from a logic circuit library. A first one of the library blocks is provided with at least two symmetry mirror edges perpendicular to a height of the library blocks. Two adjacent ones of the library blocks are joined at a common symmetry mirror edge.
Semiconductor yield is modeled at the die level to predict die that are susceptible to early lifetime failure (ELF). A first die yield calculation is made from parametric data obtained from wafer testing in a semiconductor manufacturing process. A second die yield calculation is made from die location only. The difference between the first die yield calculation and the second die yield calculation is a prediction delta. Based on an evaluation of the first die yield calculation and the prediction delta, the likelihood of early lifetime failure can be identified and an acceptable level of die loss can be established to remove die from further processing.
A method and system, the method including receiving a nominal computer-aided design (CAD) model of a component; producing a physical representation of the component based on the CAD model using an additive manufacturing (AM) process; measuring the produced physical representation of the component to obtain measurement data of the physical representation of the component; determining a deviation between a geometry of the CAD model and the measurement data of the physical representation of the component; calculating a nonlinear scale factor using an iterative simulation process; determining a compensation field based on the determined deviation between the geometry of the CAD model and the measurement data of the physical representation of the component and the calculated nonlinear scale factor; modifying the nominal CAD model by the determined compensation field; and producing a physical representation of the component based on the modified nominal CAD model.
A computer-implemented method for inverse simulation of a plurality of fibers. The method comprises: providing a computational model for describing mechanical behavior of fibers; obtaining target geometry information describing a target configuration or dynamical behavior of the plurality of fibers; and inverse simulating the behavior of the plurality of fibers, using the computational model and the target geometry information, to calculate a target set of fiber mechanical parameters for the plurality of fibers. Fibers with the calculated target set of fiber mechanical parameters exhibit the target configuration or dynamical behavior. In some embodiments, the inverse simulation comprises using analysis-by-synthesis to help derive the target set of fiber mechanical parameters. In some embodiments, the inverse simulation uses a neural network to infer information about fiber mechanical parameters from the target geometry information. The invention also provides a method of training the neural network.
Systems and methods are disclosed for digital design tools. One example method comprises obtaining an electronic model of a structure, the electronic model including a objects, and the objects representing physical objects to be constructed. Dependencies between the objects are determined, with the determined dependencies indicating that a first object is to be constructed prior to a second object. Construction orderings are generated based on the determined dependencies, with each construction ordering indicating a unique order in which the objects are to be constructed. A user interface is presented via a user device describing the construction orderings, with a system being configured to trigger updates to the electronic model in response to received material changes associated with the electronic model.
An encryption circuit includes a pipelined encryption core having a plurality of round cores therein. The pipelined encryption core is configured to perform a real round operation on each of a plurality of pieces of input data received therein and generate encryption data from the input data using an encryption operation comprising the real round operation. An encryption controller is provided, which is coupled to the pipelined encryption core. The encryption controller is configured to control the pipelined encryption core so that at least one of the plurality of round cores performs a virtual round operation as part of the encryption operation. The pipelined encryption core is configured to perform a virtual encryption operation using at least one of: (i) dummy data, and (ii) a dummy encryption key.
The present disclosure provides a method, system, and device for distributing a software release. To illustrate, based on one or more files for distribution as a software release, a release bundle is generated that includes release bundle information, such as, for each file of the one or more files, a checksum, meta data, or both. One or more other aspects of the present disclosure further provide sending the release bundle to a node device. After receiving the release bundle at the node device, the node device receives and stores at least one file at a transaction directory. After verification that each of the one or more files is present/available at the node device, the one or more files may be provided to a memory of a node device and meta data included in the release bundle information may be applied to the one or more files transferred to the memory.
Techniques for authenticating digital media asset, and particularly to verifying the authenticity of digital image or video files which may have been redacted or otherwise altered in some way. The approach, which we call perceptual video fingerprinting, compares media assets based on what humans perceive, rather than exactly which bits match, by using neural network algorithms.
This disclosure relates to systems and methods for providing a client system access to confidential information of a person stored at a source system, the client system being configured to access the confidential information using a resource identifier, the client system and the source system comprising an encryption module for executing an encryption algorithm.
In some aspects, an entity-resolution computing system for entity resolution is provided. The entity-resolution computing system includes an entity resolution computing device configured as an interface between a client computing device and an encrypted identity data repository that contain resolved entity dataset. The entity resolution computing device is configured for servicing a resolution request from the client computing device by matching encrypted indexes generated from identity data objects stored in a client identity database to encrypted data objects stored in the encrypted identity data repository. The resolution computing device retrieves and transmits a common entity identifier associated with the encrypted data objects so that the client computing device can link the identity data objects stored in a client identity database via the common entity identifier.
For example, a data set comprising a plurality of data fields, including at least one field containing personal information, can be received. Meta-information for the data set can be reviewed, which includes a categorization for the data set comprising a first parameter specifying field data type, and, for fields comprising personal information, a second parameter specifying personal data consent information. The data set may be converted into a columnar data storage format using the meta-information, and the at least one data field comprising personal information may be stored in at least one column marked as comprising personal information, and at least one personal information privacy control may be applied to the at least one marked column.
Provided are a system and method of encrypting a folder in a device. The device for controlling access to the folder includes a communication part configured to transmit, to a server, an encryption key generation request with respect to the folder, and receive, from the server, an encryption key associated with the folder that is generated in response to the encryption key generation request, wherein the encryption key generation request includes an identification of the folder and authentication data of a user who accesses the folder is an authorized user; and a controller configured to authenticate the user by using the encryption key.
A system and method is provided that facilitates threat impact characterization. The system may include a replica programmable logic controller (PLC) that corresponds to a production PLC in a production system and that may be configured to operate at an accelerated processing speed that is at least two times faster than a processing speed of the production PLC. The system may also include a data processing system configured to communicate with the replica PLC when executing malware infected PLC firmware and generate a simulation of the production system based on a virtual model of the production system operating at an accelerated processing speed that is at least two times faster than a processing speed of the physical production system. The simulation may include accelerated simulation of the production PLC based on communication with the replica PLC using the malware infected PLC firmware. The data processing system may also monitor: outputs from the replica PLC and the simulation of the production system to determine a possible threat to a hardware component of the production system caused by the production PLC executing the infected PLC firmware rather than a non-infected PLC firmware; and output data indicative of the possible threat thorough a display device.
A secure read-only-memory (ROM) code patching system includes a processor that is configured to generate first partial cryptographic data based on a ROM patch and a set of secret bits, and authenticate the ROM patch based on a match between the first partial cryptographic data and reference partial cryptographic data of the ROM patch. Upon the authentication of the ROM patch, the processor is further configured to generate an address associated with a set of ROM instructions of a ROM code. Based on a match between the generated address and a ROM patch address of the ROM patch, the processor is further configured to execute a set of patch instructions of the ROM patch that is successfully authenticated instead of the set of ROM instructions, thereby securely patching the ROM code.
The disclosed computer-implemented method may include establishing a header policy that is to be applied at a metadata proxy. The header policy may indicate that specified header information is to be included in each metadata service request sent to a metadata service. The method may also include accessing the established header policy at the metadata proxy, where the metadata proxy is configured to intercept metadata service requests and check the intercepted requests for the specified header information. The method may further include determining, at the metadata proxy, that the metadata service request does not include the specified header information and, in response to the determination, preventing the metadata service request from being passed to the metadata service. Various other methods, systems, and computer-readable media are also disclosed.
An embedded trace capacitive signet is described. The embedded trace capacitive signet provides for authentication and validation through interaction with a touch screen of a computing device such as a smart phone. The embedded trace capacitive signet has a substrate such as a card, a plurality of conductive circle points affixed to the substrate, a user conductive area that allows a user to provide capacitance to the conductive circle points, and thin traces connecting each circle point to the user conductive area. Placing the circle points in different locations produces unique cards that can be detected by a touch screen of a computing device to initiate a software based application.
A data processing system and a method are provided for recognizing a scanned biometric characteristic in the data processing system. The data processing system includes a biometric sensor, a rich execution environment (REE), and a secure element (SE). In one embodiment, during an enrollment operation, a random challenge is applied to scanned data to produce a biometric template that is stored. During subsequent validation operations, the SE determines if user data includes evidence of the random challenge before providing access to a secure application. Evidence of the random challenge indicates the user data was provided by the biometric sensor. In another embodiment, the sensor data is split between the REE and the SE and partially processed in the SE. The described embodiments prevent a replay attack from being conducted in communications between the REE and the SE.
Technology described herein can be embodied in a method for preventing access to a secure system based on determining a captured image to be of an alternative representation of a live person. The method includes capturing a first image and a second image of a subject illuminated by electromagnetic radiation in a first and a second wavelength ranges, respectively. The method also includes extracting, from the first image, a first portion representative of a sclera region of the subject, and from the second image, a second portion representative of the same region. It is determined that each of the first portion and the second portion includes features representative of vasculature in the sclera region, and in response, the subject in the image is identified to be an alternative representation of a live person. Upon search identification, the method includes preventing access to the secure system.
An electronic apparatus includes: an input module configured to input an export instruction and an electronic apparatus identifier, the export instruction instructing to export an application, the electronic apparatus identifier corresponding to one different electronic apparatus; a controller module configured to generate an activation key on a basis of the electronic apparatus identifier where the export instruction is input, the activation key being for activating the application only in the one different electronic apparatus, control to output a package file including the application and the activation key, and inactivate the application after a certain replacement transition time period passes, the certain replacement transition time period starting from an output time point of the package file; and an output module configured to output the package file controlled by the controller module.
Herein are disclosed computation units for batch normalization. A computation unit may include a first circuit to traverse a batch of input elements xi having a first format, to produce a mean μ1 in the first format and a mean μ2 in a second format, the second format having more bits than the first format. The computation unit may further include a second circuit operatively coupled to the first circuit to traverse the batch of input elements xi to produce a standard deviation σ for the batch using the mean μ1 in the first format. The computation unit may also include a third circuit operatively coupled to the second circuit to traverse the batch of input elements xi to produce a normalized set of values yi using the mean μ2 in the second format and the standard deviation σ.
Matrix multiplication systolic array feed methods and related processing element (PE) microarchitectures for efficiently implementing systolic array generic matrix multiplier (SGEMM) in integrated circuits is provided. A systolic array architecture may include a processing element array, a column feeder array, and a row feeder array. A bandwidth of external memory may be reduced by a factor of reduction based on interleaving of the matrix data via a feeding pattern of the column feeder array and the row feeder array.
A method is provided for developing websites and providing tailored assistance for development. The method for developing a website is based on copying of the existing website, analysing, unifying and moving of the copied website into an operating environment. In the operating environment, the developer can change, modify and edit elements of the copied website, thus developing a new website. When a new website is developed, an equipment implementing the method adjusts parameters, settings of the website according to the server on which the website is planned to be hosted. After adjusting parameters of the new website, the website is moved onto the server for continuous operation, online displaying. When the equipment implementing the method has analysed the copied website and moved it into the operating environment, the developer can use tailored assistance for website development, which provides further steps of development according to a specific situation of the developer.
A computer that selectively removes online content associated with an individual is described. During operation, the computer may perform an enrollment process associated with the individual, where the enrollment process involves receiving credentials for one or more accounts associated with the individual. Then, based at least in part on the credentials, the computer may monitor a subsequent activity history associated with the individual, where the activity history includes online transactions associated with the individual, and where the online transactions are associated with multiple locations and the one or more accounts. When the computer receives information specifying an occurrence of an event (such as death or illness of the individual), the computer may, based at least in part on the monitored activity history, selectively remove the online content associated with the individual and at least some of the locations.
Systems and methods for improving question-answering recall for complex, multi-sentence, convergent questions. More specifically, an autonomous agent accesses an initial answer that partly answers a question received from a user device. The agent represents the question and the initial answer as discourse trees. From the discourse trees, the agent identifies entities in the question that are not addressed by the answer. The agent forms an additional discourse tree from an additional resource such as a corpus of text. The additional discourse tree rhetorically connects a non-addressed entity with the answer. The agent designates this discourse tree as an imaginary discourse tree. When combined with the initial answer discourse tree, the imaginary discourse tree is used to generate an improved answer relative to existing solutions.
A function approximation system is disclosed for determining output floating point values of functions calculated using floating point numbers. Complex functions have different shapes in different subsets of their input domain, making them difficult to predict for different values of the input variable. The function approximation system comprises an execution unit configured to determine corresponding values of a given function given a floating point input to the function; a plurality of look up tables for each function type; a correction table of values which determines if corrections to the output value are required; and a table selector for finding an appropriate table for a given function.
A computer-implemented method includes determining that a first time point in a video has been reached during playback of the video. A dynamic relationship graph is displayed in association with the first time point, where the dynamic relationship graph illustrates one or more relationships among two or more characters in the video, responsive to the first time point being reached. The relationship graph includes two or more nodes and one or more edges. The nodes include a respective node representing each character of the two or more characters in the video, and the edges include a respective edge representing each relationship of the one or more relationships among the characters. It is determined that a second time point is reached in the video. The dynamic relationship graph is updated to represent a change in the one or more relationships between the first time point and the second time point.
A machine learning (ML) based automated search system receives an entity information document including a plurality of entities and identifies new entities that are similar to the plurality of entities which are not included in the entity information document via automated searches. Entity intelligence reports are generated for the plurality of entities which are further used to extract search terms. The search terms are used for executing automatic searches for documents with relevant portions. The documents are further analyzed to identify other, new entities which are not included in the entity information document. Entity intelligence reports including information regarding the new entities are also generated. Significant attributes are determined for the entities. The significant attributes are further employed in ranking the new entities so that top ranked new entities are identified. Alerts can be generated based on the information regarding the new entities.
Systems and methods are provided for reorganizing a partition-by-growth database with LOB columns. An example method includes creating a partition assignment table by performing a logical reorganization of the partition-by-growth database, wherein an assignment of at least one base table row and its corresponding LOB in the partition assignment table differs from a current assignment of the at least one base table row. The method also includes performing a base table reorganization based on the partition assignment table in parallel with a LOB auxiliary table reorganization based on the partition assignment table and a LOB dataset assignment table. The method may also include applying changes to the reorganized base tables and the reorganized LOB auxiliary tables using the partition assignment table.
Various embodiments relate generally to data science and data analysis, and computer software and systems, to provide an interface between repositories of disparate datasets and computing machine-based entities that seek access to the datasets, and, more specifically, to a computing and data storage platform that facilitates consolidation of one or more datasets, whereby user interfaces may be implemented as computerized tools for presenting summarization of dataset attributes to facilitate discovery, formation, and analysis of interrelated collaborative datasets. In some examples, a method may include receiving data resulting from insight calculations. Insight calculations may be based on a derived dataset attribute. Also, the method may include presenting a data arrangement overview summarizing the data attributes as an aggregation of data attributes in a portion of the user interface. The data arrangement overview may include an interactive display of a distribution associated with a collaborative atomized dataset.
Various embodiments relate generally to data science and data analysis, computer software and systems, and network communications to interface among repositories of disparate datasets and computing machine-based entities configured to access datasets, and, more specifically, to a computing and data storage platform configured to provide one or more computerized tools to deploy predictive data models based on in-situ auxiliary query commands implemented in a query, and configured to facilitate development and management of data projects by providing an interactive, project-centric workspace interface coupled to collaborative computing devices and user accounts. For example, a method may include activating a query engine, implementing a subset of auxiliary instructions, at least one auxiliary instruction being configured to access model data, receiving a query that causes the query engine to access the model data, receiving serialized model data, performing a function associated with the serialized model data, and generating resultant data.
Context dependent execution time prediction may be applied to redirect queries to additional query processing resources. A query to a database may be received at a first query engine. A prediction model for executing queries at the first query engine may be applied to determine predicted query execution time for the first query engine. A prediction model for executing queries at a second query engine may also be applied to determine predicted query execution time for the second query engine. One of the query engines may be selected to perform the query based on a comparison of the predicted query execution times.
Methods, systems, and computer-readable storage media for calculating, for each operator in a set of operators, a set of costs, each cost associated with a data format and including a first segment indicating a cost of an operator to convert an incoming data format to an access format and a second segment indicating a cost based on a set of costs of one or more ancestors of the operator, a conversion cost, and a materialization cost, indicating, along the path within the query plan, a location representing execution of a conversion from a first data format to a second data format, the location being selected based on the sets of costs, and providing the query plan with the location for execution to generate a query result, wherein during execution of the query plan, conversion of data from the first data format to the second data format occurs at the location.
Provided are methods and systems comprising receiving a plurality of data tables, wherein each data table comprises at least one row, generating a first handle for a first value in a table of the plurality of tables, wherein the first handle comprises an indication of whether a row in each of the plurality of tables is associated or not associated with the first value, and performing one or more operations on the first handle.
Methods, systems, and devices supporting a data model for emissions analysis are described. Some database systems may store emissions data and support a sustainability application. The sustainability application may display reports that track and analyze data related to carbon emissions. In some cases, underlying data for a report is missing from the database system. The system may support extrapolation techniques to estimate the missing data and aggregate the underlying data—including the extrapolated values—according to a data schema of the database to calculate fields in a report. In some cases, a single data record may be used to generate multiple reports. The system may send one or more results to a user device for display in a user interface (e.g., in one or more dashboards). Additionally or alternatively, the system can display underlying calculations (e.g., report calculations, extrapolation calculations, etc.) in the user interface to support auditing activities.
In one example, a computer-implemented method of generating a weather product is disclosed that comprises receiving a product generation input, the product generation input being indicative of a weather product. The method further comprises retrieving a weather data point, based on the product generation input. Further, the method comprises analyzing the weather data point with a weather analysis component to identify weather parameters relevant to the weather product. In addition, the method comprises generating the weather product to include the identified relevant weather parameters.
A system for ledger data includes a block repository, a metadata database, and a processor. The block repository stores verified secure ledger data in one or more blocks that are cryptographically linked. The metadata database stores metadata information for the one or more blocks in the block repository. The processor is configured to receive an indication to check data in a block and to mark the block as being verified in the metadata information associated with the block.
Systems, computer program products, and methods are described herein for identifying, tagging, and monitoring data flow in a system environment. The present invention may be configured to receive data sets generated by applications for storage in data structures, generate unique identifiers for the data sets, and add the unique identifiers to the data sets. The present invention may be further configured to monitor, based on the unique identifiers, access to and movement of the data sets, generate, based on monitoring the access to and the movement of the data sets, flow data, and generate, based on the flow data, a data flow model. The present invention may be further configured to provide, to a user device, a graphical user interface for display by the user device, where the graphical user interface includes information based on the data flow model.
Methods and systems for improving data store performance are provided. In one aspect, a method includes creating a target data definition for a target fact table; determining a source data definition of a source table; receiving at least one source record of the source table; mapping, in response to determining the source attributes of the at least one source record include at least one source attribute that corresponds to the at least one target attribute, the at least one source attribute to the at least one target attribute of the target record; and processing, in response to determining the source attributes of the at least one source record include at least one unmapped source attribute that does not correspond to the at least one target attribute, the at least one unmapped source attribute into an unmapped attributes store of the aggregate attribute.
Embodiments include a computer-implemented technique for determining a license position of an enterprise computer system represented in a standardized graph-based framework. The technique includes obtaining information indicative of licensable products and enforceable licenses of an enterprise computer system, tabulating that information in a graph database, and construing an enterprise infrastructure graph and a target element relationship pattern graph of the enterprise computer system based on the tabulated information in accordance with the standardized graph-based framework. Querying the standardized graph-based framework can determine an effect of a target element on a license position of the enterprise computer system by matching the target element relationship pattern graph to any subgraphs of the enterprise infrastructure graph. The method further includes determining a license position of the enterprise computer system based on any matching subgraphs returned in response to the query of the standardized graph-based framework.
A distributed data storage system may implement determining indexing progress for a table stored in the distributed data storage system. A table may be stored in multiple table partitions. When a secondary index is created for the table, each partition may independently index the items stored within the table partition in order to identify those items in the partition that should be stored in the secondary index. During creation of the secondary index, creation progress points that indicate the progress of the indexing across the table partitions may be determined. The creation progress points may be provided via a programmatic, textual, or graphical interface to the distributed data storage system.
In an approach for migrating database content with row-level security from a source database with row-level security to a target database without row-level security, a computer determines a type of the source database to be migrated, and upon determining that a source table of the source database is maintained using multi-level security attributes, creating a data structure for a source table of the source database for storing meta-data comprising the multi-level security attributes, determining all dimensions of the multi-level security attributes, adding columns to a target table of the target database relating to the source table, the added columns representing the multi-level security attributes of the source table.
A programmable controller includes a plurality of modules arranged along a predetermined arrangement direction, and the plurality of modules includes a master station module and slave station modules. The programmable controller includes a main line configured to provide communication between the master station module and the slave station modules, and sub-lines configured to provide communication between two adjacent modules. The programmable controller sets station numbers of the slave station modules by communication via the sub-lines, and then performs communication via the main line using the set station numbers.
A system, computer-readable media and computer-implemented method for automated network adapter activation in connection with fibre channel uplink mapping. The system includes a non-virtualized storage area network switch having a plurality of fibre channel ports. Each of the fibre channel ports is coupled to a corresponding cable to at least partly define a fibre channel uplink. The system also includes a plurality of client devices. Each client device has a network adapter. The system also includes a processing element and non-transitory computer-readable media having computer-readable instructions instructing the processing element to complete the following steps: (1) automatically execute an algorithm to determine a sequence for mapping the network adapters to respective fibre channel uplinks; (2) automatically determine a network adapter activation pattern based on the sequence to include a time delay between the network adapters; (3) automatically map the network adapters to respective fibre channel uplinks according to the sequence; and (4) automatically activate the network adapters based on the network adapter activation pattern.
A semiconductor apparatus may include a data output path connected to a data input/output pad and configured to output read data according to a read command, and at least one circuit configuration included in the data output path may perform a pre-toggling operation of toggling its own output signal at least once in an interval between a time point at which the read command has been generated and a time point at which the read data is outputted through the data output path.
An apparatus has memory access circuitry to perform a tag-guarded memory access operation in response to a target address. The tag-guarded memory access operation comprises: comparing an address tag associated with the target address with a guard tag stored in a memory system in association with a block of one or more memory locations comprising an addressed location identified by the target address, and generating an indication of whether a match is detected between the guard tag and the address tag. An instruction decoder decodes a multiple guard tag setting instruction to control the memory access circuitry to trigger memory accesses to update the guard tags associated with at least two consecutive blocks of one or more memory locations.
Multiprocessor clusters in a virtualized environment conventionally fail to provide memory access security, which is frequently a requirement for efficient utilization in multi-client settings. Without adequate access security, a malicious process may access what might be confidential data that belongs to a different client sharing the multiprocessor cluster. Furthermore, an inadvertent programming error in the code for one client process may accidentally corrupt data that belongs to the different client. Neither scenario is acceptable. Embodiments of the present disclosure provide access security by enabling each processing node within a multiprocessor cluster to virtualize and manage local memory access and only process access requests possessing proper access credentials. In this way, different applications executing on a multiprocessor cluster may be isolated from each other while advantageously sharing the hardware resources of the multiprocessor cluster.
According to one embodiment, an electronic device includes an interface configured to carry out communication according to a predetermined protocol, and a control section configured to add a response frame to a response to a command to be received through the interface, and transmit the response to which the response frame is added through the interface. The control section includes a setting section configured to set an arbitrarily settable field included in the response frame to a plurality of sections.
An example apparatus comprises a hybrid memory system and a controller coupled to the hybrid memory system. The controller may be configured to cause data to be selectively stored in the hybrid memory system responsive to a determination that an exception involving the data has occurred.
The invention relates to a method for managing a buffer memory space associated with a persistent data storage system of a computing machine. The buffer memory space is suitable for temporarily storing in the RAM of the machine one or more portions of a single data file of the persistent data storage system that was previously accessed by one or more processes executed on the machine. The operating system of the machine tracks each of the portions of the file that are projected in the buffer memory space by a descriptor belonging to a plurality of buffer memory projection descriptors which are all associated with the tracking of one or more portions of the file projected in the buffer memory space.
A memory device (or memory sub-system) includes one or more memory components having multiple blocks, the multiple blocks containing pages of data. A processing device is coupled to the one or more memory components. The processing device to execute firmware to: track write timestamps of the pages of data that have been marked as invalid; retain a storage state stored for each page marked as invalid, wherein invalid data of the marked pages remains accessible via the storage states; in response to a write timestamp of a page being beyond a retention time window, mark the page as expired, indicating that the page is an expired page; and reclaim the expired page for storage of new data during a garbage collection operation.
Software development pipeline tools construct pipelines by combining tools, files, and other resources, to build, integrate, test, deploy, or otherwise implement operational functionality in computing systems. Some pipelines are simple, but others are stochastic due to conditional execution, task addition or removal, resource availability randomness, and other causes. Some stochastic pipelines also include a hierarchy with multiple levels of task groupings, which adds complexity. Pipeline performance optimization uses critical paths, but critical paths are challenging to identify in stochastic pipelines. Tools and techniques are presented to automatically identify likely or actual critical paths and to indicate constituent critical tasks as improvement options for stochastic pipelines in software development or other industrial activities. Pipeline representations include directed acyclic graph data structures of constituent tasks. Computationally applying relevance filters helps identify performance improvement options based on historic execution data, without requiring the predefined task dependency information that stochasticity prevents.
An instrumentation overhead regulation technique regulates an amount of work performed by a client library of an investigative platform used to monitor, diagnose and solve errors associated with application development and production. The client library calculates processing resources utilized during its runtime activity to enable adjustment of the amount of work it performs based on the measured activity. An agent may determine the overhead activity impact to user application performance by monitoring processing resource metrics of the user application. The agent analyzes the calculated overhead and processing resource metrics to render decisions to automatically regulate the capture fidelity of the client library. Regulation of the capture fidelity may be implemented by modifying parameters of a dynamic configuration. If results of the analysis indicate a potential issue, the amount of work the client library performs may be trimmed to ensure that the calculated overhead of the client library and its impact on user application performance does not exceed a predetermined threshold.
A read command is issued to initiate a transfer of diagnostic information from a communication component of the computing environment. Based on issuing the read command, the diagnostic information is obtained from the communication component. The diagnostic information is configured based on a version of diagnostic information requested. The version is one version of a plurality of versions to be supported by the communication component. The diagnostic information includes diagnostic information relating to one or more communication components of the computing environment and to be used to facilitate communication within the computing environment.
An on-die logic analyzer (ODLA) can reduce the time and resources that would otherwise be spent in validating or debugging memory system timings. The ODLA can receive an enable signal with respect to a start command and start a count of clock cycles in response to a first issued command matching the start command defined in a first mode register. The ODLA can stop the count of clock cycles in response to a second issued command matching a stop command defined in a second mode register. The ODLA can write a value indicative of the stopped count to a third mode register or an on-die storage array in response to the stopped count exceeding a previously stored count.
Techniques are provided for replay of metadata and data operations. During initial execution of operations, identifiers of objects modified by the execution of each operation are identified and stored in association with the operations. When the operations are to be replayed (e.g., executed again, such as part of a replication operation or as part of flushing content from a cache to persistent storage), the identifiers are evaluated to determine which operations are independent with respect to one another and which operations are dependent with respect to one another. In this way, independent operations are executed in parallel and dependent operations are executed serially with respect to the operations from the dependent operations depend.
A robot application is executed by executing a plurality of kinds of virtual containers in cooperation with each other. To this end, a robot application management device (100), at least one robot device (300) and at least one computer device (400) are connected to each other via a local area network (600). A group of devices including these devices are managed as a cluster for executing the robot application, and each virtual container is placed and activated in any of the group of devices composing the cluster.
Disclosed herein are systems and method for disaster recovery using application streaming. In one aspect, a method includes generating a backup image of a computing system having at least one installed application and user data. The generating involves including the user data in the backup image and actively excluding program data files of the at least one installed application from the backup image. The method includes determining an application package specifying the installed application. The application package is stored at an application streaming service. Responsive to detecting a disaster recovery event, the method further includes copying the user data from the backup image to a recovery computing instance, and executing, on the recovery computing instance, a remote application from the application streaming service based on the determined application package.
In accordance with various embodiments, described herein are systems and methods for enabling backup and recovery of cloud services (services) in a cloud computing environment (cloud environment). The techniques described herein can be used, for example, to facilitate restoration of a service that may have been originally provisioned as part of a user system/environment, within the cloud environment, and was subsequently lost due to accident deletion of the service, or cloud account termination. A service archive, created during a backup process, includes an archive file that contains the artifacts that were installed and/or created when the service was provisioned; and a metadata file that contains the current state information for the service when the backup was performed. During a recovery process, a lost service can be provisioned within the user system/environment, using the contents of the service archive, irrespective of whether the service itself still exists within the user system/environment.
The present disclosure provides an image synchronization method and device, and a server. The method includes: receiving an image backup request sent by a first terminal logging into a cloud account, the image backup request carrying a first image to be backed up; obtaining summary formation of the first image according to the image backup request, the summary information being configured to describe the first image; determining whether the summary information is synchronized to a second terminal logging into the cloud account; and in response to determining that the summary information is not synchronized to the second terminal, synchronizing the summary information to the second terminal.
The present technology relates to an electronic device. According to the present technology, a storage device having improved original data recovery capability may include a memory device including a plurality of memory cells, and configured to perform a read operation on data stored in the plurality of memory cells according to read mode information, and to output read data associated with the read operation and a memory controller configured to receive the read data, change the read mode information when error correction decoding for the read data fails, and control the memory device to perform the read operation again according to the changed read mode information. The read mode information may include information on a data interface between the memory device and the memory controller.
A system for measuring a property of a sample is provided. The system comprises a diagnostic measuring device having a memory and a diagnostic test strip for collecting the sample. The strip has embedded thereon a pattern representative of at least first data and second data, the first data being data representing at least one of parameters related to measuring the property, codes usable for calibration of the diagnostic measuring device, or parameters indicating proper connection between the measuring device and the test strip and the second data usable for detecting and rejecting potential errors affecting the proper measurement of the property.
An electronic device and method are disclosed. The electronic device includes a processor which implements the method. The method includes: executing an application in a first state, displaying a first user interface for the application on a display, the first UI including a first input field and a first identifier identifying the first input field, receiving data input to the first input field, in response to detecting a particular event, changing the first operational state to a second operational state, re-executing the application in the second operational state, transmitting data for a second UI of the re-executed application to an external display device for display, the second UI including a second input field and a second identifier corresponding to the second input field, and inserting the received data input into the second input field when the first identifier corresponds to the second identifier.
In one embodiment, a device receives, from a monitoring agent that monitors an application, an indication that the monitoring agent did not capture information regarding a particular event during execution of the application. The device determines that the particular event is of a relevant event type that should be tracked. The device generates a configuration for the monitoring agent that adjusts a monitoring scope of the monitoring agent so as to capture information regarding the particular event. The device causes the monitoring agent to be updated with the configuration, wherein the monitoring agent captures information regarding the particular event after being updated with the configuration.
The illustrative embodiments provide concepts for processing a function call using a solid or ephemeral code, selected using a semaphore relating to an identifying feature of the function call. The concept may include: receiving a function call, wherein the function call comprises an identifying feature; queueing the function call in a queue; selecting, using a semaphore relating to the identifying feature of the function call, a code instance of a plurality of code instances for processing a queued function call, the plurality of code instances comprising: an ephemeral code instance, wherein the ephemeral code instance is adapted to process a single function call before being discarded; and a solid code instance, wherein the solid code instance is adapted to process a function call without being discarded; and processing the queued function call with the selected code instance.
Novel tools and techniques are provided for implementing a distributed computing mesh, and, more particularly, for implementing a distributed computing mesh using a hierarchical framework to distribute workload across multiple computing nodes. In various embodiments, a hierarchical distributed computing mesh might be implemented using a plurality of network nodes. A first control node may assign at least one first network node as at least one second control node. The second control node might receive a computing task from the first control node. The second control node might designate additional network nodes to process one or more portions of the computing task. The second control node may then divide the computing task and send the one or more portions of the computing task to the additional network nodes for processing. The second control node may receive one or more processed portions of the computing task from the additional network nodes.
Methods, systems, and media for a platform for collaborative processing of computing tasks. The method includes sending, to client devices, a one or more client applications including program code associated with an interactive application and a machine learning application. When executed, the program code causes the client devices to generate a user interface for the interactive application; request, using the generated user interface, inputs from a user of the client devices; receive the requested inputs; process, using computing resources of the client devices, at least part of the machine learning application; and transmit data associated with results of the received inputs and the processing of at least part of the machine learning application. The method further includes receiving and processing the data associated with the results of the received inputs and the processing of at least part of the machine learning application to process the computing tasks.
A system and method include receiving a resource headroom data of an edge device, receiving resource utilization data of a plurality of applications, and selecting a group of applications from the plurality of applications for installation on the edge device based upon the resource headroom of the edge device. The system and method also include computing a fitness score based upon a suitability of the selected group of applications for the edge device, generating a reward based on the fitness score, and using the reward to refine the selection of the group of selections in subsequent iterations.
An application level request associated with a portion of an application code requested to be executed with an adjusted hardware acceleration (wherein the portion of the application code is identified using a mechanism compatible with a plurality of different hardware processors) is received. It is determined whether to allow the adjusted hardware acceleration based at least in part on a configuration received via a network.
Systems and methods for supporting asynchronous management of unencrypted memory pages of a virtual machine (VM) are disclosed. In one implementation, a processing device may receive, at a destination hypervisor of a host machine as part of a migration process of a VM, two copies of a memory page of the VM, the two copies comprising: a decrypted copy of the memory page, and an unencrypted copy of the memory page. The processing device may also cause the VM to execute a VM resume code, wherein executing the VM resume code comprises: determining whether the memory page is unencrypted based on a page table of the VM. Responsive to determining that the memory page is unencrypted, the processing device may copy the unencrypted copy of the memory page to a guest memory address.
Methods, systems and storage media for limiting access to one or more of devices and applications for a period of time are disclosed. Some examples may include: receiving electronic assignment information indicating that at least one assignment associated with a user is incomplete, identifying a block of time based on the at least one incomplete assignment and assigning a focus time session to the identified block of time, causing at least one of an application or device to become disabled based on a configuration profile applied during the focus time session, receiving an indication that the at least one incomplete assignment associated with the user has been completed and causing the previously disabled at least one of the application or device to become enabled.
A method for personalizing resource strings within a user interface of a computing device. The method includes accessing a personalization editor via the computing device, and receiving a user modification to a resource string associated with one or more applications. The method also includes storing an original unmodified resource string associated with the resource string, the modified resource string, and the associated applications. The method also includes receiving a request from a first application for a first resource string associated with a specified resource identifier. The method also includes determining if the first resource string has an associated modified resource string stored in the personalized resource string database, and displaying the modified resource string based on the first resource string being determined to be associated with the modified resource string stored in the personalized resource string database.
A framework for anatomy-aware adaptation of a graphical user interface. Landmarks are first detected by passing one or more current images through a trained machine learning model. A body section may then be inferred based on the detected landmarks. One or more user interface elements may be determined based on the inferred body section. A graphical user interface may then be adapted with the determined one or more user interface elements.
A control device includes a main storage device, an auxiliary storage device, and a control unit. The auxiliary storage device is configured to store a first hibernation image and a second hibernation image, which respectively indicate a stored content of the main storage device. The control unit is configured to start a computer by loading the first hibernation image to the main storage device and subsequently loading the second hibernation image to the main storage device when the computer is turned on. The first hibernation image does not include connection information indicating a connection state of the device. The second hibernation image includes the connection information indicating the connection state.
An arithmetic processing apparatus includes an arithmetic circuit configured to perform an arithmetic operation on data having a first data width and perform an instruction in parallel on each element of data having a second data width, and a cache memory configured to store data, wherein the cache memory includes a tag circuit storing tags for respective ways, a data circuit storing data for the respective ways, a determination circuit that determines a type of an instruction with respect to whether data accessed by the instruction has the first data width or the second data width, and a control circuit that performs either a first pipeline operation where the tag circuit and the data circuit are accessed in parallel or a second pipeline operation where the data circuit is accessed in accordance with a tag result after accessing the tag circuit, based on a result determined by the determination circuit.
Embodiments of the present disclosure provide an apparatus, comprising: one or more instruction executing circuitries, wherein each instruction executing circuitry of the one or more instruction executing circuitries is configured to execute an instruction of a corresponding instruction type, and an instruction scheduling circuitry that is communicatively coupled to the one or more instruction executing circuitries, the instruction scheduling circuitry is configured to: determine according to an instruction type of the instruction and a number of instructions that have been allocated to the one or more instruction executing circuitries, an instruction executing circuitry from the one or more instruction executing circuitries to schedule the instruction for execution, and allocated the instruction to the determined instruction executing circuitry.
Managing the messages associated with memory pages stored in a main memory includes: receiving a message from outside the pipeline, and providing at least one low-level instruction to the pipeline for performing an operation indicated by the received message. Executing instructions in the pipeline includes: executing a series of low-level instructions in the pipeline, where the series of low-level instructions includes a first (second) set of low-level instructions converted from a first (second) high-level instruction. The second high-level instruction occurs after the first high-level instruction within a series of high-level instructions, and delaying insertion of the low-level instruction provided for performing the operation into an insertion position within the series of low-level instructions, where the delaying causes the insertion position to be between a final low-level instruction converted from the first high-level instruction and an initial low-level instruction converted from the second high-level instruction.
A first logic circuit included in a processor receives a first digital signal, where the first logic circuit includes a special purpose register, a comparator, and an adder, where the special purpose register stores a first resource balance for executing a smart contract, where the first digital signal includes a resource deduction quota corresponding to a code set in the smart contract. The first logic circuit reads the first resource balance from the special purpose register. The first logic circuit compares, using the comparator, the first resource balance with the resource deduction quota. In response to the first resource balance being greater than or equal to the resource deduction quota, the first logic circuit subtracts, using the adder, the resource deduction quota from the first resource balance to obtain a second resource balance. The first logic circuit stores the second resource balance in the special purpose register.
Methods and apparatus for approximation using polynomial functions are disclosed. In one embodiment, a processor comprises decoding and execution circuitry. The decoding circuitry is to decode an instruction, where the instruction comprises a first operand specifying an output location and a second operand specifying a plurality of data element values to be computed. The execution circuitry is to execute the decoded instruction. The execution includes to compute a result for each of the plurality of data element values using a polynomial function to approximate a complex function, where the computation uses coefficients stored in a lookup location for the complex function, and where data element values within different data element value ranges use different sets of coefficients. The execution further includes to store results of the computation in the output location.
Various embodiments are described of a system for improved processor instructions for a software-configurable processing element. In particular, various embodiments are described which accelerate functions useful for FEC encoding and decoding. In particular, the processing element may be configured to implement one or more instances of the relevant functions in response to receiving one of the processor instructions. The processing element may later be reconfigured to implement a different function in response to receiving a different one of the processor instructions. Each of the disclosed processor instructions may be implemented repeatedly by the processing element to repeatedly perform one or more instances of the relevant functions with a throughput approaching one or more solutions per clock cycle.
An updating method including: acquiring, by an active update node, update information from a server; and acquiring or receiving, by a passive update node, the update information from the active update node through a local network. By using the update method and system, end node and electronic device provided in the present disclosure, an active update node of a plurality of end nodes in the same local network acquires update information from a server, and a passive update node acquires the update information from the active update node, thereby reducing the number of end nodes acquiring the update information from the server, and reducing the burden of the cloud.
A method includes automatically generating application code to implement a context menu in an application, the application code comprising code for providing a context menu container object as part of an application page when the application page is displayed by a browser, the context menu container object configured not to be visibly displayed as part of the application page, the context menu container object configured to hold a current set of context menu options during display of the application page, consume a first event during display of the application page, and evaluate logic based on the first event to update the current set of context menu options during display of the application page, the context menu container object responsive to a prescribed input to display the context menu as having the current set of context menu options.
Systems and methods may aggregate and organize implicit and explicit initialization, reset, and termination operations defined throughout the hierarchy of an executable. The systems and methods may analyze the model and identify implicit and explicit initialization, reset, and termination operations defined at various hierarchical levels. The systems and methods may aggregate the implicit and explicit initialization, reset, and termination operations into an initialize callable unit, a reset callable unit, and a termination callable unit. The systems and methods may apply optimizations to the callable units, and resolve conflicts. The systems and methods may define a single entry point for each of the initialize, reset, and termination callable units.
A generation means 11 generates a uniform random number between 0 and a first probability, which is a probability of a stochastic variable becoming a value within a predetermined interval in a positive range in the first discrete distribution. When a uniform random number less than or equal to a second probability is generated, the second probability being a probability of the stochastic variable becoming a value within a predetermined interval in a second discrete distribution, which is a discrete Gaussian distribution on a one-dimensional lattice the center of which is the origin, the selection means 12 selects, as a random number generation method, an accumulation method in which a functional value defining the second discrete distribution is used. When a uniform random number greater than the second probability is generated, the selection means 12 selects a rejection sampling method as the random number generation method.
Low precision computers can be efficient at finding possible answers to search problems. However, sometimes the task demands finding better answers than a single low precision search. A computer system augments low precision computing with a small amount of high precision computing, to improve search quality with little additional computing.
A computer-implemented method for audio signal processing includes analyzing a foreground audio signal to determine metrics corresponding to audio slices of the foreground audio signal. Each such metric indicates a value for an audio property of a respective audio slice. The method further includes computing a total metric for an audio slice as a function of a set of the metrics corresponding to a set of the audio slices including the audio slice. The method further includes adding a key frame to a track based on the total metric. The track includes the foreground audio signal and a background audio signal, and a location of the key frame corresponds to a location of the audio slice on the track. The key frame indicates a change to the audio property of the background audio signal at the location on the track, and the key frame is utilizable for audio ducking.
A computer-implemented method for processing operations for integrating audience participation content into virtual reality (VR) content presented by a head mounted display (HMD) of an HMD user is provided. The method includes providing a VR scene to the HMD of the HMD user and receiving indications from one or more spectator devices of respective one or more spectators. The indications corresponding to requests for audience participation content for participating in the VR scene. The method includes sending audience participation content to the one or more spectator devices. The audience participation content configured to be displayed on respective displays associated with the one or more spectator devices. The audience participation content further includes interactive content for obtaining spectator input from the one or more spectators via the one or more spectator devices, respectively. The method includes augmenting the VR scene based on the spectator inputs in response to the interactive content of the audience participation content.
The display system includes a host apparatus and an HMD. The host apparatus includes an image display unit configured to display, an image transmitted from the host apparatus, in which the image processing unit is configured, when detecting that the host apparatus is connected with the HMD, to associate first sensor data from the first inertial sensor with second sensor data received from the second inertial sensor, to recognize a target in the image captured by the camera, to use the second sensor data to perform image processing, and to cause the image display unit to display the image after the image processing in association with the target, when detecting that the host apparatus is not connected with the HMD, to use the first sensor data to maintain an estimation of a state of the target in the outside scene until the host apparatus is reconnected with the HMD.
A server includes a transceiver and a controller. The transceiver is configured to facilitate communication with a plurality of image forming apparatuses. The controller is configured to receive adjustment information from each of the plurality of images forming apparatuses, determine an updated adjustment value to be used in each of the plurality of image forming apparatuses based on the adjustment information received from of each of the plurality of image forming apparatuses, and transmit adjustment update information including the updated adjustment value to each of the plurality of image forming apparatuses.
An information processing apparatus communicating with an input-output device that receives an input voice, outputs voice data corresponding to the input voice, and communicates with a server that analyzes the output voice data. The information processing apparatus further includes a voice output unit configured to output a voice, a reception unit configured to receive a user operation for starting the input-output device, and a control unit configured to perform control to, in response to the user operation received by the reception unit, cause the voice output unit to output a waking word for starting the input-output device.
An example device capable of predicting print substance end-of-life (EOL) comprises a container to hold a print substance, the container comprising a refill port through which print substance is to be introduced into the container. The example device also comprises a processor to receive signals indicative of an amount of print substance introduced via the refill port. The processor is also to predict a print substance end-of-life (EOL) based on the amount of print substance introduced.
A method is provided of producing and assembling a multi-part surface-mountable physical-activity lamina for use in aiding or supplementing a physical-activity in a physical-activity environment. There is a step a] of providing a first graphic design model of the lamina; and b] segmenting the first graphic design model into a plurality of graphic design model portions. A step c] follows of arranging the graphic design model portions into a more compact second graphic design defining a reduced surface area; and then d] the second graphic design being applied to a lamina substrate having another surface area. The lamina substrate is then separated into lamina elements corresponding to the graphic design model portions, followed by a step e] of assembling the lamina elements onto a mounting surface at a physical-activity environment to form the surface-mountable physical-activity lamina.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for scheduling operations on a machine-learning accelerator having multiple tiles. The apparatus includes a processor having a plurality of tiles and scheduling circuitry that is configured to select a respective input activation for each tile of the plurality of tiles from either an activation line for the tile or a delay register for the activation line.
A serverless application is provided to a cloud site of a cloud services provider. The cloud services provider offers backend services that include an object store and a database. Input/output (IO) writes sent to a volume of a block storage device at a production site are intercepted and aggregated. The aggregated IOs and metadata for the IOs are transmitted from the production site to the cloud site of the cloud services provider. Upon receipt of the aggregated IOs and metadata at the cloud site, the aggregated IOs are stored in an object in the object store at the cloud site, and a function of the serverless application is triggered to write the metadata to the database offered by the cloud services provider.
A system identifies and causes transmission of differential data generated during device migration. An administrative server accesses a first backup snapshot of a retiring client device. The first backup snapshot includes a set of files stored in the retiring client device during a first checkpoint. The administrative server transmits the set of files in the first backup snapshot to a replacement client device. A cloud server stores the first backup snapshot and a second backup snapshot of the retiring client device. The second backup snapshot is created during a second checkpoint occurring after transmission of the set of files. The cloud server receives an indication that a user has logged on to the replacement client device and causes a transmission of differential data to the replacement client device. The differential data includes at least one file in the second backup snapshot that is not included in the first backup snapshot.
An integrated circuit (IC) can include a decomposer data mover circuit configured to read sub-arrays from array data stored in a source memory; generate metadata headers for the sub-arrays, wherein each metadata header includes location information indicating location of a corresponding sub-array within the array data; create data tiles, wherein each data tile includes a sub-array and a corresponding metadata header; and output the data tiles to compute circuitry within the IC. The IC can include a composer data mover circuit configured to receive processed versions of the data tiles from the compute circuitry; extract valid data regions from the processed versions of the data tiles; and write the valid data regions to a destination memory based on the location information from the metadata headers of the processed versions of the data tiles.
In an embodiment, a storage device is provided. A device controller with a memory is coupled with the storage device. The memory stores an application with instructions that direct the controller to receive a storage device policy. The instructions further direct the controller to store content from a storage request in accordance with the storage device policy, and record storage information, including at least a content identifier, to the memory. Subsequent to storing the content, the instructions further direct the controller to retrieve the content according to the storage information received in a storage request. According to an implementation, the instructions further provide instruction to refuse a delete request in accordance to the storage information. According to an implementation, the instructions provide direction to store the storage information at a remote location.
An approach is disclosed for placing data on volumes. Accesses to data entries at a source location are analyzed to determine locations of the data entries in one or more files. Types of data are identified at the one or more data entries. Types of accesses are identified for the data entries. Durations of the types of accesses to the data entries are identified. An access value is calculated by mapping the one or more types of data combined with the one or more types of accesses combined with the one or more durations of the types of accesses. Confidential sensitive data is moved according to the calculated access value, where a highly accessed confidential data is separated from lighted accessed confidential data by moving a selected portion of data from the source location to the destination location.
A portion of the shared global memory of a storage array is allocated for write-only blocks. Writes to a same-block of a production device may be accumulated in the allocated portion of memory. Temporal sequencing may be associated with each accumulated version of the same-block. When idle processing resources become available, the oldest group of same-blocks may be consolidated based on the temporal sequencing. The consolidated block may then be destaged to cache slots or managed drives. A group of same-blocks may also be consolidated in response to a read command.
A storage apparatus includes a plurality of storage devices, and a control unit for providing a predetermined storage area of the plurality of storage devices to the host computer as a virtual volume group including one or more virtual volumes. The control unit configures one or more data sets having one or more redundancy levels from the plurality of storage devices, provides a storage area of a storage pool including the plurality of data sets to a part of a storage area of the virtual volume, limits a combination of the storage devices configuring the data sets to be assigned to the virtual volume to a given number of combinations of two combinations or more, uniformly distributes the storage devices, and uses a given number of different combinations of the storage devices to be assigned to the virtual volume in units of the virtual volume group.
A storage system having high reliability and IO processing performance is realized. The storage system includes: a first arithmetic unit configured to receive an input and output request and perform data input and output processing; a first memory connected to the first arithmetic unit; a plurality of storage drives configured to store data; a second arithmetic unit; and a second memory connected to the second arithmetic unit. The first arithmetic unit instructs the storage drive to read data, the storage drive reads the data and stores the data in the second memory, the second arithmetic unit stores the data stored in the second memory in the first memory, and the first arithmetic unit transmits the data stored in the first memory to a request source of a read request for the data.
The present disclosure relates to a memory system and an operating method thereof. The memory system may include a shared memory device to store data, a sharing manager to store operation policy information and to autonomously generate a first internal command by using the operation policy information during an auto mode started in response to receiving an auto mode start command from a host, and a memory controller to generate a second internal command for controlling the shared memory device in response to the first internal command.
While displaying a user interface that includes a plurality of application icons, a first input is detected on a first application icon associated with a first application. If the first input meets application-launching criteria which require that the first input has ended without having met a first input threshold, the first application is launched in response to the first input. If the first input meets menu-presentation criteria which require that the first input meets the first input threshold before an end of the input is detected, a contextual content object and a respective affordance that is associated with the contextual content object are concurrently displayed in response to the first input. The contextual content object includes contextually selected content automatically selected from the first application. The respective affordance, when activated, is configured to add the contextual content object to a user interface that includes information for multiple applications.
A system and method for organizing and representing in a single display, using temporal and locational relationships, multiple selected pieces of information that may exist in different embodiments and that may be related to one or more past, present or future events.
Techniques related to data collaboration between different entities are disclosed. In an embodiment, a graph may be displayed in a computer graphical user interface. The graph may include nodes and edges. Each node may represent a distinct data object. Each edge may represent one or more relationships between the two distinct data objects. Based on one or more redaction criteria, a portion of the graph may be identified to be redacted before the graph is exported. Display of the graph in the computer graphical user interface may be updated to remove display of the portion of the graph. After the updating, a request to export the graph may be received. Responsive to receiving the request, a machine-readable representation of a redacted graph may be exported.
Methods, systems, and computer programs encoded on computer storage medium, for providing, for display, a GUI on a display device; detecting biometric measurements associated with a user that is perceiving the current GUI; processing the biometric measurements to quantify a current cognitive load associated with the user, the current cognitive load responsive to the current GUI; comparing the current cognitive load that is responsive to the current GUI to a threshold cognitive load; determining that the current cognitive load that is responsive to the current GUI is greater than the threshold cognitive load; scaling down a complexity of the current GUI based on the current cognitive load that is responsive to the current GUI to generate an updated GUI; and providing, for display, the updated GUI on the display device.
Provided is a method for processing live streaming data. An article selection interface is displayed in response to a publish request of an anchor account is received to display at least one article object, such that an anchor can select at least one target article object from the at least one article object, and further, the at least one target article object and related information of the at least one target article object can be displayed on a live streaming interface by at least one floating window, wherein the related information includes an allowable trading condition of the target article object.
A touch substrate and a display panel are disclosed. The touch substrate includes a touch region and a binding region, and the touch substrate includes a plurality of first touch electrodes and a plurality of first lead wires. The plurality of the first touch electrodes are located on the touch region. The plurality of the first touch electrodes are sequentially arranged along the first direction. One end of each of the plurality of the first lead wires is connected to one of the plurality of the first touch electrodes one by one, and another end of each of the plurality of the first lead wires is connected to the binding region. Further, at least one of the plurality of the first lead wires is located in the touch region.
The present disclosure is related to a touch control module. The touch control module may include a plurality of touch control electrodes. At least one of the plurality of touch control electrodes may have a wire grating structure. The wire grating structure may be configured to enable light from the display panel to pass through the at least one of the plurality of touch control electrodes.
A flexible display device including a display panel providing a base surface and a touch screen disposed on the base surface. The display panel may include a plurality of light emitting areas and a non-light emitting area disposed adjacent to the light emitting areas. A plurality of touch electrodes and a plurality of insulating layers of the touch screen may have a mesh shape through which openings corresponding to the plurality of light emitting areas are defined. Accordingly, a flexibility of the flexible display device is improved, and the touch electrode is prevented from being cracked.
A display device including a display panel having a display area and a non-display area disposed around the display area; a touch sensor disposed on the display panel, the touch sensor comprising a sensing area corresponding to the display area, a peripheral area corresponding to the non-display area, and a pad unit disposed on a part of the peripheral area; a flexible printed circuit board disposed on the touch sensor in the peripheral area and connected to the pad unit; a polarization layer disposed on the touch sensor and a part of the flexible printed circuit board; and a printed layer disposed on at least an area between the flexible printed circuit board and the sensing area.
In an electronic device, a storage device registers registered data and a name of the registered data in association with a number of a one-touch key. A control device functions as a detector, a controller, and a releaser. When an operation device receives a request for registration of new registered data, the detector detects the number of the one-touch key satisfying a release condition. The controller displays the number of the one-touch key satisfying the condition in association with the name of the registered data corresponding to the number on a display device. The releaser registers data corresponding to a selected number of a one-touch key among numbers of one-touch keys satisfying the condition and a name of the registered data, in association with an unregistered number of a one-touch key, and releases a one-touch key having a number assigned to the registered data and the name of the data.
A control chip comprising: at least pin; a control circuit; a clock generation circuit, configured to generate a clock signal; a power providing circuit, configured to provide an always on power; a touch detection circuit, configured to receive the always on power, and configured to detect a touch event via the pin to generate a touch detection signal; a logic circuit, configured to receive the always on power, the clock signal and the touch detection signal, wherein the logic circuit controls the power providing circuit to provide a core power to the control circuit according to the touch detection signal. The control circuit is further configured to set the logic circuit such that the logic circuit can control the touch detection circuit. A related touch detection method is also discloses. Via the control chip and the touch detection method, the circuit area and the power consumption can be decreased.
Disclosed herein are various embodiments of a self-capacitance device that is configured to be detectable by a known touchscreen without the need for human contact. Such a device has a device body, a capacitance structure disposed within the body, and at least three contacts disposed on one side of the body and electrically coupled to the capacitance structure. Further disclosed herein are systems having at least two such self-capacitance devices and a software application configured to recognize each of the at least two self-capacitance devices.
An electronic device according to various embodiments of the present invention comprises: a housing including a first surface facing a first direction and a second surface facing a second direction opposite to the first direction; a touch screen display disposed between the first surface and the second surface and exposed through the first surface; a pressure sensor disposed between the first surface and the second surface and configured to sense at least one pressure by an external object on the touch screen display; at least one processor electrically connected to the touch screen display and the pressure sensor; and a memory electrically connected to the processor, wherein the memory may store instructions which cause the processor to receive, from the pressure sensor, data indicating pressure by a user or the external object on the touch screen display, determine a rate of pressure change corresponding to a change of the pressure per unit time, and call a function on the basis of at least a part of at least one between a value of the pressure and the rate of pressure change, during execution. Other embodiments may be possible.
To provide a new force sense presenting technique utilizing illusion. A force sense presenting object includes: a first object that includes a first surface which is magnetized with a first texture including an S-pole region and an N-pole region; and a second object that includes a second surface which is magnetized with a second texture including an S-pole region and an N-pole region. An acting subject touches at least either one of the first object and the second object and performs an operation for changing a relative positional relation between the first surface and the second surface or/and an action for changing the relative positional relation between the first surface and the second surface while keeping the first surface and the second surface in contact with or close to each other, and thereby the acting subject perceives bumpiness.
A display panel with an embedded touch screen and a display device comprising the display panel can decrease parasitic capacitance. The display panel with an embedded touch screen includes a light emitting element layer that is disposed on a substrate including an emission area and a non-emission area, an encapsulation layer that is disposed on the light emitting element layer, and a touch sensing layer that is disposed on the light emitting element layer. The light emitting element layer includes a first electrode that is disposed in the emission area on the substrate, a light emitting layer that is disposed on the first electrode, and a second electrode that is disposed on the light emitting layer and has an opening area provided in a part of the non-emission area.
The present disclosure generally relates to a new computer input and tracking device, and method of using, more particularly, a new type of digital pen which tracks user hand movements to generate series of point coordinates that represent a drawing or hand writing. Unlike prior digital pens such as the Apple Pencil™ or the Microsoft Surface Pen™, the new system does not require users to write on a touch-sensitive surface. Users can write on any surface such as a notebook, a table, a board, or even in mid air. Users can draw two-dimensional or three-dimensional drawings. The new method utilizes a pen marked with one or more groups of distinct tracking marks or tracking patterns and a camera to track the pen in real-time. A computer running a 3D algorithm processes the camera images, detects and distinguishes the tracking marks, and uses the tracking marks to calculate the positions of the tip of the pen in three-dimensional space. The positions of the tips of the pen are then sent to a drawing application to generate a drawing or hand writing.
A blended reality user interface and gesture control system includes one or more sensors, a head-mounted display, and a blending engine. The blending engine is configured to receive a live reality and virtual reality feeds, track movement of a user using the sensors, detect a command based on the tracked movement, blend the live and virtual reality feeds into a blended view based on the detected command, and display the blended view on the head-mounted display. In some embodiments, the blending engine is further configured to detect an amount of head tilt of the user and adjust a blending factor controlling an amount of transparency of the live reality feed within the blended view based on the amount of head tilt. In some embodiments, the blending engine is further configured to detect manipulation of a controller by the user and adjust the blending factor based on the detected manipulation.
Disclosed herein is a system for facilitating fast and intuitive investigations of security incidents by responding to physical gestures performed by security analysts within a virtual scene. A query triggers an alert for detecting security incidents that occur with respect to computing resources. Following the alert, the security analyst dons a Near-Eye-Display (NED) device and is presented with a virtual scene having control elements representing various data sets and/or data analysis operations relevant to a security incident. The security analyst investigates the security incident by performing hand motions to “grab-and-drag” control elements representing data sets. The security analyst may also perform hand motions to “tap on” control elements that represents a data analysis operation. Responsive to the hand motions, the system performs data analysis operations and displays a result within the virtual scene. Then, the security analyst performs another hand motion to remediate any threat caused by the security incident.
A micro piezo-electric air valve is used to form a skin interface system composed by a matrix of valves interconnected that bring temperature and touch sensorial experience to people through the skin's tactile, pressure and temperature biological sensors by means of micro air jet formations and/or air bubble formations over the skin. The piezo-electric air valve is specially designed to sensitize a small area of the skin of the user by quickly delivering a specific volume of air following a selected pattern, for example a pixel of an image that is processed by a computer system and converted into electric signal that opens or closes the piezo-electric air valve causing the air to flow. Such a skin interface system can be used by blind people to interpret a scene in front of them when using a video camera. or for use as a suit for therapeutic use and gaming.
There is provided an information processing system including a storage section that holds a plurality of agent programs with different attributes, a communication section that provides an agent service by the agent programs to a client terminal of a user, and a control section that selects, from among the plurality of agent programs, one agent program suited to an emotion of a user who can use the agent service.
Digital low-dropout micro voltage regulator configured to accept an external voltage and produce a regulated voltage. All active devices of the voltage regulator are digital devices. All signals of the voltage regulator, except the first voltage and the regulated voltage, may be characterized as digital signals. Some active devices of the voltage regulator may be physically separated from other active devices of the voltage regulator by active devices of non-voltage regulator circuitry.
A system having multiple racks with a power supply unit (PSU) in each rack, and multiple grids including an uninterruptible power supply (UPS) in each grid to supply power to each PSU. A console determines an amount of wear levelling and an amount of workload to be supported by each UPS. The console configures each UPS based upon the determined amount of wear levelling and the determined amount of workload to be supported by the UPS. Furthermore, the console facilitates an adjustment of a power capping value in each PSU to conform with the configuration of each UPS.
A method comprises analyzing performance data of a system using one or more machine learning techniques. The system comprises a plurality of hardware components. In the method, a priority list of the plurality of hardware components is generated based on the analysis, and power from one or more power sources is distributed to one or more of the plurality of hardware components based on the priority list.
For a portable electronic computing device with first and second device portions, systems and methods include (I) a first case section including (A) a base including an interior surface such that the first case section being configured to receive the first device portion of the portable electronic computing device; (II) a second case section including (A) a base including an interior surface such that the second case section being configured to receive the second device portion of the portable electronic computing device; and (III) a sheet member including a base coupled with an extending from the base of the second case section, the sheet member including at least one portion of the base being able to flexibly change between at least one first position and at least one second position. In addition, other aspects are described in the claims, drawings, and text forming a part of the present disclosure.
To enable stable opening and closing and minimize an increase in volume and weight of a swivel type mobile terminal, the mobile terminal includes a swivel body and a main body located behind the swivel body to overlap therewith, and a hinge assembly configured to join the swivel body and the main body to rotate the swivel body based on a rotation axis in a front and rear direction A first slider of the hinge assembly move along the first rotation rail of the hinge assembly during the rotation, a main restoration part generate a restoring force for the swivel body to be in a closed or open state based on a first threshold rotation angle, and an auxiliary restoration part configured to press the main restoration part to generate a restoring force for assisting a motion of the main restoration part.
In one example, a hinge assembly is disclosed, which may include a first member and a second member rotatably connected to the first member through a mounting portion. The mounting portion may include a first surface having a first protrusion and a second surface, opposite the first surface, having a second protrusion. Further, the hinge assembly may include a first cam fixed to the first member and disposed adjacent to the first surface and a second cam fixed to the first member and disposed adjacent to the second surface. The first cam and second cam being engageable with the first protrusion and the second protrusion, respectively, to shift an axis of rotation of the second member.
A shock-absorbing display panel apparatus for folding flat screen displays, the shock-absorbing apparatus includes a planar display layer comprising a viewing surface and an opposing non-viewing surface, the display layer further comprising at least one folding region and at least one non-folding region for folding along at least one axis of rotation; a shock absorber in co-planar peripheral contour with the display layer, the shock absorber having at least one first discontinuity sub-dividing the shock absorber into physically separate regions; an adhesive layer disposed between the shock absorber and the non-viewing surface; and wherein the adhesive layer has at least one second discontinuity between the shock absorber and the display panel in the at least one folding region of the display layer.
A foldable pedal apparatus of a vehicle with a hysteresis module, may include a pedal pad is in a popped-up state of protruding from a pedal housing to be exposed toward a driver, in a manual driving mode in which the driver directly drives the vehicle; the pedal pad is in a hidden state of being inserted into the pedal housing and blocked from being exposed to the driver, in the autonomous driving mode in which the driver does not directly drive the vehicle; and hysteresis may be implemented by a hysteresis module when the pedal pad is operated.
A method of mobile automation apparatus localization in a navigation controller includes: controlling a depth sensor to capture a plurality of depth measurements corresponding to an area containing a navigational structure; selecting a primary subset of the depth measurements; selecting, from the primary subset, a corner candidate subset of the depth measurements; generating, from the corner candidate subset, a corner edge corresponding to the navigational structure; selecting an aisle subset of the depth measurements from the primary subset, according to the corner edge; selecting, from the aisle subset, a local minimum depth measurement for each of a plurality of sampling planes extending from the depth sensor; generating a shelf plane from the local minimum depth measurements; and updating a localization of the mobile automation apparatus based on the corner edge and the shelf plane.
A smart lawn mower comprises a traveling control module configured to control the traveling and steering of the mower, an image capturing module configured to capture the surrounding images of the mower, an operation module configured to provide a surrounding-determination information, and a storage module configured to store the surrounding-determination information. The operation module determines a grass area by analyzing the surrounding images captured by the image capturing module. The mower defines a grass area accurately without a predetermined boundary.
Methods and systems are disclosed for determining sensor degradation by actively controlling an autonomous vehicle. Determining sensor degradation may include obtaining sensor readings from a sensor of an autonomous vehicle, and determining baseline state information from the obtained sensor readings. A movement characteristic of the autonomous vehicle, such as speed or position, may then be changed. The sensor may then obtain additional sensor readings, and second state information may be determined from these additional sensor readings. Expected state information may be determined from the baseline state information and the change in the movement characteristic of the autonomous vehicle. A comparison of the expected state information and the second state information may then be performed. Based on this comparison, a determination may be made as to whether the sensor has degraded.
A planned acceleration of a vehicle and a predicted optimal acceleration of a target is determined. Upon determining that an actual acceleration of the target differs from the predicted optimal acceleration, the planned acceleration of the vehicle is revised based on the actual acceleration of the target. The foregoing steps can be implemented by a vehicle computer according to program instructions stored in a memory of the vehicle computer. The vehicle can include sensors, actuators, and/or controllers in communication with the computer via a vehicle communication network.
Aspects of the disclosure relate to determining whether a feature of map information. For example, data identifying an object detected in a vehicle's environment and including location coordinates is received. This information is used to identify a corresponding feature from pre-stored map information based on a map location of the corresponding feature. The corresponding feature is defined as a curve and associated with a tag identifying a type of the corresponding object. A tolerance constraint is identified based on the tag. The curve is divided into two or more line segments. Each line segment has a first position. The first position of a line segment is changed in order to determine a second position based on the location coordinates and the tolerance constraint. A value is determined based on a comparison of the first position to the second position. This value indicates a likelihood that the corresponding feature has changed.
Controller of a vehicle uses control functions to transition the current state of the vehicle into a target state. A control function is probabilistic to output a parametric probability distribution over the target state defined by a first moment and at least one higher order moment. The controller submits the current state into at least a subset of control functions consistent with the next driving decision to produce a subset of parametric probability distributions over the target state, combines the subset of parametric probability distributions to produce a joint parametric probability distribution of the target state, and determines the control command based on the first moment and at least one higher order moment of the joint parametric probability distribution of the target state.
The present disclosure relates generally to systems and methods for generating, processing and correlating data from multiple sensors in an autonomous navigation system, and more particularly to the utilization of configurable and dynamic sensor modules within light detection and ranging systems that enable an improved correlation between sensor data as well as configurability and responsiveness of the system to its surrounding environment.
Provided are non-uniform light-emitting lidar (light detection and ranging) apparatuses and autonomous robots including the same. A lidar apparatus may include a light source configured to emit light, an optical unit arranged on an optical path of light emitted from the light source and configured to change an optical profile of the light to be non-uniform, and a 3D sensor configured to sense location of an object by receiving reflection light from the object.
A vehicle can safely transfer the control of a vehicle to a driver when a fault occurs in an autonomous navigation system. In particular, the vehicle includes: a first sensor to obtain front information of the vehicle; a second sensor to acquire peripheral information of the vehicle; a first controller to perform an autonomous driving function based on the front information; a second controller to perform the autonomous driving function based on the obtained front information and the peripheral information; and a communicator to transmit the front information and the peripheral information to the second controller. The first controller may stop the transmission of a control signal of the first controller when a failure has occurred in the first controller, and the second controller may stop the transmission of a control signal of the second controller when a failure occurs in the second controller.
An autonomous cleaning robot includes a drive system to support the autonomous cleaning robot above a floor surface, an image capture device positioned on the autonomous cleaning robot to capture imagery of a portion of the floor surface forward of the autonomous cleaning robot, and a controller operably connected to the drive system and the image capture device. The drive system is operable to maneuver the autonomous cleaning robot about the floor surface. The controller is configured to execute instructions to perform operations including initiating, based on a user-selected sensitivity and the imagery captured by the image capture device, an avoidance behavior to avoid an obstacle on the portion of the floor surface.
A vehicle control system includes: a plurality of terminals configured to be carried by users; and a control device configured to execute remote parking processing to move a vehicle from a current position to a parking position and to park the vehicle at the parking position in response to an instruction from any of the terminals. The control device is configured to execute starting processing to start operation of the vehicle in response to the instruction from any of the terminals. Once the control device executes the starting processing in response to an instruction from one of the terminals, the control device prohibits the remote parking processing in response to an instruction from any other of the terminals as long as the vehicle is in operation.
An apparatus, methods and systems for a monitoring system for data collection in a vehicle are disclosed. The system can include a data acquisition circuit structured to interpret a plurality of detection values, each of the plurality of detection values corresponding to input received from at least one of a plurality of input sensors, each of the plurality of input sensors operatively coupled to at least one of a plurality of components of the vehicle, a data analysis circuit structured to determine a state value, wherein the data analysis circuit includes a pattern recognition circuit structured to determine the state value by analyzing a subset of the plurality of detection values and at least one external detection value using at least one of a neural net or an expert system, and an analysis response circuit structured to adjust a parameter of the vehicle in response to the state value.
Producing a product, differently detailed structural information about a structure of the product and digital machining information about a machining process are read in. The structural information is examined as to whether a respective item of structural information is given further detail by a respective other structure. A plurality of machining sequences are generated from the structural information and machining information so that an item of structural information from a first machining sequence is given detail by an item of structural information from a second machining sequence. The first machining sequence is transmitted to a first planning module and the second machining sequence is transmitted to a second planning module. The planning modules generate an action sequence as a planning result, which is considered by the second planning module during generation of the action sequence. Control signals are output by the action sequence generated by the second planning module.
Sensor data generated by a sensor of a computer numerically controlled machine can be compared with a forecast. The forecast can include expected sensor data for the sensor, over a course of an execution plan for making a cut with a movable laser cutting head. The sensor data can be generated during execution of the execution plan. During execution of the execution plan, the sensor data can be monitored and a deviation of from the forecast can be detected. It can be determined, based on the detecting, that an anomalous condition of the computer numerically controlled machine has occurred. Based on the determining, an action can be performed.
A rotation detecting apparatus includes a rotating member, detectors regarding a rotating direction of the rotating member, and a predetermined unit. Each detector detects whether a predetermined standard direction is included in detecting ranges different for each rotating member and outputs a result. The predetermined unit combines the detection result output from each detector and extracts an angle range. The predetermined unit specifies the rotating direction of the rotating member based on changes in the angle ranges extracted a plurality of times occurring in the plurality of times. The detecting range corresponding to each of the plurality of detectors is determined to be able to identify relative positions before and after a change from the angle range extracted by the predetermined unit to the angle range that is clockwise or counterclockwise apart a predetermined number or less to the angle range extracted, the predetermined number being two or more.
A mechanical component, a mechanism module, a movement, and a timepiece superior in lubricating oil retaining performance are to be provided. A mechanical component includes: a first component having a first surface region; a second component having a second surface region on which the first surface region can slide; and an oil retaining film formed on at least one of the first surface region and the second surface region and more lipophilic than the region.
Techniques disclosed herein relate to modifying refractive index modulation in a holographic optical element, such as a holographic grating. According to certain embodiments, a holographic optical element or apodized grating includes a polymer layer comprising a first region characterized by a first refractive index and a second region characterized by a second refractive index. The holographic optical element or apodized grating includes a plurality of nanoparticles dispersed in the polymer layer. The nanoparticles have a higher concentration in either the first region or the second region. In some embodiments, the nanoparticles may be configured to increase the refractive index modulation. In some embodiments, the nanoparticles may be configured to apodize the grating by decreasing the refractive index modulation proximate to sides of the grating. The refractive index may be modulated by applying a monomer reservoir buffer layer to the polymer layer, either before or after hologram fabrication.
An image forming device that forms an image on a medium, includes: a heater that heats the medium; a control unit that controls the heater; a first path that receives input voltage from an external power supply, converts the input voltage into desired voltage, and supplies the desired voltage to the control unit; a second path that divides the input voltage received by the first path and supplies the input voltage to the heater; a control element that is connected to the second path and controls ON/OFF switching of the heater according to control from the control unit; and a disconnection unit that disconnects the second path depending on condition of the input voltage.
A fixing belt includes an annular polyimide resin base layer having a lower imidization ratio in the outer peripheral surface than in a central portion in the thickness direction, a metal layer provided on the outer peripheral surface of the polyimide resin base layer, and an elastic layer provided on the outer peripheral surface of the metal layer.
A sheet cooling device includes a main assembly, a cooling unit, drawable out of the main assembly with respect to a drawing direction and a restricting member. The restricting member is positionable in a first position where the cooling unit is restricted from drawing out of the main assembly and in a second position lower than the first position where said restricting member opposes to an installation surface on which the sheet cooling device is installed.
A recording material cooling device includes a first unit provided with a first endless belt and a cooling member, a second unit provided with a second endless belt and a supporting member but not provided with a cooling member, a holding member and a fixing member. The holding member is fixed to a supporting frame and rotatably holds the supporting member in order to be rotated by a user. The fixing member fixes the supporting member to the holding member at any rotating position by the user.
An imaging system includes a belt roller, an endless belt, a steering member, a tilting mechanism, and a link mechanism. The endless belt rotates about the belt roller which extends in a longitudinal direction. The steering member is located inside the endless belt. The tilting mechanism is operably coupled to a center portion of the steering member. The link mechanism is operably coupled to the tilting mechanism and operates the tilting mechanism so that the steering member is tilted in response to a displacement of the endless belt in the longitudinal direction of the belt roller.
A metrology apparatus for and a method of determining a characteristic of interest relating to at least one structure on a substrate. The metrology apparatus comprises a sensor and an optical system. The sensor is for detecting characteristics of radiation impinging on the sensor. The optical system comprises an illumination path and a detection path. The optical system is configured to illuminate the at least one structure with radiation received from a source via the illumination path. The optical system is configured to receive radiation scattered by the at least one structure and to transmit the received radiation to the sensor via the detection path.
The present invention aims to make it possible to detect deterioration of a housing of a projection apparatus and to notify a user of the deterioration of the housing. The projection apparatus includes a projected image processing unit which registers a deformation parameter as an initial value in a case where the deformation parameter for a projected image is set as an initial setting to be made at the time of installation of the projection apparatus as a registration control unit. In a case where the deformation parameter for the projected image is adjusted by a user operation after the initial setting is made, the projected image processing unit decides whether an adjustment degree that the deformation parameter is adjusted from the initial value reaches a predetermined threshold value as a decision unit. In addition, in a case where the adjustment degree reaches the predetermined threshold value, the projected image processing unit gives a warning to the user at a predetermined timing as a notification control unit.
An accessory mountable on and demountable from a camera body includes a first mount unit including a plurality of first bayonet claw portions, a second mount unit including a plurality of second bayonet claw portions configured to be engaged with the plurality of first bayonet claw portions, an elastic member configured to contact the camera body when the accessory is mounted on the camera body, and a holding member configured to hold the elastic member. The holding member is provided with a recessed portion which a part of the elastic member can enter when the accessory is mounted on the camera body.
The present application provides a display panel and a manufacturing method thereof. The display panel includes a base substrate; scanning lines, formed on the base substrate; data lines, formed on the base substrate and intersecting with the scanning lines; and a plurality of pixel units, defined by intersection of the scanning lines and the data lines. The display panel further includes a common electrode wire, insulated from the data lines and the scanning lines, wherein the common electrode wire includes a plurality of connecting leads and spanning structures, and the plurality of connecting leads located in the same column are electrically connected by the spanning structures; and a plurality of conductive support columns, electrically connected to the common electrode wire by the spanning structures.
A reflective cholesteric liquid crystal display includes a display unit. The display unit includes a upper transparent substrate, a lower substrate, a upper transparent electrode pattern formed on the upper transparent substrate, a lower transparent electrode pattern formed on the lower substrate, a cholesteric liquid crystal layer sandwiched between the upper transparent electrode pattern and the lower transparent electrode pattern, and a light absorbing layer formed on the upper transparent substrate. The cholesteric liquid crystal layer is used for generating a visible light including a wavelength range. The light absorbing layer is used for absorbing light outside the wavelength range, so that the visible light in the wavelength range passes through the light absorbing layer and the upper transparent substrate.
A method for manufacturing a liquid crystal display device includes a step (A) of preparing an active matrix substrate, a step (B) of preparing a counter substrate, and a step (C) of producing a liquid crystal display panel using the prepared active matrix substrate and counter substrate. The step (C) includes a step (C1) of bonding the active matrix substrate with the counter substrate with a predetermined gap interposed therebetween and a step (C2) of forming a liquid crystal layer before or after the step (C1). An alignment film is an alignment film having a specific resistance of 1×1014 Ω·cm or greater when a backlight is illuminated. The step (C) further includes, after the steps (C1) and (C2), a step (C3) of irradiating the active matrix substrate, the liquid crystal layer, and the counter substrate with ultraviolet light.
A display apparatus includes: a backlight assembly including a light source; and at least one functional material; wherein: the light source is configured to emit a white light; and the at least one functional material is configured to absorb light in at least one of a range of 480 nm-520 nm or a range of 575 nm-600 nm to thereby reshape the white light to have blue, red, and green peaks.
Disclosed herein are a backlight unit and a display device using the same. In an embodiment, the backlight unit includes a substrate, at least one light source on the substrate, a lenses placed over the light source, a reflection sheet in which at least one through hole corresponding to the lens is formed, and a reflection ring comprising an opening portion corresponding to the at least one light source, and placed between the lens and the substrate. In accordance with an embodiment of the present invention, luminance uniformity of the backlight unit can be improved because the reflection ring surrounding the light source is included.
A display panel, and a display device and a drive method thereof are provided. The display panel includes a first array substrate and a second array substrate cell-assembled with each other, and a liquid crystal layer between the first array substrate and the second array substrate. The display panel further includes a plurality of sub-pixel units, and each of the sub-pixel units includes a color film pattern on the first array substrate, an electroluminescent layer on the second array substrate, and driving electrodes for driving the liquid crystal layer and the electroluminescent layer; and the driving electrodes comprise a reflective electrode on the second array substrate and below the electroluminescent layer, a transparent electrode on the electroluminescent layer, and a pixel electrode on the first array substrate.