US08446680B2
A zoom lens includes a first lens group having positive refractive power, a second lens group having negative refractive power, a third lens group having positive refractive power, and a fourth lens group having positive refractive power, the first, second, third, and fourth lens groups being arranged in order from an object side, and satisfies conditional expression (1) and conditional expression (2) below, (1) 0.95<|fw12|/fw<1.2 and (2) 140
US08446671B2
A display panel is provided with a solar cell, a light transmitting substrate arranged on a side of the solar cell to be seen, and a reflective polarizing plate. An uneven pattern is arranged on at least one surface of the reflective polarizing plate. The pattern desirably has concave and convex shape formed on at least one surface of the reflective polarizing plate. The respective concave and convex patterns may be different from each other. The reflective polarizing plate is provided with a light reflection axis and a light transmission easy axis.
US08446665B2
Catadioptric projection objective (1) for microlithography for imaging an object field (3) in an object plane (5) onto an image field (7) in an image plane (9). The objective includes a first partial objective (11) imaging the object field onto a first real intermediate image (13), a second partial objective (15) imaging the first intermediate image onto a second real intermediate image (17), and a third partial objective (19) imaging the second intermediate image onto the image field. The second partial objective is a catadioptric objective having exactly one concave mirror and having at least one lens (L21, L22). A first folding mirror (23) deflects the radiation from the object plane toward the concave mirror and a second folding mirror (25) deflects the radiation from the concave mirror toward the image plane. At least one surface of a lens (L21, L22) of the second partial objective has an antireflection coating having a reflectivity of less than 0.2% for an operating wavelength of between 150 nm and 250 nm and for an angle-of-incidence range of between 0° and 30°. As an alternative or in addition, all the surfaces of the lenses of the second partial objective are configured such that the deviation from the marginal ray concentricity is greater than or equal to 20°.
US08446661B2
A resonant cavity with tunable nanowire. The resonant cavity includes a substrate. The substrate is coupleable to an optical resonator structure. The resonant cavity also includes a plurality of nanowires formed on the substrate. The plurality of nanowires is actuated in response to an application of energy.
US08446655B2
An actuation system for at least two mobile elements with dynamically compensated and opposite relative motions, without disturbance of the elements fixed in the same rigid structure as it, and resistant to exterior loadings, in the case of a translational motion of the mobile elements, includes, in a rigid structure, at least one linear actuator linked to a motion transmission device with four rigid arms, articulated at their ends and forming a lozenge, of which each of two first opposite vertices is linked to a corresponding mobile element, and whose other two opposite vertices have a single translational degree of freedom.
US08446646B2
A light guide includes: a body which is a light-transmitting member and has light incidence surfaces as two end surfaces in a longitudinal direction and a light output surface which is one of side surfaces extending in the longitudinal direction; and light absorbing members which are provided on the light output surface or at least one, adjacent to the light output surface, of the side surfaces of the body and have a function of absorbing light that shines on the body from outside the body.
US08446643B2
A method and apparatus for detecting a size and shape of media on which image data is to be printed in an image production device is disclosed. The method may include receiving a request to print a print job, scanning image data for the print job, feeding media on which the image data is to be printed, scanning the fed media to determine the size and shape of the fed media, generating a mask based on the determined size and shape of the fed media, applying the mask to the image data, the mask permitting marking material to be applied to an intermediate member based on the determined size and shape of the fed media, applying the image data to the fed media; and outputting the fed media containing the image data.
US08446642B2
An image processing apparatus in which the reusability of digital image data is improved is disclosed. The apparatus includes an image reading unit reading a draft and obtaining the digitized image data; an image writing unit printing image data on a transfer paper; a recording unit recording image data and attached information of the image data; an external I/F unit transmitting and receiving image data and attached information of the image data; a first and a second image data processing units processing the image data from the image reading unit and the recording unit, respectively; and a bus controlling unit connecting each of the units. The first and the second image data processing units match the characteristics of the image data to prescribed characteristics so that the matched image data can be usable for both the image writing unit and the external device.
US08446628B2
An image forming apparatus includes a rendering time calculating unit configured to calculate rendering times for respective pieces of intermediate data, a rendering control unit configured to determine which of a pre-rendering process and a real-time rendering process is to be performed on the respective pieces of intermediate data based on the rendering times, rendering being performed before output of a piece of intermediate data in the pre-rendering process and rendering being performed in parallel with output of another piece of intermediate data in the real-time rendering process, and the rendering control unit further configured to allow a rendering unit to perform either of the pre-rendering process or the real-time rendering process, a reading unit configured to read the pieces of rendered data, and an output unit configured to output to a printer engine the pieces of rendered data read by the reading unit.
US08446622B2
A terminal apparatus to control a printing operation having a user interface to receive a selection of an optimize option when a command to print a XPS file is received, a filter unit to process the XPS file using at least one filter corresponding to the received optimize option, and a controller to transmit the XPS file which has been processed by the filter unit with the at least one filter to an image forming apparatus. Accordingly, the ease of selecting an optimize option for an XPS file is increased.
US08446620B2
In order to display the more detailed print status of an electronic document having a tree structure, information about the tree structure is added to a print command. Furthermore, for information management, the information about the tree structure is associated with a corresponding page.
US08446618B2
An information management device that manages the processing result of a print job processed by a print device through a network includes an information acquisition unit, an information output unit, a time setting unit, and a polling unit that performs an acquisition polling process in which the information acquisition unit acquires information on the print job that has been completed from the print device at a time when the information acquisition unit acquires the information on the print completion from the print device before the set waiting time elapses after the information output unit outputs the print job to the print device, and performs a checking polling process in which the information acquisition unit checks the print device for completion information at a time when the set waiting time elapses in a state that the information acquisition unit does not acquire the completion information from the print device.
US08446615B2
A method, an apparatus and a computer program enable viewing of data of documents to be printed on a client computer. A client computer includes a version y of a conversion function for converting document data into raster image data and a version z of a client viewer application. A print server includes a version x of the conversion function and a version x of the client viewer application. The method includes the steps of replacing the version y of the conversion function by the version x of the conversion function on the client computer, if the version x is more recent than the version y; installing the version x of the client viewer application on the client computer, if the version z is different from the version x; converting the document data on the client computer; and displaying the image data.
US08446602B2
A method of printing an image comprises sending a data stream representing the image to a printer driver, generating a stream of print instructions at the printer driver, forwarding the stream of print instructions to a printer, and printing the image in accordance with the print instructions. The data stream or stream of print instructions is intercepted and processed so that the printer uses less ink to print the image than it would if the processing was not performed.
US08446598B2
An image forming device having an ultra wide band (UWB) communication function and a method for providing data thereof, and a system for providing data using UWB communication function are disclosed. The image forming device having a UWB communication function include: a communication network interfacing unit for receiving data through a communication network, a data processing unit for analyzing received data type and converting the data into a certain form, a UWB interfacing unit for transmitting a search signal to a plurality of devices connected through a UWB network, and receiving an answer signal from available devices of the plurality of devices, and a controlling unit for controlling the data processing unit to convert the received data into a form reproducible at the devices transmitting the answer signal, and controlling the UWB interfacing unit to transmit the converted data to the available devices.
US08446594B2
A position detection device in which 2nd-order or higher order diffracted light as well as stray light is suppressed from being generated to improve the S/N ratio of a position detection signal as well as to improve detection accuracy. With a pitch d of a diffraction grating 11, whose grating surface 11a is covered with a protective layer 12 of a refractive index n, and with a wavelength λ0 in vacuum of coherent light illuminated, d<2λ0/n is set. An angle of incidence θ0 of the coherent light on the diffraction grating 11 is set to satisfy the following relationship: |sin θ0|<(2λ0/dn)−1. The 1st order diffracted light is used for position detection.
US08446591B2
ProblemsTo provide a method for evaluating characteristics of MZ interferometers in an optical modulator having a plurality of MZ interferometers.Means for Solving ProblemsWhen an optical modulator includes a plurality of MZ interferometers, the 0-degree component contains a signal derived from an MZ interferometer other than the MZ interferometers for evaluating the characteristic. For this, it is impossible to accurately evaluate the characteristic of the MZ interferometers. The present invention does not use the 0-degree component normally having the highest intensity. That is, the characteristic of the MZ interferometers are evaluated by using a side band intensity of the component other than the 0-degree component.
US08446588B2
System and method for fluorescent light excitation and detection from samples to enhance the numerical aperture and/or reduce the cross-talk of the fluorescent light.
US08446586B2
A method and device for processing mammalian adipose tissue such that the vascular rich fraction is separated from the vascular poor fraction, Mammalian adipose tissue in the form of morselated surgical biopsies and/or lipoaspirate from liposuction is placed within a novel syringe attached to a detection device measuring either color, light saturation, infra-red light, heme, iron or oxygen saturation. This process involves no label and minimal manipulation and handling of the tissue. This process and device may also be used intra-operatively under sterile conditions for immediate use within the same individual receiving liposuction or surgery.
US08446560B2
A lithographic apparatus includes a magnet being contained in a protective enclosure, the protective enclosure being arranged to protect the magnet from contact with a H2-containing or H-atom containing gas. The enclosure may further contain a hydrogen getter, such as a magnet-surface modifying gas, or a non-hydrogen containing gas. A non-hydrogen containing gas flow may be provided or a non-hydrogen getter gas flow may be provided through at least part of the protective enclosure.
US08446546B2
A backlight module and a display panel device using the same are provided. The backlight module includes a light source module, an open frame, and a reflector sheet. The open frame is disposed around the light source module and has a first free-end and a second free-end. A space interval exists between the first and second free-ends. The reflector sheet is disposed on a rear side of the light source module and has a body and a sidewall. The sidewall corresponds to the space interval between the first and second free-ends and extends over the light source module. The display panel further includes a liquid crystal display panel (LCD panel) on the light source module and a front frame which is disposed on the LCD panel enclosing a lateral side of the LCD panel. The sidewall of the reflector sheet extends between the lateral side of the LCD panel and the front frame to provide insulation.
US08446545B2
There is provided a backlight unit including a cover bottom, at least one pairs of metal boards, each being installed on the cover bottom, having a body part and a bent part bent in one end region of the body part, and including an insulated wire on a surface thereof, at least one LED package mounted on the bent part; and a light guide plate installed at the cover bottom.
US08446543B2
Supporting metal plates 121 are attached to the sides of a display 101, so that screwing flat portions 123 of the supporting metal plates 121 are placed out of the back side of the display 101. Further, a lid 151, fixing brackets 141, and the screwing flat portions 123 are fixed with screws in a state in which fixing flat portions 143 of the fixing brackets 141 are inserted into long grooves 112 on the side walls of a body case, thereby reducing clearances between the display 101 and the side walls of the body case. Thus with the simple chassis configuration having only the long grooves 112 formed on the body case 111, a chassis can be constructed detachably with a chassis peripheral part having a small width.
US08446542B2
A display module includes a bottom casing, a panel device, and an upper casing. The bottom casing includes a casing body and a holding structure. The holding structure is integrally formed on the casing body and has a bottom pillar. The panel device is disposed on the bottom casing. The panel device includes at least one film component and a display panel. The film component has at least one positioning lug. The positioning lug is used for disposing around the bottom pillar so as to position the film component onto the holding structure. The display panel is disposed on the holding structure. The upper casing is disposed on the panel device for fixing the panel device cooperatively with the bottom casing.
US08446540B2
There is provided a display device with an enlarged display area. The display device includes a panel unit for displaying an image, a first fixing member receiving the panel unit, and a second fixing member coupled to the first fixing member. A flange extending from an edge of a body portion of the first fixing member in a direction parallel to the body portion is coupled to a receiving member formed in the second fixing member.
US08446539B2
Each of spare lines (EL1 through ELn) is provided, for a corresponding one of source lines (SL1 through SLn), at one end of a pixel (PIX) on the side facing a source line SL of the pixel (PIX). A source line (SLi) and a spare line (ELi) are connected via a connection line (61). This makes it possible to realize a display panel in which a data signal line and a corresponding spare line are unlikely to have a breaking that causes their electrical connections not to be kept up to their ends, in an arrangement in which spare lines are provided for respective data signal lines.
US08446535B2
A method of manufacturing a three dimensional image display device includes bonding a lens plate having a lenticular lens to a display panel configured to display an image, with a partially-discontinuous frame-shaped adhesive member interposed in between while having the lenticular lens facing the display panel. The method also includes depressurizing a hermetic inner space formed by the display panel, the adhesive member, and the lens plate, and sealing an opening section communicating with the inner space.
US08446527B2
A circuit and a method for using the circuit to provide synchronization between a first video signal and a second video signal are provided, comprising a circuit to capture a first video signal, a circuit to measure the timing format of the first video signal including an input clock and count input Vsync pulses, a circuit to measure a phase difference between the first video signal and the second video signal, a circuit to generate an output video signal comprising a number of output Vsync pulses and an output clock, and a PLL circuit to control the output clock period as a constant ratio of the input Vsync period, and maintain a constant number of output clock periods per a number of input clock periods. Also provided is a system to perform the method as above using the circuit as above, maintaining a constant ratio between the output clock period and a number of input clock periods.
US08446523B2
An image processing circuit includes a de-interlace circuit, a motion interpolation circuit and a frame processing circuit. The image processing circuit receives a first field and a second field respectively from two successive film frames. A plurality of block motion vectors are calculated according to the first field and the second field. A plurality of interpolated frames are calculated according to the first field, the second field and the plurality of motion vectors.
US08446522B2
A photoelectric conversion element unit includes a package includes a package including a photoelectric conversion element configured to perform a photoelectric conversion for an optical image of an object, a substrate mounted with an electronic component that includes a drive circuit configured to drive the photoelectric conversion element and a signal processing circuit configured to process a signal from the photoelectric conversion element, and a fixing plate having an opening, wherein the package and the electronic component are adjacent to each other in a direction orthogonal to an optical axis in the opening, and the package and the substrate are fixed onto the fixing plate.
US08446521B2
A distributed agile illumination system and method associated with multiple coordinated illumination sources for projecting a large amount of illumination on a subject at a distance and with an eye safe level of illumination at a close range. An entire scene may be imaged via an image capturing device and a targeted subject with respect to the scene may be detected and prioritized. An initial calibration may be performed to determine a relative geometric location of the illumination sources and the image capturing device with respect to each other. The subject's predicted location and the geometric location may be employed to determine an offset position for each of the independent illumination sources. A pan/tilt device and optional mirror associated with each illumination source utilizes the offset position to point each illumination source towards the subject to acquire better imagery at varying subject distances.
US08446519B2
A focus control apparatus includes a signal generator for generating a first signal in accordance with a predetermined frequency component of an image signal obtained by photoelectrically converting an image of a subject formed by an image-taking optical system, a detector for detecting a second signal different from the first signal, and a controller for detecting a movement of the subject based on the second signal and for switching driving of the image-taking optical system based on the detection, wherein the controller controls driving of the image-taking optical system based on the first signal.
US08446518B2
A photographing apparatus and method are provided that can reduce power consumption by detecting a high precision focusing position for a predetermined range and controlling light emission according to a driving mode when performing focus control. The photographing apparatus includes: a lens movable in an optical axis direction and that focuses a subject image on an imaging surface; a photoelectric converter that converting the subject image into an electric signal; a focusing position detector for detecting a focusing position of the focus lens when at least one main subject image of the subject images is focused on the imaging surface; a focus control unit for controlling a first drive of the focus lens and a second drive of the focus lens that is different from the first drive; a light emitting unit; and a light emitting control unit for controlling for different light emissions during the first and second drive.
US08446514B2
A method for capturing an image, comprising: providing a switchable imaging apparatus including a display screen having a first display state and a second transparent state, an optical beam deflector switchable between a first non-deflecting state and a second deflecting state, a camera positioned in a location peripheral to the display screen, and a controller; setting the switchable imaging apparatus to the image capture mode by using the controller to set the display screen to the second transparent state and the optical beam deflector to the second deflecting state; using the camera to capture an image of the scene; setting the switchable imaging apparatus to the image display mode by using the controller to set the display screen to the first display state and the optical beam deflector to the first non-deflecting state; and displaying an image on the display screen.
US08446498B2
A solid-state imaging device includes: photodiodes formed for pixels arranged on a light sensing surface of a semiconductor substrate; a signal reading unit formed on the semiconductor substrate to read a signal charge or a voltage; an insulating film formed on the semiconductor substrate and including optical waveguides; color filters formed on the insulating film; and on-chip lenses formed on the color filters. The first and second pixel combinations are alternately arranged both in the horizontal and vertical directions, the first pixel combination having a layout in which two green pixels are arranged both in the horizontal and vertical directions and a total of four pixels are arranged, the second pixel combination having a layout in which two pixels are arranged both in the horizontal and vertical directions, a total of four pixels are arranged, and two red pixels and two blue pixels are arranged cater cornered.
US08446494B2
Candidate redeye areas (24) are determined in an input image (20). In this process, a respective set of one or more redeye metric values (28) is associated with each of the candidate redeye areas (24). Candidate face areas (30) are ascertained in the input image (20). In this process, a respective set of one or more face metric values (34) is associated with each of the candidate face areas (30). A respective joint metric vector (78) is assigned to each of the candidate redeye areas (24). The joint metric vector (78) includes metric values that are derived from the respective set of redeye metric values (28) and the set of face metric values (34) associated with a selected one of the candidate face areas (30). Each of one or more of the candidate redeye areas (24) is classified as either a redeye artifact or a non-redeye artifact based on the respective joint metric vector (78) assigned to the candidate redeye area (24).
US08446486B2
It is so arranged that a user can check whether face detection processing has been set. The back side of a digital still camera is provided with a face detection button for setting whether face detection processing is ON or OFF. If the button is pressed to set the camera so that face detection processing will be executed, a face-detection execution mark is displayed at the upper-right corner of a display screen. The user can ascertain that face detection processing will be executed merely by observing the face-detection execution mark. If a face is detected from within the image of a subject, a detection border is displayed so as to enclose the face. When face detection processing is unnecessary, the face detection button is pressed again. Now a face-detection non-execution mark is displayed on the display screen. By observing the face-detection non-execution mark, the user can ascertain that face detection processing will not be executed.
US08446484B2
Disclosed is an image signal processing chain or functionality having an image data scaler. A method includes receiving a stream of image data having a first resolution; scaling the received stream of image data using a substantially freely configurable downscaling ratio to generate scaled image data having a second resolution that is less than the first resolution; outputting the scaled image data to at least one of a viewfinder image signal processing functionality or a video image signal processing functionality to create image data for at least one of display to a user or provide to a video encoder; and during at least one of receiving, scaling or outputting, simultaneously storing the stream or a subset of the stream of image data having the first resolution into a memory as a set of frames of image data for being processed as needed.
US08446480B2
The present invention relates to a method, a computer-readable medium, a computer program and an apparatus for exposure control. A histogram of the number of image sensor area elements of an image sensor that receive light at specific light reception rates from an image target is determined. At least one exposure time is determined for capture of said image target based on said histogram and on a cost function that expresses a performance of said image sensor as a function of light reception rate per image sensor area element and exposure time.
US08446479B2
A photographing apparatus according to the present invention comprises: an imaging section converting an object image into image data; a photographing section obtaining the image data from the imaging section in response to release operation and also obtaining the image data of continuous shooting from the imaging section before or after the release operation; a trimming section generating trimming images sequentially for frames in different areas, respectively, using the image data of the continuous shooting; and a control section recording the trimming image generated in the trimming section and the image data obtained in the release operation.
US08446476B2
An image stabilizer includes a circuit board, a stationary member secured on the circuit board and defines a first receiving space and a first central axis, a moveable member received in the first receiving space, a driving assembly including a first magnetic member secured to the stationary member and a second magnetic member secured to the moveable member, a resilient assembly interconnecting the stationary member and the moveable member, and a photo-detector fixed on the circuit board and facing the moveable member. The driving assembly drives the moveable member to rotate about a first axis and a second axis relative to the stationary member through magnetic interaction between the first and second magnetic members. The resilient assembly counter-rotates the moveable member about the first axis and the second axis relative to the stationary member. The photo-detector detects vibration or movement of the moveable member relative to the stationary member.
US08446469B2
An in-car video system and method is provided where a wireless microphone is configured with bi-directional communications capability. In response to a received RF activation signal, the wireless microphone is automatically switched on to capture (and transmit back to the in-car video system) an audio soundtrack that accompanies the images captured by the car-mounted video camera. A wireless microphone controller mounted in the car transmits the RF activation signal to the wireless microphone. The wireless microphone controller is arranged to transmit the RF activation signal when the VCR starts recording.In an illustrative embodiment of the invention, the wireless microphone receives information, including a confirmation that the VCR is recording, from an RF information signal received from the wireless microphone controller mounted in the car. The wireless microphone displays the information to the officer on a display screen. The wireless microphone sounds an audible alert when it receives the RF activation or information signals.
US08446455B2
A method is provided in one example embodiment and includes monitoring a plurality of inputs associated with end users involved in a video session in which a plurality of displays are used. At least one of the inputs is associated with a frequency of speech of the end users. The method also includes determining a participation level for each of the end users based on the inputs, and determining which image data associated with the end users is to be rendered on a selected one of the plurality of displays based on the participation levels.
US08446447B2
An optical scanner includes a frame, a light source, an optical member, and a spacer. The light source emits a light beam. The optical member is mounted on the frame to guide the light beam to a scanning target. The spacer maintains the optical member at a predetermined position with respect to the frame. The spacer is formed of a photocurable resin that is cured in response to a predetermined light having a wavelength within a prescribed range.
US08446445B2
An exposure device for exposing a photoreceptor, includes: data electrodes disposed for each of a plurality of columns parallel to a moving direction of the photoreceptor; selected electrodes disposed for each of a plurality of rows perpendicular to each of the data electrodes; light emitting element arrays including light emitting elements disposed near intersection points between the data electrodes and the selected electrodes in intersections between the data electrodes and the selected electrodes, the light emitting elements being linearly arrayed; a driving signal output circuit for generating a driving signal based on an image signal to supply the driving signal to the light emitting element arrays; and a column selection unit for switching the light emitting element arrays to be selected based on a lighting situation of each of the light emitting elements of each of the light emitting element arrays.
US08446444B2
A deflector deflects a light beam emitted from a light source including a plurality of light-emitting units. A scanning optical system focuses the light beam deflected by the deflector on a scanning target surface. A monitoring photoreceiver receives a part of a light beam deflected by the deflector and directed toward an area within a scanning area outside an image area. A detecting unit individually detects emission powers of at least two light-emitting units based on an output signal of the monitoring photoreceiver in a single sweep of scanning.
US08446426B2
Embodiments of a method for visually compositing a group of objects in an image are described. During operation, a processor determines a modified opacity for a first object in a first group of objects based on a first group opacity for the first group of objects and an initial opacity for the first object in the first group of objects. Then, the processor determines a modified opacity for a second object in the first group of objects based on the modified opacity for the first object in the first group of objects and an initial opacity for the second object in the first group of objects, where the modified opacity for the first object in the first group of objects and the modified opacity for the second object in the first group of objects are used to composite the first group of objects.
US08446425B1
A system creates a first set of objects in a first structure that describe a graphical scene. A second set of objects is created in a second structure based on the first set of objects in the first structure. The system also performs one or more of the following: i) converting coordinate values in a first coordinate system to coordinate values in a second coordinate system, ii) converting color values in a first color space to color values in a second color space, and/or iii) converting data having first data types or formats to data having second data types or formats, where the first data types or formats are different than the second data types or formats. The system further associates the converted coordinate values, color values and/or data types or formats with the second set of objects and enables a graphical processing unit to use the second set of objects for rendering the graphical scene.
US08446421B2
A method includes fetching first synthesized pixels from an update buffer of a memory and fetching data pixels from an image buffer of the memory during the first drive frame period. Respective data pixels are fetched synchronously with the fetching of corresponding first synthesized pixels. Respective data pixels fetched from the image buffer are synthesized with corresponding first synthesized pixels to generate second synthesized pixels. The second synthesized pixels are stored in the update buffer during the first drive frame period. The storing of second synthesized pixels may be paused based on a prediction that the fetching of first synthesized pixels will not complete within the first drive frame period. The fetching of data pixels from the image buffer of the memory may also be paused based on the prediction that the fetching of first synthesized pixels will not complete within the first drive frame period.
US08446419B2
A system and method of performing a high speed filtering of data by using a GPU is disclosed. According to embodiments of the present invention, the system and method of processing data by using a graphic processing unit (GPU) including a video memory comprising multiple blocks, comprises: acquiring an image frame including a plurality of pixels representative of a target object; receiving a user input for processing the image frame; grouping each predetermined number of the pixels of the image frame into a group; uploading each of the groups to a respective block of the video memory; and performing operations on the groups uploaded to the video memory based on the user input.
US08446418B2
An image processing apparatus includes: a plurality of image processing units each of which is disposed so as to correspond to each of partial images and processes data of each of pixels composing the partial image with reference to data of peripheral pixels of the pixel, wherein the plurality of image processing units includes at least a first image processing unit which use data of pixels composing other partial images adjacent to a first partial image as the data of the peripheral pixels for the image processing on a first partial image, and a second image processing unit which performs the image processing on a second partial image and brokers data of pixels treated as the peripheral pixels by the first image processing unit from an image processing unit which processes the other partial image to the first image processing unit.
US08446406B2
A liquid crystal display is disclosed. The liquid crystal display includes a liquid crystal display panel including data lines and gate lines crossing one another and a pixel array including liquid crystal cells arranged in a matrix format according to a crossing structure of the data lines and the gate lines, a source drive circuit supplying a data voltage to the data lines through a plurality of output channels, a gate drive circuit sequentially supplying a gate pulse to the gate lines. The liquid crystal display panel includes link lines that respectively connect the data lines to the output channels of the source drive circuit. The source drive circuit includes a plurality of output channel resistors connected between the output channels and the link lines. Each of the output channel resistors includes a variable resistance circuit.
US08446401B2
Disclosed herein is a driving method and display apparatus, the display apparatus including light emitting units, scan lines, data lines, a driving circuit provided for each of the light emitting units to serve as a circuit having a signal writing transistor, a device driving transistor, a capacitor and a first switch circuit, and a light emitting device.
US08446400B2
A driving apparatus for driving a display panel includes a timing controller and a plurality of source drivers. The timing controller has a first output port and a second output port. The first output port is employed to output a first clock signal and plural first data signals. The second output port is employed to output a second clock signal and plural second data signals. Each source driver includes at least two operation mode control ends for receiving an operation mode control signal having at least two bits for setting at least first to third operation modes. If the operation mode control signal sets the source driver to operate in the first operation mode, the source driver is electrically connected to both the first and second output ports, for driving the display panel according to the first data signals, the second data signals, the first clock and the second clock.
US08446393B2
A stylus includes a housing, a stylus body including a tip, a pen including a head, a first rotating member and a second rotating member. The first rotating member is coupled between the housing and the stylus body so the stylus body rotatably engages with the housing. The second rotating member is coupled between the housing and the pen so the pen rotatably engages with the housing. When the stylus body rotates relative to the housing, the tip moves from a first side of the first rotating member to a second side of the first rotating member opposite to the first side of the first rotating member; when the pen rotates relative to the housing, the head moves from a first side of the second rotating member to a second side of the second rotating member opposite to the first side of the second rotating member.
US08446363B1
Provided are methods and systems for enhanced input using a touch screen, as well as computer programs encoded on computer storage devices and configured to perform the actions of the methods. One or more applications executing on a mobile device receive a user input through the touch screen of the mobile device, without displaying information identifying a command associated with the user input on the touch screen. The one or more applications then determine the command associated with the received user input and display a result of applying the command on an external display that is connected to the mobile device.
US08446362B2
A mouse is disclosed that comprises a main body, at least one function key, a position sensor and a data transmission line. The main body has a hand-shaped groove, a first surface disposed at a bottom of the hand-shaped groove, and a reverse surface to the first surface. The at least one function key is disposed on the first surface for producing at least one function signal. The position sensor is disposed on the reverse surface for sensing movement of the main body to produce a position signal. And the data transmission line is coupled to the main body for transmitting the function signal and the position signal to an electronic system or apparatus for operating the electronic system or apparatus.
US08446351B2
A display has a screen which incorporates a light modulator. The screen may be a front projection screen or a rear-projection screen. The screen is illuminated with light from a light source comprising an array of controllable light-emitters. The controllable-emitters and elements of the light modulator may be controlled to adjust the intensity of light emanating from corresponding areas on the screen. The display may provide a high dynamic range.
US08446348B2
A display device in which the current load of wirings are distributed and display variations due to voltage drop are suppressed. An active matrix display device of the invention comprises a first current input terminal, a second current input terminal, and a plurality of current supply lines extending parallel to each other. Each current supply line is connected to a plurality of driving transistors in a line. One end of each current supply line is connected to the first current input terminal via a first wiring intersecting with the current supply lines, and the other end thereof is connected to the second current input terminal via a second wiring intersecting with the current supply lines. Accordingly, a current is supplied to each current supply line from both the first and the second current input terminals. The first and the second current input terminals are provided separately from each other.
US08446334B2
An antenna system including at least one flexible dielectric sheet, a plurality of individual antennas mounted on the at least one flexible dielectric sheet, a feed network mounted on the at least one flexible dielectric sheet, the feed network being connected to and feeding the individual antennas and at least one conductive ground plane mounted on the at least one flexible dielectric sheet.
US08446327B2
A two-way terrestrial antenna, employing electrical down tilt and azimuth beam adjustment capability is disclosed. Such antenna configuration allows for a variable antenna coverage footprint within designated coverage sector. To compensate for installation support structure variations the two-way antenna employs a positional sensor that can provide feedback to BTS or automatically compensate azimuth and tilt beam angles so as to provide uniform sector coverage. In particular by monitoring tri-vector gravitational inclinometer and earth magnetic field sensors, and determining correction factors for antenna tilt and azimuth beam adjustments, uniform or compensated sector coverage is provided.
US08446319B2
An ordnance usable against a living body, the ordnance having a tracking module with a transmitter that can use at least a portion of the body as an antenna. In preferred embodiments, the tracking module is releasably coupled to a carrier, and a pointed tip is disposed on at least one of the tracking module and the carrier. The module preferably includes a circuit that provides location information to the transmitter, and optionally provides additional information, including at least one of motion, compass, pressure, oxygen, and heart beat information. Transmission can occur at any suitable interval, including for example, at least three times during a ten minute period. The transmitter can optionally transmit a no heart beat signal, failure signal, and/or low battery signal. Preferred systems include a receiver that can send an interrogation signal, and the ordnance can include an interrogation receiving circuit for receiving interrogation signals.
US08446318B2
Methods, devices, and systems for controlling a beamforming antenna with reconfigurable parasitic elements is provided. In one embodiment, a method of controlling a beamforming antenna in a wireless device comprises calculating the input impedance of the beamforming antenna using an adaptive matching network, wherein said beamforming antenna includes a primary radiating element and one or more reconfigurable parasitic elements, and said primary radiating element and said reconfigurable parasitic elements cooperatively receive, transmit, or both a radio frequency signal; determining the input impedance of the beamforming antenna is outside a tolerance; recognizing the environment of the wireless device; selecting a portion of said reconfigurable parasitic elements using the input impedance of the beamforming antenna, a predetermined input impedance observation table, said recognized environment, or any combination thereof; and updating the beamforming antenna by electrically connecting, electrically coupling, or both said selected portion of said reconfigurable parasitic elements to said primary radiating element.
US08446305B1
A photonic analog to digital converter includes one or more modulators configured to receive a first optical signal and a radio frequency signal. The one or more modulators is configured to modulate the first optical signal based on the radio frequency signal. The converter also includes circuitry configured to independently quantize one or more of phase, quadrature, and amplitude coordinates of the modulated signal. The circuitry provides the quantized coordinates to one or more electronic analog to digital converters.
US08446297B2
Embodiments of the invention present a system and method for identifying relationships between different types of data captured by a pen-based computing system, such as a smart pen. The pen-based computing system generates one or more sessions including different types of data that are associated with each other. In one embodiment, the pen-based computing system generates an index file including captured audio data and written data, where the written data is associated with a temporal location of the audio data corresponding to the time the written data was captured. For example, the pen-based computing system applies one or more heuristic processes to the received data to identify relationships between various types of the received data, used to associated different types of data with each other.
US08446291B2
Methods and systems for borehole telemetry utilizing a tool configured or designed for deployment in a borehole traversing a subterranean formation. The tool includes a downhole telemetry module; a surface telemetry module; and a datalink between the downhole and surface modules configured or designed for transferring data over two or more data communication channels, wherein the transferred data comprises coding at a transmitter to increase the signal to noise ratio (SNR) of the data.
US08446287B2
A loose part monitoring method and system for preventing the generation of a false alarm as much as possible, including analyzing a group of detection signals that have been output from a plurality of sensors placed on a wall defining a fluid flow path, wherein the group of detection signals are analyzed for a rising gradient that is related to change in intensity of impulsive sound, a damping time that is related to change of intensity of the impulsive sound, and a frequency spectrum that is related to pitch of the impulsive sound in order to determine whether the group of detection signals are false or true.
US08446284B2
A method of indicating low oil level of lubrication oil for a gas turbine engine automatically eliminates false low oil readings due to temperature-induced lubrication oil shrinkage and operation-induced changes in lubrication oil level.
US08446282B1
An animal tracking transmitter anchor assembly includes a mount that is positionable on an arrow. An arm is attached to and extends away from the mount. A casing is mounted to the arm and a hook is attached to the casing. The hook has a point that is directed toward the mount and is embeddable into an animal when the arrowhead goes into the animal. The hook halts the penetration of the casing when an arrowhead of the arrow enters the animal. The stopping of the casing breaks the arm to allow the arrowhead to further penetrate the animal. A transmitter is mounted in the casing and remains with the animal. The transmitter emits a wireless signal detectable by a receiver to determine a direction of the transmitter by the receiver.
US08446281B2
A method of reception includes detecting that an object has entered a first region of a space at a first time. A time period is measured around the first time. A determination is made whether any object has entered a second region of the space within the time period. Thereafter, a determination is made that the object needs attention when no object is detected entering the second region within the time period.
US08446272B2
Methods and apparatus remotely determine mobile communication device location using a remote device. A predetermined designated user interface is configured to enable selection of a predesignated code corresponding to an operation for determining mobile communication device location using the remote device. A processor is configured to: participate in an authorization operation to determine whether the remote device and the predetermined designated user interface are authorized to select the predesignated code corresponding to the operation for determining mobile communication device location; generate a request including the selected predesignated code, upon determining that the remote device and the predetermined designated user interface are authorized to select the predesignated code; and transmit the request to the mobile communication device to enable the operation for determining mobile communication device location to be performed once the mobile communication device receives the request.
US08446269B2
An object detection system for a vehicle comprising an infrared camera for gathering an image of at least a part of the surroundings of the vehicle; and a processor for applying an algorithm to at least a part of the image gathered by the camera, the algorithm identifying non-relevant hot or warm objects (5, 6, 7) detected by the camera and reducing the brightness and/or distinctiveness of the non-relevant objects (5, 6, 7) in the image; and a display for displaying the image to a driver of the vehicle, characterized in that the infrared camera forms an image in the far infrared; and the algorithm identifies non-relevant hot or warm objects (5, 6, 7) detected by the camera.
US08446268B2
The present invention provides a system for displaying views of a vehicle and its surroundings. Preferably, the system for displaying views of a vehicle and its surroundings includes one or more cameras for photographing a vehicle and its surroundings, obstacle detection means for detecting an obstacle outside the vehicle, a memory unit for previously storing alternative views corresponding to the obstacle, and a view processing unit for creating a bird's eye view from a virtual viewpoint outside the vehicle based on views acquired by the cameras. When the obstacle detection means detects the obstacle, the view processing unit secures the obstacle, selects an alternative view corresponding to the secured obstacle, reads the alternative view from the memory unit, changes a direction and inclination of the selected alternative view in line with the virtual viewpoint, and then overlaps the changed alternative view on the bird's eye view.
US08446264B2
A portable electronic device having a waterproof keypad and a keypad assembly for the waterproof keypad are described. In one embodiment, the keypad assembly comprises: an embossed keypad having a top and bottom surface, the embossed keypad having a plurality of embossed keys on the top surface; a capacitive sensor layer located below the bottom surface of the embossed keypad; and an actuator located below the capacitive sensor layer moveable between a first position in an unactuated state to a second position in an actuated state.
US08446263B2
A user interface of a configurable light timer is described. The user interface comprises an input portion for receiving timing characterization data, the input portion having a slot adapted to receive a portable memory device storing the timing characterization data; and a feedback portion providing an indication of the status of the timer in based upon the timing characterization data and a current day and time setting. A method of implementing a user interface in a configurable light timer is also disclosed.
US08446256B2
The present disclosure is directed to a system and method for multiplexing radio frequency signals. In some implementations, a system includes a host coupling module, a plurality of antennas, and a processing module. The host coupling module is configured to receive and transmit RF signals through a wired connection. The plurality of antennas are configured to wirelessly transmit RF signals and receive RF signals from RFID tags. The processing module is configured to selectively switch between the plurality of antennas for communication with the RFID tags using the host coupling module and backscatter at least a portion of the received RF signals through the wired connection to communicate information independent of an internal power supply.
US08446251B2
An electric power supply system includes an electric power reception apparatus and an electric power supply apparatus adapted to supply electric power to the electric power reception apparatus when the electric power reception apparatus is placed on the electric power supply apparatus. The electric power supply apparatus includes a plurality of electric power supply units adapted to supply electric power by electromagnetic induction to the electric power reception apparatus. A selection unit of the electric power supply apparatus selects, from the total plurality of electric power supply units, a plurality of electric power supply units whose location corresponds to a position where the electric power reception apparatus is placed, and a control unit controls the supply of electric power such that electric power is supplied to the electric power reception apparatus from the selected plurality of electric power supply units.
US08446243B2
An embodiment of the invention relates to an apparatus including a magnetic device and a related method. A multilayer substrate is constructed with a winding formed in a metallic layer, an electrically insulating layer above the metallic layer, and a via formed in the electrically insulating layer to couple the winding to a circuit element positioned on the multilayer substrate. A depression is formed in the multilayer substrate, and a polymer solution, preferably an epoxy, containing a ferromagnetic component such as nanocrystaline nickel zinc ferrite is deposited within a mold positioned on a surface of the multilayer substrate above the winding and in the depression. An integrated circuit electrically coupled to the winding may be located on the multilayer substrate. The multilayer substrate may be a semiconductor substrate or a printed wiring board, and the circuit element may be an integrated circuit formed on the multilayer substrate.
US08446236B2
According to one exemplary embodiment, an electromechanical relay may be described. The relay can be constructed using printed circuit board (PCB) construction, and can have at least a pair of coils, for example one on the top of or above the PCB, the other on the bottom of or below the PCB, at least two ferromagnetic cores, one of which can be set at the center of each coil, at least a set of contacts which can be on the surface of the printed circuit board, a spacer which can be set between the coils, and a magnet which can be set within the spacer.
US08446231B2
One embodiment of a high-frequency filter includes a band-rejection filter including a plurality of reflection-type resonance elements and a filter circuit element provided between the reflection-type resonance elements, wherein an electrical length between the reflection-type resonance elements between which the filter circuit element is provided is an odd multiple of 90 degrees in a rejection band of the band-rejection filter.
US08446226B2
An oven controlled crystal oscillator includes a thermostatic bath, an inner circuit board, an outer circuit board, a heating element, and a temperature sensor. The inner circuit board comprising a crystal oscillation circuit is positioned inside the thermostatic bath and electrically connected with the outer circuit board via a pin. The outer circuit board has a temperature control circuit and a power supply circuit. The heating element and the temperature sensor electrically connect with the outer circuit board. A through slot is formed through the outer circuit board, and the thermostatic bath is inserted into the through slot. By inserting the thermostatic bath into the through slot of the outer circuit board, the height and the weight of the oven controlled crystal oscillator are reduced, the electric connection performance is enhanced, and thus the stability of the output frequency of the oven controlled crystal oscillator is improved.
US08446224B2
A circuit interconnection structure for synchronizing a network of oscillators placed on a semiconductor substrate. One such structure comprises a first synchronizing circuit electrically coupled to a second synchronizing circuit through tunable delay circuits. Also disclosed are methods to tune oscillators placed in different regions of a circuit having multiple clock domains by estimating the relative slack of a first group of signals within the circuit with regard to the period of a first clock domain, and estimating the relative slack of the second group of signals within the circuit with regard to the period of second clock domain, wherein the estimating is performed at process and operational corners that cover the variability of the circuit at different speed conditions, then calculating tuning values for the oscillator delays for each region such that the oscillator delay slack matches the worst relative slack of the signals of the same region.
US08446222B2
Methods and apparatus are described for reducing noise, such as phase noise, in an oscillating signal. The oscillating signal may be generated by a signal generator having a mechanical resonator, such as a crystal oscillator. A filter may be coupled to the output of the mechanical resonator and may have its center frequency adjusted using a phase-locked loop (PLL). A feedback signal from the filter to the signal generator may also be used.
US08446219B2
An apparatus comprising an input, a control signal generator coupled to the input and having a control signal generator output, and an amplifier coupled to the control signal generator output, wherein a voltage supplied to the amplifier is switched based on the control signal generator output, and wherein the control signal generator output is based on a data signal in the input. Also included is an apparatus comprising circuitry configured to implement a method comprising detecting an incoming signal, calculating a derivative of the incoming signal, estimating a future incoming signal based on the derivative of the incoming signal and a time step, and providing the estimated future incoming signal to switch between a first supply voltage and a second supply voltage prior to or concurrent with an arrival of the future incoming signal at the switch, wherein the incoming signal and the future incoming signal are analog signals.
US08446210B2
An electronic fuse system includes: a pad, an electronic fuse circuit, a first switch circuit, and a control circuit. The pad is used for receiving a reference voltage. The electronic fuse circuit is used for changing a voltage level when a current signal passes. The first switch circuit is coupled between the pad and the electronic fuse circuit, for controlling the first switch circuit to be disabled or enabled according to a switch control signal. The control circuit, coupled to the first switch circuit is for transferring the switch control signal according a control signal and a lock signal.
US08446205B2
A mixer circuit includes: a mixer circuit including a first transistor pair to output a first differential input signal and a second transistor pair to output a second differential input signal by inversing the first differential signal; a local signal supply circuit to supply a pair of local signals to gates of the first transistor pair and the second transistor pair; an operational amplifier including an input pair coupled to an output pair of the mixer circuit and an output pair coupled to the input pair via feedback resistors, the operational amplifier to amplify the first differential input signal and output a differential output signal; a common mode feedback circuit to control a center voltage of the differential output signal so that the center voltage maintains a common voltage; and a common voltage generator circuit to generate the common voltage according to an amplitude of the local signal.
US08446203B1
A low side clamp circuit has a control portion, a sense portion, and a clamp portion. When the sense portion detects that the input voltage of an output stage of a buffer has gone below a threshold voltage, it triggers the control portion to quickly turn on a clamp transistor (in the clamp portion) to clamp the output voltage to the clamp voltage. The control portion and sense portion have cross-coupled transistors that create increased speed and a sharp response with little or no voltage offset with a wide range of load currents. A clamp current source draws current through a resistor coupled in series between the base of the output transistor in the control portion and the collector of the output transistor in the sense portion. The clamp current is set to ClLo/R, where ClLo is the clamp voltage. A high side clamp is also described.
US08446188B2
An integrated circuit configured for producing a predetermined output in a sequential circuit during power on is disclosed. The integrated circuit includes one or more capacitors coupled to one or more internal nodes. The one or more capacitors charge the internal nodes if a voltage at the power supply node ramps up to a set voltage at or faster than a period of time. The integrated circuit also includes a first transistor coupled to the power supply node. The first transistor produces leakage current that charges one or more internal nodes when the voltage on the power supply node ramps up to the set voltage no faster than the period of time. The integrated circuit also includes an output node. A logical value on the output node is based on a logical value on the charged internal nodes when an input signal to the sequential circuit is not active and the voltage on the power supply node is at the set voltage.
US08446182B2
An output buffer includes a first output transistor, a first switch, a second switch and a third switch. The first output transistor is connected to a first operational voltage for outputting the first operational voltage as the data signal. The first switch is connected to a bulk of the first output transistor for receiving an enable signal. The second switch is connected to the first switch and a second operational voltage for receiving the enable signal, wherein the second operational voltage is lower than the first operational voltage. The third switch includes a first terminal connected to the bulk of the first output transistor, a control terminal connected to the first switch, and a second terminal connected to the first operational voltage.
US08446176B1
An integrated circuit ECO base cell module is formed with PMOS and NMOS gate electrode structures and power supply lines that are electrically separated from one another up to the second metal (M2) layer in a fixed circuit structure that may be reconfigured with one or more conductor elements formed above the M2 layer to form a predetermined circuit function.
US08446174B2
A data output circuit of a semiconductor apparatus includes a clock skew compensation repeater configured to control a delay amount of a clock in response to skew compensation codes and output a data synchronization clock; a mismatch compensation driver configured to synchronize internal data with the data synchronization clock and output the internal data synchronized with the data synchronization clock by controlling a transition timing of the internal data according to mismatch compensation codes; and a data output driver configured to generate output data in response to an output of the mismatch compensation driver.
US08446172B2
One embodiment relates to a method of driving a transmission signal with pre-emphasis having minimal voltage jitter. A digital data signal is received, and a pre-emphasis signal is generated. The pre-emphasis signal may be a phase shifted and scaled version of the digital data signal. An output signal is generated by adding the pre-emphasis signal to the digital data signal within a driver switch circuit while low-pass filtering is applied to current sources of the driver switch circuit. Other embodiments, aspects, and features are also disclosed.
US08446166B2
The exemplary embodiments provide a resilient integrated circuit. An exemplary IC comprises a plurality of composite circuit elements, a state machine element (SME), and a plurality of communication elements. Each composite circuit element comprises an element interface and a selected circuit element which may vary by element type, and which may be configurable. The state machine element assigns various functions based on element type, such as assigning a first configuration to a first element type, assigning a second configuration to a second element type, and providing a first data link for the corresponding assignments. In response to detection of a fault or failure, the state machine element re-assigns the first configuration to another composite circuit element and creates a second data link for performance of the same function. The assignment, routing, fault detection, and re-assignment and data re-routing can occur in real time for a wide variety of programs and algorithms, providing for the IC to continue the same functioning despite defects which may arise during operation.
US08446163B2
A test circuit includes a signal level modifying circuit. The signal level modifying circuit modifies at least one of signal levels of an inverting input signal and a noninverting input signal supplied to a differential input circuit in response to a test signal outputted from a signal output circuit to make a difference between signal levels of the inverting input signal and the noninverting input signal smaller than that in a normal operation. Here, the test signal indicates a test mode in which input/output characteristics of the differential input circuit is tested.
US08446160B2
An improved probe card maintenance method is capable of accurately, rapidly, and easily performing the maintenance of a probe card. The probe card is a jig adapted to test the electrical properties of semiconductor integrated circuits. The electrical properties of the semiconductor integrated circuits are tested at a predetermined test temperature. The probe card has a plurality of probes thereon. The probe card maintenance method includes heating the probe card and the probes on the probe card to the same temperature as the test temperature. The method also includes adjusting positions and postures of the defective probes while maintaining the temperature of the probe card and the probes at the test temperature.
US08446153B2
An adaptor failure tolerance test device includes a first connection module, a second connection module, a teaming control module, and a connection control module. The first connection module includes eight first interfaces configured for connecting to a plurality of respective adaptors of a network server. The second connection module includes eight second interfaces configured for connecting to a switch. The teaming control module includes eight first switches, each of which is connected to a corresponding first interface. The connection control module includes eight second switches and a control unit. Each of the second switches is interposed between a corresponding first switch and a corresponding second interface. The control unit is configured for detecting which first switches are turned on and turning on the second switches corresponding to the first switches which are turned on for a predetermined time period.
US08446151B2
The present invention is directed to an electrical wiring device that includes at least one user accessible input mechanism and a test assembly configured to initiate a self-test in response to stimulus signal. The self test determines whether a sensor, a fault detection circuit or a circuit interrupter assembly are in an operational mode or are in a failure mode, the reset stimulus being provided in the operational mode and a reset lockout stimulus being provided in the failure mode. The device also including a reset lockout mechanism coupled to the circuit interrupter assembly and the test assembly. The reset lockout mechanism is configured to disable the reset stimulus in response to the reset lockout stimulus if any one of the at least one sensor, at least one fault detection circuit, or circuit interrupter assembly is determined to be in the failure mode after a predetermined time elapses.
US08446150B2
An apparatus for logging in a borehole comprises a longitudinal body. A pad is coupled to and radially extendable from the longitudinal body toward a wall of the borehole. The radially extendable pad comprises a sensor. The radially extendable pad is rotatable about a longitudinal axis by a predetermined angle. A method for logging a borehole comprises extending a longitudinal body into the borehole; disposing a sensor in a radially extendable pad; coupling the radially extendable pad to the longitudinal body such that the radially extendable pad is rotatable about a longitudinal axis by a predetermined angle; and extending the radially extendable and rotatable pad toward a wall of the borehole.
US08446149B2
A system for parallel image processing in MR imaging uses multiple MR imaging RF coils to individually receive MR imaging data representing a slice of patient anatomy. An MR imaging system uses the multiple RF coils to acquire corresponding multiple image data sets of the slice. A coil selection processor determines a prioritized ranking of the multiple RF coils by ranking individual coils of the multiple RF coils based on correlation with remaining coils of the multiple RF coils. The correlation being determined by determining degree of correlation of image data sets acquired by respective coils of the multiple RF coils. The coil selection processor selects a subset of the multiple RF coils using the ranking. An image generator generates a composite MR image using image data sets provided by the selected subset of the multiple RF coils excluding image data sets provide by remaining coils of the multiple RF coils.
US08446148B2
A method of suppressing artifacts arising from tissue, fluids, or other long-T1 species when acquiring magnetic resonance data with a segmented pulse sequence that assumes that magnetization is at steady state, said method including suppressing artifacts by producing an artifact suppression module (ASM) before the segmented sequence, the artifact suppression module comprising at least one selective, non-selective, or volume-selective suppression pulse and a time delay.
US08446143B2
Various embodiments of a self-calibration circuit may solve the problem that arises in high performance oscilloscopes and in particular, RF oscilloscopes, of internally providing a precision calibration signal without degrading the bandwidth, flatness of the frequency response, and input return loss of the oscilloscope. The self-calibration circuit may be configured to implement an impedance transformation technique where active and passive circuit elements with carefully chosen values are configured in an impedance converter. During self-calibration, switching elements comprised in the self-calibration circuit may be toggled to create a servo loop comprising an amplifier within the circuit, with an attenuator and resistive component acting as feedback elements. The circuit may hence become an impedance gyrator and behave as a precision source with an impedance matching the input impedance of the load circuit.
US08446131B2
The regulating method is employed in a polyphase rotating electrical machine operating as a generator and having an excitation coil (10). The method is of the type in which a DC voltage (B+) is slaved to a predetermined setpoint, the voltage being produced by rectifying an AC voltage generated by the machine by controlling the duty cycle of a periodic excitation current (+EXC,−EXC) by means of a microcontroller (11), or the like, as a function of sampled values of the DC voltage (B+). The duty cycle is determined by the microcontroller (11) twice during an excitation current cycle (+EXC, −EXC).
US08446117B2
Embodiments of the present invention relate to methods, systems and apparatus for controlling operation of a multi-phase machine in a vector controlled motor drive system when the multi-phase machine operates in an overmodulation region. The disclosed embodiments provide a mechanism for adjusting a duty cycle of PWM waveforms so that the correct phase voltage command signals are applied at the angle transitions. This can reduce variations/errors in the phase voltage command signals applied to the multi-phase machine so that phase current may be properly regulated thus reducing current/torque oscillation, which can in turn improve machine efficiency and performance, as well as utilization of the DC voltage source.
US08446116B2
The discharge control device for a power conversion system performs discharge control to discharge a capacitor parallel-connected to the input side of the power conversion system including a plurality of pairs of high-side and low-side switching elements connected in series and each controlled by a drive unit, by turning on the high-side and low-side switching elements of one of the pairs at the same time. At this time, the discharge control device inhibits an ON command from being inputted to the drive units for the high-side and low side switching elements of the other pairs.
US08446109B2
A light source and method for operating a light source are disclosed. The present invention includes a light source and method for using the same. The light source includes a power coupler, a reconfigurable two-dimensional LED array and a controller. The power coupler is configured to receive a power potential that varies as a function of time. The LED array has a plurality of configurations of LEDs, each configuration being characterized by a minimum bias potential and a maximum bias potential. The LED array generates light when a potential between first and second power terminals is greater than the minimum bias potential. The controller varies the configuration of the array such that the power potential remains between the minimum and maximum bias potentials as the power potential varies.
US08446106B2
A light emitting diode (LED) driving system comprises a plurality of current limitation circuits and a plurality of over-voltage protection circuits to driving a plurality of LED strings. Each of the current limitation circuits comprises a first switch comprising a control pole receiving a reference voltage, a first pole correspondingly connected to a LED string, and a second pole connected to the ground via a first resistor and a second switch comprising a control pole connected to the second pole of the first switch via a second resistor, a first pole receiving the reference voltage, and a second pole grounded. Each of the over-voltage protection circuits comprises a zener diode, a third switch and a first capacitor.
US08446103B2
There is provided a lamp driver including: a power supplying part switching an input power, supplying a driving power to at least one lamp, and controlling brightness of the at least one lamp according to a dimming signal; a signal supplying part supplying a first comparison result signal obtained by comparing a current sensing signal sensing a current flowing through the at least one lamp with a reference signal having a current level set beforehand when the dimming signal is a logic high signal, and supplying a second comparison result signal having a voltage level set beforehand when the dimming signal is a logic low signal; and a controlling part controlling the switching of the power supplying part according to a signal being supplied by the signal supplying part.
US08446100B2
An interconnected arrangement of a light-emitting diode chip arrangement having individual modules as luminous elements in a parallel circuit. Each module is provided with at least one light-emitting diode chip, and the modules are arranged in a parallel circuit. A respective linear constant current circuit connects each light-emitting diode chip arrangement to a common, current-carrying voltage source. At the start of an operation, the voltage source continuously increases the supply voltage over an operating range assigned to it. When a constant total current flowing over the parallel circuit is reached, the current-carrying voltage source fixes the associated supply voltage and maintains it unaltered.
US08446097B2
In a discharge lamp ignition apparatus, a control circuit unit: lowers a drive frequency from a predetermined initial frequency; establishing, if a resonant voltage reaches an ignition voltage for igniting a discharge lamp, a drive frequency at the ignition voltage as a discharge-lamp-ignition drive frequency which is a frequency for igniting the discharge lamp; and sets, if the resonant voltage does not reach the ignition voltage even though the drive frequency is lowered from the predetermined initial frequency to a resonant frequency, a frequency which is a predetermined value higher than the drive frequency at a resonant voltage peak voltage as the discharge-lamp-ignition drive frequency, and an inverter circuit unit alternating-current drives the resonant circuit unit at the discharge-lamp-ignition drive frequency established by the control circuit unit.
US08446092B2
A self-light emitting display unit capable of improving manufacturing yield is provided. Sizes of color pixel circuits corresponding to pixels for R, G, and B are respectively set unevenly within a pixel circuit according to a magnitude ratio of drive currents which allow color self-light emitting elements in the pixel to emit with a same light emission luminance. Thereby, the pattern densities of color pixel circuits respectively corresponding to the pixels for R, G, and B become even to each other, and the pattern defect rate as the whole pixel circuit is decreased.
US08446090B2
An organic light-emitting device including an anode, a cathode having a double-layered structure, and an emission layer between the anode and the cathode.
US08446075B2
To provide a conductive film that is flexible, extendable and contractible, and for which the electrical resistance hardly increases even when the conductive film is extended. The conductive film contains an elastomer and metallic filler particles, and satisfies a condition (A) [an average value of reference numbers is 0.8 (1/μm) or more, or the metallic filler particles include flake-like metallic filler particles having a thickness of 1 μm or less and an aspect ratio of 26 or more and the average value of the reference numbers is 0.4 (1/μm) or more] and a condition (B) [a number of unit areas for which an area percentage of the elastomer is 60% or more is 20 or more], the condition (A) being a conductivity indicator and the condition (B) being a flexibility indicator.
US08446068B2
An ultrasonic motor for driving a driven object with a multi-degree of freedom includes a vibrator configured to simultaneously excite two vibration modes to generate an elliptic vibration on an output surface thereof, a driven object configured to be driven by the elliptic vibration generated on the output surface, and a driving element interposed between the output surface and the driven object. The driven object includes a spherical portion to be brought into contact with at least the output surface via the driving element. The elliptic vibration exhibits different vibration amplitudes at different positions on the output surface. The output surface includes a plurality of regions which exhibit greater vibration amplitudes than other regions on the output surface. The driving element includes a contact portion with at least two regions exhibiting greater vibration amplitudes than other regions of the contact portion, and is provided on the output surface.
US08446067B2
An ultrasonic motor is configured as follows. Namely, the ultrasonic motor includes an oscillator which is configured to has a shape that conforms a resonant frequency of longitudinal oscillation exited in the oscillator to a resonant frequency of torsional oscillation, a driven body that comes into contact with an elliptic oscillation generation surface of the oscillator and is driven by the elliptic oscillation, and a pressing mechanism unit that welds the elliptic oscillation generation surface of the oscillator to the driven body by pressing, wherein the oscillator has a first polarization unit that is formed in a region associated with a node portion of the longitudinal oscillation and configured to excite the longitudinal oscillation in the oscillator, and a second polarization unit that is formed in a region associated with a ventral portion of the torsional oscillation and configured to excite the torsional oscillation in the oscillator.
US08446056B2
Embodiments of the invention provide an electric machine module comprising an electric machine with a stator and housing at least partially circumscribing the electric machine. The housing includes at least two housing members coupled together and substantially securing the electric machine within the housing. The electric machine module also includes a coolant jacket at least partially defined by an outer diameter of the stator and an inner diameter portion of the housing.
US08446052B2
A heat dissipating device is used in an electronic apparatus. The electronic apparatus includes a standby unit and a power supply. The heat dissipating device includes a delay unit connected to the standby unit, a switch connected to the delay unit and the power supply, and a heat sink connected to the switch. The delay unit turns on the switch when the electronic apparatus operates in a working mode, and the delay unit turns off the switch after a predetermined delay time when the electronic apparatus enters a standby mode.
US08446051B2
The present invention concerns an electrical installation or device equipped with a power supply unit comprising a voltage converter having primary and secondary parts respectively defining a primary side and a secondary side of this electrical installation or device. This power supply unit comprises a power management unit arranged on the primary side, the primary part of the converter being associated with a control circuit also arranged on the primary side and controlling the electrical energy flowing in the primary power path of the primary part. The control circuit receives from the power management unit at least a first control signal for switching OFF the electrical energy in the primary power path, the power supply unit entering a very low power mode (“Power-down” mode) when the first control signal is set to OFF so that the converter is not supplied anymore. The power management unit is arranged such that, in the very low power mode, it can receive or generate at least a wake-up signal and set to ON the first control signal in response to the wake-up signal for supplying again the primary and secondary parts of the converter.
US08446050B2
A solid-state alternating current (AC) switch provides for the sequential turn-on of the associated solid-state switches to reduce the generation of electromagnetic interference (EMI). The solid-state AC switch includes at least first and second solid-state switches connected in series between an AC input and an AC load. A zero-cross detector circuit monitors the AC input to determine zero-crossings associated with the monitored AC input. A controller turns on the first solid-state switch and the second solid-state switch according to a turn-on sequence in which the first transistor is turned ON during a detected zero-crossing window associated with the first transistor and the second transistor is subsequently turned ON during a detected zero-crossing associated with the second transistor.
US08446044B2
A system is provided for powering electronic system modules in an equipment rack. A circuit breaker is mounted to the rack and configured to receive a rack AC power feed. An AC-DC converter module is mounted to the rack and configured to receive the rack AC power feed from the circuit breaker and to convert it to a first DC voltage at an output. A set of switching DC-DC output converters is provided. Each is disposed physically proximate to or within one of the electronic system modules and is configured to convert the first DC voltage to a second DC voltage suitable for consumption by the proximate electronic system module. A bus is configured to distribute the first DC voltage from the output to each of the switching DC-DC output converters.
US08446042B2
Devices, systems and methods for operating, monitoring and diagnosing photovoltaic arrays used for solar energy collection. The system preferably includes capabilities for monitoring or diagnosing an array by automatically disconnecting portions of the array during normal service (when load is not maximum, and observing the resulting change in electrical characteristics. More intensive diagnostic procedures can be launched if needed. One embodiment provides for performing monitoring or diagnostic operations on the array in daylight or at night. Another embodiment allows monitoring or diagnostic operations to be performed on a portion of the array while other parts of the array continue to collect energy. Yet another embodiment provides a safety mode for an array for maintenance or during emergencies.
US08446040B2
A system and method for adaptive control of power among a plurality of loads based on a categorization of the loads as either delayable or non-delayable, wherein the non-delayable loads are preferably supplied power over the delayable loads. In one aspect, the system may be used to allocate limited power from a backup power source.
US08446032B2
A hydroelectric power generator is capable of generating electrical power from a moving body of water. The power generator comprises a shell comprising a wall having interior and exterior surfaces, and an interior volume. A fixed gear is fixedly attached to the interior surface of the shell. A stationary shaft extends across the interior volume of the shell. A set of fins is attached to the exterior surface of the shell, and the fins are capable of rotating the shell about the stationary shaft from the force of the moving body of water. An electrical generator is mounted on the stationary shaft. The generator comprises a drive gear that engages the fixed gear to drive the electrical generator. An electrical connector transmits the generated electrical power to the external environment.
US08446031B2
Apparatus for generating electricity using tidal, wave or current flow in a body of water, comprising: an arrangement of first (10) and second (11) pipes, each first pipe (10) being provided with a series of holes (12a, 12b, 13a, 13b) spaced along its length, and the first pipes being arranged relative to the second pipes such that a venturi is defined between the walls of adjacent first and second pipes near the holes; a flow conduit having an inlet and an outlet; an impeller located in the flow conduit; and a generator connected to the impeller; wherein water from the body can enter the flow conduit via the inlet, and the first pipes are connected to the outlet of the flow conduit such that flow of water past the arrangement of first (10) and second (11) pipes causes the first pipes (10) to act as venturi pumps inducing flow from the inside of the first pipes through the holes (12, 13) so as to draw water through the flow conduit and drive the impeller.
US08446027B2
An apparatus for extracting wave energy may include a watercraft, a pendulum and an energy converter. The watercraft may be configured to roll in response to wave action and may have roll characteristics that are tunable to characteristics of the wave action. The pendulum may be supported by the watercraft to enable the pendulum to swing in response to the wave action. An energy converter may be configured to convert the relative movement of the pendulum and watercraft into electrical energy. The pendulum may also be tunable to characteristics of the wave action.
US08446020B2
A multi-chip module includes: a board; a wiring board disposed on the board and including a wiring pattern; and a plurality of chips disposed on the wiring board. Each of the plurality of chips is connected with at least one of the other chips, and the plurality of chips and the board are electrically connected with each other via a portion other than the wiring pattern of the wiring board.
US08446019B2
A semiconductor package includes a device pad on a substrate. A first polymer layer overlies the substrate, and the first polymer layer has an opening to expose the device pad. In one embodiment, a redistribution layer (RDL) comprises a landing pad, and the RDL is positioned on the first polymer layer and conductively coupled to the device pad. A second polymer layer is on the RDL, and an under bump metal pad (UBM) is on the landing pad and extends onto a top surface of the second polymer layer. In one embodiment, a shortest distance from a center of the landing pad to an outer edge of the landing pad, and a shortest distance from a center of the UBM to an outer edge of the UBM are in a ratio that ranges from 0.5:1 up to 0.95:1.
US08446017B2
A stackable wafer level package and a fabricating method thereof are disclosed. In the stackable wafer level package, bond pads (or redistribution layers) are arranged on a bottom semiconductor die, and metal pillars are formed on some of the bond pads positioned around the edges of the bottom semiconductor die. A top semiconductor die is electrically connected to the other bond pads, on which the metal pillars are not formed, positioned around the center of the bottom semiconductor die through conductive bumps. The metal pillars and the top semiconductor die are encapsulated by an encapsulant. A plurality of interconnection patterns electrically connected to the metal pillars are formed on the surface of the encapsulant. Solder balls are attached to the interconnection patterns. Due to this stack structure, the wafer level package is reduced in thickness and footprint. Therefore, the wafer level package is highly suitable for mobile applications.
US08446016B2
A chip stack package includes a plurality of chips that are stacked by using adhesive layers as intermediary media, and a through via electrode formed through the chips to electrically couple the chips. The through via electrode is classified as a power supply through via electrode, a ground through via electrode, or a signal transfer through via electrode. The power supply through via electrode and the ground through via electrode are formed of a first material such as copper, and the signal transfer through via electrode is formed of second material such as polycrystalline silicon doped with impurities. The signal transfer through via electrode may have a diametrically smaller cross section than that of each of the power supply through via electrode and the ground through via electrode regardless of their resistivities.
US08446003B2
A semiconductor device includes a multilayer wiring substrate and a double-sided multi-electrode chip. The double-sided multi-electrode chip includes a semiconductor chip and has multiple electrodes on both sides of the semiconductor chip. The double-sided multi-electrode chip is embedded in the multilayer wiring substrate in such a manner that the double-sided multi-electrode chip is not exposed outside the multilayer wiring substrate. The electrodes of the double-sided multi-electrode chip are connected to wiring layers of the multilayer wiring substrate.
US08446002B2
A multilayer wiring substrate has a through hole that passes from a first surface through to a second surface. The multilayer wiring substrate includes an electrical connection terminal formed in at least one of an inner edge portion which is a periphery of the through hole, an outer edge portion which is an outer periphery of the substrate, and a non-edge portion, on at least one of the first surface and the second surface. The electrical connection terminal has a castellation structure that does not pass through to a surface opposite to a formation surface.
US08445999B2
Some exemplary embodiments of a direct contact leadless package and related structure and method, especially suitable for packaging high current semiconductor devices, have been disclosed. One exemplary structure comprises a first contact lead frame portion, a paddle portion, and an extended contact lead frame portion held together by a mold compound. A first semiconductor device is attached to a top side of the paddle portion and is enclosed by said mold compound, while a second semiconductor device is attached to a bottom side of said paddle portion and is in electrical contact with said the first semiconductor device. The extended contact lead frame portion is in direct electrical contact with the second semiconductor device without using a bond wire. Alternative exemplary embodiments may include additional extended lead frame portions, paddle portions, and semiconductor devices in various configurations.
US08445996B2
A semiconductor package includes a main substrate, a semiconductor chip having a first side and a second side, the first side of the semiconductor chip disposed on the main substrate and electrically connected to the main substrate, and a conductive network formed on the second side of the semiconductor chip.
US08445989B2
A semiconductor device includes a first metal wiring which is formed over substructure; a first contact plug which is coupled to the first metal wiring and passes through a first interlayer insulating film provided over the substructure; a second metal wiring which is provided over the first interlayer insulating film and is coupled to the first contact plug; a second contact plug which is coupled to the second metal wiring and passes through a second interlayer insulating film which is provided over the first interlayer insulating film; and a fuse pattern and a data read fuse pattern which are coupled to the second contact plug and provided over the second interlayer insulating film.
US08445987B2
A semiconductor device includes a semiconductor substrate, a first lower-layer line for supplying power to a transistor formed on the semiconductor substrate, a first interlayer line which is connected to the first lower-layer line, and an allowable current of which is larger than that of the first lower-layer line; and an upper-layer line which is provided above the first interlayer line and receives power input from outside. The first interlayer line is connected to the upper-layer line through a switch circuit formed on the semiconductor substrate.
US08445986B2
An image pickup apparatus is provided with plural light receiving areas arranged two-dimensionally, and a vertical scanning circuit comprising plural unit circuit stages arranged in the vertical direction and a horizontal scanning circuit comprising plural unit circuit stages arranged in the horizontal direction, for selecting and reading the plural light receiving areas in succession. The vertical and horizontal scanning circuits are arranged in spaces between the light receiving areas. A crossing area of the vertical and horizontal scanning circuits, in a space between the light receiving areas, is divided into two areas. A unit circuit of the horizontal scanning circuit is provided in one of the two areas. A unit circuit of the vertical scanning circuit is provided in the other of the two areas. In one embodiment, the unit circuits of the vertical scanning circuit and/or of the horizontal scanning circuit are arranged at a constant pitch.
US08445980B2
There is disclosed a memory element which includes a layered structure. The layered structure includes a memory layer that has a magnetization perpendicular to a film face; a magnetization-fixed layer having magnetization perpendicular to the film face; an insulating layer provided between the memory layer and the magnetization-fixed layer; and a cap layer provided at a face side, which is opposite to the insulating layer-side face, of the memory layer, in which an electron that is spin-polarized is injected in a lamination direction of the layered structure, and thereby the magnetization direction of the memory layer varies and a recording of information is performed, a magnitude of an effective diamagnetic field which the memory layer receives is smaller than a saturated magnetization amount of the memory layer, and at least a face, which comes into contact with the memory layer, of the cap layer is formed of a Ta film.
US08445969B2
An integrated circuit structure comprises at least one pair of complementary transistors on a substrate. The pair of complementary transistors includes a first transistor and a second transistor. In addition, only one stress-producing layer is on the first transistor and the second transistor and applies tensile strain force on the first transistor and the second transistor. The first transistor has a first channel region, a gate insulator on the first channel region, and a deuterium region between the first channel region and the gate insulator. The second transistor has a germanium doped channel region, as well as the same gate insulator on the germanium doped channel region, and the same deuterium region between the germanium doped channel region and the gate insulator.
US08445964B2
Semiconductor devices with high-K/metal gates are formed with spacers that are substantially resistant to subsequent etching to remove an overlying spacer, thereby avoiding replacement and increasing manufacturing throughput. Embodiments include forming a high-K/metal gate, having an upper surface and side surfaces, over a substrate, e.g., a SOI substrate, and sequentially forming, on the side surfaces of the high-K/metal gate, a first spacer of a non-oxide material, a second spacer, of a material different from that of the first spacer, and a third spacer, of a material different from that of the second spacer. After formation of source and drain regions, e.g., epitaxially grown silicon-germanium, the third spacer is etched with an etchant, such as hot phosphoric acid, to which the second spacer is substantially resistant, thereby avoiding replacement.
US08445960B2
A device having a self-aligned body on a first side of a gate is disclosed. The self-aligned body helps to achieve very low channel length for low Rdson. The self-aligned body is isolated, enabling to bias the body at different bias potentials. The device may be configured into a finger architecture having a plurality of transistors with commonly coupled, sources, commonly coupled gates, and commonly coupled drains to achieve high drive current outputs.
US08445946B2
A gated diode memory cell is provided, including one or more transistors, such as field effect transistors (“FETs”), and a gated diode in signal communication with the FETs such that the gate of the gated diode is in signal communication with the source of a first FET, wherein the gate of the gated diode forms one terminal of the storage cell and the source of the gated diode forms another terminal of the storage cell, the drain of the first FET being in signal communication with a bitline (“BL”) and the gate of the first FET being in signal communication with a write wordline (“WLw”), and the source of the gated diode being in signal communication with a read wordline (“WLr”).
US08445938B2
The nitride semi-conductive light emitting layer in this invention comprises a single crystal substrate 1 for epitaxial growth, a first buffer layer 2, an n-type nitride semi-conductive layer 3, a second buffer layer 4, a third buffer layer 5, a light emitting layer 6, and a p-type nitride semi-conductive layer 7. The first buffer layer 2 is laminated to a top side of the single crystal substrate 1. The n-type nitride semi-conductive layer 3 is laminated to a top side of the first buffer layer 2. The third buffer layer 5 is laminated to a top side of the n-type nitride semi-conductive layer 3 with the second buffer layer 4 being interposed therebetween. The light emitting layer 6 is laminated to a top side of the third buffer layer 5. The p-type nitride semi-conductive layer 7 is laminated to a top side of the light emitting layer 6. The third buffer layer 5 serves as a planarized base for growth of the light emitting layer 6 so as to reduce a threading dislocation and a residual distortion in the light emitting layer 6. This nitride semi-conductive light emitting device reduces a piezoelectric field in the light emitting layer by exploiting carriers generated in the third buffer layer 5. The third buffer layer 5 is doped with an Si impurity serving as a donor.
US08445934B2
An organic light emitting diode (OLED) display includes a display substrate including an organic light emitting element, an encapsulation substrate arranged opposite to the display substrate and covering the organic light emitting element, a sealant disposed on the edge of the display substrate and the encapsulation substrate, and sealing the display substrate and the encapsulation substrate to each other; and a filler filling the space between the display substrate and the encapsulation substrate. One surface of at least one of the display substrate and the encapsulation substrate is contacted with the filler and is divided into a hydrophobic region and a hydrophilic region, and the hydrophobic region is positioned between the hydrophilic region and the sealant.
US08445932B1
A light-emitting diode device is described, which includes a luminous body and a colloid. The luminous body has a light-emitting surface and a bottom surface on opposite sides. The luminous body has a first length, a first width and a beam angle. The colloid covers the luminous body. The colloid includes a first surface and a second surface on opposite sides. The second surface has a second length and a second width. The colloid has a refractive index. A distance between the light-emitting surface of the luminous body and the second surface of the colloid is smaller than a first value and greater than a second value. The first value < the second width - the first width 2 · cot α . The second value < the second width - the first width 2 · cot v . The sin α=1/the refractive index of the colloid, and the ν is a full width at half maximum of the beam angle.
US08445928B2
A light-emitting diode (LED) light source module is described, comprising: a heat conduction substrate, wherein a surface of the heat conduction substrate includes a plurality of recesses; a plurality of light-emitting diode chips respectively disposed in the recesses; an insulation layer disposed on the surface of the heat conduction substrate outside of the recesses; an electric conduction layer disposed on the insulation layer, wherein the light-emitting diode chips are electrically connected to the electric conduction layer; and an encapsulation layer covering the light-emitting diode chips, the electric conduction layer and the insulation layer.
US08445927B2
The present invention relates to a light emitting diode package and a manufacturing method thereof.The light emitting diode package includes a substrate, an LED chip mounted on an upper part of a substrate, a molding material coated at the upper part of the substrate including an external surface of the LED chip, and an encapsulant coated at a lower part of the substrate and can improve luminous efficiency, minimize a package failure, and reduce a manufacture cost by facilitating the manufacturing process.
US08445923B2
An organic light emitting diode display comprises a display substrate including an organic light emitting element, an encapsulation substrate disposed to face the display substrate, a sealant disposed between edges of the display substrate and the encapsulation substrate for bonding and sealing the display substrate and the encapsulation substrate together, a filler filling in a space between the display substrate and the encapsulation substrate, first spacers formed on one surface of the display substrate contacting the filler, and second spacers formed on one surface of the encapsulation substrate contacting the filler. The display substrate and the encapsulation substrate are divided into a dropping area and a spreading area surrounding the dropping area and positioned relatively close to the sealant, and either or both of the first spacers and the second spacers have different shapes in the dropping area and in the spreading area.
US08445922B2
The present invention discloses a light emitting package, comprising: a base; a light emitting device on the base; an electrical circuit layer electrically connected to the light emitting device; a gold layer on the electrical circuit layer; a wire electrically connected between the light emitting device and the gold layer; a screen member having an opening and disposed on the base adjacent to the light emitting device; and a lens covering the light emitting device, wherein a cross-sectional shape of the screen member is substantially rectangular, and a width of the cross-sectional shape of the screen member being larger than a height of the cross sectional shape of the screen member, wherein a bottom surface of the screen member is positioned higher than the light emitting device, and wherein an entire uppermost surface of the screen member is in contact with the lens.
US08445920B1
A light emitting diode includes a substrate, two electrodes mounted on the substrate, a light emitting diode chip and an encapsulate sealing the light emitting diode chip. The encapsulant is doped with fluorescence particles and light diffusion particles. An average diameter of the diffusion particles is less than that of the fluorescence particles. A concentration of the diffusion particles in a portion of the encapsulant adjacent to a light output surface thereof is larger than that of the diffusion particles in a portion thereof adjacent to the chip. A concentration of the fluorescence particles in the portion of the encapsulant adjacent to the chip is larger than that of the fluorescence particles in the portion of the encapsulant adjacent to the light output surface.
US08445919B2
A wafer-level package structure of a light emitting diode and a manufacturing method thereof, and the package structure includes: a die including a first side and a second side opposite to the first side; a first insulating layer on the first side of the die; at least two wires which are arranged on the insulating layer and electrically isolated from each other; bumps which are arranged on the wires and adapted to be electrically connected correspondingly with electrodes of a bare chip of the light emitting diode; at least two discrete lead areas on the second side of the die; and leads in the lead areas, electrically isolated from each other and electrically connected correspondingly with the wires. The invention forms the leads on the second side of the substrate to extract the electrodes of the light emitting diode, that is, the light emitting diode and the leads thereof are located on the two opposite sides of the substrate in the technical solution of the invention, to thereby reduce the area required for the substrate; and the electrodes can be extracted in the subsequent structure of the package without gold wiring to thereby further reduce the volume of the package.
US08445918B2
A circuit arrangement and method in one aspect utilize thermal-only through vias, extending between the opposing faces of stacked semiconductor dies, to increase the thermal conductivity of a multi-layer semiconductor stack. The thermal vias are provided in addition to data-carrying through vias, which communicate data signals between circuit layers, and power-carrying through vias, which are coupled to a power distribution network for the circuit layers, such that the thermal conductivity is increased above that which may be provided by the data-carrying and power-carrying through vias in the stack. A circuit arrangement and method in another aspect organize the circuit layers in a multi-layer semiconductor stack based upon current density so as to reduce power distribution losses in the stack.
US08445914B2
A display substrate includes a transistor, a black matrix and a color spacer. The transistor is connected to a gate line, and a data line crossing the gate line. The black matrix includes a first light-blocking portion covering the gate line and the data line, and a second light-blocking portion covering a channel of the transistor. The second light-blocking portion has a thickness which is smaller than a thickness of the first light-blocking portion. The color spacer is disposed on the second light-blocking portion.
US08445911B2
An active device array substrate including a substrate, scan lines, data lines, active devices, a first dielectric layer, a common line, a second dielectric layer, a patterned conductive layer, a third dielectric layer, and pixel electrodes is provided. At least a part of the active devices are electrically connected to the scan lines and the data lines. The first dielectric layer covers the scan lines, the data lines and the active devices. The common line is disposed on the first dielectric layer. The second dielectric layer covers the common line and the first dielectric layer. The patterned conductive layer is disposed on the second dielectric layer. The third dielectric layer covers the patterned conductive layer and the second dielectric layer. The pixel electrodes are disposed on the third dielectric layer and electrically connected to the patterned conductive layer and the active devices.
US08445910B2
In an organic light emitting display, a conductive layer is formed on the bottom surface of a substrate, and the conductive layer is used as a wiring line for supplying a power source, and as the electrode of a capacitor. Therefore, it is possible to easily secure the aperture ratio of a pixel, to easily solve the problem of IR drops by controlling the area or thickness of the conductive layer, and to easily secure the electrostatic capacity of the capacitor. In particular, in the case of a front surface light emitting structure, since a capacitor of a metal/insulating layer/metal (MIM) structure may be formed in a light emitting region, enough aperture ratio and electrostatic capacity may be secured. Therefore, a high resolution organic light emitting display may be easily realized, and enough aperture ratio and electrostatic capacity are secured so as to realize high picture quality.
US08445900B2
An organic electroluminescent element includes a pair of electrodes formed of a positive electrode and a negative electrode, with at least one of the electrodes being transparent or semi-transparent, and one or more organic compound layers interposed between the pair of electrodes, with at least one layer containing one or more charge transporting polyesters represented by the following formula (I), wherein A1 represents at least one selected from structures represented by the following formula (II), and X represents a group represented by the following formula (III):
US08445898B2
The present invention relates to an organic/inorganic hybrid thin film passivation layer comprising an organic polymer passivation layer prepared by a UV/ozone curing process and an inorganic thin film passivation layer for blocking moisture and oxygen transmission of an organic electronic device fabricated on a substrate and improving gas barrier property of a plastic substrate; and a fabrication method thereof. Since the organic/inorganic hybrid thin film passivation layer of the present invention converts the surface polarity of an organic polymer passivation layer into hydrophilic by using the UV/ozone curing process, it can improve the adhesion strength between the passivation layer interfaces, increase the light transmission rate due to surface planarization of the organic polymer passivation layer, and enhance gas barrier property by effectively blocking moisture and oxygen transmission.
US08445896B2
The present invention discloses an organic light-emitting diode (OLED) device with high color rendering comprising a base plate, a first conductive layer, a plurality of white light emitting layers, and a second conductive layer, wherein the spectra of the white light emitting layers possess characteristics of complementarities so as to enhance the color rendering of the emitted white light, and at least one carrier regulating layer is selectively disposed between every two white light emitting layers so as to increase the emitting efficiency and color rendering.
US08445895B2
An organic electroluminescence element having a cathode as a top electrode, and excelling in luminance efficiency, drive voltage, and operational life is provided. The organic electroluminescence element includes an anode over a substrate and a luminescent layer over the anode. The luminescent layer comprises an organic material. An electron injection layer is over the luminescent layer for injecting electrons into the luminescent layer. The electron injection layer is a metal including at least one of an alkaline metal and an alkaline earth metal. A fullerene layer is over the electron injection layer and includes fullerenes and at least one of an alkaline metal and an alkaline earth metal. The at least one of the alkaline metal and the alkaline earth metal included in the fullerene layer has a lower work function than a lowest unoccupied molecular orbit energy level of the fullerenes. A cathode is over the fullerene layer.
US08445890B2
Solid state lighting devices grown on semi-polar facets and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state light device includes a light emitting diode with an N-type gallium nitride (“GaN”) material, a P-type GaN material spaced apart from the N-type GaN material, and an indium gallium nitride (“InGaN”)/GaN multi quantum well (“MQW”) active region directly between the N-type GaN material and the P-type GaN material. At least one of the N-type GaN, InGaN/GaN MQW, and P-type GaN materials is grown a semi-polar sidewall.
US08445889B2
A method of patterning nanostructures comprising printing an ink comprising the nanostructures onto a solvent-extracting first surface such that a pattern of nanostructures is formed on the first surface.
US08445883B2
A nonvolatile semiconductor memory device which can achieve miniaturization and a larger capacity in a cross-point structure in which memory cells are formed inside contact holes at cross points of word lines and bit lines, respectively, and a manufacturing method thereof are provided. A nonvolatile semiconductor memory device comprises a substrate; a plurality of stripe-shaped lower copper wires (70) formed on the substrate; an interlayer insulating layer (76) formed on the substrate provided with the lower copper wires (70), a plurality of contact holes penetrating interlayer insulating layer (76) to surfaces of the lower copper wires (70), respectively; electrode seed layers (77) and precious metal electrode layers (78) formed only at bottoms of the contact holes, respectively; resistance variable layers (73) filled into the contact holes such that the resistance variable layers are connected to the precious metal electrode layers (73), respectively; a plurality of stripe-shaped upper copper wires (74) connected to the resistance variable layers (73), respectively, and cross the lower copper wires (70), respectively, and the electrode seed layers (77) and the precious metal electrode layers (78) are formed by selective growth plating.
US08445876B2
An extreme ultraviolet (EUV) light source apparatus in which a location or posture shift of an EUV collector mirror can be detected. The apparatus includes: a chamber; a target supply mechanism for supplying a target material into the chamber; a driver laser for irradiating the target material with a laser beam to generate plasma; a collector mirror having a first focal point and a second focal point, for reflecting light, which is generated at the first focal point, toward the second focal point; a splitter optical element provided in an optical path of the light reflected by the collector mirror, for splitting a part of the light reflected by the collector mirror; and an image sensor provided in an optical path of the light split by the splitter optical element, for detecting a profile of the light split by the splitter optical element.
US08445875B2
An optical crystal includes a first non-linear optical crystal that generates terahertz waves corresponding to a difference frequency component in incident light with two different wavelengths by a difference frequency generation, and a second non-linear optical crystal that generates terahertz waves corresponding to a difference frequency component in incident light with two different wavelengths by a difference frequency generation, the second non-linear optical crystal being different in material from the first non-linear optical crystal, and the first non-linear optical crystal and the second non-linear optical crystal being disposed in contact or close together.
US08445873B2
A system for detecting at least one contamination species in an interior space of a lithographic apparatus, including: at least one monitoring surface configured to be in contact with the interior space, a thermal controller configured to control the temperature of the monitoring surface to at least one detection temperature, and at least one detector configured to detect condensation of the at least one contamination species onto the monitoring surface.
US08445861B2
Neutrons can be detected using first information derived from a first charge induced on an input electrode of a microchannel plate and second information derived from a second charge induced on an output electrode of the microchannel plate. For example, a ratio between the first charge and the second charge is calculated, a sum of the first and second charges is calculated, and whether a neutron has been detected can be determined based on the ratio and the sum.
US08445857B2
A flame sensor is provided with a focusing member. Ultraviolet light emitted from a light source is reflected by an inner surface of the focusing member to be focused on an electrode of an electrode pair, to increase the sensitivity.
US08445850B2
Disclosed is an open-path optical sensor. Typically, the optical sensor directs UV radiation from a source assembly to a detector assembly along a monitoring path. The source assembly emits UV radiation corresponding to a signal channel and to a reference channel. The detector assembly detects UV radiation corresponding to the signal channel and to the reference channel. The detector assembly is in communication with a data acquisition system, which compares the intensity of the detected UV radiation corresponding to the signal channel to the intensity of the UV radiation corresponding to the reference channel.
US08445844B2
A table (21) for relating an appropriate DC bias voltage to each of a plurality of selectable scan speeds is stored beforehand in an auto-tuning data memory section (20). In an auto-tuning operation, a controller (10) determines the DC bias voltage corresponding to each scan speed by referring to the table (21) and fixes the output of an ion-drawing voltage generator (13) at that voltage. Subsequently, while changing the voltages applied to relevant sections such as an ion optical system (2), the controller (10) finds voltage conditions under which the detection signal is maximized. The conditions thus found are stored in an auto-tuning result data (22). In an analysis of a target sample, a DC bias voltage corresponding to a scan speed specified by an operator is obtained from the DC bias voltage table (21), and the optimal conditions for this voltage are obtained from the auto-tuning result data (22). Based on these items of information, conditions for the scan measurement are determined. This method prevents the deterioration in detection sensitivity, which will otherwise take place if the scan measurement is performed at a high scan speed.
US08445837B2
Provided is a vibration actuator comprising a drive unit that generates a drive force; a vibrating component that vibrates according to the drive force from the drive unit; a rotating body that receives the vibration of the vibrating component to rotate; and a converting section that changes a contact force between the vibrating component and the rotating body according to size of a load acting on the rotating body.
US08445825B2
Devices systems, and methods can characterize an optical surface of an object. A wavefront sensor system focuses light energy propagating from the object to form a pattern on a detector. The system maps the pattern to an array with a transform function such as a Fourier transform. The values of array correspond to characteristic locations and signals in a transform space, for example an intensity of spatial frequency signals in frequency space. The characteristic location and intensity of these signals in transform space are used to measure the optical surface. For example, a characteristic frequency of a spatial frequency intensity peak in Fourier transform space can be used to estimate the location of spots on the detector. Alternatively, the characteristics can be used to the measure sphere, cylinder and axis of a wavefront, wavefront elevation maps and point spread functions, often without locating positions of individual spots on the detector.
US08445824B2
There is provided a lighting device, comprising at least one light emitter, at least one reflector and at least one sensor. The sensor is positioned within a region which receives direct light from the light emitter when the light emitter is emitting light. In some embodiments, the light emitter comprises one or more light emitting diode. In some embodiments, the sensor is positioned between the light emitter and a power supply. In some embodiments, the reflector comprises at least one opening, and light emitted by the light emitter passes through the opening to the sensor. In some embodiments, the sensor is sensitive to only some wavelengths of visible light. Some embodiments are back-reflecting lamps, and some are forward-reflecting lamps.
US08445820B2
This appliance comprises a pair of plates made of a material that conducts heat well which are heated electrically and are hinged to each other, each of these plates having a cooking surface, which two cooking surfaces can be brought toward each other by pivoting one plate onto the other in order to cook a food product which is clamped between them, the rear or non-cooking surface of each of these plates having a depression with a flat base whose area is large; in accordance with disclosure, a heating module whose shape is complementary to that of said depression is fitted into and fixed removably inside the latter, this module being provided with a shielded electric resistor capable of heating said plate and is supplied with electric current.
US08445819B2
A breathable electrical heater element for a topical application device such as a wound dressing or a therapeutic heating pad is disclosed. The heater element is formed by photochemically etching a track pattern onto a porous metallised fabric (e.g. nickel coated woven polyester). The heater element has a skin or wound contact layer laminated to the front face of the heater element. An adhesive layer is laminated to the back face of the heater element. The adhesive layer forms an overhang to provide an adhesive border around the wound contact layer to adhere the device to the skin of a patient. Therapeutically active drugs (optionally microencapsulated) may be incorporated into the skin or wound contact layer. Operation of the heater element causes the skin or wound contact layer to release the active drugs to the skin or wound of the patient.
US08445813B2
A portable cutting device and related method of use are disclosed. The method may include the steps of providing a laser source and a battery power supply, and housing the laser source and the battery power supply in at least one storage container carried by a user. The method may further include the step of cutting a barrier with optical energy produced by the laser source and delivered by a handheld laser directing device.
US08445805B2
A vacuum switching device with pre-insertion contact arrangement is disclosed. The vacuum switch includes first and second contact systems. The first contact system includes an annular stationary contact and an annular moving contact retained on a moving contact drive rod. A second contact system includes a moving contact retained on an end of the moving contact drive rod and a floating contact retained along the same axis as the second moving contact. Both contact systems are enclosed in a vacuum envelope. A mechanical adjustment system is provided for the floating contact, which allows it to be positioned so that the secondary moving contact and floating moving contact may engage at a set interval before the annular moving contact engages the annular stationary contact. A resistor or inductor is connected between the second contact system and a load to prevent a current in-rush into the load.
US08445800B2
An electrical switching apparatus such as, for example, a subminiature or aircraft circuit breaker, is provided for a circuit protection module of an electrical system, such as an aerospace power distribution unit. The circuit protection module includes a panel member. The electrical switching apparatus includes a housing, separable contacts enclosed by the housing, an operating mechanism for opening and closing the separable contacts, and a mounting element for attaching the housing to the panel member. The housing is a thermally conductive liquid crystalline polymer. The panel member and mounting element are thermally conductive. Heat generated by the separable contacts is transferred away from the separable contacts, through the housing and the thermally conductive mounting element, and into the thermally conductive panel member. A circuit protection module and an electrical system are also disclosed.
US08445793B2
This invention is related to user input devices that accept complex user input including a combination of touch and push (or pick) input. The invention provides for selective ignoring or rejection of input received from such devices in order to avoid interpreting unintentional user actions as commands. Furthermore, some input signals can be modified. The selective rejection or modification can be performed by the user interface device itself or by a computing device that includes or is attached to the user interface device. The selective rejection or modification may be performed by a module that processes input signals, performs the necessary rejections and modifications and sends revised input signals to higher level modules.
US08445779B1
A two gang electrical box that greatly reduces the time and effort required to mount one or two electrical components to a wall or similar surface. Wall preparation requires only the use of a standard hole saw thereby greatly minimizing installation time. The two gang electrical box includes a plate with an opening therein and a substantially circular sidewall extending from the plate at the periphery of the opening and terminating in a rear wall. Mounting fasteners extending through the plate include clamp arms thereon for securing the electrical box to a wall. The clamp arms can be rotated to either an inward position or an outward position. The sidewall is provided with open areas or recesses to fully accommodate the clamp arms when rotated to the inward position thereby enabling the peripheral wall and clamp arms to pass easily within the wall opening created by the standard size hole-saw.
US08445778B2
Disclosed herein are embodiments of a wiring box. The wiring box can include: a cavity formed by walls having an internal surface inside the cavity and an external surface; and a cable entry device disposed through a hole in a first wall of the walls. The cable entry device can include: a support element that retains a grommet in the hole, wherein the support element includes a stop, a grip extending from the stop, and shutters extending from the stop and defining an opening, wherein the opening converges away from the stop, the grip attaches the support element to the first wall, and wherein the grommet includes a rim, a sidewall extending from the rim and converging toward a diaphragm.
US08445777B2
Gas insulated bus (GIB) systems and methods are provided that facilitate efficient cost control and resource utilization. A GIB system assembly includes one or more GIB runs which include a maximum number of a first GIB section components having a predetermined length and a second GIB section component having a custom or variable length coupled to one of the one or more first GIB section components at their flanged ends, and first and second tee-shaped connectors coupled to one of the one or more first GIB section components and the second GIB section component and used to couple the GIB runs together and orient the bus runs at a desired bus routing angle.
US08445776B2
A solar cell module comprising a solar cell layer and a sheet comprising at least one layer of a sodium ionomer composition, wherein the sodium ionomer composition consists essentially of a sodium ionomer that is an ionic, neutralized derivative of a precursor α-olefin carboxylic acid copolymer, wherein about 10% to about 35% of the total content of the carboxylic acid groups present in the precursor α-olefin carboxylic acid copolymer have been neutralized with sodium ions, and wherein the precursor α-olefin carboxylic acid copolymer comprises (i) copolymerized units of an α-olefin having 2 to 10 carbons and (ii) about 20 to about 25 wt %, based on the total weight of the α-olefin carboxylic acid copolymer, of copolymerized units of an α,β-ethylenically unsaturated carboxylic acid having 3 to 8.
US08445775B2
A solar cell module includes a first isolation groove for separating the first electrode layer; a second isolation groove for separating each of the first semiconductor layer, the transparent conductive layer, and the second semiconductor layer; and a third isolation groove formed in a position opposite from the first isolation groove across the second isolation groove and for separating each of the second electrode layer, the second semiconductor layer, the transparent conductive layer, and the first semiconductor layer. The second electrode layer includes: a first conductive layer formed on the first semiconductor layer constituting a bottom surface of the second isolation groove, on an inner wall of the second isolation groove, and on the second semiconductor layer; and a second conductive layer formed on the first conductive layer. A resistivity of the first conductive layer is higher than a resistivity of the second conductive layer, and the first conductive layer is filled on the first electrode layer constituting the bottom surface of the second isolation groove, up to at least a position of an interface between the transparent conductive layer and the second conductive layer.
US08445767B2
An invention for an interactive musical game is presented that does not require the user to mentally map musical notation to instrument keys. More specifically, the invention comprises methods, apparatuses, and systems for entertainment using at least one electronic piano keyboard within a computer gaming system or module, wherein graphical game elements corresponding to note pitch, timing, duration, and/or rhythm align with and substantially correspond to the width of the keys.
US08445766B2
This disclosure relates to techniques, devices, and systems for displaying sheet music on one or more electronic devices. One example method of displaying sheet music on an electronic device includes receiving a first electronic input that indicates timing information for a musical composition. The method also includes determining, by an electronic device, a timing parameter for the musical composition using the received first electronic input indicating the timing information, and displaying, on the electronic device, sheet music for a first portion of a plurality of portions of the musical composition. The method further includes determining a time duration associated with the first portion based on the timing parameter, and displaying, on the electronic device, sheet music for a second portion of the plurality of portions of the musical composition following an expiration of the time duration.
US08445757B1
A novel soybean variety, designated XB55W11 is provided. Also provided are the seeds of soybean variety XB55W11, cells from soybean variety XB55W11, plants of soybean XB55W11, and plant parts of soybean variety XB55W11. Methods provided include producing a soybean plant by crossing soybean variety XB55W11 with another soybean plant, methods for introgressing a transgenic trait, a mutant trait, and/or a native trait into soybean variety XB55W11, methods for producing other soybean varieties or plant parts derived from soybean variety XB55W11, and methods of characterizing soybean variety XB55W11. Soybean seed, cells, plants, germplasm, breeding lines, varieties, and plant parts produced by these methods and/or derived from soybean variety XB55W11 are further provided.
US08445754B2
The invention relates to the soybean variety designated A1024705. Provided by the invention are the seeds, plants and derivatives of the soybean variety A1024705. Also provided by the invention are tissue cultures of the soybean variety A1024705 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety A1024705 with itself or another soybean variety and plants produced by such methods.
US08445748B2
The present invention relates generally to a genetic sequence encoding a polypeptide having flavonoid 3′,5′-hydroxylase (F3′5′H) activity and to the use of the genetic sequence and/or its corresponding polypeptide thereof inter alia to manipulate color in flowers or parts thereof or in other plant tissue. More particularly, the F3′5′H has the ability to modulate dihydrokaempferol (DHK) metabolism as well as the metabolism of other substrates such as dihydroquercetin (DHQ), naringenin and eriodictyol. Even more particularly, the present invention provides a genetic sequence encoding a polypeptide having F3′5′H activity when expressed in rose or gerbera or botanically related plants. The instant invention further relates to antisense and sense molecules or RNAi-inducing molecules corresponding to all or part of the subject genetic sequence or a transcript thereof. The present invention further relates to promoters which operate efficiently in plants such as rose, gerbera or botanically related plants.
US08445739B2
A process for converting natural gas from which contaminants have been sufficiently removed to acetylene includes heating the purified gas through a selected range of temperature for adequate time or combustion of the purified gas at adequate temperature within a suitable environment during an adequate reaction time to convert a fraction of the gas stream to acetylene, wherein the acetylene is directed for other processes, reactions, and uses. A process for converting natural gas to liquid hydrocarbons by combusting externally derived hydrogen for heating natural gas to a selected range of temperature. A process for converting natural gas to liquid hydrocarbons by reacting conversion products with externally derived hydrogen to form olefins comprising ethylene, and catalytically forming liquid hydrocarbons from the olefins comprising ethylene.
US08445737B2
A method for reducing one or more additives in a gaseous hydrocarbon stream (40) such as natural gas, comprising the steps of: (a) admixing an initial hydrocarbon feed stream (10) with one or more additives (20) to provide a multiphase hydrocarbon stream (30); (b) passing the multiphase hydrocarbon stream (30) from a first location (A) to a second location (B2); (c) at the second location (B2), passing the multiphase hydrocarbon stream (30) through a separator (22) to provide one or more liquid streams (50) comprising the majority of the one or more additives, and a gaseous hydrocarbon stream (40) comprising the remainder of the one or more additives; and (d) washing the gaseous hydrocarbon stream (40) in a decontamination unit (24) with a washing stream (60), wherein the washing stream (60) comprises distilled water, to provide an additive-enriched stream (70) and an additive-reduced hydrocarbon stream (80).
US08445733B1
A method of reducing odor of 1,3-butylene glycol includes contacting the 1,3-butylene glycol with an activated carbon selected from wood-based activated carbons and chemically activated carbons.
US08445727B2
A compound and a method to confer, enhance, improve or modify the odor properties of a perfuming composition or of a perfumed article, to confer a green allylic, glycolate and fruity-pineapple odor, by adding the compound thereto. The compound has formula (I): wherein the dotted line represents a carbon-carbon single bond or a carbon-carbon double bond; one R1 represents a hydrogen atom and the other represents a hydrogen atom or a methyl or ethyl group; X representing a C═CH2 or C═CHCH3 group or a CHR2 group, each R2 representing a hydrogen atom or a methyl or ethyl group; and R3 represents a a group of formula CR4═C(R4)2, or a group of formula each R4 representing a hydrogen atom or a methyl or ethyl group. The compound is in the form of a pure enantiomer or a mixture thereof.
US08445723B2
Methods of producing the N-alkyl(alkyl)acrylamides. In a general embodiment, the present disclosure provides a method of producing an N-alkyl (alkyl)acrylamide comprising providing an aqueous solution comprising an N-alkyl amine and adding to the aqueous solution a base and an (alkyl)acrylic anhydride to form a precipitated N-alkyl(alkyl)acrylamide.
US08445721B2
The present invention provides a process for [18F]-fluorination of biomolecules containing a primary amino group such as proteins and peptides and in particular of peptides. The invention further provides reagents for this process, in particular 18F-labelled prosthetic groups for use in the preparation as well as non-labelled intermediates useful in the preparation of the [18F]-labelled prosthetic groups. [18F]-labelled compounds useful as radiopharmaceuticals, specifically for use in Positron Emission Tomography (PET) are also provided.
US08445719B2
A method of stabilizing a hem protein which is effective against the denaturation and degradation of a hem protein typified by hemoglobin and a storage solution therefor. A method of stabilizing a hem protein and a storage solution therefor characterized in that an iminocarboxylic acid or its salt is made to coexist in a sample containing the hem protein, wherein the above-described iminocarboxylic acid is a compound represented by the following general formula (1) wherein R represents a hydrogen atom or a hydroxyl group; and X's represent each a hydrogen atom, an alkali metal or an ammonium group.
US08445718B2
There is provided to a method for efficiently producing phosphonic acid metal salt fine particles with an average particle diameter of 0.5 μm or less with high efficiency. A method for producing phosphonic acid metal salt fine particles, comprising: a) causing a reaction of a phosphonic acid compound of Formula (I): (where R1 and R2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxycarbonyl group having 1 to 10 carbon atoms) with a base in an aqueous medium to adjust a pH range of the reaction system to be neutral to basic; b) causing a reaction of the product obtained in a) with a metal salt to precipitate a phosphonic acid metal salt from the aqueous medium; c) removing water from the phosphonic acid metal salt precipitated in b); and d) heating and drying the phosphonic acid metal salt from which water is removed in c).
US08445717B2
The present invention provides α-keto alkylperacids and methods for producing and using the same. In particular, α-keto alkylperacids are useful as antimicrobial agents.
US08445715B2
A novel process for the synthesis of fenofibrate, includes reacting a metal salt of fenofibric acid with an isopropyl halide, in a solvent system composed of a mixture of dimethyl sulfoxide and a C2-C4 alkyl acetate. The process can be used on an industrial scale and makes it possible to obtain a fenofibrate of a quality in accordance with the Pharmacopoeia without the need for purification by recrystallization.
US08445713B2
The present invention relates to a catalyst for the synthesis of organic carbonates, the preparation of the catalyst and the application of this catalyst in the synthesis of organic carbonates from reacting urea and hydroxyl group containing compounds. The catalyst provided in this invention is a calcinate of hydrous salt containing rare earth element at a moderate calcining temperature.
US08445711B2
The invention concerns metal complexes and their preparation, in particular a metal complex MLnXm, where M is a metal of group 8, 9 or 10 and X is a halide, HCO3-, NO3-, CO32- or carboxylate. n is a number equal to or less than the coordination number of the metal and m is 1 or 2 and is equal to the oxidation state of the metal. The ligand L may be a bidentate phosphine of formula (I), (II), (III) or (IV) as set out herein. The process of production comprises reacting an ammine compound of metal M with a complexing compound, which is preferably a phosphine.
US08445709B2
The present invention relates to systems and methods for producing and/or refining alkyl ester compositions. In an embodiment the invention includes a method of producing a refined fatty acid alkyl ester composition. The method can include contacting a fatty acid feedstock and an alcohol with a first metal oxide catalyst at a temperature of greater than 200 degrees Celsius and a pressure of greater than 500 psi to form an unrefined fatty acid alkyl ester composition. The method can further include combining the unrefined fatty acid alkyl ester composition with dimethyl carbonate to form a refining mixture. The method can also include contacting the refining mixture with a second metal oxide catalyst at a temperature of greater than 100 degrees Celsius to form a refined fatty acid alkyl ester composition. Other embodiments are also described herein.
US08445706B2
An unnatural amino acid including a phosphate mimicking group for mimicking a phosphate group in phosphoamino acids and a protein phosphatase modifying group for covalently binding protein phosphatases. A probe for detecting disease including a phosphate mimicking group for mimicking a phosphate group in phosphoamino acids and a protein phosphatase modifying group for covalently binding protein phosphatases. A method for detecting the presence of disease by administering the unnatural amino acid, binding the unnatural amino acid with a phosphatase, detecting a signal, and detecting the presence of disease. A method of identifying a known protein phosphatase, and a method of identifying an unknown protein phosphatase. A method of making the unnatural amino acid.
US08445703B2
The present application provides a method for producing an beta-lactone product. The method includes the steps of: reacting an epoxide, a solvent with a carbonylation catalyst and carbon monoxide to produce a reaction stream comprising a beta-lactone then separating a portion of the beta-lactone in the reaction stream from the solvent and carbonylation catalyst to produce: i) a beta-lactone stream with the beta-lactone, and ii) a catalyst recycling stream including the carbonylation catalyst and the high boiling solvent; and adding the catalyst recycling stream to the feed stream.
US08445696B2
This invention is directed to methods of preparing certain spiro-oxindole derivatives, which are useful for the treatment and/or prevention of sodium channel-mediated diseases or conditions, such as pain.
US08445687B2
There is provided a process for preparing sorafenib or a salt thereof comprising the use of a compound of formula (A) wherein R′ is selected from the group consisting of hydrogen, —C(O)OA, —C(O)CX3, —C(O)NH2, —C(O)—NHOH or There is also provided intermediate compounds of general formula (A), N-methyl-4-(4-ureidophenoxy)picolinamide, 4-(2-(methylcarbamoyl)pyridin-4-yloxy)phenylcarbamate derivative and N-methyl-4-(4-(2,2,2-trihaloacetamido)phenoxy)picolinamide, processes for their preparation and their use in the preparation of sorafenib.
US08445682B2
The present invention is directed to processes for the synthesis of morphinans. In particular, a process for coupling a carboxylic acid compound with an amine compound to form an amide product that can then be isolated or the crude amide product can be cyclized to form a 3,4-dihydroisoquinoline. In one embodiment, the carboxylic acid contains a phenol moiety protected with a labile protecting group. The protected phenol reduces reaction times, simplifies work-up of the product, and reduces the amount of cyclizing agent, POCl3 that is necessary to form the 3,4-dihydroisoquinoline.
US08445670B2
A method of synthesizing stereochemically defined iminocyclitol comprises replacing an intraring oxygen in a cyclic sugar by an intraring imine to form an iminocyclitol, wherein said iminocyclitol has a defined stereochemical configuration different from a stereochemical configuration of the cyclic sugar. The invention also provides combinatorial libraries of iminocyclitol compounds, allowing for diverse C1 and N-substitution. In addition, provided are methods of treating viral infections with iminocyclitols compounds.
US08445664B2
This invention provides novel processes for amplifying nucleic acid sequences of interest, including linear and non-linear amplification. In linear amplification, a single initial primer or nucleic acid construct is utilized to carry out the amplification process. In non-linear amplification, a first initial primer or nucleic acid construct is employed with a subsequent initial primer or nucleic acid construct. In other non-linear amplification processes provided by this invention, a first initial primer or nucleic acid construct is deployed with a second initial primer or nucleic acid construct to amplify the specific nucleic acid sequence of interest and its complement that are provided. A singular primer or a singular nucleic acid construct capable of non-linear amplification can also be used to carry out non-linear amplification in accordance with this invention. Post-termination labeling process for nucleic acid sequencing is also disclosed in this invention that is based upon the detection of tagged molecules that are covalently bound to chemically reactive groups provided for chain terminators. A process for producing nucleic acid sequences having decreased thermodynamic stability to complementary sequences is also provided and achieved by this invention. Unique nucleic acid polymers are also disclosed and provided in addition to other novel compositions, kits and the like.
US08445663B2
Disclosed herein are isolated nucleic acids, compositions of isolated nucleic acids, and compositions of polypeptides that are useful for the generation, enhancement, or improvement of an immune response to a target antigen. Some embodiments of the compositions include hepatitis B core antigen (HBcAg) protein and a heterologous protein antigen. In some embodiments, an isolated nucleic acid encoding hepatitis B core antigen (HBcAg) protein and a heterologous protein antigen is disclosed. Also disclosed herein are methods of administering the composition or isolated nucleic acid to generate an immune response, where HBcAg acts as adjuvant to improve the immune response to the heterologous protein. In certain embodiments, the HBcAg is as a stork or heron hepatitis antigen.
US08445659B2
Sequences of B12-dependent dehydratases with improved reaction kinetics are presented. Use of these B12-dependent dehydratases reduce the rate of the enzyme's suicide inactivation in the presence of glycerol and 1,3-propanediol. The enzymes were created using error-prone PCR and oligonucleotide-directed mutagenesis to target the DhaB1 gene, which encodes the α-subunit of glycerol dehydratase. Mutants with improved reaction kinetics were rapidly identified using high throughput assays.
US08445658B2
The invention relates to three isolated DNA molecules that encode for proteins, BigL1, BigL2 and BigL3, in the Leptospira sp bacterium which have repetitive Bacterial-Ig-like (Big) domains and their use in diagnostic, therapeutic and vaccine applications. According to the present invention, the isolated molecules encoding for BigL1, BigL2 and BigL3 proteins are used for the diagnosis and prevention of infection with Leptospira species that are capable of producing disease in humans and other mammals, including those of veterinary importance.
US08445649B2
An antibody provided by the present invention has a low reactivity with amyloid precursor proteins, and has a higher reactivity with amylospheroids than with amyloid β fibrils or monomeric amyloid β-proteins. According to the present invention, an antibody is provided that has a higher reactivity with amylospheroids than with amyloid precursor proteins, and has any one or more of the following properties: (i) a higher activity with amylospheroids than with amyloid β fibrils; (ii) a higher reactivity with amylospheroids than with monomeric amyloid β-proteins; and (iii) an activity of inhibiting neuronal cell death induced by amylospheroids.
US08445645B2
The present invention relates to molecules, particularly polypeptides, more particularly immunoglobulins (e.g., antibodies), comprising a variant Fc region, wherein said variant Fc region comprises at least one amino acid modification relative to a wild-type Fc region, which variant Fc region binds FcγRIIIA and/or FcγRIIA with a greater affinity, relative to a comparable molecule comprising the wild-type Fc region. The molecules of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection. The molecules of the invention are particularly useful for the treatment or prevention of a disease or disorder where an enhanced efficacy of effector cell function (e.g., ADCC) mediated by FcγR is desired, e.g., cancer, infectious disease, and in enhancing the therapeutic efficacy of therapeutic antibodies the effect of which is mediated by ADCC.
US08445620B2
Provided are elastic propylene-alpha olefin blocky copolymers. In one form, the elastic propylene-alpha olefin blocky copolymer includes an α-olefin content from 12 to 25 wt % and having a propylene crystallinity less than 30 J/g, a Tm <100° C. and a Tg >−45° C., wherein said copolymer has blocky propylene segments with r1r2 greater than 1.5, and a process for producing such copolymer.
US08445618B2
A highly crystalline higher α-olefin polymer that is excellent in compatibility with a thermoplastic resin, particularly a polyolefin, compatibility with a lubricant oil, a fuel oil and wax, mixing property with an inorganic filler, and secondary working property, and a process for production thereof are provided. The highly crystalline higher α-olefin polymer is obtained by polymerizing a monomer containing 80% by mol or more of a higher α-olefin having from 22 to 40 carbon atoms, and satisfies the following items (1) and (2). (1) The melting point (Tm), which is observed, by using a differential scanning calorimeter (DSC), from a melting endothermic curve obtained by maintaining a specimen at 190° C. for 5 minutes under a nitrogen atmosphere, cooling the specimen to −10° C. at a rate of 5° C./min, maintaining at −10° C. for 5 minutes, and then elevating a temperature thereof to 190° C. at a rate of 10° C./min, is from 55 to 100° C. (2) Standards weight average molecular weight (Mw) measured by a gel permeation chromatography (GPC) based on polystyrene is from 1,000 to 5,000,000, and the molecular weight distribution (Mw/Mn) measured thereby is 5.0 or less.
US08445617B2
The invention relates to producing a superabsorbent polymer comprising (I) producing a (meth)acrylic acid comprising the steps of (a) synthesizing a crude (meth)acrylic acid phase; (b) distillatively working-up the crude (meth)acrylic acid phase to obtain a (meth)acrylic acid phase and a dimer phase comprising (meth)acrylic acid dimers and/or (meth)acrylic acid oligomers; (c) splitting at least a part of the (meth)acrylic acid dimers or of the (meth)acrylic acid oligomers or both from the dimer phase to obtain a (meth)acrylic acid-comprising a low boiling phase and a high boiling phase comprising less (meth)acrylic acid than the low boiling phase; (d) separating at least a part of the (meth)acrylic acid from the low boiling phase by forming crystals to obtain a pure (meth)acrylic acid, and a residue; (II) polymerizing a monomer phase comprising the pure (meth)acrylic acid to obtain a polymer phase; and (III) working-up the polymer phase to obtain the polymer.
US08445610B2
A transition metal mediated chain transfer agent controlled polymerization process is described. The process combines the advantages of atom transfer radical polymerization (ATRP) and reversible addition fragmentation transfer (RAFT) polymerization. Synthesis of chain transfer agents useful in the disclosed processes is also disclosed. Other improvements on ATRP RAFT processes are also described.
US08445601B2
Described herein are substantially linear copolymeric compositions having at least two azide groups and at least two non-activated acetylene groups. The azide groups and the non-activated acetylene groups are reacted to cure the substantially linear copolymer composition. Also, described are methods of making and using such substantially linear copolymeric compositions.
US08445598B2
The present invention relates to a heterophasic polypropylene resin comprising a propylene homo- or copolymer matrix (A) and an ethylene-propylene rubber phase (B) dispersed within the matrix, wherein the heterophasic polypropylene resin has a fraction insoluble in p-xylene at 25° C. (XCU) with an intrinsic viscosity of 1.5 dl/g or less, determined according to DIN EN ISO 1628-1 and -3 and an amount of propylene monomer units of at least 95 mol %, and a fraction soluble in p-xylene at 25° C. (XCS) with an intrinsic viscosity of 1.5 to 3.0 dl/g, determined according to DIN EN ISO 1628-1 and -3, and an amount of propylene monomer units of 50 to 75 mol %, and a MFR (2.16 kg, 230° C.) of more than 100 g/10 min, determined according to ISO 1133, a heterophasic polypropylene composition comprising such a resin, a process for preparing that resin, and an article made thereof.
US08445594B2
The instant invention is a high-density polyethylene composition, method of producing the same, articles made therefrom, and method of making such articles. The high-density polyethylene composition of the instant invention includes a first component, and a second component. The first component is a high molecular weight ethylene alpha-olefin copolymer having a density in the range of 0.915 to 0.940 g/cm3, and a melt index (I21.6) in the range of 0.5 to 10 g/10 minutes. The second component is a low molecular weight ethylene polymer having a density in the range of 0.965 to 0.980 g/cm3, and a melt index (I2) in the range of 50 to 1500 g/10 minutes. The high-density polyethylene composition has a melt index (I2) of at least 1, a density in the range of 0.950 to 0.960 g/cm3, and g′ of 1.
US08445593B2
A resin composition comprises a polylactic acid resin (A) 75-10 wt %, an aromatic polycarbonate resin (B) 25-90 wt % and a polymer compound to which a glycidyl compound or an acid anhydride is grafted or copolymerized (D) 1-50 wt parts with respect to 100 wt parts of the total of the component (A) and the component (B).
US08445580B2
Pneumatic rubber tire intended for heavy duty service having a cap/base configured tread with a silica-containing specialized cis 1,4-polybutadiene rubber-rich tread cap rubber layer.
US08445579B2
Provided is a method of producing a paint involving dry-grinding a calcium carbonate in the presence of a grinding aid agent which is a copolymer of (meth)acrylic acid with a monomer containing an alkoxy or hydroxy polyalkyleneglycol group.
US08445577B2
The present invention relates to polymers, nanomaterials, and methods of making the same. Various embodiments provide an amphiphilic multi-arm copolymer. The copolymer includes a core unit and a plurality of amphiphilic block copolymer arms. Each block copolymer arm is substituted on the core unit. Each block copolymer arm includes at least one hydrophilic homopolymer subunit and at least one hydrophobic homopolymer subunit. In some examples, the copolymer can include a star-like or bottlebrush-like block copolymer, and can include a Janus copolymer. Various embodiments provide a nanomaterial. In some examples, the nanomaterial can include Janus nanomaterials, and can include nanoparticles, nanorods, or nanotubes. The nanomaterial includes the amphiphilic multi-arm copolymer and at least one inorganic precursor. The inorganic precursor can be coordinated to at least one homopolymer subunit of one of the amphiphilic block copolymer arms to form the nanomaterial. Various embodiments also provide methods of making the copolymer and the nanomaterial.
US08445572B2
Disclosed is a rubber composition containing (A) a natural rubber, a diene synthetic rubber or a combination of them and (B) 50-120 parts by weight of a silicic acid-based or silicate-based inorganic filler per 100 parts by weight of the component (A). This rubber composition is characterized by further containing (C) 0.2-20 parts by weight of a certain amine salt per 100 parts by weight of the component (A).
US08445561B2
Provided are a method of dry-grinding calcium carbonate in the presence of a grinding aid agent which is a copolymer of (meth)acrylic acid with a monomer containing an alkoxy or hydroxy polyalkyleneglycol group, and a method of producing a hydraulic binder base including dry grinding a calcium carbonate in the presence of the grinding aid.
US08445554B2
A high strength porous polymeric material manufactured by a compression process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.
US08445553B2
Vulcanized rubber is devulcanized by contacting the vulcanized rubber with a terpentine liquid in a reaction mixture in the absence of an alkali metal.
US08445539B2
The disclosure relates to pharmacotherapy of a psychiatric disorder which is schizophrenia and/or anxiety, wherein schizophrenia includes schizophrenia related disorders such as brief psychotic disorders, delusional disorders, schizoaffective disorders, and schizophreniform disorders, and anxiety includes panic disorders, obsessive-compulsive disorders (OCD), post-traumatic stress disorders (PTSD), social phobia or social anxiety disorders, specific phobia, and generalized anxiety disorders (GAD). The compounds of the disclosure are useful for the treatment of the above psychiatric disorders alone or in combination with other therapeutical agents effective in the treatment of schizophrenia and/or anxiety disorders.
US08445534B2
This invention provides methods for treatment and inhibition of a male subject having an Androgen Decline in Aging Male (ADAM)-associated condition, for example sexual dysfunction, decreased sexual libido, erectile dysfunction, hypogonadism, sarcopenia, osteopenia, osteoporosis, an alteration in cognition and mood, depression, anemia, hair loss, obesity, muscle loss, dry eye, memory loss, benign prostate hyperplasia and/or prostate cancer, by administering to the subject a selective androgen receptor modulator (SARM) compound and/or its analog, derivative, isomer, metabolite, pharmaceutically acceptable salt, pharmaceutical product, hydrate, N-oxide, pro-drug, polymorph, crystal, or any combination thereof.
US08445519B2
Provided are 1-aryl-5-alkyl pyrazole compounds, of formula (I): wherein: R1 is hydrogen, cyano, halogen, R8, formyl, —C(O)R8, —C(O)OR8, —C(O)NR9R10, or —C(S)NH2; R2 is R8 or —S(O)mR11; R3 is methyl, ethyl or C1-C4 haloalkyl; R4, R5 and R7 are independently hydrogen, halogen, alkyl, haloalkyl, cyano or nitro; R6 is halogen, alkyl, haloalkyl, alkoxy, haloalkyloxy, cyano, nitro, —C(O)R12, —S(O)nR12 or SF5; Z is a nitrogen atom or C—R13; R8 is alkyl, haloalkyl, cycloalkyl or halocycloalkyl; R9 is hydrogen, alkyl, haloalkyl or alkoxy; R10 is hydrogen, alkyl, haloalkyl or alkoxy; R11 is alkyl, haloalkyl, alkenyl, haloalkenyl, alkynyl, haloalkynyl or cycloalkyl; R12 is alkyl or haloalkyl; R13 is hydrogen, halogen, cyano, nitro, alkyl, haloalkyl, alkoxy or haloalkoxy; m is 0, 1 or 2; and n is 0, 1 or 2; or a salt thereof, the method of making compounds of formula (I) and the use of these compounds against ectoparasites, endoparasites and pests.
US08445507B2
A hydantoin compound useful for the prevention or treatment of hyperproliferative diseases or disorders.
US08445499B2
Bipiperidinyl compounds of the formula: are disclosed as useful for treating or preventing type 2 diabetes and similar conditions. Pharmaceutically acceptable salts and solvates are included as well. The compounds are useful as agonists of the g-protein coupled receptor GPR-119.
US08445496B2
This invention is directed to a crystalline 4-[(2,4-dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-methyl-1-piperazinyl)propoxy]-3-quinolinecarbonitrile monohydrate having an x-ray diffraction pattern wherein 2θ angles (°) of significant peaks are at about: 9.19, 11.48, 14.32, 19.16, 19.45, 20.46, 21.29, 22.33, 23.96, 24.95, 25.29, 25.84, 26.55, 27.61, and 29.51, and a transition temperature of about 109° C. to about 115° C.
US08445494B2
The present disclosure generally relates to a crystalline form of 6-[(4S)-2-methyl-4-(naphthyl)-1,2,3,4-tetrahydroisoquinolin-7-yl]pyridazin-3-amine. The present disclosure also generally relates to pharmaceutical compositions comprising the crystalline form, as well of methods of using a crystalline form in the treatment of depression and other conditions and methods for obtaining such crystalline form.
US08445492B2
A heteroannelated anthraquinone derivative compound is provided. The heteroannelated anthraquinone derivative compound is represented by a formula (I): wherein R1 is a substituent being one selected from a group consisting of i) a first substituent being one selected from a group consisting of a hydryl group, an amino group, a nitro group, a hydroxyl group and a cyan group, ii) a second substituent being one selected from a group consisting of (CH2)nX, a straight (CH2)n alkyl group, a (CH2)n alkoxyl group, a branched (CH2)n alkyl group, a C3˜C12 naphthenic group, and a C3˜C12 cyclic alkoxyl group, wherein 1≦n≦12, and X is a halogen, iii) a third substituent being one selected from a group consisting of a straight C1˜C8 alkyl group with a double-bond, a C1˜C8 alkoxyl group with a double-bond, a branched C1˜C8 alkyl group with a double-bond and a C3˜C8 naphthenic group with a double-bond, and iv) a fourth substituent of a C5˜C12 heterocyclic group.
US08445491B2
The present invention generally relates to protein signalling. In particular, compounds that inhibit the Wnt protein signalling pathway are disclosed. Such compounds may be used in the treatment of Wnt protein signalling-related diseases and conditions such as cancer, degenerative diseases, type II diabetes and osteopetrosis.
US08445487B2
Purine compounds of Formula I, and including stereoisomers, geometric isomers, tautomers, solvates, metabolites and pharmaceutically acceptable salts thereof, are useful for inhibiting lipid kinases including p110 alpha and other isoforms of PI3K, and for treating disorders such as cancer mediated by lipid kinases. Methods of using compounds of Formula I for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions, are disclosed.
US08445482B2
Thieno- and furo-pyrimidine compounds are described, which are useful as H4 receptor modulators. Such compounds may be used in pharmaceutical compositions and methods for the modulation of histamine H4 receptor activity and for the treatment of disease states, disorders, and conditions mediated by H4 receptor activity, such as inflammation.
US08445480B2
Compounds having the structure of Formula I1 including pharmaceutically acceptable salts of the compounds, are potent CETP (cholesterol ester transfer protein) inhibitors, and are useful for raising HDL-cholesterol, reducing LDL-cholesterol, and for treating or preventing atherosclerosis Atherosclerosis and its clinical consequences, coronary heart disease (CHD), stroke and penpheral vascular disease, represent a truly enormous burden to the health care systems of the industrialized world In formula I, A-B is an arylamide moiety.
US08445473B2
The invention relates to heteroaryl-substituted bicyclic mimetics of Smac which function as inhibitors of Inhibitor of Apoptosis Proteins. The invention also relates to the use of these mimetics for inducing apoptotic cell death and for sensitizing cells to inducers of apoptosis.
US08445471B2
A process for obtaining 21-disodium phosphate pregnane derivative compounds of formula (I), wherein X═R═H or X═F and R=α-CH3 or X═F and R=β-CH3: comprises spray drying a solution comprising compound of formula (I).
US08445469B2
A 18-Methyl-19-nor-17-pregn-4-ene-21,17-carbolactone of general formula I in which Z, R4, R6, R7 are as defined below with the proviso that the compound is not 18-Methyl-15β,16β-methylene-3-oxo-19-nor-17-pregn-4-ene-21,17-carbolactone.
US08445466B2
The present invention provides amide-protected creatine molecules and compositions, containing one or more bioactive forms of creatine in aqueous compositions, wherein bioactive forms of creatine do not appreciably degrade into creatinine. Also provided are various beneficial effects of administering aqueous compositions having at least one amide-protected creatine molecule.
US08445465B2
The present invention relates to a glycol chitosane derivative, a preparation method thereof and a drug delivery system comprising the same. More specifically, the invention relates to a glycol chitosan derivative, which can form nano-sized self-assembled structures and has both temperature sensitivity and biodegradability so as to be suitable for use as a drug delivery system, as well as a preparation method thereof and a drug delivery system comprising the same.
US08445462B2
The present invention relates to compositions comprising chondroitin sulphate and mannosamine or a derivative thereof. The mannosamine derivative is preferably N-acetylmannosamine. The compositions may comprise glucosamine. Said compositions are useful in the treatment or prevention of degenerative joint diseases, preferably of osteoarthritis, in the treatment or prevention of tendon or ligament diseases, disorders or injuries and of immune system diseases, preferably of rheumatoid arthritis.
US08445455B2
This invention relates to compositions and methods for selective expression of a heterologous nucleic acid sequence in a targeted tissue, and more particularly to the glucose regulated protein 78 (grp78) stress-responsive promoter and its use in gene therapy and the production of transgenic animals.
US08445447B2
Compositions and methods for costimulating T cells (i.e., increasing antigen-specific proliferation of T cells, enhancing cytokine production by T cells, stimulating differentiation ad effector functions of T cells and/or promoting T cell survival) are provided. Suitable compositions include variant B7-DC polypeptides, fragments and fusion proteins thereof. Variant B7-DC polypeptides have reduced binding affinity for the inhibitory PD-1 ligand and substantially retain the ability to costimulate T cells. Methods for using variant B7-DC polypeptides to stimulate immune responses in subjects in need thereof are provided.
US08445446B2
This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.
US08445444B2
Disclosed are compositions and methods for diagnosing, preventing, and treating prostate cancer and prostate intraepithelial neoplasia (PIN).
US08445435B2
The present invention is directed to methods of treating or preventing the development of obesity by administering compounds that stabilize mast cells. In addition, it includes pharmaceutical compositions which have both a mast cell stabilizer and instructions regarding the use of the stabilizer in treating or preventing obesity.
US08445433B2
A new method of synthesizing GLP-1 peptide is devised.
US08445430B2
The invention provides cyclic carboxamide compounds and analogues thereof of Formula I and the pharmaceutically salts and hydrates thereof. The variables R, R1, R6-R8, R16, R18, R19, M, n, T, Y, and Z are defined herein. Certain compounds of Formula I are useful as antiviral agents. Certain cyclic carboxamide compounds and cyclic carboxamide analogues disclosed herein are potent and/or selective inhibitors of viral replication, particularly Hepatitis C virus replication. The invention also provides pharmaceutical compositions containing one or more cyclic carboxamide compounds or cyclic carboxamide analogues and one or more pharmaceutically acceptable carriers. Such pharmaceutical compositions may contain a cyclic carboxamide compound or cyclic carboxamide analogue as the only active agent or may contain a combination of a cyclic carboxamide compound or cyclic carboxamide analogue and one or more other pharmaceutically active agents. The invention also provides methods for treating viral infections, including Hepatitis C infections.
US08445428B2
The present invention relates to a novel peptide extracted from guava (Psidium guajava) seeds, that provides bactericide activity, Preferentially against Gram-negative bacteria which are known to cause urinary, hospital, and intestinal tract infections (Proteus sp. And Klebsiella sp.). The peptide, that has the amino acid sequence RESPSSRMEC YEQAERYGYG GYGGGRYGGG YGSGRGQPVG QGVERSHDDN RNQPR, belongs to the class of glycine rich proteins and has approximately 5 kDa of molecular weight. The invention also relates to antibiotic compositions for human, veterinary and plant treatments. Alternatively, the peptide, or a functionally similar derivative, subjects of the present invention, can be used for transforming organisms aiming pathogen resistance, other adaptive advantages, as well as various properties, specially for plants and animals.
US08445420B2
A cleaning and purifying composition including at least one solvent, an alkaline agent, a deflocculant, at least one surfactant selected from the group comprising an alcohol ethoxylate surfactant, an alkylamino-polyethoxy-sulfate surfactant, a polyether-phosphate ester surfactant, a surfactant that is a phosphate ester of an ethoxylated alcohol, and a surfactant that is a polyethyleneglycol monoalkyl ether, and a bonding agent.
US08445417B2
The invention relates to a lubricating composition containing (a) a borated phospholipid, (b) an amine salt of a phosphoric acid ester, and (c) an oil of lubricating viscosity. The invention further provides for the use of the lubricating composition for lubricating a limited slip differential.
US08445412B2
The present technology relates to methods and systems for detection of pyrophosphate. As such, disclosed herein are methods and systems that permit improved pyrophosphate detection. Also disclosed herein are methods and systems which utilize improved pyrophosphate detection for nucleotide sequencing.
US08445403B2
An oxidation catalyst is described for the exhaust gas purification of utility vehicles with diesel engines, which contains a substrate and a catalytically active coating of platinum, active aluminum oxide and aluminum-silicon mixed oxide. The two oxidic support materials, aluminum oxide and aluminum-silicon mixed oxide, are catalytically activated with platinum, the majority of platinum being present on the active aluminum oxide. The oxidation catalyst is distinguished by good NO oxidation rates together with a high poisoning resistance against sulfur compounds.
US08445388B2
Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
US08445382B2
A dual damascene process for forming conductive interconnects on an integrated circuit die. The process includes providing a layer (16) of porous, ultra low-k (ULK) dielectric material in which a via opening (30) is subsequently formed. A thermally degradable polymeric (“porogen”) material (42) is applied to the side wall sidewalls of the opening (30) such that the porogen material penetrates deeply into the porous ULK dielectric material (thereby sealing the pores and increasing the density thereof). Once a conductive material (36) has been provided with the opening (30) and polished back by means of chemical mechanical polishing (CMP), the complete structure is subjected to a curing step to cause the porogen material (44) with the ULK dielectric layer (16) to decompose and evaporate, thereby restoring the porosity (and low-k value) of the dielectric layer (16).Attached are a marked-up copy of the originally filed specification and a clean substitute specification in accordance with 37 C.F.R. §§1.121(b)(3) and 1.125(c). Applicant respectfully submits that the substitute specification contains no new matter.
US08445379B2
A method of manufacturing a semiconductor device including a plurality of hole patterns is disclosed. The method includes: forming a plurality of first line patterns and a plurality of first space patterns extending in a first direction; forming a plurality of second line patterns and a plurality of second space patterns extending in a second direction, on the plurality of first line patterns and the plurality of first space patterns; forming a plurality of first hole patterns where the plurality of first space patterns and the plurality of second space patterns cross each other; and forming a plurality of second hole patterns where the plurality of first line patterns and the plurality of second line patterns cross each other.
US08445378B2
Memory cells in integrated circuit devices may be formed on the basis of functional molecules which may be positioned within via openings on the basis of appropriate patterning techniques, which may also be used for forming semiconductor-based integrated circuits. Consequently, memory cells may be formed on a “molecular” level without requiring extremely sophisticated patterning regimes, such as electron beam lithography and the like.
US08445369B2
A method for fabricating a semiconductor device includes forming junction area for a bit line contact (BLC) and a junction area for a storage node contact (SNC) by performing ion implantation in a substrate having a buried gate; forming a first insulation pattern having an opening to expose the junction areas; forming a buffer layer to fill the openings; forming a second insulation pattern over the first insulation pattern after filling the openings, wherein the second insulation pattern has openings to expose the buffer layer in an area of the buffer layer that lies over the junction area for the SNC; and forming an SNC to fill the opening of the second insulation patterns.
US08445364B2
A method for treating semiconducting materials includes providing a semiconducting material having a crystalline structure, pre-heating a portion of the semiconducting material to a temperature less than the melting temperature of the semiconducting material, and then cooling the semiconducting material prior to exposing at least the portion of the semiconducting material to a heat source to create a melt pool, and cooling the semiconducting material.
US08445363B2
A method of fabricating an epitaxial layer includes providing a substrate. The substrate is etched to form at least a recess within the substrate. A surface treatment is performed on the recess to form a Si—OH containing surface. An in-situ epitaxial process is performed to form an epitaxial layer within the recess, wherein the epitaxial process is performed in a hydrogen-free atmosphere and at a temperature lower than 800° C.
US08445356B1
Disclosed is a method of forming a structure and a resulting structure. The method includes providing a semiconductor substrate; forming a first opening to a first depth in the semiconductor substrate; amorphizing semiconductor sidewalls of an upper portion of the first opening leaving unamorphized semiconductor sidewalls in a lower portion of the first opening; enlarging only the lower portion of the first opening using an etch process that is selective to the unamorphized semiconductor sidewalls; filling the first opening with an insulator material to form a deep trench isolation (DTI) structure and implanting a first well region and a second well region into the semiconductor substrate. The first well and the second well are separated from one another by the enlarged lower portion of the first opening. In the structure sidewalls of a top portion of a DTI and sidewalls of an STI are formed of doped, re-crystallized silicon.
US08445352B2
A problem in the conventional technique is that metal contamination on a silicon carbide surface is not sufficiently removed in a manufacturing method of a semiconductor device using a monocrystalline silicon carbide substrate. Accordingly, there is a high possibility that the initial characteristics of a manufactured silicon carbide semiconductor device are deteriorated and the yield rate is decreased. Further, it is conceivable that the metal contamination has an adverse affect even on the long-term reliability of a semiconductor device. In a manufacturing method of a semiconductor device using a monocrystalline silicon carbide substrate, there is applied a metal contamination removal process, on a silicon carbide surface, including a step of oxidizing the silicon carbide surface and a step of removing a film primarily including silicon dioxide formed on the silicon carbide surface by the step.
US08445347B2
Monolithic three dimensional NAND strings and methods of making. The method includes both front side and back side processing. Using the combination of front side and back side processing, a NAND string can be formed that includes an air gap between the floating gates in the NAND string. The NAND string may be formed with a single vertical channel. Alternatively, the NAND string may have a U shape with two vertical channels connected with a horizontal channel.
US08445343B2
Methods of fabricating a semiconductor device include alternatingly and repeatedly stacking sacrificial layers and first insulating layers on a substrate, forming an opening penetrating the sacrificial layers and the first insulating layers, and forming a spacer on a sidewall of the opening, wherein a bottom surface of the opening is free of the spacer. A semiconductor layer is formed in the opening. Related devices are also disclosed.
US08445338B2
The present invention provides a method for manufacturing a semiconductor device, by which a transistor including an active layer, a gate insulating film in contact with the active layer, and a gate electrode overlapping the active layer with the gate insulating film therebetween is provided; an impurity is added to a part of a first region overlapped with the gate electrode with the gate insulating film therebetween in the active layer and a second region but the first region in the active layer by adding the impurity to the active layer from one oblique direction; and the second region is situated in the one direction relative to the first region.
US08445330B2
Packaged semiconductor devices and assemblies including interconnects and methods for forming such interconnects are disclosed herein. One embodiment of a packaged semiconductor assembly includes a die attached to a support layer. A plurality of interconnects are embedded in and project from the support layer, such that the support layer at least partially retains the interconnects in a predetermined array. An encapsulant is molded around each of the interconnects and encases at least a portion of the die, support layer and interconnects.
US08445323B2
A semiconductor device includes an IPD structure, a first semiconductor die mounted to the IPD structure with a flipchip interconnect, and a plurality of first conductive posts that are disposed adjacent to the first semiconductor die. The semiconductor device further includes a first molding compound that is disposed over the first conductive posts and first semiconductor die, a core structure bonded to the first conductive posts over the first semiconductor die, and a plurality of conductive TSVs disposed in the core structure. The semiconductor device further includes a plurality of second conductive posts that are disposed over the core structure, a second semiconductor die mounted over the core structure, and a second molding compound disposed over the second conductive posts and the second semiconductor die. The second semiconductor die is electrically connected to the core structure.
US08445315B2
The present invention relates to a thin-film solar battery module manufacturing method and a thin-film solar battery module that are capable of securing dielectric breakdown voltage characteristics of high reliability. An important aspect of the invention relates to forming isolation trenches along peripheral regions of a transparent substrate and thereafter selectively removing electrode and semi-conductor layers to arrive at the thin film solar battery module.
US08445311B2
A method of fabricating a differential doped solar cell is provided. The method comprises the steps of (a) providing a light doped semiconductor substrate; (b) forming a heavy doped layer having the same type of dopant used in step (a) on a front surface of the semiconductor substrate; and (c) forming an emitter layer having a different type of dopant used in step (a) on a surface of the heavy doped layer to constitute a p-n junction with the heavy doped layer.
US08445305B2
Disclosed is a method for manufacturing 3-dimensional structure using a thin film with a columnar nano pores and a manufacture thereof. A method for packaging an MEMS device or an NEMS device in accordance with an embodiment of the present invention includes: forming a sacrificial layer; forming a thin film having columnar nano pores formed therein by depositing one of a metallic material, an oxide, a nitride and a fluoride on the sacrificial layer; forming a support layer on the thin film and patterning the support layer; removing the sacrificial layer through use of the nano pores of the thin film parts of which are exposed by patterning the support layer; and forming a shielding layer on the thin film and the support layer.
US08445304B2
Methods of fabricating semiconductor sensor devices include steps of fabricating a hermetically sealed MEMS cavity enclosing a MEMS sensor, while forming conductive vias through the device. The devices include a first semi-conductor layer defining at least one conductive via lined with an insulator and having a lower insulating surface; a central dielectric layer above the first semiconductor layer; a second semiconductor layer in contact with the at least one conductive via, and which defines a MEMS cavity; a third semiconductor layer disposed above the second semiconductor layer, and which includes a sensor element aligned with the MEMS cavity; a cap bonded to the third semiconductor to enclose and hermetically seal the MEMS cavity; wherein the third semiconductor layer separates the cap and the second semiconductor layer.
US08445299B2
The present application disclosed various embodiments of improved performance optically coated semiconductor devices and various methods for the manufacture thereof and includes depositing a first layer of a low density, low index of refraction material on a surface of a semiconductor device, depositing a multi-layer optical coating comprising alternating layers of low density, low index of refraction materials and high density, high index of refraction materials on the coated surface of the semi-conductor device, selectively ablating a portion of the alternating multi-layer optical coating to expose at least a portion of the low density first layer, and selectively ablating a portion of the first layer of low density material to expose at least a portion of the semiconductor device.
US08445297B2
A method of fabricating a chip may include the step of providing a first electrical part. The method may also include the step of forming a shell with the first electrical part embedded in a first side portion of the shell and a cavity in a second side portion of the shell. The method may include the step of testing the embedded first electrical part to determine whether the first electrical part is defective or functional. The method may also include the steps of providing a second electrical part, inserting the second electrical part within the cavity of the shell second side portion, establishing electrical communication between the first and second electrical parts if a test result of the first electrical part indicates that the first electrical part is functional, and finishing the chip. Also, the method may include the step of rejecting the first electrical part if the test result of the first electrical part indicates that the first electrical part is defective.
US08445294B2
Embodiments of the invention relate generally to ferromagnetic microdisks, methods of detecting target bioanalyte using ferromagnetic microdisks, and kits (such as for using in the laboratory setting) containing the reagents necessary to make, and/or use ferromagnetic microdisks for bioanalyte detection, depending on the user's planned application. The methods and products allow the fabrication of ferromagnetic microdisks, and their use in the detection of biological molecules with high sensitivity, little or no signal decay, improved safety, convenience, and lowered cost for use and disposal.
US08445291B2
Provide is a method for detecting a target substance, which method can visualize the expression of the target substance at any time point while reducing influences on the functions of the target substance, can use fluorescent dyes having various excitation/emission wavelengths, and can achieve easy staining process. Also provided are a tag, a DNA, a vector, a probe and a detection kit suitable for use in the above-described detection method. Specifically, the method for detecting a target substance, comprises the steps of bringing into contact with each other (a) a tag comprising a polypeptide forming an α-helix structure, the tag bound to the target substance, and (b) a probe comprising a compound bound to a fluorescent dye; and measuring the fluorescence emitted by the fluorescent dye. The binding of the tag α-helix structure to the probe compound induces a spectral change in the fluorescence emitted by the fluorescent dye.
US08445273B2
The present invention relates to methods for production of undifferentiated or differentiated embryonic stem cell aggregate suspension cultures from undifferentiated or differentiated embryonic stem cell single cell suspensions and methods of differentiation thereof.
US08445269B2
The present invention relates to a method for generating pluripotent stem cells and to pluripotent stem cells generated from human testis.
US08445267B2
Disclosed are tyrosine-modified rAAV vectors, as well as infectious virions, compositions, and pharmaceutical formulations that comprise them. Also disclosed are methods of preparing and methods for using the disclosed tyrosine-phosphorylated capsid protein mutant rAAV vectors in a variety of diagnostic and therapeutic applications including in vivo and ex vivo gene therapy, and large-scale production of rAAV vectors.
US08445259B2
An enhanced apparatus and a method for treating organic sludge is constructed such that the sludge is first dewatered with a first dewatering device; the dewatered sludge is passed through a thermal hydrolysis reactor to hydrolyze polymers contained in the dewatered sludge, the hydrolyzed sludge is passed through a digester to digest the hydrolyzed sludge anaerobically, the digested sludge is passed through a second dewatering device to dewater the anaerobically digested sludge to form dewatered cake, solution generated in dewatering with the second dewatering device is passed through a crystallization reactor to crystallize and the remove phosphorus and nitrogen in the solution, and the dewatered cake by the second dewatering device is passed through an incineration or high temperature melt processing apparatus to incinerate or melt the dewatered cake.
US08445252B2
The method for producing functional compost according to the invention includes: inoculating a filamentous fungus with a function, such as the Coprinus curtus GM-21 strain (NITE BP-37) with a plant disease control function, into compost in an bacterial-activity-restricted state which is, for example, at least one state selected from the group consisting of a nutrient-restricted state, a pH-restricted state and a water content-restricted state; and cultivating the filamentous fungus in the compost to allow its selective proliferation. Further, the invention provides functional compost obtained by the above production method, as well as compost for proliferating a filamentous fungus in a bacterial-activity-restricted state.
US08445248B2
The present disclosure relates to oxidative decarbonylase enzymes, methods of making hydrocarbons with such enzymes, hydrocarbons produced therefrom and uses thereof. More particularly, the present disclosure relates to isolated polypeptide sequences that are cytochrome P450 enzymes with oxidative decarbonylase activity and methods of their use to generate hydrocarbon products, such as biofuels.
US08445246B2
A flavin-binding glucose dehydrogenase with a high substrate specificity for D-glucose. The flavin-binding glucose dehydrogenase which is derived from a microorganism belonging to the genus Mucor. The flavin-binding glucose dehydrogenase has a low reactivity for maltose, D-galactose and D-xylose compared to its reactivity for D-glucose, and therefore is relatively unaffected by these saccharide compounds. The flavin-binding glucose dehydrogenase is also relatively unaffected by dissolved oxygen, and allows accurate measurement of glucose amounts even in the presence of saccharide compounds other than glucose in samples.
US08445242B2
An acetyl xylan esterase variant having perhydrolytic activity is provided for producing peroxycarboxylic acids from carboxylic acid esters and a source of peroxygen. More specifically, a Thermotoga maritima acetyl xylan esterase gene was modified using error-prone PCR and site-directed mutagenesis to create an enzyme catalyst characterized by an increase in specific activity. The variant acetyl xylan esterase may be used to produce peroxycarboxylic acids suitable for use in a variety of applications such as cleaning, disinfecting, sanitizing, bleaching, wood pulp processing, and paper pulp processing applications.
US08445240B2
The disclosure provides isolated nucleic acid molecules derived from the gut of the termite R flavipes, recombinant nucleic acid molecules comprising a vector and an isolated heterologous nucleic acid molecule operably inserted therein, whereby, when transformed into an appropriate host cell system, the heterologous nucleic acid sequence is expressed as a polypeptide having an activity similar to that when expressed in the gut of the termite R. flavipes. The recombinant nucleic acid molecules can comprise more than one heterologous nucleic acid molecule such that more than one polypeptide may be expressed by the host system. The expressed polypeptides may be substantially purified, or used in a substantially unpurified form, to be admixed with a lignocellulose source to be converted to a fermentable product such as a sugar or a mixture of sugars. One aspect of the present disclosure, therefore, encompasses methods of converting a lignified plant material to a fermentable product, the method comprising obtaining a series of isolated polypeptides of a termite, wherein the series of polypeptides cooperate to convert a plant lignocellulose to a fermentable product; and incubating the series of polypeptides with a source of lignified plant material, under conditions allowing the polypeptides to cooperatively produce a fermentable product from the lignified plant material.
US08445230B2
The invention provides immunosuppressive polypeptides and nucleic acids encoding such polypeptides. In one aspect, the invention provides mutant CTLA-4 polypeptides and nucleic acids encoding mutant CTLA-4 polypeptides. Compositions and methods for utilizing such polypeptides and nucleic acids are also provided.
US08445229B2
The invention provides methods for generating high titers of high-affinity antibodies from hybridoma cells produced by fusing myeloma cells with in vitro immunized donor cells. The hybridoma cells or mammalian expression cells with cloned antibody genes from the hybridomas producing the high-affinity antibodies may be mismatch repair defective due to defects of endogenous mismatch repair subunits of through expression of a dominant negative allele of a mismatch repair gene which allows the hybridoma cell to be hypermutable, may be rendered hypermutable by chemical means, or may be naturally mismatch repair deficient. High-affinity antibodies and high titer producer cells producing antibodies may be prepared by the methods of the invention.
US08445218B2
The present disclosure relates to detection of the presence or absence of cerebrospinal fluid (CSF) in a sample by the detection of one or more antigens that are enriched in CSF compared to their levels in other bodily fluids. The devices and methods are suitable for the detection of the presence or absence of cerebrospinal fluid in samples of mixed bodily fluids from a wide variety of human populations crossing ethnicity, age, gender, health status and genetic variability.
US08445212B2
Disclosed are a micro-fluidic structure for detecting biomolecules and a micro-fluidic device having the same. More particularly, a target material including at least two cis-diols is detected by a first material containing a boronate moiety and a second material containing another boronate moiety while generating electrical signals.
US08445207B2
The present invention relates to a screening method using the genes related to teratogenicity, more precisely the genes up- or down-regulated by a drug inducing teratogenicity such as thalidomide, valproic acid, and methotrexate and a method for screening of thalidomide, valproic acid and methotrexate using the genes. The genes of the present invention is based on reactive genes selected by DNA microarray chip, so that it is very effective in risk assessment and monitoring drugs or chemicals having high risk of teratogenicity and at the same time it can be used as a tool to examine mechanism of teratogenicity.
US08445196B2
Random arrays of single molecules are provided for carrying out large scale analyses, particularly of biomolecules, such as genomic DNA, cDNAs, proteins, and the like. In one aspect, arrays of the invention comprise concatemers of DNA fragments that are randomly disposed on a regular array of discrete spaced apart regions, such that substantially all such regions contain no more than a single concatemer. Preferably, such regions have areas substantially less than 1 μm2 and have nearest neighbor distances that permit optical resolution of on the order of 109 single molecules per cm2. Many analytical chemistries can be applied to random arrays of the invention, including sequencing by hybridization chemistries, sequencing by synthesis chemistries, SNP detection chemistries, and the like, to greatly expand the scale and potential applications of such techniques.
US08445195B2
The present invention relates to the detection and identification of different bacterial species, all of which cause zoonosis, based on DNA analysis. More specifically, the invention provides the primers, probes, genes and genic regions required to apply a method for the simultaneous detection of bacteria and bacterial groups belonging to the genera Anaplasma, Ehrlichia, Borrelia, Bartonella, Coxiella, Rickettsia and Francisella based on Multiple PCR analysis by RLB (Reverse Line Blotting), in addition to providing a kit to carry out said analysis.
US08445192B2
The present invention provides a method and device for detecting and quantifying the concentration of magnetic-responsive micro-beads dispersed in a liquid sample. Also provided is a method and microfluidic immunoassay pScreen™ device for detecting and quantifying the concentration of an analyte in a sample medium by using antigen-specific antibody-coated magnetic-responsive micro-beads. The methods and devices of the present invention have broad applications for point-of-care diagnostics by allowing quantification of a large variety of analytes, such as proteins, protein fragments, antigens, antibodies, antibody fragments, peptides, RNA, RNA fragments, functionalized magnetic micro-beads specific to CD4+, CD8+ cells, malaria-infected red blood cells, cancer cells, cancer biomarkers such as prostate specific antigen and other cancer biomarkers, viruses, bacteria, and other pathogenic agents, with the sensitivity, specificity and accuracy of bench-top laboratory-based assays.
US08445191B2
Certain disclosed embodiments of the present invention concern the synthesis, derivatization, conjugation to immunoglobulins and signal amplification based on discrete, relatively short polymers having plural reactive functional groups that react with plural molecules of interest. Reactive functional groups, such as hydrazides, may be derivatized with a variety of detectable labels, particularly haptens. The remaining reactive functional groups may be conjugated directly to a specific binding molecule, such as to the oxidized carbohydrate of the Fc region of the antibody. Disclosed conjugates display large signal amplification as compared to those based on molecules derivatized with single haptens, and are useful for assay methods, particularly multiplexed assays.
US08445189B2
The temperature of a developing solution is varied depending on the type of resist or the resist pattern. The developing solution is applied while scanning a developer nozzle having a slit-shaped ejection port that has a length matching the width of the effective area of the substrate. After leaving the substrate with the developing solution being coated thereon for a predetermined period of time, a diluent is supplied while scanning a diluent nozzle, thereby substantially stopping the development reaction and causing the dissolved resist components to diffuse. A desired amount of resist can be quickly dissolved through the control of the developing solution temperature, while the development can be stopped before the dissolved resist components exhibit adverse effect through the supply of the diluent a predetermined timing, whereby achieving a pattern having a uniform line width and improved throughput.
US08445187B2
A hardmask composition includes an organic solvent and one or more aromatic ring-containing polymers represented by Formulae 1, 2 and 3:
US08445178B2
A composition for radical polymerization includes a photosensitive material, a photoinitiator, a solvent, and a material for adjusting a size of a pattern. A method of forming a pattern using the composition is also disclosed.
US08445177B2
A photosensitive adhesive composition comprising: (A) a polyimide having a carboxyl group as a side chain, whereof the acid value is 80 to 180 mg/KOH; (B) a photo-polymerizable compound; and (C) a photopolymerization initiator.
US08445176B2
A lithographic printing plate precursor comprising an image-recording layer, said image-recording layer being photopolymerizable upon exposure to light having a wavelength of from 300 to 500 nm and containing a mixture of sensitizers.
US08445175B2
Disclosed is a lithographic composition for forming a resist underlayer film, which can be used as a lower layer antireflection film by which an exposure light striking on a photoresist formed on a semiconductor substrate is inhibited from being reflected from the substrate in a lithographic process of manufacturing semiconductor equipment, a planarization film for flattening a semiconductor substrate having a rugged surface used in order to fill in a hole formed on the semiconductor substrate, a film which prevents a photoresist from being contaminated by a substance generated from a semiconductor substrate during heating/burning, or the like. The lithographic composition for forming a resist underlayer comprises a polymer having a structure of formula (1): (where Y represents a C1-10 alkylene group or a C6-14 aromatic ring, provided that the alkylene group and the aromatic ring have one or more hydroxyl group(s) being not larger than the number of the replaceable hydrogen atom of the alkylene group and the aromatic ring); and a solvent.
US08445167B2
The invention aims to provide a metal phthalocyanine dye mixture having excellent solubility in an organic solvent, which can be formed into a thin film. Provided are a metal phthalocyanine dye mixture contains at least phthalonitrile, a compound represented by the following formula (I), a compound represented by the following formula (II), and a metal or a metal compound, and a curable composition containing the metal phthalocyanine dye mixture, a color filter containing the curable composition, and a method for producing the color filter: wherein, in formulae (I) and (II), R1 represents a substituent; n represents an integer of from 0 to 3; X represents —S—, —SO2—, or —SO2N(R4)—; R4 represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, or a heterocyclic ring group; R2 represents an alkyl group, an alkenyl group, an aryl group, or a heterocyclic ring group; R3 represents a substituent; m represents an integer of from 0 to 3; and Z represents —SO3M or —(X1-A) group; wherein X1 has the same definition as X; A represents an optionally substituted group having at least one selected from —COOM, —SO3M, —SO2NH—R5, —SO2NHCOR6, —CONHSO2—R7, and —SO2NHSO2—R8; M represents a hydrogen atom, or an alkali metal or organic base group for neutralization of charges; and R5, R6, R7, and R8 each independently represents an alkyl group, an alkenyl group, an aryl group, or a heterocyclic ring group.
US08445164B2
A method of making an electrode is provided. The method includes providing an electrocatalyst decal comprising a carrying substrate having a nanostructured thin catalytic layer thereon; providing a transfer substrate with an adjacent adhesive layer; adhering the nanostructured thin catalytic layer adjacent to the adhesive layer to form a composite structure; removing the carrying substrate from the composite structure; and removing the transfer substrate from the composite structure to form the stand-alone nanostructured thin catalytic film comprising the adhesive layer with the nanostructured thin catalytic layer adhered thereto. A stand alone nanostructured thin catalytic film and methods of constructing electrodes with the stand alone nanostructured thin catalytic films are also described.
US08445157B2
An interconnect for a fuel cell stack includes a first set of gas flow channels in a first portion of the interconnect, and a second set of gas flow channels in second portion of the interconnect. The channels of the first set have a larger cross sectional area than the channels of the second set.
US08445154B2
The present invention provides a fuel cell power system, in which a combustion exhaust gas having a high temperature and generated by the combustion reaction of unreacted fuel gas and oxidizer gas which are not utilized in a power-generating reaction is introduced into a gas header for distributing the fuel gas or the oxidizer gas to a plurality of fuel cells contained in a fuel cell body, in such a way that a larger amount of heat is transferred to the gas which is to be supplied to the cells disposed in a peripheral area of the fuel cell body by heat exchange, and a smaller amount of the heat is transferred to the gas which is to be supplied to the cells disposed in a central area of the fuel cell body.
US08445151B2
A fuel cell system includes a replacing unit for replacing a gas remaining in the anode of the fuel cell with the anode gas supplied anew by the anode gas supply unit when starting up the fuel cell. The amount of the anode gas is set to be lower, if the operation condition determining unit determines that the last operation was performed in a low-temperature and short-time operation mode. The operation condition determining unit sets the amount of the anode gas so that the gas remaining in the anode can be replaced with the anode gas with an entire anode capacity if the anode was been scavenged while no electro-chemical reaction was progressing in the fuel cell. The present invention can set the amount of anode gas appropriately when starting up the fuel cell.
US08445148B2
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
US08445134B2
An electrochemical cell for a secondary battery is provided, which includes a positive electrode having an intercalation cathode material of bentonite; a negative electrode material having an anode material containing one of magnesium and sodium; an electrolyte positioned in contact with at least one of the positive electrode and the negative electrode; wherein, when the anode material contains magnesium, the electrolyte is a solid gel polymeric electrolyte; and wherein, when the anode material is sodium, the electrolyte is a salt electrolyte, both the anode material and the electrolyte are molten at the operating temperature of the battery, and the cell further comprises a beta alumina solid electrolyte separator between the negative electrode and the electrolyte. To increase its conductivity, the bentonite material is treated, before cell assembly, with an acid and/or intercalated with an anilinium ion, which is then polymerized to form a polyaniline within the bentonite framework.
US08445130B2
An electrochemical device is claimed and disclosed wherein certain embodiments have a cathode greater than about 4 μm and less than about 200 μm thick; a thin electrolyte less than about 10 μm thick; and an anode less than about 30 μm thick. Another claimed and disclosed electrochemical device includes a cathode greater than about 0.5 μm and less than about 200 μm thick; a thin electrolyte less than about 10 μm thick; and an anode less than about 30 μm thick, wherein the cathode is fabricated by a non-vapor phase deposition method. The electrochemical device may also include a substrate, a current collector, an anode current collector, encapsulation and a moderating layer.
US08445124B2
A battery pack having increased resistance against an external impact by increasing a coupling strength between a bare cell and a case resulting in increased reliability and quality. The battery pack includes a bare cell; a circuit module electrically connected to the bare cell; a frame case surrounding the bare cell and including a channel groove arranged at a region facing the bare cell; and a coupling reinforcement portion arranged in the channel groove to couple the frame case to the bare cell.
US08445122B2
A data storage medium includes a carrier substrate having an electrode layer on the surface thereof and a sensitive material layer extending along the electrode layeradapted to be locally modified between two electrical states by the action of a localized electric field. A reference plane extends globally parallel to the sensitive material layer and is configured to accommodate at least one element for application of an electrostatic field in combination with the electrode layer the electrode layer including a plurality of conductive portions having a dimension at most equal to 100 nm in at least one direction parallel to the reference plane and separated by at least one electrically insulative zone, where at least some of the conductive portions are electrically interconnected, the conductive portions defining data write/read locations within the sensitive material layer.
US08445106B2
An object of the present invention is to provide a resin-coated metal sheet which not only is excellent in stamping performance (lubricity of a resin layer) and film removability by alkaline cleaning but also has improved blocking resistance. Further, another object of the present invention is to provide a resin composition used for forming a resin layer having such properties on a metal sheet. A resin-coated metal sheet according to the present invention is characterized in that a resin layer containing polyethylene glycol whose number average molecular weight is 18,000 to 500,000 and paraffin wax whose average molecular weight is 400 or less is laminated on one side or both the sides of the metal sheet.
US08445102B2
According to various aspects, exemplary embodiments are provided of thermal interface material assemblies. In one exemplary embodiment, a thermal interface material assembly generally includes a thermal interface material having a first side and a second side and a dry material having a thickness of about 0.0005 inches or less. The dry material is disposed along at least a portion of the first side of the thermal interface material.
US08445090B2
Provided is a fixing belt which has high thermal conductivity capable of achieving an excellent fixing property that can respond to the recent increase in printing speed, which has a proper degree of elasticity such that color toners are sufficiently enveloped so as to be melted and mixed, and which has excellent mechanical strength and durability. A fixing belt includes a tubular base member, an elastic layer disposed on the outer circumferential side of the base member, and a surface layer disposed on a surface on the outer circumferential side of the elastic layer, the fixing belt being characterized in that the elastic layer is composed of rubber into which a filler primarily composed of silicon carbide powder and a carbon nanotube are compounded, and the formulae 10X+3Y<750, 3X+30Y>170, X>10, and Y>0.1 are satisfied, where X is the percent by volume of the filler and Y is the percent by volume of the carbon nanotube in the elastic layer.
US08445083B2
Certain example embodiments of this invention relate to articles including anticondensation coatings that are exposed to an external environment, and/or methods of making the same. In certain example embodiments, the anticondensation coatings may be survivable in an outside environment. The coatings also may have a sufficiently low sheet resistance and hemispherical emissivity such that the glass surface is more likely to retain heat from the interior area, thereby reducing (and sometimes completely eliminating) the presence condensation thereon. The articles of certain example embodiments may be, for example, skylights, vehicle windows or windshields, IG units, VIG units, refrigerator/freezer doors, and/or the like.
US08445076B2
In one embodiment, a method of modifying a surface of a membrane includes exposing the surface to an impinging atmospheric pressure plasma source to produce an activated surface, and exposing the activated surface to a solution including a vinyl monomer. In another embodiment, a method of manufacturing a desalination membrane includes treating a surface of the membrane with an impinging atmospheric plasma source for an optimal period of time and rf power, and exposing the surface to an aqueous solution containing a vinyl monomer. In another embodiment, an apparatus includes a membrane having a surface, and polymer chains terminally grafted onto the surface of the membrane.
US08445074B2
The present invention is directed to a method of treating a tire cord, comprising the steps of A) atomizing a mixture of at least one polymerizable monomer, a halogenated saturated hydrocarbon, and a carrier gas to form an atomized mixture; B) generating an atmospheric pressure plasma from the atomized mixture; and C) exposing the tire cord to the atmospheric pressure plasma under conditions suitable to form a polymer strongly bonded to the tire cord and capable of bonding to rubber.
US08445055B2
The invention relates to a method for the fabrication of composite palladium or palladium alloy membranes. The surface of the porous ceramic substrate is modified with pencil to create a uniform and smooth layer, and the membrane is deposited via electroless plating. The advantages of the pencil modification are a reduction of the substrate surface roughness and a repair of substrate surface defects, which leads to a great improvement in the membrane uniformity and hydrogen permeation performances. This method is facile and economic, and it is especially effective on low-cost macroporous ceramic substrate materials. Furthermore, this method generates almost no pollution and therefore is environmentally benign.
US08445054B2
The Present Invention relies upon a physical process for preparing reduced fat, high fiber, high protein, low calorie roasted snack nuts. The process of the Present Invention exhibits significantly lower process times and higher yields than the prior art processes. The process comprises expelling the oil from nutmeat kernels (defatting) using a novel pressing process that takes less than a minute. The defatting process deforms the nuts. The nuts are reformed to their original shape using water. Then the reformed nuts are annealed using cold water to produce hardened nuts. The nuts are then dried and post-processed with coatings and roasting using state-of-the-art technology. The yield of snack nuts produced by this process is generally greater than eighty percent.
US08445053B2
A concentrate derived from milk or a milk product comprising sialyllactose in amounts higher than the normal amounts found in the milk or milk product and a process for preparation of such a concentrate by ultrafiltration and diafiltration using a thin film polyamide based membrane. The concentrate is suited for use in nutritional products.
US08445051B2
One aspect of the present invention provides a compound represented by formula (I), wherein, R1 is hydrogen or an acetyl group and R2 is a C1-3 straight chain or branched alkyl group. Another aspect of the present invention provides flavor or fragrance compositions comprising at least one compound of formula (I).
US08445049B2
A system and method of packaging a food product which provides a long shelf life, wherein the food product is cooked on rollers heated to 500° to 550° F. degrees in an oven heated to 750° to 800° F. for less than ten minutes and then enters a blast chiller at about 5° F. After cooling the product to 40° F. the product is placed in a cook-in bag, seasonings are added and the bag is vacuum-sealed and stored in a cooler at about 40° F. or lower. The seasonings are irradiated prior to being added to the food product to further control pathogen growth.
US08445046B2
A method for packaging crabmeat including the steps of providing a flexible pouch, placing a volume of crabmeat into the flexible pouch, controlling a volume of ambient air in the flexible pouch to obtain an ambient air to crabmeat ratio within the flexible pouch of about 13-20% by volume, sealing the flexible pouch to maintain the ambient air to crabmeat ratio within the flexible pouch, and pasteurizing the flexible pouch.
US08445045B2
A pineapple coating application device may include a frame, and a pineapple roller conveyor carried by the frame and having laterally extending conveyor brushes to advance pineapples along a longitudinal path of travel. Adjacent ones of the laterally extending conveyor brushes may rotatably capture the pineapples therebetween. The pineapple coating application device may include a pineapple coating dispenser, and a laterally extending applicator brush positioned above the pineapple roller conveyor to cooperate with the laterally extending conveyor brushes to apply a coating to the pineapples from the pineapple coating dispenser as the pineapples are rotated and advanced along the longitudinal path of travel.