US08761249B2
A highly accurate reproduction of visual intensity and contrast rather than the conventional 8-bit color depth is more and more used, motivating the development of an enhanced dynamic range called high bit-depth. A method for encoding a first, low bit-depth image of M bit RGB pixels and a second, high bit-depth video image of N bit RGB pixels, M
US08761238B2
A method and an apparatus for correcting a frequency offset are provided. The method includes: receiving n channels of first signals; performing frequency offset correction processing on the n channels of first signals to obtain n channels of first corrected signals; acquiring n center tap coefficients of a space time equalizer, n first output phases of a phase-locked loop phase detector, and a second output phase of a phase-locked loop phase detector; acquiring n first estimated frequency offset values according to the n center tap coefficients and the n first output phases; acquiring a second estimated frequency offset value according to the second output phase; and receiving n channels of second signals, and performing frequency offset correction on the n channels of second signals according to the n first estimated frequency offset values and the second estimated frequency offset value.
US08761228B2
A narrow-channel transmitter in a dual-radio communication device reduces its bandwidth for the benefit of a wide-channel receiver in the dual-radio communication device. Narrow channels are marked as unavailable based on actual off-line adjacent channel rejection ‘ACR’ information that characterizes tolerance of the wide-channel receiver to adjacent channel interference ‘ACI’ caused by transmissions from the narrow-channel transmitter.
US08761226B2
A laser oscillation device includes an oscillation unit oscillating a laser, a shutter unit covering the laser, and a connection unit covering the laser, connecting the oscillation unit and the shutter unit and including a first connection part supported by the oscillation unit and a second connection part supported by the shutter unit. The first and second connection parts are separated from each other, and one of the first and second connection parts covers at least a portion of the other one of the first and second connection parts.
US08761224B2
An optically pumped semiconductor laser is assembled in an enclosure comprising a base, a first mounting frame attached to the base, a second mounting frame attached to the first mounting frame and a cover attached to the second mounting frame. The assembly base, frames, and cover forms an undivided enclosure, with the frames contributing to walls of the enclosure. Components of the laser are assembled sequentially on the base and the frames. The frames are irregular in height to permit flexibility in the mounting-height of components. This reduces the extent to which compactness of the enclosure is limited by any one component.
US08761219B2
An optoelectronic semiconductor chip includes a semiconductor body containing an active region, a mirror layer, and contact points arranged between the semiconductor body and the mirror layer and providing a spacing D between the semiconductor body and the mirror layer, whereby at least one cavity is formed between the mirror layer and the semiconductor body and the at least one cavity contains a gas.
US08761213B2
A frequency-doubled OPS-laser having a desired output wavelength of 532 nm is tunable about that wavelength by a temperature tuned birefringent filter (BRF). The temperature of the BRF is varied while measuring transmission of a sample of the output through a Nd:YAG crystal having an absorption peak at a wavelength of about 532.4 nm. The peak is detected as a minimum of transmission and the temperature at which that minimum occurs is recorded. From wavelength-change-versus-temperature data for the BRF a temperature is calculated at which the output wavelength has the desired value and is maintained at that value to stabilize the output wavelength.
US08761212B2
A method for operating a laser device, which has a laser-active solid-state body including a preferably passive Q switch, in which pumped light is applied to the laser device in order to generate a laser pulse. The laser device and/or an optical link between the laser device and a pumped light source supplying the pumped light is at least partially acted upon by an optical test pulse in order to check the integrity of a/the optical link between the laser device and a pumped light source supplying the pumped light.
US08761204B2
Described embodiments provide for processing received data packets into packet reassemblies for transmission as output packets of a network processor. A packet assembler determines an associated packet reassembly of data portions and enqueues an identifier for each data portion in an input queue corresponding to the packet reassembly associated with the data portion. A state data entry corresponding to each packet reassembly identifies whether the packet reassembly is actively processed by the packet assembler. Iteratively, until an eligible data portion is selected, the packet assembler selects a given data portion from a non-empty input queue for processing and determines if the selected data portion corresponds to a reassembly that is actively processed. If the reassembly is active, the packet assembler sets the selected data portion as ineligible for selection. Otherwise, the packet assembler selects the data portion for processing and modifies the packet reassembly based on the selected data portion.
US08761203B2
Provided are a method for determining the packet type for a Scalable Video Coded (SVC) video bitstream, and a Real-time Transport Protocol (RTP) packetizing apparatus and method using the same. The method for determining a packet type for a Scalable Video Coded (SVC) video bitstream, which includes the steps of: a) deriving temporal and spatial hierarchy information between Network Abstraction Layer (NAL) units from field information defined in the NAL unit headers of scalable layers; b) detecting the type of encoding information by applying combined scalability encoding to the hierarchical structure of the Scalable Video Coding (SVC); and c) determining a Real-time Transport Protocol (RTP) packet type for the corresponding SVC video bitstream by using the derived temporal and spatial hierarchy information between the NAL units and the detected type of encoding information.
US08761198B2
Telecommunication systems should be able to handle different protocols. Thereto, with a first protocol being Internet Protocol v6 using 128-bit addresses of a first kind and with a second protocol being Internet Protocol v4 using 32-bit addresses of a second kind, an access system is provided with a generating section for, in response to an address of one kind, generating a corresponding address of an other kind for a terminal-to-terminal communication and independently of which terminal has initiated said terminal-to-terminal communication. For a set-up phase, a replacing section replaces addresses of a second kind by corresponding addresses of a first kind, and an adding section adds, in addition to addresses of a first kind, corresponding addresses of a second kind, in set-up messages. For a communication phase, activating sections activate translating sections, which translating sections translate addresses of one kind into addresses of an other kind, in packets.
US08761189B2
A method for communication, includes allocating, in a network interface controller (NIC) a single dynamically-connected (DC) initiator context for serving requests from an initiator process running on the initiator host to transmit data to multiple target processes running on one or more target nodes. The NIC transmits a first connect packet directed to a first target process and referencing the DC initiator context so as to open a first dynamic connection with the first target process. The NIC receives over the packet network, in response to the first connect packet, a first acknowledgment packet containing a first session identifier (ID). Following receipt of the first acknowledgment packet, the NIC transmits one or more first data packets containing the first session ID over the first dynamic connection from the NIC to the first target process. Dynamic connections with other target processes may subsequently be handled in similar fashion.
US08761186B2
An outlet for a Local Area Network (LAN), containing an integrated adapter that converts VoIP to and from analog telephony, and a standard telephone jack (e.g. RJ-11 in North America) for connecting an ordinary analog (POTS) telephone set. Such an outlet allows using analog telephone sets in a VoIP environment, eliminating the need for an IP telephone set or external adapter. The outlet may also include a hub that allows connecting both an analog telephone set via an adapter, as well as retaining the data network connection, which may be accessed by a network jack. The invention may also be applied to a telephone line-based data networking system. In such an environment, the data networking circuitry as well as the VoIP/POTS adapters are integrated into a telephone outlet, providing for regular analog service, VoIP telephony service using an analog telephone set, and data networking as well. In such a configuration, the outlet requires two standard telephone jacks and a data-networking jack. Outlets according to the invention can be used to retrofit existing LAN and in-building telephone wiring, as well as original equipment in new installation.
US08761178B2
The present disclosure provide a method for creating a stream forwarding entry includes: receiving, by a data communication device, a packet; making statistics on the received packet to obtain a statistical value of a stream corresponding to the packet; judging whether the statistical value of the stream exceeds a preset threshold value; and if exceeds the preset threshold value, creating, by the data communication device, a stream forwarding entry for the stream corresponding to the packet, and performing stream forwarding for subsequent packets of the stream according to the stream forwarding entry. Through the present disclosure, the number of stream forwarding entries in a stream table is reduced, the required storage space is reduced, and the maintenance of the stream table is simplified; moreover, the data communication device is not vulnerable to attacks of denial of service and is highly secure.
US08761177B2
A telecommunications system having a format converter provides bi-directional communications between TDM signals on one side and ATM signals on the other. An ATM aggregate receives and transmits ATM signals, and a TDM interface receives and transmits TDM signals. The format converter has an ATM bus and a TDM bus connected to their respective interfaces, and service-specific adapters are connected between the ATM bus and the TDM bus.
US08761176B2
A path control method includes a procedure for developing a path control message including regional information in transmission on the network. The regional information designates a path and/or a path length for transmitting the path control message. The path control message includes a regional property for instructing each node as to how to process the regional information either in a strict manner or in a flexible manner. With reference to the regional information and/or the regional property, each node is capable of selecting a destination node to which the path control message is to be transmitted, stopping the further transmission of the path control message, or discarding the path control message.
US08761169B2
A method includes inserting a vector in a packet that identifies a first device in a stack of packet forwarding devices to receive the packet.
US08761167B2
A method begins by a processing module generating a payload section of a dispersed storage network (DSN) frame regarding a list range request operation by generating a start slice name field of the payload section to include a start slice name of a slice name range, generating an end slice name field of the payload section to include an end slice name of the slice name range, and generating a maximum response count field of the payload section to include a maximum slice name response count. The method continues with the processing module generating a protocol header of the DSN frame by generating a payload length field of the protocol header to include a payload length that represents a length of the payload section and generating remaining fields of the protocol header.
US08761158B2
A communication terminal into which communication data can be input and which can receive a message signalling that at least one further communication terminal is ready to receive the communication data. Following receipt of the message, a transmission device configured to operate in a first mode, in which it sends data at a first data rate, and in a second mode, in which it sends data at a second data rate, which is higher than the first data rate, is used to send the communication data in the second mode.
US08761157B2
A method and a system for calling a traditional circuit switched domain network user by a packet core network. The method includes: after receiving a request message from a call session control unit, a media gateway control unit sends the call session control unit a first call progress message carrying a preset prompt tone indicating please wait; the media gateway control unit sends an initial address message to the traditional circuit switched domain network and start a preset timer; if the timer expires and the traditional circuit switched domain network does not respond, the media gateway control unit sends the call session control unit a second call progress message carrying a preset prompt tone indicating that the other party is temporarily unaccessible, and the media gateway control unit proceeds according to a preset policy. Resource waste due to waiting is avoided and better user friendliness of a service is provided.
US08761152B2
A computer readable medium comprising computer readable code for data transfer. The computer readable code, when executed, performs a method. The method includes receiving, at a first Axon, an ARP request from a source host directed to a target host. The method also includes obtaining a first route from the first Axon to the second Axon, and generating a target identification corresponding to the target host. The method further includes sending an Axon-ARP request to the second Axon using the first route, and receiving an Axon-ARP reply from the second Axon, where the Axon-ARP reply includes a second route. The method further includes storing the first route in storage space on the first Axon, where the storage space is indexed by the target identification, and sending an ARP reply to the first host where the source host is configured to send a packet to the target host.
US08761143B2
When a wireless communication network is built in an ad hoc mode, it is possible to appropriately build the wireless communication network regardless of start timings of wireless communication functions of image capturing apparatuses. In order to achieve the object, there is provided the image capturing apparatus which is capable of building a wireless communication network by wirelessly connecting to another image capturing apparatus in an ad hoc mode, and which is capable of switching between a function as a creator and a function as a joiner, including a start unit configured to start as the creator, a unit configured to execute a scan process, and a unit configured to determine based on a result of the scan process whether to function as the creator and to function as the joiner, and to control the image capturing apparatus in accordance with the determination result.
US08761137B2
The first wireless communication unit configured to wirelessly communicate with a first wireless apparatus on a first wireless network. The beacon transmitting unit cyclically transmits a beacon signal to the first wireless apparatus via the first wireless communication unit. The period determiner determines a transmission permission period during which data transmission by the first wireless apparatus is permitted. The notification unit notifies a control signal specifying the transmission permission period to the first wireless apparatus via the beacon signal. The power managing unit performs control so that power supply to the first wireless communication unit is suspended during a suspension period, the suspend period being a period except both the transmission permission period and a transmission timing period of the beacon signal within a whole period.
US08761136B2
A method for eliminating interference in a receiver (RX) includes: obtaining Bluetooth (BT) information and wireless local area network (Wireless LAN, WLAN) information by performing detection on at least one RX signal, wherein the RX signal is received through an antenna of the RX, and the RX signal includes components of both a BT signal and a WLAN signal that are respectively emitted from at least one transmitter (TX); and performing maximum likelihood (ML) joint detection on frequency representatives of the RX signal according to the BT information and the WLAN information and according to a predetermined library, in order to extract at least one of a reproduced version of the BT signal and a reproduced version of the WLAN signal. An associated apparatus is also provided.
US08761124B2
Apparatus and methods for wireless communication transmission power control are provided. Determination of gain factors and adjustments for physical channel reconfiguration in the context of transmission power control are addressed. Preferably, implementation is in conjunction with communication systems in which wireless communications are conducted between wireless transmit receive units (WTRUs) using multiple channels that are concurrently transmitted.
US08761114B2
The present invention relates a method and apparatus for transmitting/receiving data using multiple codewords in a communication system using SC-FDMA (single carrier frequency division multiple access). A transmitter generates the multiple codewords for user data and transmits the generated multiple codewords. A receiver receives the multiple codewords and sequentially performs decoding and SIC (successive interference cancellation) on the received multiple codewords. Therefore, this structure can minimize a PAPR (peak to average power ratio) and considerably reduces interference between symbols in a frequency selective fading environment.
US08761113B2
A User Equipment (UE), a method for determining a resource, a method for reporting a resource, and a system for distributing a resource are provided. The method for determining a resource includes: if transmission data on the carrier reaches maximum transmission data supported in a scope allowed by Service Grant (SG), and a transmission power of the UE is capable of improving a data transmission rate of the carrier, and the carrier and the other one carrier of the dual carriers are incapable of completing transmitting total buffer status data in the same delay period, determining that a resource distributed to a UE on one carrier of dual carriers of the UE is insufficient; otherwise, determining that the resource distributed for the UE on the carrier is sufficient. Therefore, a solution for reporting the resource of the dual carriers is provided, so as to improve a network performance.
US08761106B2
When allocating CCEs as a radio resource to a plurality of radio terminals within a predetermined sector, the disclosed radio base station (1) acquires an AL for each radio terminal within the predetermined sector, and sets a CCE allocating order for the radio terminals in descending order of corresponding AL size. Furthermore, the radio base station (1) allocates CCEs to predetermined radio terminals to be allocated to in accordance with the set allocating order.
US08761104B2
An apparatus includes means for providing load information, said load information for sending from one of an access node and a relay node associated with said access node to the other of said relay node and access node.
US08761102B2
A method and apparatus for selecting a bandwidth option for a cell in a network are disclosed. For example, the method obtains, for the cell, network traffic data for a geographical area, and a physical characteristic of an antenna in the geographical area, determines busy time data traffic from the network traffic data, determines, for the cell, a cell range from the physical characteristic of the antenna, selects a bandwidth option from a plurality of bandwidth options, and determines an average throughput in accordance with the bandwidth option that is selected and the cell range.
US08761099B2
An approach is provided for scheduling resources for device-to-device communications. A resource of a network is granted to a group designated for device-to-device communications. The group then determines how the resource allocation is utilized to support the communication session and allocates the resource among the user equipment within the group independently of the base station. Further, a user equipment pair in the group determines transmit/receive (Tx/Rx) timeslot configuration to allow TDD mode operations, and further configure the modulation and coding for the device-to-device connection, and error control scheme for the pair via control signaling independently from the group.
US08761098B2
The present invention relates to a method for transmitting pilot signals in a downlink multiple-input multi-output (MIMO) system which supports a first user equipment (UE) for supporting an N number of transmitter antennas from among a total M number of transmitter antennas, and a second UE for supporting said M (wherein, M>N) number of transmitter antennas. The method comprises the steps of: enabling a base station to map pilot symbols in a resource block (RB) on a subframe for transmitting user-specific pilot symbols which can be recognized only by the second UE; and enabling the base station to transmit the subframe in which the pilot symbols are mapped. The cell-specific pilot symbols for transmitter antenna port 0 to N−1, which can be recognized by both the first UE and the second UE, and the user specific pilot symbols for transmitter antenna ports N to M−1, which can be recognized only by the second UE, are mapped in the allocated resource block.
US08761096B2
A random access procedure is performed by receiving information related to a random access preamble, the information indicating a first random access preamble related to a first format and a second random access preamble related to a second format; selecting a random access preamble according to the received information; transmitting the selected random access preamble; receiving a random access response; and decoding the received random access response according to the format associated with the selected random access preamble.
US08761054B2
An access point comprising a first interface for communicating with a plurality of subscriber terminals wirelessly, wherein the access point supports an internet protocol push-to-talk service and supports a protocol for a quality of service enabled wireless local area network and a second interface for communicating with a broadband access network terminal is described.
US08761050B2
A network integration system/method allowing computer network functionality in a coordinated/concerted fashion in network configurations that are local to and/or spanning network gateway routers is disclosed. The system utilizes a Smart Gateway Power Controller (SGPC) to interact within a home automation network (HAN) to permit the local HAN to operate as a distinct network but still permit access to/from remote networks such as the Internet. The system permits inter-networking of HAN devices (including SGPCs) and device interaction as a group with consumers within a man-machine “social network,” where information is pushed/pulled just as with a conventional social network. The system/method allows HAN device setup/action/monitoring wherein HAN devices host a number of user interfaces supported locally and externally to web interfaces/networks, these interfaces supporting local/remote access devices including mobile phones, tablet computers, laptops, desktop computers, and the like.
US08761041B2
A femto base station registers IDs of neighboring macro base stations and the ID of a terminal into a management device. When the femto base station detects that the communication state of a terminal in communication with the femto base station transited from active to idle, the femto base station hands off the communication session to one of the neighboring macro stations and enters the dormant state. When the macro base station detects that the communication state of the terminal transited from idle to active, the macro base station transmits an inquiry to the management device, identifies a femto base station to be started based on the terminal ID and the macro base station ID and starts the femto base station. When the femto base station is started, it is handed off from the macro base station to the femto base station to maintain the communication session of the terminal.
US08761036B2
A control application of some embodiments allows a user to enable a logical switching element for Quality of Service (QoS). QoS in some embodiments is a technique to apply to a particular logical port of a logical switching element such that the switching element can guarantee a certain level of performance to network data that a machine sends through the particular logical port. The control application of some embodiments receives user inputs that specify a particular logical switch to enable for QoS. The control application may additionally receive performance constraints data. The control application in some embodiments formats the user inputs into logical control plane data. The control application in some embodiments then converts the logical control plane data into logical forwarding data that specify QoS functions.
US08761034B2
A system and method of demultiplexing Provider Backbone Bridging Traffic Engineering (PBB-TE) service instances. The method is used when monitoring service instances between a first bridge port and a second bridge port by exchanging CFM frames over each service instance. The CFM frame is received by the second bridge port where the complete ESP—3-tuple is demultiplexed. The CCM frames may be demultiplexed by a Full Traffic Engineering Service Instance Multiplex Entity which demultiplexes both the source address value and destination address value of the CCM frames.
US08761033B2
A process for wireless communications is disclosed herein that includes specifying transmission parameters for a plurality of wireless nodes in a single frame; and transmitting the single frame. An apparatus for performing the process is also disclosed herein.
US08761025B2
A method used for testing the communication performance of a plurality of wireless signal access devices, and the steps of the testing method of each wireless signal access device include: (a). booting up the wireless signal access device; (b). activating said the wireless signal access device to transmit or receive testing packets to test the communication performance of the wireless signal access device. The feature of the present invention lies in completing a step a of the next wireless signal access device before completing a step b of a first wireless signal access device, and starting the step b of the next wireless signal access device in an appropriate timing after completing the step b of the first wireless signal access device, thereby reaching the goal of reducing the test time.
US08761016B2
Systems and methods of intelligent policy enforcement in access networks are disclosed. One such method is implemented in a network device and comprises updating a traffic history with information associated with an incoming packet arriving from or destined to a subscriber link. The method also comprises calculating a drop probability for a next traffic instant and predicting a traffic rate for each of a plurality of flows on the subscriber link. The method also comprises determining whether the incoming packet conforms to a traffic policy associated with the incoming packet. The method also comprises determining whether surplus bandwidth is available on the subscriber link. The method also comprises forwarding the packet responsive to the determination that the incoming packet does not conform and that surplus bandwidth is available.
US08761014B1
An apparatus and method for authenticating a data transmission across a network. Variations in data rate of data received across the network are detected, and the received data are authenticated when the variations conform to a preselected variable data rate profile. Preferably, an average data rate is first determined, and the data rates of individual data rates of blocks of the received data are compared to the average data rate. Some of the data rates are preferably faster than a selected threshold. Different portions of the received data preferably take different, parallel paths through the network from a transmitter to a receiver. Preferably, the received data are transmitted via packets. The data rate is preferably varied by using different densities of data packets, or by selectively delaying selected packets. Data authentication preferably results in grant of user access to the received data.
US08761012B2
The packet relay apparatus is provided. The packet relay apparatus includes a receiver that receives a packet; and a determiner that determines to drop the received packet without storing the received packet into a queue among the multi-stage queue. The determiner determines to drop the received packet at a latter stage, based on former-stage queue information representing a state of a queue at any former stage which the received packet belongs to and latter-stage queue information representing a state of a queue at the latter stage which the received packet belongs to.
US08761006B2
In one embodiment, the present disclosure is a method and apparatus for provisioning a backup signaling channel. In one embodiment, a method for provisioning a backup D channel in a media gateway includes provisioning a primary D channel on a first media gateway card in the media gateway and provisioning the backup D channel on a second media gateway card in the media gateway that is different from the first media gateway card, wherein the backup D channel backs up the primary D channel.
US08761004B2
A link control function unit 506 of a device 500 notifies a counterpart device 600 of a line in which a link disconnection occurs among lines 508 to 510 and L500 terminated at line terminals 501 to 503 or a lower stage line terminal 504 of the self device 500 and the cause of the link disconnection is not a forcible closure of a line terminal of the self device. Further, the link control function unit 506 does not forcibly close the lower stage line terminal 504 of the self device 500 if a line in which a link disconnection occurs, notified from the counterpart device 600, is a line terminated at a lower stage line terminal 604 of the counterpart device 600.
US08760993B2
In a method and a transmitter data is transmitted to two mobile stations sharing the same frequency band and the same timeslot. The data is modulated using a quaternary symbol constellation. Further, the data is transmitted to two mobile stations multiplexed on a shared channel comprising two branches and the transmission power for the transmitted data is set in response to the relative gain of the two branches. Hereby, the total system interference is reduced. The method and transmitter further allows for a cellular radio system individual power control loops for the two sub-channels when the system uses MUROS.
US08760990B2
An optical pickup apparatus including an objective lens capable of enhancing temperature characteristics and wavelength characteristics, and which enables compatibility for three types of optical discs of BDs, DVDs, and CDs by using the objective lens in common, an optical information recording and reproducing apparatus, and an objective lens suitable for it. In a first optical path difference providing structure in which at least a first basic structure and a second basic structure are superimposed on each other, an amount of a level difference in an optical axis direction can be reduced, whereby it becomes possible to suppress the lowering of a diffraction efficiency when wavelength changes. Further, in the first basic structure and the second basic structure deterioration of the spherical aberration due to the change of the refractive index of the objective lens can be corrected by utilizing a phenomenon that the wavelength of the light source rises similarly due to a rise in the environmental temperature.
US08760985B2
Address information that has been error correction encoded is recorded on a second version of a recording medium after being transformed such that such that the address decoding cannot be performed by a playback device that is not compatible with the second version of the recording medium. The address decoding for the second version of the recording medium cannot be performed by the incompatible playback device (for example, a playback device that was manufactured to be compatible only with a first version of the recording medium). In other words, in the playback device that is not compatible with the second version of the recording medium, a state is created in which address errors cannot be corrected, so access is impossible (recording and playback are impossible).
US08760981B2
There are provided an optical disc device and its recording/reproducing method for managing the management information about plural optical discs efficiently. In the present invention, the management information about the plural optical discs is stored in a memory. Moreover, the management information about part or all of the optical discs stored in the memory is recorded in the optical disc.
US08760980B2
Apparatus for recording data and method for making the same. In accordance with some embodiments, a magnetic recording layer is adapted to store data along perpendicular magnetic domains. A protective overcoat layer is formed on the magnetic recording layer to substantially protect the magnetic recording layer from environmental effects. The protective overcoat layer is made of carbon intermixed with at least one transition metal, such as but not limited to chromium.
US08760976B2
An alarm clock having a body alarm system and a satellite device is provided. The body alarm system includes a main control unit, a satellite connector, and a power supply, and the satellite device includes a satellite device satellite control unit, a body connector, an alarm signal unit, and a battery.
US08760975B2
This device for displaying time periods comprises a display element (A), an indicator component (1), a drive component (3) for driving the indicator component (1), an instantaneous-jump cam (6) engaged with the drive component (3), a drive mobile (5) for driving the cam (6) and correction means (4) for coming into direct engagement with the indicator component (1). A one-way connection device (3b, 11, 12) connects the drive mobile (5) to the cam (6). The drive component (3) is engaged with the cam (6) by elastic return means (3d) and guidance means (3b) defining a degree of freedom of the drive component (3) in order to allow the indicator component (1) to move the drive component (3) against the elastic return means (3d) when the latter occupies a position interfering with the movement of the indicator component (1) by the correction means (4).
US08760972B1
The invention provides devices and methods for using acoustics to communicate between a macro-scale transceiver and a micro-device or between multiple micro-devices. The micro-devices may passively scatter sound from a transceiver or actively generate sound. Acoustic waves can also provide power to a micro-device.
US08760955B2
A mechanism of reconfiguring an eFuse memory array to have two or more neighboring eFuse bit cells placed side by and side and sharing a program bit line. By allowing two or more neighboring eFuse bit cells to share a program bit line, the length of the program bit line is shortened, which results in lower resistivity of the program bit line. The width of the program bit line may also be increased to further reduce the resistivity of program bit line. Program bit lines with low resistance and high current are needed for advanced eFuse memory arrays using low-resistivity eFuses.
US08760951B2
A method of reading data in a non-volatile memory device compensates for a change in a reading/verifying result in accordance with a change of temperature. The method includes sensing a temperature of a memory cell, setting a first voltage and a second voltage of a bit line sensing signal in accordance with the sensed temperature so that a difference of the first voltage and the second voltage is increased as the temperature increases, precharging a bit line in accordance with the set first voltage, and sensing data of the memory cell in accordance with the set second voltage. The method may read/verify data constantly even though a temperature is changed.
US08760943B2
A semiconductor apparatus according to an aspect of the present invention includes first and second bus-interface circuits, a first memory core connected to the first bus-interface circuit through a first data bus, the first memory core being connected to a first access control signal output from the first bus-interface circuit, a second memory core connected to the second bus-interface circuit through a second data bus, and a select circuit that selectively connects one of the first access control signal and a second access control signal output from the second bus-interface circuit to the second memory core.
US08760932B2
Symmetrical or asymmetrical noise distributions for voltages corresponding to symbols that can be stored in multi-level memory cells (MLCs) of a memory device are used to determine read reference and/or programming voltages. The read reference voltages and/or programming voltages for the MLCs are jointly determined using the symmetrical distributions and a maximum likelihood estimation (MLE) and/or by determining at least one of the read reference voltages and the programming voltages using the asymmetrical distributions.
US08760930B1
A source-sensing configuration for non-volatile memory devices to simultaneously read 2 bits in two different memory cells sharing a same word line is disclosed. In a first cell arrangement, a drain of a first read cell is biased and its source and that of two adjacent cells in a direction towards the second read cell are connected through source bit lines to a source sense amplifier. In a second cell arrangement, the drain of the second read cell is biased and its source and that of its two adjacent cells in a direction towards the first read cell are connected through source bit lines to a source sense amplifier. A memory cell acts as a cell pipe and joins together the first and second cell arrangements. Driving all six source bit lines simultaneously allows the 2 bits to be simultaneously read while maintaining currents due to pipe effect substantially minimized.
US08760927B2
A complementary metal-oxide-semiconductor (CMOS) static random access memory (SRAM) with no well contacts within the memory array. Modern sub-micron CMOS structures have been observed to have reduced vulnerability to latchup. Chip area is reduced by providing no well contacts within the array. Wells of either or both conductivity types may electrically float during operation of the memory. In other implementations, extensions of the array wells into peripheral circuitry may be provided, with well contacts provided in those extended portions.
US08760923B2
A semiconductor memory device comprises a memory controller, and an array of memory cells coupled to communicate with the memory controller. The memory controller is configured to perform a first soft program operation using first soft program voltages and a first soft program verify level, and determine whether a first charge trapping threshold has been reached. When the first charge trapping threshold has been reached, a second soft program operation is performed using second soft program voltages and a second soft program verify level.
US08760917B2
A non-volatile memory cell with high bit density is disclosed. Embodiments include: providing a transistor having a wordline gate structure over a substrate, first and second floating gate structures proximate opposite sides of the wordline gate structure, and first and second diffusion regions in the substrate, wherein the wordline gate structure, the first floating gate structure, and the second floating gate structure are laterally between the first and second diffusion regions; and providing a capacitor having first, second, and third control gate structures over the substrate, a third floating gate structure between the first and second control gate structures, a fourth floating gate structure between the second and third control gate structures, and third and fourth diffusion regions in the substrate, wherein the first, second, and third control gate structures are laterally between the third and fourth diffusion regions.
US08760914B2
A sensing circuit includes a sense amplifier circuit having a first and second nodes through which a magnetic memory element is sensed. A first current source is coupled to the first node a second current source is coupled to the second node. A reference magnetic memory element has a resistance associated therewith and is coupled to the first node, the reference magnetic memory element receives current from the first current source. At least one memory element, having a resistance associated therewith, is coupled to the second node and receives current from the second current source. Current from the first current source and current from the second current source are substantially the same. The logic state of the at least one memory element is sensed by a comparison of the resistance of the at least one memory element to the resistance of the reference magnetic memory element.
US08760911B2
A memory system includes a plurality of memory cells. Each memory cell includes a first storage cell including a first capacitor configured to store a first analog charge representing a first Boolean value, a second storage cell including a second capacitor configured to store a second analog charge representing a second Boolean value, and a charging path configured to apply, for a first time duration, a voltage to the first capacitor or the second capacitor during a write operation. Each memory cell includes a voltage comparator configured to output a Boolean value based upon a comparison of the first analog charge and the second analog charge during a read operation.
US08760907B2
A ferroelectric memory having a plurality of ferroelectric memory cells, each ferroelectric memory cell including a ferroelectric capacitor is disclosed. The ferroelectric memory includes read and write lines and a plurality of ferroelectric memory cell select buses, one select bus corresponding to each of the ferroelectric memory cells. Each of the ferroelectric memory cells includes first and second gates for connecting the ferroelectric memory cell to the read line and the write line, respectively, in response to signals on the ferroelectric memory cell select bus corresponding to that ferroelectric memory cell. A write circuit causes a charge to be stored in the ferroelectric capacitor of the ferroelectric memory cell currently connected to the write line, the charge having a value determined by a data value having at least three states. A read circuit measures the charge stored in the ferroelectric capacitor of the ferroelectric memory cell currently connected to the read line to generate an output value, the output value corresponding to one of the states.
US08760906B2
Techniques for reducing disturbance in a semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor memory device having reduced disturbance. The semiconductor memory device may comprise a plurality of memory cells arranged in arrays of rows and columns. The semiconductor memory device may also comprise a plurality of data sense amplifiers, coupled to the plurality of memory cells, configured to perform one or more operations during an operation/access cycle, wherein the operation/access cycle may comprise an operation segment and a disturbance recovery segment.
US08760898B2
An apparatus includes an inverter including a high-side switch coupled to a low-side switch, the inverter generating a time-varying drive current from a plurality of drive control signals, a positive rail voltage, and a negative rail voltage wherein controlling the switches to generate the time-varying drive current produces a potential transitory overshoot condition for one of the switches of the inverter; a drive control, coupled to the inverter, to generate the drive control signals and to set a level of each of the rail voltages responsive to a plurality of controller signals; and a controller monitoring one or more parameters indicative of the potential transitory voltage overshoot condition, the controller dynamically adjusting, responsive to the monitored parameters, the controller signals to reduce a risk of occurrence of the potential transitory voltage overshoot condition.
US08760893B2
A full bridge switching circuit includes a converter circuit including first and second converters. The first converter includes a first transformer and a first switching element part to control the first transformer in response to a first switching signal. The second converter includes a second transformer and a second switching element part to control the second transformer in response to a second switching signal. The first and second transformers are controlled by the first and second switching element parts to output first and second feedback signals, respectively. The full bridge switching circuit further includes a third switching element part having a third switching input connected to the first and second transformers, and an IC circuit to generate an OR signal by an OR operation of a first control signal generated from the first feedback signal and a second control signal generated from the second feedback signal.
US08760892B2
A method is provided for operation of a converter circuit. The converter circuit has at least two phase modules, where each phase module has a first and a second sub-converter system, and the sub-converter systems for each phase module are connected in series with one another. Each sub-converter system includes a plurality of series-connected two-pole switching cells. In the method, the control signals for the switching cells are additionally formed from a damping signal. The damping signal is formed from a measured current through the respective sub-converter system and from a predeterminable resistance value, in order to attenuate undesirable currents in the sub-converter systems.
US08760888B2
A method to control a voltage source converter in a HVDC system includes controlling a frequency and a voltage amplitude of an AC voltage generated by the voltage source converter independently of the conditions in an AC network connected to the voltage source converter. The method is performed by a control unit of an HVDC system. The method may form a basis of a method to black start an AC network. The AC network includes transmission lines and is connected to at least two AC power stations. One of the at least two AC power stations is connected via a HVDC system to the AC network.
US08760878B2
Systems and methods are provided that facilitate accurate alignment of internal and external electronic components during assembly of an electronic device such that proper engagement of mating electrical connectors on the respective components is assured. To this end, a floating circuit board carrier mounts to an adaptor plate comprising a surface of the device housing and positions a circuit board such that it “floats” within the device housing. A modular component having posts molded or attached thereto is mounted to the adaptor plate such that the posts pass through clearance holes in the adaptor plate as well as through notches in the circuit board, thereby effecting proper relative alignment of the circuit board and the modular component as electrical connectors on the respective components are engaged.
US08760877B2
The present invention relates to a flexible modular assembly (100) comprising at least two flexible electronic modules (110 and 111) supported by a textile support (130). The two flexible electronic modules and the textile support each comprise a set of electrical conductors. The flexible modular assembly further comprises flexible connectors (140) for interconnecting two sets of electrical conductors. The flexible modular assembly of the invention is a modular textile assembly for use in large-area applications of electronic textiles.
US08760876B2
A USB memory stick includes a metal shell structure defining opposing top opening and bottom opening and a locating hole, a PC board formed of a USB interface circuit and a memory chip package, and a tray, which includes a support panel supporting the PC board, a clip extended from one side of the support panel and clamped on the memory chip package of the PC board, a spring plate extended from the clip and pressed on the PC board against the support panel, and an oblique retaining leaf obliquely extended from the spring plate and engaged into the locating hole of the metal shell structure.
US08760861B2
A mouse structure includes a housing defining an opening and accommodating space therein, a pair of track devices fixed onto the housing in the accommodating space, a sliding device slidably coupled with the pair of track devices. Each track device has a sliding channel, a first position portion, and at least a second position portion. A limiting side is formed at an end of the sliding channel. The sliding device includes a base portion and an operating portion, the operating portion having a first rod and at least a second rod. When the sliding device slides along the sliding channels for use, the first rods are firstly retained by the limiting sides, and then moved upwards to allow the first and second rods to be located at the first and second position portions respectively, where the base portion is in alignment with an upper wall of the housing.
US08760859B2
Electromagnetically shielded portable storage devices are disclosed. One such device includes an electromagnetically shielded enclosure having an interior volume, the electromagnetically shielded enclosure including a plurality of shielded walls and sized to be manually carried by a person. The interior volume of the enclosure is isolated from high-frequency electromagnetic energy generated external to the enclosure. The device includes at least one storage device positioned within the interior volume, and at least one communicative connection extending from the at least one storage device to a communicative socket accessible external to the electromagnetically shielded enclosure. The at least one communicative connection is configured to allow access to the storage device by a computing system external to the electromagnetically shielded enclosure. The device also includes an electrical filter positioned at least partially within the electromagnetically shielded enclosure, and including a low-pass filter selected to prevent spurious or intentional conductive high-frequency electromagnetic energy from entering the interior volume via the communicative connection.
US08760848B2
A capacitor assembly with a substrate having a first face and a second face. A multiplicity of capacitors are mounted on the first face wherein each capacitor has a first lead and a second lead of opposite polarity to the first lead. A bridge is in electrical contact with multiple first leads. A tree is in electrical contact with the bridge wherein the tree passes through a via of the substrate and is in electrical contact with a first trace of the second face. A second trace is on the second face wherein the second lead is in electrical contact with the second trace.
US08760847B2
A low-inductance capacitor assembly (12) is provided. The capacitor assembly (12) includes a positive terminal plate (16), a negative terminal plate (18) and an array (20) of capacitors (22) disposed between and electrically coupled to the positive terminal plate (16) and the negative terminal plate (18). A passage (30) extends through the positive terminal plate (16), the negative terminal plate (18) and through a void (35) formed within the array (20) of capacitors (22). The passage (30) may allow routing of a conductor (14) through the capacitor assembly (12).
US08760844B2
A structural capacitor includes a first carbon fiber material layer, a second carbon fiber material layer, and an interlayer dielectric including a diamond-like-carbon material layer.
US08760835B2
To include a serial member, a pair of first electrodes sandwiching the serial member, a pair of second electrodes arranged on both outer sides of the first electrodes in a stacking direction, a plurality of insulating clamp members, and a wedge-shaped member tapered in the stacking direction. An annular member that presses the wedge-shaped member is provided on an axial-direction inner end surface of an outer circumferential edge of the second electrode, and the wedge-shaped member is pressed by the annular member by a leading edge portion of a bolt inserted from an axial-direction inner end surface of the annular member being tightened in the second electrode, thereby pressing an axial-direction outer surface of the insulating clamp member.
US08760832B2
To provide a protection circuit for a load circuit which can distinguish between an overcurrent generated at a load and a rush current generated at the time of turning on a semiconductor switch or switches provided on the downstream side of the semiconductor switch and can turn the semiconductor switch off only when the overcurrent is generated to thereby protect the load circuit. A comparator CMP1 compares a detection current I1 detected by an ampere meter 15 with a threshold current Iref set in advance. When the detection current I1 reaches the threshold current Iref, the semiconductor switch 11 is turned off to thereby protect the load circuit. Further, a voltage Vd on an electric wire coupling between a battery VB and the semiconductor switch 11 is measured. When a counter electromotive force is generated and the voltage Vd reduces, the threshold current Iref is reduced according to the voltage reduction. Thus, at the time of the occurrence of a dead short, the detection current I1 immediately reaches the threshold current Iref to thereby turn the semiconductor switch 11 off. At the time of the generation of a rush current, since the detection current I1 does not reach the threshold current Iref, the generation of the erroneous turning-off can be prevented.
US08760830B2
A highly reliable ESD protection device that prevents failure of discharge and variation of a discharge start voltage even when protection from static electricity is repeatedly performed includes a cavity provided in a ceramic multilayer substrate. First and second discharge electrodes are provided in the ceramic multilayer substrate and face each other across a gap. A tip of the first discharge electrode and a tip of the second discharge electrode are positioned at edges of the cavity or at positions receded from the edges.
US08760829B2
An apparatus comprises a first PFET including a first intrinsic body diode; an electrostatic discharge (ESD) subcircuit coupled to a source of the first PFET; a reverse bias voltage element, such as a zener diode, an anode of which is coupled to a gate of the first PFET; a second PFET having a source coupled to a cathode of the zener diode a capacitor coupled to a gate the second PFET; and a first resistor coupled to the gate of the second PFET. The apparatus can protect against both positive and negative electro static transient discharge events.
US08760823B1
A method and system provide a magnetic transducer having an air-bearing surface (ABS). The magnetic transducer includes a first shield, a read sensor, at least one soft magnetic bias structure and at least one hard bias structure. The read sensor includes a sensor layer that has at least one edge in the track width direction along the ABS. The soft magnetic bias structure(s) are adjacent to the edge(s) of the sensor layer. The soft magnetic bias structure has a first permeability. The soft bias structure(s) are between the read sensor and the hard bias structure(s). The hard bias structure(s) are adjacent to a portion of the soft bias structure(s) and have a second permeability. The first permeability is at least ten multiplied by the second permeability.
US08760822B1
A method and system provide a magnetic transducer having an air-bearing surface (ABS). The magnetic transducer includes a first shield, a read sensor, at least one soft magnetic bias structure and a second shield. The read sensor includes a sensor layer, a pinned layer and edge(s). The sensor layer has a first stripe height in a stripe height direction perpendicular to the ABS. The pinned layer has a second stripe height in the stripe height direction. The second stripe height is greater than the first stripe height. The soft magnetic bias structure(s) are adjacent to the edge(s) of the sensor. A portion of the soft magnetic bias structure(s) is further from the ABS than the first stripe height. The read sensor is between the first shield and the second shield. The soft magnetic bias structure(s) extend to the second shield.
US08760820B1
A magnetic element may be constructed in accordance with various embodiments as a data reader. The magnetic element can have at least a magnetic reader that contacts a top shield and is separated from a side shield on an air bearing surface (ABS). The side shield may be antiferromagnetically coupled to the top shield via a coupling layer disposed between the top and side shields.
US08760816B1
A disk drive includes a disk drive base and a disk rotatably mounted to the disk drive base. First and second permanent magnets are fixed to the disk drive base. An actuator is pivotably mounted to the disk drive base. The actuator defining an actuator pivot axis about which the actuator pivots. The actuator includes an actuator coil disposed between the first and second permanent magnets. An actuator latch is disposed adjacent to the actuator. The actuator latch includes a biasing element that comprises a ferromagnetic material. An overlapping portion of the first permanent magnet overlaps the second permanent magnet as viewed from a viewing direction that is parallel to the actuator pivot axis. A protruding portion of the first permanent magnet does not overlap the second permanent magnet as viewed from the viewing direction.
US08760813B2
A terminal area includes a metal plate, an electrically insulating layer, and a conductor layer. An opening section is formed in the metal plate and the insulating layer. A gold plating layer is formed on a surface of the conductor layer inside the opening section. A porous metal layer of a first transition element is formed on a surface of the gold plating layer. Through-holes of the porous metal layer reach the surface of the gold plating layer. An electrically conductive adhesive is provided between an electrode of an actuator element and the porous metal layer. An anchor portion of the electrically conductive adhesive gets into the through-holes and is cured. Conductive particles of the electrically conductive adhesive contact the gold plating layer.
US08760811B2
A multi-stage sensor is situated on the head transducer and configured to interact with a magnetic recording medium. A first sensor stage of the multi-stage sensor has a temperature coefficient of resistance. A second sensor stage of the multi-stage sensor is coupled to the first sensor and has a temperature coefficient of resistance. The first sensor stage is configured to preferentially sense asperities of the media relative to the second sensor stage, and the second sensor stage configured to preferentially sense proximity to, and contact with, a surface of the media relative to the first sensor stage. The first and second sensor stages may be connected in series or in parallel.
US08760809B1
A thermally-assisted magnetic recording head includes a main pole, a waveguide, and a plasmon generator. The waveguide includes a core and a cladding. The plasmon generator is configured to excite a surface plasmon based on light propagating through the core. The plasmon generator has a front end face located in a medium facing surface, and a first inclined surface connected to the front end face and facing toward the medium facing surface. The main pole includes an interposition part interposed between the first inclined surface and the medium facing surface. The interposition part has a second inclined surface that is opposed to the first inclined surface with an insulating film interposed therebetween.
US08760806B2
With respect to microwave assisted magnetic recording, high-density information recording is performed by forming a favorable write magnetic domain on a recording medium. The recording medium is placed in a magnetically resonant state by generating a microwave, and information is recorded. A recording medium 7 comprises parts 17 and 18 with differing magnetic anisotropy fields. Recording is performed using, for the frequency of the microwave, a frequency that places the part 17, which has smaller magnetic anisotropy, in a resonant state. Recording density of an information recording apparatus can be increased, while at the same time also improving reliability. Consequently, it becomes possible to reduce costs.
US08760796B1
A disk drive is disclosed comprising a head actuated over a disk comprising a plurality of tracks, wherein each track comprises a plurality of servo sectors. When entering an idle mode, the head is floated over the disk, and when exiting the idle mode, a radial velocity of the head is measured, a seek distance is determined in response to the radial velocity, and a seek operation seeks the head the seek distance to a first track.
US08760793B1
Embodiments provide a method for a method comprising causing data to be written on a first track located on a disk; while writing the data on the first track, buffering, in a buffer module, the data; determining that while writing the data on at least a portion of the first track, a portion of a write head was offset with respect to the first track, such that at least the portion of the write head infringed on a second track; determining a direction of movement of the write head; and based on determining that the portion of the write head was offset and determining the direction of movement of the write head, selectively performing one of (i) using the data buffered in the buffer module to recover data of the second track, or (ii) discarding the data buffered in the buffer module.
US08760790B2
Amplifier architectures are provided for current sensing applications. An amplifier includes a load device, an operational amplifier, a current source, and a bipolar transistor. The operational amplifier has a first input terminal connected to a first input node that receives an input current, and a second input terminal connected to a second input node that receives a reference voltage. The current source is connected to an output of the operational amplifier. The operational amplifier, the current source, and the bipolar transistor form a feedback loop that generates and maintains a bias voltage on the first input node based on the reference voltage applied to the second input node. The bipolar transistor amplifies the input current received on the first input node, and generates an amplified input current. The load device converts the amplified input current to an output voltage, wherein the output voltage is used to sense the input current.
US08760789B2
In one embodiment, a read channel comprises: a preprocessor for receiving a first signal and producing a second signal from the first signal using current values of a positive coefficient, a zero coefficient, and a negative coefficient; an interpolator for producing a third signal based on the second signal; and a slicer for producing a fourth signal from the third signal by estimating a level for the third signal. The fourth signal is at one of three levels consisting of a positive level, a zero level, and a negative level. For every n first signals received by the preprocessor, the current value of one of the positive coefficient, the zero coefficient, and the negative coefficient is adjusted depending on which of the three levels the fourth signal is at.
US08760788B2
In one embodiment, a tape drive system includes a magnetic head having at least one servo sensor for track-following at least one defined servo track of a longitudinal tape, a tape motion controller configured to move the longitudinal tape past the magnetic head, a compound actuator configured to translate the magnetic head laterally with respect to the longitudinal tape, and a control configured to track-follow the at least one defined servo track by reducing a position error between the magnetic head and a desired position, transition from a write state to a monitor state when the position error is greater than a threshold, transition from the monitor state to a stop write state when the position error is greater than the threshold for a first period, and transition from the monitor state to the write state when the position error is less than the threshold for a second period.
US08760783B2
Methods and systems for estimating MRA for a hard disk drive are described. The methods and systems described herein provide for real time estimating and correcting magneto-resistive head asymmetry (MRA) in a hard disk drive using analog-to-digital convertor (ADC) samples or counts. Generally, ADC outputs may be obtained by injecting MRA at known values, where an estimated MRA may be derived in real time by applying an equation using particular ADC output values. Once an estimated MRA is obtained, MRA correction may be performed when the estimated MRA is larger than a threshold value, such as by adjusting a channel MRA compensation coefficient.
US08760780B1
A system and method for predicting the likelihood of failure of the individual sectors of a magnetic storage disk based upon the monitoring of adjacent sector performance in responding to access requests. The prediction for a specific target sector's fidelity can be made through the gathering of sector performance data that occurs during normal read/write actions to the adjacent sectors, without a recent access request necessarily being made to the target sector. Scrubbing of the sectors can also be directed based upon the needed sector access data for target sector fidelity prediction.
US08760773B2
A zoom lens includes sequentially from an object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a positive refractive power, and a fifth lens group having a negative refractive power. The zoom lens satisfies given conditions to implement a compact, wide angle, large aperture ratio zoom lens having excellent optical performance and compatible with solid state image sensors capable of recording full high vision images.
US08760763B2
Disclosed is a high refractive index material having a high refractive index, which enables the formation of a waveguide by a simpler method. Also disclosed are a high refractive index member made from the high refractive index material, and an image sensor. The high refractive index material contains a resin (A) having a structural unit represented by the following general formula (a-1) [In the formula, R1 is a hydrocarbon group, R2 is a hydrogen atom or a hydrocarbon group, and m is an integer of 0 or 1.].
US08760760B2
A method for providing a projection screen for receiving stereoscopic images may include providing a substrate with a contoured, reflective surface, wherein light reflected from the substrate substantially may undergo no more than a single reflection and may also include coating a first layer on the substrate with a contoured, reflective surface. The first layer may substantially maintain the same optical properties as the substrate without the first layer. The first layer may be substantially conformal to the surface of the substrate and also may be a self assembled monolayer coating which may include at least a functional group that is hydrophobic.
US08760754B2
A wavelength-tunable laser system includes an optical fiber collimator array having at least two ports, an optical amplifier connected to one port of an optical fiber, an optical coupler for coupling light incident from the optical amplifier and transmitting the coupled light to another port, a diffraction grating plate for guiding each wavelength component of light incident from the optical fiber collimator array in a different direction, and an Opto-Very Large Scale Integration (Opto-VLSI) processor.
US08760752B2
An optical device comprising a tunable optical frequency comb generator. The comb generator includes an interferometer, and an optical feed-back loop waveguide.
US08760740B2
When color data and monochrome data are mixed in a piece of bit map data rasterized from the job data, an image forming apparatus allows a user to set whether to perform pre-color conversion processing on the monochrome data to enable performing color conversion processing on the monochrome data using a color conversion table for color, or whether to disable printing the job data including the bit map data in which color data and monochrome data are mixed.
US08760733B2
An image reading apparatus includes a fed original placing portion on which an original is placed, wherein the fed original placing portion is configured to be rotated; an feeding portion that feeds the original placed on the fed original placing portion; an image reading portion that reads an image of the original fed by the feeding portion; a discharging portion, disposed below the fed original placing portion, onto which the original with the image read by the image reading portion is discharged; an irradiation portion that irradiates the discharging portion with light; and a stopping unit that stops the irradiation of the light by the irradiation portion according to a rotation of the fed original placing portion.
US08760721B2
An image processing apparatus includes plural auxiliary processing devices and a distribution section. The plural auxiliary processing devices perform predetermined processing on image data. The distribution section divides image data for one page into plural processing units, and distributes the plural processing units respectively to the auxiliary processing devices. The distribution section calculates the number of divisions indicating the number of pieces into which image data for one page is to be divided, in accordance with the number of auxiliary processing devices, the number of processing units that one auxiliary processing device is capable of simultaneously receiving and processing, and a degree of page parallelism indicating the number of pages of image data to be input while one auxiliary processing device processes image data for one page; divides the image data for one page into processing units; and distributes the processing units respectively to the auxiliary processing devices.
US08760719B2
Systems are provided for determining toner color having a processor that generates a fluorescent toner color image that when printed using a corresponding fluorescent toner will generate a diffuse fluorescent color light that reduces the extent to which noise induced variations in density in a noise evident portion of a toner print are observable. The processor further adjusts reflective toner color images used to form the toner print so that the reflective toner color images combine with the fluorescent color image to form a target color image.
US08760717B2
To provide an intermediate transfer belt, containing a base, an elastic layer formed on the base, and spherical particles deposited on a surface of the elastic layer, in which wherein the elastic layer has micro rubber hardness of 40° or lower in the environment of 10° C. and 15% RH, and the intermediate transfer belt is designed to be mounted in an image forming apparatus.
US08760716B2
An image forming apparatus includes a print processing unit and a printing ratio determination unit. The print processing unit is configured to obtain a printing ratio of document data at a time of print execution of the document data, and associate printing ratio data indicating the obtained printing ratio with the document data. The printing ratio determination unit is configured to identify the printing ratio of the document data from the printing ratio data associated with the document data and determine whether or not the identified printing ratio satisfies a specified condition.
US08760710B2
Disclosed is an image forming device including an engine unit that performs image processing; an engine control unit that controls the engine unit; and a controller that generates items of starting information. The controller transmits a first item of the starting information indicating a cause of the starting process, and transmits a second item of the starting information when a content of the second item of the starting information is fixed. A time period required for fixing the second item of the starting information depends on the cause of the starting process. The engine control unit obtains the second item of the starting information, based on the first item of the starting information and timing information obtained in advance that indicates a timing at which the second item of the starting information is expected to be fixed.
US08760703B2
A system includes electronic apparatuses, an information terminal, and an information processing apparatus connected via a data communication line to the electronic apparatuses and the information terminal. The information processing apparatus includes a job executing apparatus determining unit configured to perform a determination process based on apparatus information received from the electronic apparatuses to determine one of the electronic apparatuses as an executing electronic apparatus for executing a requested job, and a data conversion unit configured to convert requested job data received from the information terminal into converted data that the executing electronic apparatus can process and transmit the converted data to the executing electronic apparatus to request execution of the requested job.
US08760701B2
An electronic device is provided that is capable of dealing with data loss from a volatile memory that can be caused when power supply from a device power source is disconnected. Even if there is a setting to retain received data in the volatile memory until a printing instruction is given by a user, the electronic device, e.g., an image forming apparatus, prints received data without waiting for the user's printing instruction in a case where a backup battery voltage is less than a predetermined value.
US08760700B2
Common portions of applications are extracted as common system service. A platform is formed by the common system service and a general purpose OS. A printer application, a copy application, and various applications are mounted on the platform. As a result, each software (application) corresponding to a printer, a copier, a facsimile device, and so on can be developed efficiently and the productivity of the apparatus as a whole can be improved.
US08760699B2
A terminal transmits a first e-mail to which a file to be printed is attached to a server, and the server temporarily saves the file attached to the first e-mail. The server transmits a second e-mail for confirming a user to the terminal, and the terminal returns information on the user to the server in response to the second e-mail. When the server has acquired the information on the user, the server converts the file temporarily saved into a file for printing and registers the converted file in the server. The server transmits the registered file for printing to a printing apparatus to cause the printing apparatus to print the file.
US08760662B2
An apparatus and method to determine a property of a substrate by measuring, in the pupil plane of a high numerical aperture lens, an angle-resolved spectrum as a result of radiation being reflected off the substrate. The property may be angle and wavelength dependent and may include the intensity of TM- and TE-polarized radiation and their relative phase difference.
US08760654B2
The invention relates to a method for matching the color of a dry color shade standard, said method comprising the steps of A) Measuring the dry color shade standard, B) Calculating a recipe for the dry color shade standard, C) Generating a virtual wet color shade standard based on the recipe for the dry color shade standard calculated in step B), wherein the virtual wet color shade standard is generated with wet characterization data and D) Matching the virtual wet color shade standard. The method can be used for elaboration of color shades and batch adjustment in production of paints.
US08760646B2
A method for measuring the size of microparticles includes: measuring an extinction spectrum of a medium having microparticles dispersed therein; and calculating average size of the microparticles based on the measured extinction spectrum and the Mie scattering theory.
US08760645B2
A method of normalizing an analyzer response value of a fluorescence analyzer is provided. The method includes measuring an excitation spectrum of the analyzer and measuring an emission sensitivity spectrum of the analyzer. Next, a normalization factor based at least in part upon the excitation spectrum of the analyzer and the emission sensitivity spectrum of the analyzer is determined. The sample is then analyzed to obtain an uncorrected analyzer response value. A normalized analyzer response value is calculated based at least in part upon the uncorrected analyzer response value and the normalization factor.
US08760642B2
Substrate inspection apparatus, in which the acquisition of the inspection data for a defect and the acquisition of the focus data of the objective lens are performed in parallel, includes an autofocus apparatus for controlling position of the objective lens along its optical axis. The autofocus apparatus includes a focus error detection unit and a focus control signal generation unit for generating a focus control signal for controlling the position of the objective lens for each scan line using a focus data signal composed of an objective position signal or the objective position signal to which a focus error signal is added. When “i” is assumed as a positive integer and “m” is as a natural number, the focus data signal which was acquired during the scanning period of i-th scan line is used to produce the focus control signal used to scan the (i+2m)-th scan line.
US08760640B2
An optical instrument includes a controller and a field head arranged for measuring the refractive index of a medium, or a derivable quantity therefrom. The field head includes a measurement prism having a medium-boundary surface, a first wave guide for providing broad-band light from a broad band light source, a dispersive element for dispersing the broad-band light into at least one component light beam of plural component light beams, so that each incident component light beam has a differently directed propagation path and at least one different wave length, and a condenser for collecting at least one component light beam reflected at the medium-boundary surface into a second wave guide. The dispersive element is arranged to direct at least one component light beam into a critical angle of total reflection from the boundary surface, and at least other light beam component into an angle leading into the condenser arranged to collect at least one other component light beam to be passed to a spectrometer. The controller of a field head includes a light source for providing poly-chromatic light into a first wave guide for forming a plurality of component light beams to propagate in the field head and a spectrometer for spectrum analysis of light inputted via at least one input wave guide from the field head.
US08760636B2
Disclosed herein are methods and systems for scanning objects and associated substances, where the methods include: (a) using a first electronic device to scan a feature of an object and provide reference information about the object based on the scanned feature, where the feature identifies the object or a substance associated with the object; (b) using a second electronic device to measure electromagnetic radiation emitted from the object and provide sample information about the object based on the measured electromagnetic radiation; and (c) comparing the sample information and the reference information to determine whether the object includes the substance associated with the object.
US08760633B2
The invention generally relates to measurement systems. More particularly, the invention relates to means and methods of using laser technology to measure distances between balls used in playing bocce: wherein the present invention overcomes shortfalls in the related art by presenting an unobvious and unique combination and configuration of laser light, laser mounting methods, laser supporting methods, laser rotation methods and laser pivot points.
US08760627B2
A lithographic apparatus includes: a light-shielding plate which includes, on an edge thereof, an arc overlapping with a circular boundary line that defines a region onto which the pattern is transferred and is located inside an outer periphery of a substrate, and blocks the light to prevent the light from being incident on an outer peripheral region located outside the circular boundary line; a first driving unit which rotates the light-shielding plate about an axis parallel to an optical axis of the irradiation system; and a second driving unit which linearly drives the light-shielding plate within a plane perpendicular to the optical axis.
US08760619B2
An exposure apparatus includes an original stage including a first mark, a substrate stage including a second mark and a photoelectric conversion device configured to detect light having passed through the second mark, a projection optical system, a measurement device configured to measure a position of at least one stage of the substrate stage and the original stage, and a controller configured to detect a positional relationship between the first mark and the second mark based on a signal output from the photoelectric conversion device and a measurement result output from the measurement device, wherein the controller cyclically samples a measurement result output from the measurement device, corrects the measurement result based on a time interval between a light emission timing of the pulsed light source and a sampling timing of the measurement result.
US08760617B2
A cleaning of a liquid immersion exposure apparatus is performed at a different time than an exposure operation. A stage is placed under a liquid supply inlet during a cleaning operation. The cleaning operation is performed at the different time than the exposure operation in which an immersion liquid is supplied onto a substrate held on a holder of the stage. The immersion liquid is supplied from a liquid supply inlet during the cleaning operation. The immersion liquid is supplied to a portion of the stage different from a portion at which the substrate is held by the holder of the stage.
US08760609B2
Image display device having an electrode forming layer which includes a plurality of gate lines, a plurality of drain lines, a plurality of switching elements and the a plurality of pixel electrodes, and having reference electrode layer between the electrode forming layer and a substrate where the electrode forming layer formed thereon, and the reference electrode layer and the electrode forming layer are insulated by insulating layer.
US08760607B2
A liquid crystal display (“LCD”) panel includes a display substrate, an opposite substrate and a liquid crystal layer. The display substrate includes a pixel electrode and a first cured layer. The first cured layer has various pretilt angles. The opposite substrate includes a common electrode and a second cured layer. The second cured layer has various pretilt angles. The liquid crystal layer includes a plurality of liquid crystal molecules pretilted at the various pretilt angles by the first and second cured layers.
US08760601B2
Provided is a liquid crystal display in which occurrence of iridescent unevenness is suppressed, even when a film with high level of mechanical properties, chemical resistance and water-barrier properties is used as a polarizer-protective-film. Also, disclosed is a polarizing plate to be used in the liquid crystal display. The liquid crystal display includes a liquid crystal cell, a light source, a first polarizing plate placed between the liquid crystal cell and the light source, and a second polarizing plate placed on a viewer side of the liquid crystal cell. The first polarizing plate includes a polarizer and a first protective film placed on a light source side principal surface of the first protective film, and the first protective film satisfies following relations: (i) 0 nm≦Re1≦3000 nm; (ii) Nz1≧5; and (iii) Rth1>2500 nm.
US08760599B2
A display device and a method for manufacturing the same are disclosed. In one embodiment, the display device includes: i) a display panel configured to display an image via a display surface; a transparent protective portion formed over the display panel, ii) a top chassis formed between the transparent protective portion and the display panel and iii) a bottom chassis formed below the display panel and coupled to the top chassis so as to protect the display panel. The display device may further include 1) a plurality of adhesive members arranged at predetermined intervals on an outer periphery of the display surface of the display panel so as to attach the display panel to the top chassis, 2) an adhesive layer formed between the display panel and the transparent protective portion and 3) a sealing portion formed to fill at least part of the space between i) a sidewall portion of the display panel and ii) the top chassis and bottom chassis.
US08760589B2
Systems for retaining a replaceable part within an image display device are provided herein. One example includes a first retaining member with a first looped retention arm configured to apply a retaining force in an x-direction to the replaceable part and a second retaining member with a second looped retention arm configured to apply a retaining force in a y-direction to the replaceable part. Upon displacement of the replaceable part from an engagement position to a displacement position, a normal force as applied by one of the first retaining member and the second retaining member is reduced and the force to push the replaceable part towards the engagement position is increased.
US08760581B2
There are provided a signal processing apparatus and a control method thereof. The signal processing apparatus includes: a noise detecting unit which detects a signal-to-noise ratio of an input video signal; a coring unit which performs coring to remove a component of the video signal having a level within a predetermined reference range; and a control unit which adjusts the reference range of the coring unit corresponding to the detected signal-to-noise ratio and controls the coring unit to core the video signal based on the adjusted reference range.
US08760578B2
Assessing a visual quality characteristic includes accessing and processing at least a first image or video signal and a second image or video signal and processing the accessed images or video signals. Based at least in part on processing the accessed images or video signals, a difference is measured between the processed at least first and second images or video signals. The visual quality characteristic relates to a magnitude of the measured difference between the processed at least first and second images or video signals. The at least first and second images or video signals include a high or visual dynamic range and/or a wide color gamut. The visual quality characteristic is assessed based, at least in part, on the measured difference.
US08760576B2
A digital cable broadcast receiver and a method for automatically processing caption data of various standards and types, is disclosed. The digital broadcast receiver includes: a demultiplexer for dividing a received broadcast stream into video data, audio data, supplementary information; a controller for determining whether caption data included in the video data is digital caption data or analog caption data on the basis of caption information included in the supplementary information, and outputting a control signal according to a result of the determining; a digital caption decoder for extracting and decoding digital caption data from the video data according to the control signal; and an analog caption decoder for extracting and decoding analog caption data from the video data according to the control signal.
US08760567B2
Photographing apparatus and method to reduce auto-focus time are disclosed. A photographing apparatus is provided that includes two imaging optical systems; an imaging device that converts images of subjects formed by the imaging optical systems into respective image signals; a subject distance calculation unit that calculates subject distances between the imaging device and the subject based on two images generated by the imaging device; and an in-focus position detection unit that detects an in-focus position based on contrast evaluation values of the image signals obtained for a plurality of focusing positions, performs preparatory focusing driving by moving the focusing positions close to the in-focus position based on the calculated subject distances, and scans the focusing positions from the position close to the in-focus position to the in-focus position.
US08760566B2
The present invention operates in connection with refocusable video data, information, images and/or frames, which may be light field video data, information, images and/or frames, that may be focused and/or refocused after acquisition or recording. A video acquisition device acquires first refocusable light field video data of a scene, stores first refocusable video data representative of the first refocusable light field video data, acquires second refocusable light field video data of the scene after acquiring the first refocusable light field video data, determines a first virtual focus parameter (such as a virtual focus depth) using the second refocusable light field video data, generates first video data using the stored first refocusable video data and the first virtual focus parameter, wherein the first video data includes a focus depth that is different from an optical focus depth of the first refocusable light field video data, and outputs the first video data.
US08760565B2
A digital photographing apparatus allows users to directly reflect their DOF intention to the digital photographing apparatus before a photo is taken, thereby facilitating a more accurate representation of DOF. A method for controlling the digital photographing apparatus includes receiving depth-of-field (DOF) information, calculating an aperture value corresponding to the DOF information, and controlling photographing using the calculated aperture value.
US08760563B2
An optical imager includes: an image sensor for capturing images of targets and outputting image signals; a lens for focusing the target on the image sensor as a function of lens position; a memory for storing predetermined lens positions determined from predetermined target sizes; and a controller for determining current target size based on captured images and positioning the lens at a predetermined lens position by correlating current target size with predetermined target sizes.
US08760553B2
A mobile terminal and image transmitting method therein are disclosed, by which an image photographed via a camera can be transmitted to a counterpart terminal to correspond to a preset image transmission condition. One embodiment of the present invention includes setting an image transmission condition, photographing the image in a camera photograph mode using a camera, if the image is photographed, checking the set image transmission condition, and transmitting the photographed image to each of at least one or more counterpart terminals to correspond to the checked image transmission condition.
US08760551B2
An image capturing apparatus, method, and storage medium identifying image metadata based on user interest. The image capturing apparatus includes a first image capturing unit configured to capture an image of a scene for a user, a second image capturing unit configured to capture an image of the user, an identification unit configured to identify at least one region of interest of the scene based on a combination of eye and facial characteristics of the user of the image capturing apparatus during an image capturing operation, a processing unit configured to analyze at least facial characteristics of the user associated with each region of interest during the image capturing operation, a determining unit configured to determine a facial expression classification associated with each region of interest based on corresponding analyzed facial characteristics for each region during the image capturing operation, a recording unit configured to record facial expression metadata based on information representing the at least one region of interest and the facial expression classification associated with an image captured during the image capturing operation, and a rendering unit configured to render the image using the recorded facial expression metadata.
US08760549B2
A demodulation pixel architecture allows for demodulating an incoming modulated electromagnetic wave, normally visible or infrared light. It is based on a charge coupled device (CCD) line connected to a drift field structure. The drift field is exposed to the incoming light. It collects the generated charge and forces it to move to the pick-up point. At this pick-up point, the CCD element samples the charge for a given time and then shifts the charge packets further on in the daisy chain. After a certain amount of shifts, the multiple charge packets are stored in so-called integration gates, in a preferred embodiment. The number of integration gates gives the number of simultaneously available taps. When the cycle is repeated several times, the charge is accumulated in the integration gates and thus the signal-to-noise ratio increases. The architecture is flexible in the number of taps. A dump node can be attached to the CCD line for dumping charge with the same speed as the samples are taken. Different implementations are described herein, which allow for smaller design or faster speed. The pixel structure can be exploited for e.g. 3D time-of-flight imaging. Both heterodyne and homodyne measurements are possible. Due to the highly-efficient charge transport enabled by static drift fields in the photo-sensitive region and small-sized gates in the CCD chain, high frequency bandwidth from just a few Hertz (Hz) up to greater GHz is supported. Thus, the pixel allows for highly-accurate optical distance measurements. Another possible application of this pixel architecture is fluorescence lifetime imaging microscopy (FLIM), where short laser pulses for triggering the fluorescence have to be suppressed.
US08760545B2
A solid-state imaging device includes: a semiconductor substrate that has a light sensing portion which photoelectrically converts incident light; an infrared cut filter layer or a light shielding layer that is provided on a surface side opposite to a light receiving surface of the semiconductor substrate and is formed on substantially the entire surface of an area corresponding to an area in which the light sensing portion of the semiconductor substrate is formed; and a wiring layer that is provided on an upper layer of the infrared cut filter layer or the light shielding layer.
US08760541B2
A shooting apparatus includes: an image-pickup section outputting a picked-up image obtained by picking up an image of a subject; and a control section performing acceptance of a still image shooting operation and acceptance of a part specification operation of specifying a partial area of the picked-up image during video image pickup by the image-pickup section.
US08760529B2
In an embodiment, an image sensor includes pixels arranged in columns and rows, read signal lines connected to pixels arranged in the row direction. Each pixel is read in either a first exposure time or in a second exposure time shorter than the first exposure time. Each of a first type of read signal lines is connected to a group of pixels associated with the first exposure time, and each of a second type of read signal lines is connected to a group of pixels associated with the second exposure time. In two vertically adjacent horizontal pixel lines, the first type of read signal line is shared by two horizontally adjacent pixels associated with the first exposure time, and the second type of read signal line is shared by two horizontally adjacent pixels associated with the second exposure time.
US08760526B2
A plurality of image capturing data time-divisionally exposed by a capturing unit are input, and are divided into synthesis images or motion detection images. A motion amount of the capturing unit at the time of time-division exposure is detected from the image capturing data of the motion detection images, and synthesized image capturing data is generated by synthesizing the synthesis images. Then, a vibration of the synthesized image capturing data is corrected based on a divide pattern indicating divisions, and the motion amount.
US08760525B2
An image capturing device and an image capturing method thereof are disclosed. The image capturing device includes an image capturing module and a processing module. The image capturing module captures a plurality of temporary images corresponding to a scene. The processing module sequentially analyzes the temporary images and generates a plurality of analysis results. The processing module dynamically adjusts the sampling time of the image capturing module capturing each temporary image according to the analysis results. Moreover, the processing module selects some of the plurality of temporary images according to the analysis results to integrate images. The image capturing module stops capturing the temporary images based upon a stop signal, and finally a storage image is generated.
US08760523B2
In case a video display apparatus is connected to a video output apparatus using communication means that disconnects an electrical connection in accordance with stop of power supply from the video output apparatus is operating in an operation mode where an output of video data is restarted after an output of video data is temporarily stopped, control is performed so that the electrical connection is not disconnected. In a state where in accordance with supply power from the video output apparatus, a control signal for establishing an electrical connection via the communication means is in an ON level, in case stop of the power supply is detected, if the video output apparatus is in an operation mode where an output of video data is restarted after an output of video data is temporarily stopped, control is performed so that the control signal is not changed to an OFF level.
US08760514B2
A device having built-in digital data means is powered by an unlimited power source for a lamp-holder, LED bulb, or light device connected to unlimited power source by prongs or a base that can be inserted into a socket that would otherwise receiving a bulb. The device may take the form of a webcam having auto tracking functions and retractable prongs that plug directly into a wall outlet.
US08760506B2
According to one aspect, the present invention relates to an imaging system 100 for enhancing microscopic images of unstained cells. The imaging system 100 comprises a light source 102 for producing light 120a, a sample holder 109 for containing cells to be imaged, a condenser 104 for focussing the light 120b at a focal plane within the sample holder 109 on the cells to be imaged, a translation mechanism for moving the focal plane of the light 120b relative to the sample holder 109 and a detector system 112 configured to acquire a plurality of images at respective focal planes within the sample holder 109 and process the plurality of images to provide an enhanced processed imaged.
US08760505B2
An image display device including an image display panel configured to display a 2D image and a 3D image, a driving circuit configured to apply a data voltage of a 2D data format or a data voltage of a 3D data format to the image display panel, a controller configured to control the driving circuit in a 2D mode for displaying the 2D image or a 3D mode for displaying the 3D image, and a patterned retarder including a first retarder and a second retarder that are arranged line by line, the patterned retarder configured to divide the 3D image from the image display panel into a first polarization component and a second polarization component, the patterned retarder being aligned so that boundary portions of the first and second retarders are positioned in a center of pixels positioned on odd-numbered horizontal lines or even-numbered horizontal lines of the image display panel.
US08760495B2
In a method for processing video signals acquired from multiple cameras, the present invention provides a method for processing video signals including receiving a multiview video coded bit stream including color pictures and depth pictures, wherein the depth picture indicates a group of digitalized information on a distance between a base camera and an object; acquiring data type identification information from the multiview video coded bit stream, wherein the data type identification information indicates whether or not depth-coded data are included in the multiview video coded bit stream; acquiring reference information between views of the depth picture based upon the data type identification information, wherein the reference information between views of the depth picture includes a number of depth-view reference pictures, and a view identification number of the depth-view reference picture; acquiring an estimation value of the depth picture by using the reference information between views of the depth picture; recovering the depth picture by using the estimation value of the depth picture; and acquiring a 3-dimensional image by using the recovered depth picture.
US08760493B2
Disclosed is a video displaying apparatus including: a projector screen; at least one camera disposed at a predetermined position of the projector screen to acquire a user's video; a communication unit receiving the other party's video from the other video terminal and transmitting the user's video acquired through at least one camera to the other video terminal; and a projector outputting the other party's video so that the other party's video received from the communication unit is displayed on the projector screen.
US08760492B2
An MRC system includes an MRM and an MRE that handle needs for Intra frames in an efficient way, improves the conferees experience, and reduces the load on the resources associated with that MRC videoconference by reducing the number of Intra frames and lowering the impact of Intra frames when they are needed. In some embodiments, when a requiring MRE requests an Intra frame for a video stream received from a presenting MRE, an MRM may respond by requesting the presenting MRE to send a temporary video stream toward the requiring MRE while sending in parallel a normal stream toward the rest of the MREs.
US08760491B2
A method and system for implementing large capacity calls by using the H.323 protocol stack are provided in the present invention. The method comprises: a plurality of protocol stacks are deployed in a multi-point control unit; an IP address of a third protocol stack is pre-configured as a uniform IP address of the multi-point control unit, wherein the IP address acts as an incoming address when the multi-point control unit is called, and the third protocol stack is used to perform the H.225 signaling interaction with the opposite end when the multi-point control unit is a called party; when the multi-point control unit is a calling party, a first protocol stack, the number of processable calls of which does not exceed a limit number, is selected to perform the H.225 signaling interaction with the opposite end, and a second protocol stack, the number of processable calls of which does not exceed a limit number, is selected to perform the H.245 signaling interaction with the opposite end; when the multi-point control unit is a called party, a fourth protocol stack, the number of processable calls of which does not exceed a limit number, is selected to perform the H.245 signaling interaction with the opposite end. In the present invention, the H.245 messages from different ends are distributed to a plurality of protocol stacks for processing, which thereby improves the processing efficiency.
US08760489B1
A method and apparatus for dynamically adjusting an aspect ratio of an image during a video call is described herein. Specifically, a method for dynamically adjusting the aspect ratio of an image during a video call may include obtaining at least one display parameter of a display device, performing a comparison of the at least one display parameter to at least one image capture parameter of a capture device, capturing an original image, modifying the original image based on the comparison performed, wherein the modified image has an adjusted aspect ratio different from an aspect ratio of the original image, and sending the modified image to the display device.
US08760483B2
In an exposure device, a light source device having multiple light emitting devices arranged in one-dimensional or two-dimensional directions projects light against an image bearing member. A light source holding member holds the light source device in place. An optical device condenses the light projected from the light source device onto the image bearing member. An optical device holding member holds the optical device to maintain a predetermined gap between the optical device and the light source device on the light source holding member. A positioning member supports the light source holding member above the image bearing member to maintain a predetermined gap between the image bearing member and the light source device on the light source holding member. When seen from a light emitting point of the light source device, a position at which the positioning member supports the light source holding member is opposite the image bearing member.
US08760481B2
An apparatus, system, and method to flash print an image. The apparatus includes an energy source that delivers energy. The apparatus includes an energy pulse width modulator coupled to the energy source. The energy pulse width modulator may receive energy from the energy source and modulate the energy received from the energy source. The energy pulse width modulator may be driven by a logic module. The apparatus also includes a plurality of imaging pixels modulated by the energy pulse width modulator and conveying modulated energy to a host material. The host material may be in close proximity to a receiving medium and the modulated energy may release the dye from the host material into the receiving medium.
US08760466B1
A method for generating two-dimensional image space noise. The method includes receiving a first frame of a rendered animation sequence; receiving a second frame of the rendered animation sequence; and generating a frame of noise that is associated with at least one object moving between the first frame and the second frame and is to be applied to the second frame, where generating the frame of noise comprises applying, for each pixel in the second frame, a causal filter based on a depth associated with the pixel and a velocity associated with the pixel.
US08760464B2
Some embodiments provide a program that provides a graphical user interface (GUI). The GUI includes a display area for displaying an image that includes several pixels. The GUI includes a selectable masking tool for displaying in the display area an adjustable closed curve to identify a region in the image to apply a color correction operation. The selectable masking tool includes a selectable control for modifying the adjustable closed curve through a range of elliptical shapes that ranges from a pure ellipse to an approximate rectangle. The GUI includes a selectable GUI item for applying the color correction operation based on the selectable masking tool.
US08760450B2
A graphics-processing unit is used to perform mesh simplification. A vertex shader receives a dataset for an input mesh that portrays a three-dimensional graphics object. The vertex shader generates from the dataset vertices for primitives that make up the input mesh. The input mesh is divided into a grid of cells. A geometry shader receives the vertices from the vertex shader and generates from the received vertices a simplified mesh that portrays the three-dimensional graphics object in less detail than the input mesh. Before the input mesh is divided into grid cells, a warping function can be applied to the input mesh based on a weighting function to warp the input mesh, thereby increasing sampling at a region of interest. A projective warping can be performed on the grid to produce grid cells of different volumes in accordance with a camera position.
US08760436B2
Disclosed herein is a mutual capacitive touch panel, including: a first transparent substrate; a first bar-shaped transparent electrode formed on the first transparent substrate and divided in a length direction; first wiring whose one set of ends are connected to the first bar-shaped transparent electrode and whose the other set of ends are arranged on one side of the first transparent substrate; a second transparent substrate; a second bar-shaped transparent electrode formed on the second transparent substrate and divided in a length direction; second wiring whose one set of ends are connected to the second bar-shaped to transparent electrode and whose the other set of ends are arranged on one side of the second transparent substrate; and an adhesive layer disposed between the first bar-shaped transparent electrode and the second bar-shaped transparent electrode such that the first bar-shaped transparent electrode and the second bar-shaped transparent electrode face each other. The mutual capacitive touch panel is advantageous in that, since transparent electrodes are divided, low resistance can be realized even when the transparent electrodes are made of a conductive polymer, thus keeping up with the trend of manufacturing large touch panels.
US08760435B2
Provided is a touch panel which completes touch detection within a specified time even when the maximum number of touch points is set to be large. A control portion assigns priorities for being given a high coordinate precision to the respective touch points based on the state of the touch points. The control portion selects coordinate calculation algorithms having coordinate precisions corresponding to the priorities of the respective touch points from among a plurality of coordinate calculation algorithms, and calculates required calculation time for calculating coordinates of all the touch points. The control portion determines the priorities so that the calculated required calculation time is equal to or shorter than a specified time. The control portion selects coordinate calculation algorithms corresponding to the priorities and calculates the coordinates of the respective touch points.
US08760434B2
A method of detecting a position on a touchscreen panel including a first resistive film having first and second electrodes provided at its corresponding ends in a first direction and a second resistive film having third and fourth electrodes provided at its corresponding ends in a second direction perpendicular to the first direction includes measuring a potential at the first electrode with supply voltage applied to a first resistor connected to the first electrode with the second electrode grounded; measuring a potential at the third electrode with the supply voltage applied to a second resistor connected to the third electrode with the fourth electrode grounded; measuring potentials at the third and fourth electrodes with the supply voltage applied to the first electrode with the second electrode grounded; and measuring potentials at the first and second electrodes with the supply voltage applied to the third electrode with the fourth electrode grounded.
US08760432B2
An adaptive interface system includes a user interface for controlling a vehicle system, a sensor for detecting a position of an extremity of a user and generating a sensor signal representing the position of the extremity, and a processor in communication with the sensor and the user interface, wherein the processor receives the sensor signal, analyzes the sensor signal based upon an instruction set to determine a pointing vector of the user, and configures the user interface based upon the pointing vector of the user.
US08760430B2
According to one embodiment, an electronic apparatus includes a touch panel, a display, a key detection module, a keyboard display module and a transmission module. The key detection module is configured to detect a touch and a release of a key of a software keyboard, based on touch detection on the touch panel. The transmission module is configured to transmit data indicative of key-down of a first key in accordance with touch detection of the first key, to transmit data indicative of key-down of a second key in accordance with touch detection of the second key in a state in which the first key is touched, and then to transmit data indicative of key-up of the first key and the second key in accordance with release detection of the first key and the second key.
US08760429B2
An optical scanner scans a first portion of a print of a body part such as a finger in a first area of an optical surface. The optical scanner detects a motion of the body part to a second area of the optical surface. This can be done in various ways. One way is for the optical scanner to detect a sliding motion of the body part to determine if most of the first portion of the print is in the second area. Another way is for the optical scanner to determine a rolling motion of the print based on a continuity of the print from the first area to the second area. A similar system and method is disclosed which detects a rolling motion of a body part by using a sleeve with multiple properties.
US08760425B2
A method for touchpad edge gesture detection comprising detecting touch input on a touchpad, determining if the touch input originates externally to the touchpad, determining if the touch input ends internally to the touchpad and performing a command on a computer corresponding to the touch input.
US08760424B2
Some embodiments provide a Touch Enhanced Interface (TEI) that translates data from touch devices into a wide variety of output actions, free from the construct of mapping such touch data to an on-screen pointer or direct screen-mapped coordinates. Based on the touch and hold of one or more fingers, the TEI enables access to different sets of operations. Then based on different taps, holds, directional slides, and directional flicks of one or more fingers, the TEI performs specific operations in an accessed set of operations. Some embodiments provide a TEI viewer that displays symbols that identify the operations that can be performed using the various touches.
US08760423B2
An example information processing apparatus compensates for interruption of an input coordinate inputted via a touch panel, by updating an allowance coordinate and a following coordinate in real time on the basis of the input coordinate inputted via the touch panel. Specifically, even when the input coordinate from the touch panel is interrupted, while the following coordinate moves, the information processing apparatus determines that an operator continues an input operation, and performs coordinate complementation.
US08760421B2
A method is defined for providing an individual increased accessibility to a touch screen displaying first and second elements. The individual initially engages the touch screen with a contact point at a first location. The contact point is dragged across the touch screen into engagement with the first element and the first element is highlighted in response thereto. Thereafter, the individual may drag the contact point across the touch screen from the first element into engagement with the second element whereby the second element is highlighted on the touch screen and the highlight is removed from the first element. Audible announcements may accompany the contacting of the first or second elements with the contact point.
US08760403B2
The present invention discloses a hybrid human-interface device including an optical navigation module and a pointing module. The optical navigation module is configured to replace the conventional buttons of a convention pointing device, such as an optical mouse or a trackball mouse or TV controller. The optical navigation module is configured to sense gestures of at least one object operated by a user to activate commands associated with particular programs running on the host. Since the optical navigation module is only configured to sense gestures of the object but not the movement of the hybrid human-interface device relative to a surface, the resolution thereof is aimed to be sufficiently high enough for sensing gestures and no need to be relatively high.
US08760401B2
The invention is directed to a system and method for determining position and orientation with respect to a display device. In particular, the invention is directed to acquiring an observed image from a display device using a pointing device, and calculating pointing device position and orientation using the acquired observed image and a displayed image on the display device.
US08760399B2
A display system displays a received image on a display device based on image information transmitted from at least one image supply device via a network. An image generating unit generates a segmented image segmented into plural individual areas, the segmented image contains an individual connection image representing connection information for the image supply device to connect to the display device in an area correlated to one individual area of the plural individual areas. A determining unit determines whether connection is permitted or not based on the connection request information. When connection to the image supply device is permitted by the determining unit, the image generating unit generates the segmented image containing the received image based on the image information from the image supply device in the individual area.
US08760398B2
A method and apparatus for interactive TV camera based games in which position or orientation of points on a player or of an object held by a player are determined and used to control a video display. Both single camera and stereo camera pair based embodiments are disclosed, preferably using stereo photogrammetry where multi-degree of freedom information is desired. Large video displays, preferably life-size may be used where utmost realism of the game experience is desired.
US08760397B2
A hand-held controller for operating a remote vehicle includes a controller body having right and left grips, a first set of input devices are disposed in a left control zone adjacent the left grip, and a second set of input devices are disposed in a right control zone adjacent the right grip. The first set of input devices includes a first analog joystick, a 4-way directional control, and a left rocker control. The second set of input devices includes a second analog joystick, an array of at least four buttons, and a right rocker control. The hand-held controller also includes a mode changer disposed on the controller body and configured to receive an input to change between two or more function modes. Each function mode assigns different functions to one or more of the input devices.
US08760391B2
The present invention provides an input cueing system and method that allows the user to manually draw an image, input text, interface and gesture on an input surface, which is then brought into a computer such that the visual output from the computer is combined in an overlapping manner with the visual imagery of the user's hands, and then shown on a display. Located above the drawing surface is an image capturing device that captures live video images of the user's hands or other objects placed on the drawing surface. One or more reflectors and/or image repeating devices are disposed of between the input surface and the image capturing device to effectively reduce the height and/or focal length so that the visual image is properly aligned and oriented to provide a real ‘live’ view of the users hands and/or action on the display. In one embodiment, the system is used with a desktop computer and a display. In further embodiments, the system is incorporated into a laptop computer, a slate, a PDA, or a cellular telephone with a built-in display. In various embodiments, a combiner module is used to combine the visual action occurring on and/or about the input surface by an image capturing device with the visual output from a computer or computing device, so that the resulting combined visual imagery may be simultaneously transmitted and on a display, with the users hands, fingers and/or tools shown in a semi-transparent and/or opaque manner.
US08760390B2
An interactive device for improving image processing. The interactive device includes a processing module and a controller. The processing module includes a substrate, an image sensor formed on the substrate for generating a plurality of pixel signals, a calculation unit formed on the substrate for calculating at least one motion vector based on the plurality of pixel signals, and a transmission interface formed on the substrate for serially outputting the motion vector. The controller is used for controlling operation of the interactive device based on the motion vector output by the transmission interface.
US08760374B2
When a thin film transistor has an LDD structure or a double gate structure, the number of manufacturing steps increases, which may decrease the yield. The invention provides a display device where the influence of off current is reduced by a method different from the conventional one. According to the invention, a pass element is provided at one electrode of a light emitting element so as not to flow the off current of a transistor for driving the light emitting element through the light emitting element in a non-lighting period. The pass element allows the off current to flow outside, that is, the off current can be bypassed outside through the pass element.
US08760371B2
A drive circuit includes: first and second P-channel MOS transistors connected with a first voltage; a first N-channel MOS transistor connected between the first P-channel MOS transistor and a ground voltage, and having a gate connected with a first node and configured to receive a first input signal; and a second N-channel MOS transistor connected between the second P-channel MOS transistor and the ground voltage and having a gate connected with a second node and configured to receive a second input signal. An output P-channel MOS transistor is connected between the first voltage and an output node and has a gate connected with the second node, and an output N-channel MOS transistor is connected between the output node and the second voltage and has a gate supplied with an input signal having a same polarity as that of the first input signal. A P-channel MOS transistor has a source connected with the first node, a drain connected with the output node, and a gate connected with the second node.
US08760370B2
A lighting system including a plurality of luminaires capable of generating polychromatic light having a dominant wavelength in the visible spectrum and arranged into an array and a computerized device electrically coupled to the plurality of luminaires so as to selectively operate each individual luminaire to produce source light varying with each other and with time. The computerized device operates the luminaire such that each luminaire emits a source light, the source lights combining to form a combined light having selected characteristics. The source lights, when perceived directly, recreate a lighting scenario having varying lighting characteristics.
US08760369B2
A display device includes: a panel portion, on which a plurality of sub-pixels with a discrete bus line form each individual pixel, the plurality of sub-pixels that form the individual pixel being sequentially arranged in a horizontal and a vertical direction, the panel portion displaying a two-dimensional image or a three-dimensional image by application of a signal via the bus line; and a filter portion, provided on a front surface of the panel portion, that alternately changes, for each of predetermined horizontal regions, a polarization state of light passing through the panel portion. A boundary of each of the horizontal regions of the filter portion is positioned within a range of a first sub-pixel of each of the plurality of sub-pixels. The first sub-pixel displays a different image when the two-dimensional image is displayed on the panel portion to when the three-dimensional image is displayed on the panel portion.
US08760362B2
An antenna capable of receiving both left-hand circularly polarized (LHCP) signals and right-hand circularly polarized (RHCP) signals, and outputting both signals on a single feed. The antenna includes two coplanar concentric patches. The inner patch is substantially square. The outer patch surrounds the inner patch to define a gap therebetween. A resonant parallel inductive/LC circuit interconnects the two patches. The circuit includes a plurality of printed traces within the gap and interconnecting the concentric patches. The gap and each trace function as an LC circuit.
US08760359B2
A radome not having a sandwich structure but having a canape structure is formed with an object to obtain a radome of a canape structure having a satisfactory radio property, and moreover, an excellent mechanical strength by providing a matching layer to a skin layer on an interior side of a radome. The skin layer is formed of layered glass fiber cloths and resin impregnated therein. The layered glass fiber cloths can be replaced with glass fiber mats. For the matching layer, a foamed material, such as a urethane material having a low permittivity, or a core material having a resin impregnating property can be used. A radome of a canape structure can be obtained with the skin layer and the matching layer.
US08760352B2
A mobile device at least includes a dielectric substrate, an antenna array, and a transceiver. The antenna array includes a first antenna, a second antenna, and a third antenna. The third antenna is disposed between the first and second antennas so as to reduce coupling between the first and second antennas. The first, second and third antennas are all embedded in the dielectric substrate and substantially arranged in a straight line. Each of the first and second antennas is a transmission antenna and the third antenna is a reception antenna, or each of the first and second antennas is a reception antenna and the third antenna is a transmission antenna. The transceiver is coupled to the antenna array and is configured to transmit or receive a signal.
US08760350B2
A mobile terminal having a docking pin for docking with a docking station is disclosed. In the mobile terminal, a mounting structure for mounting the docking pin to the mobile terminal has a reduced volume. This may assure simple assembly and mechanical reliability of the docking pin while preventing deterioration in wireless performance due to a reduced surface area of a carrier of an antenna module.
US08760346B2
A system and method to provide a means of communication, command and control between a mobile antenna and a satellite receiver that allows the receiver to send tuning information to the antenna and the antenna to provide feedback to the receiver when a signal has been acquired. The antenna and the receiver can share the appropriate states and status such as diagnostics, test, GPS coordinates, etc.
US08760340B2
In certain embodiments, an apparatus comprises range matched filters and a Doppler-acceleration matched filter system. The matched filters are configured to receive radar return signals detected by an antenna and range match filter the radar return signals to place the radar return signals into range cells. The Doppler-acceleration matched filter system is configured to Doppler-acceleration process the radar return signals in the range cells to facilitate identification of one or more targets.
US08760333B2
A signal receiver contains a VCO-based Analog-to-Digital Converter. As a result, some building blocks can be migrated into the digital domain.
US08760327B2
A method for compressing a plurality of coordinates includes obtaining a plurality of approximately-zero polynomials of dimension dim for a plurality of coordinate parameters. The method further includes selecting dim+1 non-approximately-zero polynomials, and providing a compressed data set that includes the approximately-zero polynomials, the dim+1 non-approximately-zero polynomials, and evaluations of the selected dim+1 non-approximately-zero polynomials based on the coordinates.
US08760322B2
A method and apparatus is presented for reducing or eliminating pathological data patterns from signals for transmission over optical communications systems. One embodiment includes a decoder/deserializer configured to receive an encoded serial digital signal, a ditherer configured to dither a least significant bit of each digital data word, and a reserializer/encoder configured to serialize digital data and encode it, for example according to an applicable communication standard such as SMPTE 259M. The improvements may be provided in a single removable unit, such as a small form-factor pluggable (SFP) module compatible with existing optical communications equipment.
US08760320B2
A communication apparatus is installed in a vehicle. A time information obtaining unit obtains a current time. A state information obtaining unit repeatedly obtains state information representing a state of an own vehicle at the current time. An own vehicle information generating unit estimates predicted arrival positions at specific times between the current time and a specified time, and repeatedly generates own vehicle information including the current position and the predicted arrival positions. An information transmitting unit transmits the own vehicle information. An information storage unit stores the own vehicle information into a first storage section as past own vehicle information. The information transmitting unit obtains an information coincidence degree representing the degree of the coincidence between current own vehicle information and the past own vehicle information, and transmits the current own vehicle information if the information coincidence degree is less than a specified threshold.
US08760313B2
The invention relates to a display device (54) for an actuator having at least one mechanical display element (10, 11) and a variable speed gear unit, particularly a signal gear unit designed as a variable speed gear unit, having at least two gears with differing transmission ratios, wherein there is a mechanical switching arrangement with which the different gears and/or transmission ratios of the variable speed gear unit can be selected and/or switched even when the display device is mounted operationally ready in a housing without intervention into the housing and without opening the housing from outside, and/or wherein the resolution of the display device (54) and/or the movement of the at least one display element (10, 11) on the actuating path to be displayed of a respective actuator and/or a respective armature can be selectively adjusted. The invention furthermore relates to an actuator having a said type of display device (54).
US08760305B2
The invention relates to a method of determining a remaining capacity of an energy source of an agricultural information tag. The method includes adjusting, such as increasing or decreasing, a counter at the occurrence of an event which leads to a consumption of energy from the energy source, and determining a remaining capacity of the energy source from a value of the counter. The event may include the elapsing of a predetermined period of time and a transmission of information by the information tag.
US08760297B2
A glucose monitoring system, includes a glucose sensor strip or package of strips. The strip includes a substrate and a glucose monitoring circuit that has electrodes and a bodily fluid application portion of selected chemical composition. An antenna is integrated with the glucose sensor strip. A RFID sensor chip is coupled with the glucose sensor strip and the antenna. The chip has a memory containing digitally-encoded data representing calibration and/or expiration date information for the strip.
US08760281B1
A travel alert manager receives travel data from a plurality of data sources and identifies an alert data type from the travel data. The travel alert manager generates an alert for the alert data type based on a primary alert condition, the alert to provide a notification that the travel data will affect a travel property. The travel alert manager determines a priority of the alert and issues the alert if alerts matching the priority of the alert are authorized by system settings.
US08760279B2
In an air pressure information display system of a vehicle tire, a vehicle (1) has air pressure sensors (7-9) for detecting the air pressure of a vehicle tire (2-5), and transmitting air pressure information indicating the detected air pressure via a wireless communication, and an informing unit (100) installed in a gas station or the like has a display module (100b) for displaying the received air pressure information.
US08760247B2
An electromagnetic contactor has a contact device including a contact housing for housing a pair of fixed contact pieces and a movable contact piece disposed to contact with and separate away from the pair of fixed contact pieces, a pair of arc-extinguishing inner permanent magnets disposed on inner peripheral surfaces of the contact housing, and a pair of arc-extinguishing outer permanent magnets disposed on outer peripheral surfaces of the contact housing at a section facing the arc-extinguishing inner permanent magnets. Magnetic pole surfaces of the arc-extinguishing inner permanent magnets are arranged in a close vicinity of the movable contact piece and are magnetized to have the same polarity facing each other. The arc-extinguishing outer permanent magnets are magnetized in the same direction as the arc-extinguishing inner permanent magnets disposed nearby and coercive force of the arc-extinguishing outer permanent magnets is greater than of that the arc-extinguishing inner permanent magnets.
US08760239B2
A circuit includes a signal path having a node between a signal path input and a signal path output. A first inductive element is connected between the signal path input and the node and a first capacitive element whose capacitance is variably adjustable is connected between the node and the signal path output. A second variable-capacitance capacitive element is connected between the signal path input and ground. A second inductive element is connected between the node and ground, and a third inductive element is connected between the signal path output and ground.
US08760231B2
A piezoelectric device includes an integrated circuit (IC) chip and a piezoelectric resonator element, a part of the piezoelectric resonator element being disposed so as to overlap with a part of the IC chip when viewed in plan. The IC chip includes: an inner pad disposed on an active face and in an area where is overlapped with the piezoelectric resonator when viewed in plan; an insulating layer formed on the active face; a relocation pad disposed on the insulating layer and in an area other than a part where is overlapped with the piezoelectric resonator element, the relocation pad being coupled to an end part of a first wire; and a second wire electrically coupling the inner pad and the relocation pad, the second wire having a relocation wire and a connector that penetrates the insulating layer, the relocation wire being disposed between the insulating layer and the active face.
US08760226B2
A generator for use with an electrosurgical device is provided. The generator has a gain stage electrically disposed between a first voltage rail and a second voltage rail, wherein the gain stage includes an input and an output. A voltage source operably coupled to the gain stage input and configured to provide an input signal thereto responsive to a drive control signal is also provided. The generator also has one or more sensors configured to sense an operational parameter of the amplifier and to provide a sensor signal corresponding thereto and a controller adapted to receive the sensor signal(s) and in response thereto provide a drive control signal to the voltage source. The generator has an amplifier output configured to supply an output voltage corresponding to the first voltage rail and the second voltage rail when the output of the gain stage falls between a voltage of the first voltage rail and a voltage of the second voltage rail and is configured to supply a peak voltage output when the voltage output is falls greater than the voltage of the first voltage rail or less than the voltage of the second voltage rail.
US08760222B2
A method and apparatus for an adjustable filter system comprises a first integrated circuit generating a reference value that represents a corner frequency of a filter within the first integrated circuit; sending the reference value that represents the corner frequency of the filter across an interface to a second integrated circuit; receiving, across the interface from the second integrated circuit, a filter adjustment value; and changing the corner frequency of the filter using the filter adjustment value to adjust a passband and a stopband of the filter. The apparatus and method also comprises a second integrated circuit detecting a filter adjustment event, wherein the filter adjustment event comprises receipt of the reference value; calculating the filter adjustment value to change a corner frequency of the filter within a first integrated circuit; and sending the filter adjustment value across the interface to the first integrated circuit.
US08760220B1
A beta enhancement circuit includes a current source connected in series with a transistor between two voltage supply lines. In an embodiment, the voltage supply lines are configured for connection to a power source and ground potential. A resistor device is connected between a control terminal of the transistor device and one of voltage supply lines. A value for the resistor device is selected based on one or more process dependent parameters of the transistor.
US08760219B2
A current providing circuit, for providing an output current at an output terminal, comprising: a current providing module, coupled to a first predetermined voltage level, for providing the output current according to the first predetermined voltage level and a control voltage transmitted to the current providing module; and a control voltage generating module, for generating the control voltage corresponding to the first predetermined voltage level and a threshold voltage of the current providing module.
US08760211B2
A level converter includes a level conversion circuit, which is provided between a reference power supply line having a reference voltage level and a first power supply line coupled to a first power supply outputting a first voltage level, which inputs a first signal and outputs a second signal, the first signal having a first logic level and a second logic level, the second signal having a first logic level and a second logic level; a control signal generating circuit to output a control signal having the reference voltage level when a second power supply outputting the second voltage level is turned off and the first voltage level when the second power supply is turned on; and a coupling circuit to control an electrically connection between the first power supply line and an output node of the level conversion circuit based on the control signal.
US08760204B2
A method and a system are provided for variation-tolerant synchronization. A phase value representing a phase of a second clock signal relative to a first clock signal and a period value representing a relative period between the second clock signal and the first clock signal are received. An extrapolated phase value of the second clock signal relative to the first clock signal corresponding to a next transition of the first clock signal is computed based on the phase value and the period value.
US08760199B2
A buffer circuit includes an amplification unit configured to amplify and output a difference between an input signal and a reference voltage; and a driver configured to drive an output node in response to the output of the amplification unit and be controlled in at least one of a pull-up driving strength and a pull-down driving strength at the output node in response to the reference voltage.
US08760198B2
A line driver includes a transconductance stage that senses a differential voltage present at differential output nodes. The transconductance stage replicates a fraction of the differential voltage and generates a differential output current corresponding to the replicated differential voltage. The differential output current flows through a current mirror stage that mirrors the differential output current to the differential output nodes. The line driver thereby decouples the transconductance stage from the differential output nodes. A lower line driver voltage supply (e.g., 1.8 V) may therefore supply the differential output nodes. A transconductance stage voltage supply separate from the line driver voltage supply may provide the supply voltage for the transconductance stage.
US08760183B2
A system and method for identifying opens among parallel connections on a circuit assembly such as a printed circuit board (PCB). In a learn phase performed on a known good circuit assembly, a group of parallel connected pins are excited with a first signal. A second signal, out-of-phase with the first signal, is applied to a second group of pins associated with the component. The amplitude and/or the phase of the second signal and the number and/or specific pins in the second group of pins are selected so that first and second signals coupled to a detector plate proximal to the component substantially offset. During a manufacturing test, signals of comparable amplitude and phase are applied to like pins on a like component of a circuit assembly under test. If the response signal coupled to a like detector plate is below a threshold, it is determined that each pin in the group of parallel connected pins is connected. If the amplitude of the response is over the threshold, one or more of the parallel pins is determined to be open. Additional tests may be performed to identify which of the parallel pins is likely open.
US08760177B2
Examples are generally described that include monitoring an electrocaloric effect device. A varying voltage may be applied across an electrocaloric effect material. A capacitance change of the electrocaloric effect material at least in part responsive to the varying voltage may be measured. A temperature change of the electrocaloric effect material may be calculated based, at least in part, on the capacitance change.
US08760176B2
Systems provide for a test system for capacitors in a digitally controllable oscillator (DCO). The system includes: capacitor toggling logic configured to switch on and off a selected one of the capacitors at a modulation frequency; a tone generator configured to generate a tone; a mixer configured to receive the tone and an output carrier signal from the DCO while the capacitor toggling logic is switching the selected one of the capacitors on and off and to output an intermediate frequency signal having FM sidebands based on the modulation frequency and relative capacitor size; and an evaluation circuit configured to evaluate a frequency deviation associated with the selected one of the capacitors based on at least one of the FM sidebands.
US08760172B2
An insulation measurement apparatus includes a path including a first resistor, a capacitor electrically floated from a ground, and a second resistor between a positive to a negative electrode side of a power supply, a first switching element between the power supply positive electrode side and the capacitor, a second switching element between the capacitor and the power supply negative electrode side, a detection section detecting a charge voltage on the capacitor and determining a power supply insulation state, and a voltage setting section executing a power supply voltage measurement mode controlling the first and second switching elements to charge the capacitor for a predetermined time period, and an insulation voltage measurement mode charging a terminal of a positive or negative electrode side of the capacitor via a resistor between the power supply positive or negative electrode and the ground for a predetermined time period.
US08760169B2
An operational amplifier with different power supply voltages includes an input stage and an output stage. The input stage includes a current source for providing a bias current, and a differential input circuit for receiving the bias current and differential input voltage signals, and converting the differential input voltage signal to differential input currents. The input stage is supplied by a first power supply voltage. The output stage includes a load circuit coupled to the differential input voltage signal and for receiving the differential input currents, and outputting a single ended output voltage signal. The output stage is supplied by a second power supply voltage. The second power supply voltage is lower than the first power supply voltage.
US08760168B2
An assembled battery total voltage detection circuit includes a main control circuit, a divider resistor connected between a plus terminal and a minus terminal of an assembled battery insulated from the main control circuit, and a differential amplifier circuit that amplifies voltage divided by the divider resistor. A constant electric potential relative to a ground of the main control circuit is applied to a midpoint of the divider resistor. The main control circuit measures the voltage divided by the divider resistor via the differential amplifier circuit.
US08760167B2
Techniques related to making resistivity measurements of an underground formation surrounding a borehole involve using a tool having a pad mounted on the body of the tool. The pad has a current injector electrode and a current return electrode mounted on the pad face and arranged such that the current injector and return electrodes are electrically isolated from each other when in use. Two impedance ratios are determined. The first is a ratio of the electrical impedance between the current injector electrode and the tool body, and the electrical impedance between the current return electrode and the tool body. The second is a ratio of the electrical impedance between the current injector electrode and the formation, and the electrical impedance between the current return electrode and the formation. The tool is arranged such that the two impedance ratios differ by 25% or less of the larger impedance ratio.
US08760164B2
Embodiments of the present disclosure include a magnetic resonant imaging (MRI) system including a gradient driver configured to deliver a pulse sequence to gradient coils in the MRI system. The gradient driver may be interleaved, and may include two or more interleaved drivers, such that a high amplitude pulse may be output by operating the two interleaved parts of the gradient driver while spreading the electrical loss and maintaining the thermal stability of the system. In one embodiment, each interleaved driver may be rated to output approximately half a maximum amplitude of a current utilized by the gradient coil, and only one interleaved driver may be in operation if only one interleaved driver is sufficient for delivering a necessary pulse to the coils. Further, the interleaved drivers may alternate in operation to maintain thermal stability in the switching semiconductors of the gradient driver.
US08760160B2
A system for travelling wave MR imaging includes an MR imaging apparatus having a magnet coil assembly having a magnet coil bore extending therethrough, a gradient coil assembly positioned within the magnet coil bore and having a gradient coil bore extending therethrough, and a waveguide positioned within the gradient coil bore. The waveguide has a waveguide bore extending therethrough. A computer is programmed to access a scan sequence comprising an RF pulse sequence and execute the scan sequence. During execution of the scan sequence, the computer is programmed to operate the waveguide in a hybrid mode to transmit an RF pulse of the RF pulse scan sequence as a travelling wave at a frequency lower than a cutoff frequency of a principal mode of the waveguide absent a dielectric core and to acquire MR signals from an imaging subject positioned within the waveguide bore.
US08760159B2
A magnetometer is provided comprising an atomic vapor in an enclosure, a source of light for preparing the vapor into a state exhibiting electromagnetically induced transparency, a first laser beam passing through the atomic vapor, a phase detector for detecting changes in phase of the first laser beam, and a controller which controls the light source and laser beam and receives the information detected by the phase detector in order to compute from those changes in phase a magnetic field strength in the presence of a selected background magnetic field of at least 0.001 T. Operation in the presence of a background field helps make this magnetometer suitable for diagnostic imaging applications.
US08760146B2
A safety interlock for use in a medical device having a control system for controlling operation of the medical device includes a central tubular portion defining a fluid passage for passing fluid through the safety interlock. An outer ring portion is adapted for mounting the safety interlock in the medical device. A spoked connector portion connects the central tubular portion to the outer ring portion so that the outer ring portion is spaced radially outwardly from the central tubular portion in opposed relation with at least a portion of the central tubular portion. The safety interlock is adapted for mounting in the medical device in a path of electromagnetic radiation from a source of electromagnetic radiation such that the central tubular portion reflects the electromagnetic radiation to a electromagnetic radiation detector when properly loaded on the medical device.
US08760145B2
An electronic device for detecting an object beneath a wall section of interest has an elongate rectangular base for temporarily mounting to the wall section of interest and for carrying a display panel to display a persistent image of the object. The device can be a two-part device comprising a first part comprising a light projector and a second part comprising a sensor. The device can also be a single part device where the display and the sensor are incorporated into a single body.
US08760139B2
A DC-DC converter control circuit, to control a DC-DC converter having an inductor and two switches, including a first feedback circuit; a second feedback circuit; a synthesis circuit to add a first feedback voltage indicating a DC component of an inductor current based on an output current of the DC-DC converter and a second feedback voltage indicating an AC component thereof to generate a third feedback voltage; a comparator to compare the third feedback voltage with a reference voltage to output a comparison result; and an on-time adjusting circuit to adjust on/off time of the switches based on the comparison result for outputting a control signal depending on the adjusting result. The second feedback voltage is generated based on a difference between input and output voltages of the DC-DC converter when the control signal is low and based on the output voltage when the control signal is high.
US08760136B2
A switcher system or circuit and corresponding methods provide dynamic voltage scaling. One embodiment of an apparatus includes: a switcher controller configured to monitor a signal from a processor for a first state, determine a time that the signal is in the first state, and provide an adjustment signal based on the time, and a power supply coupled to the adjustment signal and configured to provide a variable supply voltage to the processor core, the variable supply voltage controlled by the adjustment signal after the determining a time.
US08760128B2
A three-phase boost-buck PFC converter including three independent single-phase boost-buck PFC circuits respectively is provided, which are capable of performing PFC on each phase of the three-phase power. The single-phase boost-buck PFC circuit is composed of two single-phase boost-buck converters independently working in a positive and a negative half cycle of an input voltage, and the two single-phase boost-buck converters are connected in parallel at an input side, and are connected in series at an output side, and each of the single-phase boost-buck converters is composed of a front-end boost circuit and a back-end buck circuit connected in cascade. Compared to the existing technique, regardless of a boost mode or a buck mode, the conduction loss is effectively reduced, and the whole system efficiency is effectively improved.
US08760127B2
According to one aspect of the invention, a system for controlling a temperature of a generator is provided, wherein the system includes a fluid supply in fluid communication with the generator and a heat exchange apparatus in fluid communication with the fluid supply, the generator and a cooling fluid source. The system also includes a first sensor configured to determine a first temperature of a fluid flowing from the heat exchange apparatus to the generator, a second sensor configured to determine a second temperature of the fluid flowing from the generator to the fluid supply and a controller configured to determine an operating limit temperature for the fluid based on the determined first and second temperatures.
US08760121B2
A charging device can prevent overcharging by coping with a plurality of cell voltages without increasing a circuit area and current consumption. The charging device selects one of at least two judgment voltages in response to a select signal determined depending on a chargeable voltage of a secondary battery. The charging device compares a comparison voltage based on a voltage of a lower stream of a back flow prevention unit with the selected judgment voltage to detect a fully charged state of the secondary battery. The charging device interrupts supply of charging current to the back flow prevention unit upon detecting the fully charged state.
US08760120B2
A method for de-energizing a chain-link converter including one or more phase legs each phase leg having a number of series-connected converter cells. The phase legs are connected to a respective charging resistor. The method includes the steps of: opening AC circuit breakers arranged between a power grid and the chain-link converter, opening charging resistors switches arranged in parallel with a respective one of charging resistors, and circulating a current within the chain-link converter through the charging resistors and each phase leg, whereby the DC capacitor are discharged. The invention also relates to a controller, computer program and computer program products.
US08760117B2
A battery pack has a case for storing a battery can, and a metal plane made of a conductive material and connected to the battery can in high frequency is provided on the outer circumference plane of the case. A mounting recessed part for removably mounting the battery pack is provided, and a printed circuit board is provided inside. In the mounting recessed part, a plurality of grounding terminals are electrically connected to a grounding layer of the printed circuit board, on an inner plane to which the metal plane of the battery pack abuts. When the battery pack is mounted in the mounting recessed part, electricity is carried between the metal plane and the grounding terminals, and the metal plane and the battery can are grounded to the grounding layer of the printed circuit board in high frequency.
US08760107B2
Improvements in a trickle charging system for a boat are presented. The anchor charger is a solar panel that harnesses sunlight to trickle charging a boat through the anchor light connection of a boat. The anchor charger helps to ensure that the battery is fully charged prior to boating & also provide some charging action while out on the water. This helps to ensure that proper battery maintenance is provided on a consistent basis. The anchor charger connect to a standard 2 pin female anchor light connection which is installed on primarily all recreational boats that normally powers an anchor light that is required on small vessels while they are at anchor. The solar collector is mounted on a pole having an adjustable swivel mount to allow the boater to position the solar collector to be adjusted for angle and spin to collect optimal sun exposure.
US08760105B2
A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.
US08760103B2
A system for controlling power to actuators. For example, a controller may output a signal having a variable duty cycle waveform for controlling current to an actuator via an interface circuit between the controller and the actuator. Changing the duty cycle may change the amount of current to the actuator. The controller may provide a control signal that optimizes power consumption by the actuator for efficiency purposes. However, if the controller fails, then no control signal may be available to allow current to the actuator, particularly in situations where the actuator may need to be operationally tested. To avoid such situations, fail-safe bypass switching may be incorporated into the interface circuit. Upon absence of a control signal from the controller, the circuit may provide a default signal in lieu of the control signal to maintain current to the actuator.
US08760101B2
An electrical actuator limits the speed of the electric motor which controls the hydraulic pump of the actuator, during the opening of a pressure relief valve. To this end, the electrical actuator applies an auxiliary set-point speed value to the electric motor to avoid damage that may be caused by overheat at the actuator.
US08760094B2
An apparatus and method for protecting a power system comprising a generator providing power to an alternating current bus, a power converter for converting alternating current power on the alternating current bus to direct current power on a direct current bus, and a direct current load powered by the direct current power on the direct current bus. An undesired condition is identified at the input to the power converter from the alternating current bus. The undesired condition is caused by at least one of the power converter, the direct current bus, or the load. The power converter is disconnected from the alternating current bus in response to identifying the undesired condition for at least a time delay. The time delay is selected such that the power converter is disconnected from the alternating current bus before the alternating current bus is disconnected from the generator due to the undesired condition.
US08760093B2
An electronic control apparatus for a vehicle, which operates a power conversion circuit connected to a rotating machine used as an in-vehicle traction unit to control controlled variables of the rotating machine, includes a controlling arithmetic processing unit which performs arithmetic processing to control the controlled variables of the rotating machine, and a monitoring arithmetic processing unit which monitors the controlling arithmetic processing unit. The monitoring arithmetic processing unit includes an on-monitoring prohibition unit which prohibits outputting an operation signal from the controlling arithmetic processing unit to the power conversion circuit until the controlling arithmetic processing unit is confirmed to be in a normal condition.
US08760091B2
A control circuit for a PMDC motor used in an ice delivery apparatus, the circuit including a double pole double throw relay that switches both sides of the circuit and peripheral circuitry connected between a power source and the double pole double throw relay to rectify the power source and power the PMDC motor.
US08760087B2
What is described is an actuator system (2) comprising at least one actuator (29, 29′) and an associated control system (8) which is designed for at least two operating modes, at least one of which may be deactivated, whereby one of the operating modes is a high efficiency operating mode.
US08760083B2
A ballast which controls the open-circuit voltage of the ballast. The ballast includes a power factor corrector (PFC) for receiving an AC input voltage and converting the AC input voltage into a power factor corrected DC voltage; a DC/DC converter connected to the PFC and having a switch placed at a low-voltage side of the DC/DC converter for converting the DC voltage of the PFC into a DC output voltage according to the switching operation of the switch; a controller connected to a control terminal of the switch of the DC/DC converter for sending a switching control signal to control the switch; and an open-circuit voltage controller for detecting a voltage associated with the open-circuit voltage of the ballast and regulating the duty ratio or pulse density or switching frequency of the switching control signal in response to the results of the detection, thereby controlling the open-circuit voltage.
US08760082B2
The present invention relates to an LED emitting device. The LED emitting device includes: a converter converting an input voltage according to a switching operation of a power source switch to generate at least two output voltages; an LED panel unit including a plurality of LED channels having a plurality of LEDs; a micom board operated by a first output voltage among the at least two output voltages to control the operation of the LED emitting device; a regulator converting a second output voltage among the at least two output voltages into a voltage suitable for the operation of the LED panel unit; and a multi-channel control unit controlling an operation of the regulator according to a lowest minimum voltage among the voltages of a plurality of LED channels and receiving the first output voltage to generate a first feedback voltage VF1.
US08760078B2
A solid-state lighting system comprises a plurality of light-emitting devices (e.g., light-emitting diodes) and an alternating current to direct current (AC-DC) converter that converts AC power to DC power for powering the plurality of light-emitting devices. The AC-DC converter is configured to perform AC-DC conversion directly, without the need for or use of a bridge rectifier or step-down transformer. According to one aspect of the invention, the light-emitting devices of the solid-state lighting system are autonomous and individually powered by a plurality of DC power supplies generated from the DC power produced by the AC-DC converter. According to another aspect, a plurality of phase-offset dimmer control signals are generated based on waveform distortions in a dimming signal produced by a conventional dimmer switch. The phase-offset dimmer control signals are used to individually control the dimming of the light-emitting devices.
US08760074B2
A system provides white light having a selectable spectral characteristic (e.g. a selectable color temperature and intensity) using a combination of sources (e.g. LEDs) emitting light of four, five, or six different characteristics, for example, one or more white LEDs, and one or more LEDs of each of three primary colors plus cyan and royal blue. A microcontroller can maintain a desired spectral characteristic, e.g. for white light at a selected point on or within a desired range of the black body curve. Further, the microcontroller provides tunability of the spectral characteristic and intensity of the white luminaire. One channel driver drives the one or more first color LEDs (white in our example) as well as the one or more second color LEDs which are connected in series to the first channel driver. The other light sources are each driven by separate drivers on separate channels.
US08760073B2
A high-efficiency Alternating Current (AC)-driven Light-Emitting Diode (LED) module includes a full-wave rectification unit, an LED unit, at least one instantaneous current control unit, and at least one input power compensation unit. The full-wave rectification unit rectifies commercial supply voltage. The LED unit is configured such that LEDS connected in series are arranged separately or in groups. The instantaneous current control unit sequentially controls the sections of the LEDs connected in series. The input power compensation unit actively controls variations in input current and power attributable to variations in input voltage. The full-wave rectification unit, the LED unit, the instantaneous current control unit, and the input power compensation unit are formed of a one-board module (ASIC) or an Integrated Circuit (IC).
US08760072B2
A high efficiency light emitting diode power supply for roadway lighting fixtures is provided. The power supply enables conditioning and monitoring of input power and monitors LEDs current to ensures consistent performance of the LED by changing a power correction factor. The LED output can also be adjusted based upon age or external input parameters and by modifying the power correction factor value. In addition, the LED output can be dimmed, turned down in output to a lower level at any time of night for a prescribed duration in order to further save energy. This dimming function uses a programming scheme that keeps track of the “seasons” (summer, fall, winter and spring) so that time of night is tracked accurately all year long.
US08760067B2
A system and method for controlling an arc formation in corona discharge ignition system is provided. The system includes a corona igniter for receiving energy at a voltage and providing a corona discharge. An energy supply providing the energy to the corona igniter at a voltage. The system also includes a corona controller for initiating a decrease in the voltage of the energy provided to the corona igniter in response to the onset of arc formation. The voltage is decreased until the arcing is depleted, and then the voltage is increased again to resume the corona discharge. Controlling the arc formation provides improved energy efficiency during operation of the corona discharge ignition system.
US08760061B2
The present invention provides an LED light string color mixing and synchronization circuit, in which each of LED lights composed of an LED light string includes two input terminals and two output terminals. The two input terminals are respectively an input terminal of reverse parallel connection of any two of three primary light-emitting chips of R, G, B and an anode input terminal of the remaining primary light-emitting chip and the two output terminals are respectively an output terminal of reverse parallel connection of any two of three primary light-emitting chips of R, G, B and a cathode output terminal of the remaining primary light-emitting chip. Thus, each of the LED lights of the LED light string is connected in a two-input two-output series connection to form a light string arrangement with two terminals thereof in combination with four electrical wires.
US08760056B2
The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode and composed of insulating fine particles; and a second electrode formed on the insulating fine particle layer, wherein the insulating fine particle layer is provided with recesses formed in a surface thereof, the surface facing the second electrode, the recesses each having a depth smaller than a thickness of the insulating fine particle layer, and when a voltage is applied between the first electrode and the second electrode, electrons provided from the first electrode are accelerated in the insulating fine particle layer to be emitted though the second electrode.
US08760043B2
Disclosed is an LED-based bulb-type lamp, including a cooling structure and a plurality of LEDs thermally connected to the cooling structure. The lamp includes at least three separate LED arrays oriented substantially parallel to its central longitudinal axis, such that the LEDs are interspersed among a plurality of light-transmission sub-areas of the LED-based lamp. One or more portions of the cooling structure of the lamp extend to its outer surface, as assembled, such that light-transmissive and heat-dissipating areas are spread over the outer surface, for example, in an alternating manner.
US08760029B2
A rotary electric machine having a stator whose dismantled structure can be reintegrated at reduced cost. The stator eliminates difficulties in separation and reuse at the time of disposal incident to use of molding such as resin molding. Also, it has no adverse environmental impacts.A plurality of stator cores having a plurality of magnetic poles arranged at intervals in the circumferential direction are laminated in the axial direction with use of a heat-shrinkable tube having an appropriate compression retention force. The outer circumferences of these stator cores are covered collectively with another heat-shrinkable tube. The heat-shrinkable tubes are heated so that the plurality of stator cores are integrated into a single-piece structure by the heat-shrunk tubes.
US08760024B2
In an arrangement in accordance with the invention for attaching a permanent magnet to an electrical machine's rotor, the rotor comprises at least two magnetic poles, and there is a pole gap between two magnetic poles. Permanent magnets are installable on the surface of the magnetic core. A pole piece is installable on the permanent magnet side facing the air gap. There is fixing means on the sides of the pole piece facing the pole gap for attaching the pole piece to the rotor using the locking parts, and the fixing means are connected to the pole piece through an articulated joint.
US08760022B2
A motor mounting plate, composed of a metallic plate, includes: a disc-shaped plate body having a mounting portion to which a motor is mounted, and at least three flanges formed at a circumferential edge of the plate body, the flanges mounted at predetermined locations, an angle between adjacent flanges around the center of the plate body is 140° to 180°.
US08760019B2
A rotating electric machine includes a rotor and a stator. The stator coil of the stator includes a set of a first stator coil and a second stator coil that is stored in an adjacent slot to a slot in which the first stator coil is stored, with a number of the set being same as a number of phases, and one end of each of the first stator coil and the second stator coil is a lead section and an other end is a neutral point. A plurality of the stator coils are arranged radially in layers in each slot, and a lead section of the first stator coil and a lead section of the second stator coil are connected with each other with one of the lead sections extending from an outermost layer of the slot and an other of the lead sections extending from an innermost layer of the slot so that the connected lead sections constitute an external connection terminal.
US08760018B2
A motor stator with heat dissipation structure for fan includes a silicon steel plate assembly having a plurality of magnetic-pole columns, on each of which at least one winding is wound, and a space is defined between any two adjacent magnetic-pole columns; a covering being a heat-conducting plastic material filled in the spaces while covering the silicon steel plate assembly and the windings; and a plurality of heat pipes being extended into or through the covering filled in the spaces, so that heat produced by the silicon steel plate assembly and the windings during operation thereof can be transferred to the covering, and the heat pipes can absorb the heat from the covering and dissipate the absorbed heat into ambient air. Therefore, the silicon steel plate assembly and the windings can have lowered temperature and the cooling fan can have upgraded heat dissipation characteristic.
US08760011B2
A fan includes a housing, a cable, a number of blades received in and mounted to the housing, a motor driving the blades to operate and receiving electric energy by the cable, and a switch mounted on a bottom of the housing and connected with the cable. When the fan presses the switch, the cable and the switch form a closed circuit. When the fan releases pressure from the switch, the closed circuit is opened.
US08760006B2
Disclosed herein is a wireless power transmission/reception apparatus and method having a communication function.The wireless power transmission/reception apparatus includes a wireless power transmission device and wireless power transmission devices. The wireless power transmission device receives a returned wireless power signal, detects the number of power consumption devices, modulates pieces of ID data, each including ID of a corresponding power consumption device, transmits the modulated ID data, receives returned ID data, and determines suitableness of the power consumption devices. Each of the wireless power reception devices returns a remaining wireless power signal which is not received among wireless power signals from the wireless power transmission device, and temporarily stops a power consumption device when an ID of the received ID data is an ID of a power consumption device connected thereto, thus returning ID data which will be subsequently received to the wireless power transmission device.
US08759999B2
A powerline communication control system for controlling a lighting unit, such as an LED lighting unit, including a master controller for receiving lighting unit control inputs from a lighting controller and generating corresponding lighting unit command outputs in a lighting system command format and transmission mode and superimposing the lighting unit command outputs onto the power distribution system and at least one lighting slave unit for receiving the lighting command signal, separating the lighting command signal from the power signal and for providing lighting unit control commands to the at least one lighting unit to control illumination thereof.
US08759996B2
Apparatus and method is disclosed for generating usable power derived from oscillatory hydro-kinetic energy available in the movement of waves having a given height and being spaced apart by a predetermined distance at the surface of a body of water. Apparatus and method is disclosed for generating usable power derived from hydro-kinetic energy available in a body of water moving in at least one direction of movement, the at least one direction being substantially horizontal or substantially vertical. Apparatus and method is disclosed for generating usable power derived from hydro-gravitational forces available at a site having a source of water at a first elevation higher than a second elevation at a selected location where the usable power is to be derived.
US08759994B2
A method of controlling a wind turbine generator is provided, the wind turbine generator converting mechanical energy to electrical. The method comprises: determining an electromagnetic power reference representing the electromagnetic power generated by the wind turbine generator, wherein the electromagnetic power reference is determined based on a desired output of the wind turbine generator; controlling the electrical power generated by the wind turbine generator using a control signal, wherein the control signal is derived from the electromagnetic power reference and is modified in dependence on an inverse power function of the wind turbine generator by incorporating minimal copper loss constraint and stator voltage limiting constraint such that non-linearity of the wind turbine generator plant is compensated in the control loop and it operates at its maximum efficiency. One effect of the method is that classical linear control loop design can be employed in spite of the plant being a non-linear identity.
US08759993B2
A system, in certain embodiments, includes a joint and an energy harvesting system. The energy harvesting system includes an energy conversion system configured to convert kinetic energy from movement of the joint into electrical energy.
US08759981B2
A multilayer system includes first and second functional layers, for example, semiconductor layers. A third or intermediate layer is disposed between the first and second functional layers and adheres relatively well to the first and second layers yet has relatively little or no detrimental effect on the functionality of the first and second layers. The third layer is applied to the first layer. Anchoring elements are provided which are partly embedded in the third layer, and the second layer is secured to the third layer by the anchoring elements. This structure yields good adhesion between the three layers, because the third layer adheres relatively well to the first layer and the third layer and the second layer are mechanically bonded together relatively strongly by the anchoring elements.
US08759980B2
Array contacts for semiconductor memories may be formed using a first set of parallel stripe masks and subsequently a second set of parallel stripe masks transverse to the first set. For example, one set of masks may be utilized to etch a dielectric layer, to form parallel spaced trenches. Then the trenches may be filled with a sacrificial material. That sacrificial material may then be masked transversely to its length and etched, for example. The resulting openings may be filled with a metal to form array contacts.
US08759971B2
A semiconductor apparatus in a preferred embodiment includes: a substrate; a first chip provided on the substrate; a solder bump formed on the first chip; a solder dam arranged in substantially a rectangular and annular manner outside around the solder bump on the first chip by alternately connecting four sides and four quarter or less arcs; an electrode pad placed outside of the solder dam in the first chip; a second chip provided on the first chip in electric connection to the first chip via the solder bump; and an under-fill material filling a clearance between the first chip and the second chip inside of the solder dam. Here, a difference between an inner diameter and an outer diameter of the arc is 60 μm or more whereas the center radius of the arc is greater than 207.5 μm.
US08759965B2
A protective modular package assembly with one or more subassemblies, each having a base element, a sidewall element coupled to the base element, and a semiconductor device disposed within and coupled to the sidewall element and the base element; a protective modular package cover having fastening sections located at opposing ends of the cover, torque elements disposed on the opposing ends and configured to fasten the cover to a core, and subassembly receiving sections disposed between the fastening sections with each subassembly receiving section operable to receive a subassembly and having a cross member along the underside of the cover; and an adhesive layer configured to affix subassemblies to respective subassembly receiving sections. The torque elements are configured to transfer a downward clamping force generated at the fastening elements to a top surface of the subassemblies via the cross member of each of the one or more subassembly receiving sections.
US08759961B2
A template having tapered openings can be employed to enable injection of underfill material through gaps having a width less than a lateral dimension of an injector needle for the underfill material. Each tapered opening has a first lateral dimension on an upper side and a second lateral dimension on a lower side. Compliant material portions can be employed to accommodate variations in distance between the template and stacked semiconductor chips and/or an injector head. Optionally, another head can be employed to apply compressed gas to push out the underfill material after the underfill material is applied to the gaps. Multiple injector heads can be employed to simultaneously inject the underfill material at different sites. An adhesive layer can be substituted for the at least one lower compliant material portion.
US08759958B2
A semiconductor package includes a first package and a second package, a connection terminal disposed between the first and second packages and including a first solder ball and a second solder ball that are vertically stacked, a solder passivation layer with which a surface of at least one of the first and second solder balls is coated, and a ring-shaped short prevention part surrounding a coupling portion between the first and second solder balls.
US08759957B2
A film for use in manufacturing a semiconductor device having at least one semiconductor element of the present invention is characterized by comprising: a base sheet having one surface; and a bonding layer provided on the one surface of the base sheet, the bonding layer being adapted to be bonded to the semiconductor element in the semiconductor device, the bonding layer being formed of a resin composition comprising a crosslinkable resin and a compound having flux activity. Further, it is preferred that in the film of the present invention, the semiconductor element is of a flip-chip type and has a functional surface, and the bonding layer is adapted to be bonded to the functional surface of the semiconductor element.
US08759953B2
In an electronic component, an active chip element and a passive chip element are respectively enclosed within first and second resin layers, which are separately disposed on upper and lower surfaces of a core substrate, respectively. The first resin layer includes a shielding metal film disposed on an upper surface thereof and a first via-hole conductor which connects the shielding metal film with a circuit pattern provided on the core substrate. The second resin layer includes an external-terminal electrode disposed on a lower surface thereof and a second via-hole conductor which connects the external-terminal electrode with a circuit pattern provided on the core substrate.
US08759939B2
A semiconductor device arrangement includes a semiconductor layer and at least one series circuit with a first semiconductor device and a plurality of n second semiconductor devices, with n>1. The first semiconductor device has a load path and active device regions integrated in the semiconductor layer. Each second semiconductor device has active device regions integrated in the semiconductor layer and a load path between a first and second load terminal and a control terminal. The second semiconductor devices have their load paths connected in series and connected in series to the load path of the first semiconductor device. Each second semiconductor device has its control terminal connected to the load terminal of one of the other second semiconductor devices. One of the second semiconductor devices has its control terminal connected to one of the load terminals of the first semiconductor device. The arrangement further includes an edge termination structure.
US08759921B2
A semiconductor memory device includes a plurality of memory blocks formed over a substrate including source regions and separated from each other by a slit, a plurality of bit lines coupled to the strings of the memory blocks and disposed over the memory blocks, and source contact lines formed within the slits, coupled to the source regions, respectively, and disposed in a direction to cross the plurality of bit lines.
US08759910B2
A semiconductor power device with trenched floating gates having thick bottom oxide as termination is disclosed. The gate charge is reduced by forming a HDP oxide layer padded by a thermal oxide layer on trench bottom and a top surface of mesa areas between adjacent trenched gates. Therefore, only three masks are needed to achieve the device structure.
US08759909B2
A power MOSFET includes a semiconductor substrate with an upper surface, a cavity of a first depth in the substrate whose sidewall extends to the upper surface, a dielectric liner in the cavity, a gate conductor within the dielectric liner extending to or above the upper surface, body region(s) within the substrate of a second depth, separated from the gate conductor in a lower cavity region by first portion(s) of the dielectric liner of a first thickness, and source region(s) within the body region(s) extending to a third depth that is less than the second depth. The source region(s) are separated from the gate conductor by a second portion of the dielectric liner of a second thickness at least in part greater than the first thickness. The dielectric liner has a protrusion extending laterally into the gate conductor away from the body region(s) at or less than the third depth.
US08759907B2
A method of forming a buried bit line is provided. A substrate is provided and a line-shaped trench region is defined in the substrate. A line-shaped trench is formed in the line-shaped trench region of the substrate. The line-shaped trench includes a sidewall surface and a bottom surface. Then, the bottom surface of the line-shaped trench is widened to form a curved bottom surface. Next, a doping area is formed in the substrate adjacent to the curved bottom surface. Lastly, a buried conductive layer is formed on the doping area such that the doping area and the buried conductive layer together constitute the buried bit line.
US08759906B2
A semiconductor device having a substrate; a plurality of pillar structures, wherein each pillar structure includes an active pillar disposed over the substrate; a gate electrode surrounding an outer wall of the active pillar; an interlayer dielectric (ILD) layer insulating adjacent pillar structures; a gate contact penetrating the ILD layer and configured to connect to a sidewall of the gate electrode; and a word line connected to the gate contact.
US08759901B2
According to one embodiment, a nonvolatile semiconductor memory device including a semiconductor layer with a main surface, a first insulating layer formed on the main surface of the semiconductor layer, a charge storage layer formed on the first insulating layer, a second insulating layer formed on the charge storage layer, and a control gate electrode formed on the second insulating layer. At least one inelastic scattering film that reduces energy of electrons by scattering is contained in at least one of the charge storage layer and second insulating layer.
US08759892B2
A semiconductor device including a vertical transistor and a method for forming the same are disclosed, which can greatly reduce a cell area as compared to a conventional layout of 8F2 and 6F2, and need not form a bit line contact, a storage node contact, or a land plug, such that the number of fabrication steps is reduced and a contact region between the bit line and the active region is increased in size. The semiconductor device including a vertical transistor includes an active region formed over a semiconductor substrate, a first recess formed to have a predetermined depth at both sides of the active region, and a bit line buried in the first recess.
US08759882B2
An integrated circuit device includes a plurality of dynamic array sections, each of which includes three or more linear conductive segments formed within its gate electrode level in a parallel manner to extend lengthwise in a first direction. An adjoining pair of dynamic array sections are positioned to have co-located portions of outer peripheral boundary segments extending perpendicular to the first direction. Some of the three or more linear conductive segments within the gate electrode levels of the adjoining pair of dynamic array sections are co-aligned in the first direction and separated by an end-to-end spacing that spans the co-located portions of outer peripheral boundary segments of the adjoining pair of dynamic array sections. Each of these end-to-end spacings is sized to ensure that each gate electrode level manufacturing assurance halo portion of the first adjoining pair of dynamic array sections is devoid of the co-aligned linear conductive segments.
US08759876B2
A heterojunction for use in a transistor structure is provided. The heterojunction includes a barrier layer positioned beneath a gate region of the transistor structure. The barrier layer includes nitride-based semiconductor materials. A channel layer provides electrical conduction An intermediate layer near the barrier layer and including nitride-based semiconductor materials having a wider bandgap than the channel layer.
US08759865B2
A light emitting diode chip, a light emitting diode package structure and a method for forming the same are provided. The light emitting diode chip includes a bonding layer, which has a plurality of voids, or a minimum horizontal distance between a surrounding boundary of the light emitting diode chip and the bonding layer is larger than 0. The light emitting diode chip, the light emitting diode package structure and the method may improve the product yields and enhance the light emitting efficiency.
US08759853B2
Disclosed is a light emitting device including a substrate, a first buffer layer disposed on the substrate, the first buffer layer comprising aluminum nitride (AlN), an insertion layer disposed on the first buffer layer, the insertion layer comprising aluminum (Al), and a light emitting structure disposed on the insertion layer, the light emitting structure comprising a first semiconductor layer, a second semiconductor layer, and an active layer interposed between the first semiconductor layer and the second semiconductor layer.
US08759849B2
A driving substrate includes: a protective layer including an etching surface; and a film layer including one or more convex portions on a surface thereof, the film layer being in contact with a rear surface of the protective layer, the one or more convex portions each having a surface being flush with the etching surface.
US08759848B2
The application provides a light-emitting device, comprising a substrate; a plurality of first light-emitting diode units on the substrate, wherein every first light-emitting diode unit has a first electrode structure; and a plurality of second light-emitting diode units among the plurality of first light-emitting diode units, wherein every second light-emitting diode unit has a second electrode structure. The second electrode structure of the second light-emitting diode unit is flipped over and electrically connected with the adjacent first electrode structure of the first light-emitting diode unit.
US08759846B2
A light emitting device is provided. The light emitting device comprises a substrate, a first lead frame and a second lead frame on the substrate, a first light emitting diode, a heat conductor on the substrate, and a heat transfer pad. The first light emitting diode on the first lead frame is electrically connected to the first lead frame and the second lead frame. The heat conductor is electrically separated from the first lead frame. The heat transfer pad contacts the first lead frame and the heat conductor thermally to connect the first lead frame to the heat conductor.
US08759845B2
A light emitting device (10) comprises a body (12) of a semiconductor material. A first junction region (14) is formed in the body between a first region (12.1) of the body of a first doping kind and a second region (12.2) of the body of a second doping kind. A second junction region (16) is formed in the body between the second region (12.2) of the body and a third region (12.3) of the body of the first doping kind. A terminal arrangement (18) is connected to the body for, in use, reverse biasing the first junction region (14) into a breakdown mode and for forward biasing at least part (16.1) of the second junction region (16), to inject carriers towards the first junction region (14). The device (10) is configured so that a first depletion region (20) associated with the reverse biased first junction region (14) punches through to a second depletion region associated with the forward biased second junction region (16).
US08759844B2
Semiconductor layers on active areas for transistors in a memory cell region (region A) and a peripheral circuit region (region B) are simultaneously epitaxially grown in the same thickness in which the adjacent semiconductor layers in region A do not come into contact with each other. Only semiconductor layer (10) in region B is also grown from the surface of a substrate which is exposed when only the surface of STI (2) in region B is drawn back, so that a facet (F) of the semiconductor layer 10 is formed outside the active area, followed by ion-implantation to form a high density diffusion layer (11) in region B. Accordingly, short circuit between semiconductor layers on source/drain electrodes of transistors in region A is prevented, and uniformity of the junction depth of the layer (11) of the source/drain electrodes including an ESD region in a transistor of region B is obtained, thereby restricting the short channel effect.
US08759841B2
A light emitting device package includes a sub mount; a light emitting device on the sub mount, and configured to generate light of a first wavelength; a dielectric layer disposed on the sub mount; and a fluorescent layer on the dielectric layer, and configured to convert the light of the first wavelength into light of a second wavelength, wherein the dielectric layer includes a plurality of layers having at least two different refractive indices, that transmits the light of the first wavelength and reflects the light of the second wavelength.
US08759835B2
An object of the present invention is to decrease substantial resistance of an electrode such as a transparent electrode or a wiring, and furthermore, to provide a display device for which is possible to apply same voltage to light-emitting elements. In the invention, a auxiliary wiring that is formed in one layer in which a conductive film of a semiconductor element such as an electrode, wiring, a signal line, a scanning line, or a power supply line is connected to an electrode typified by a second electrode, and a wiring. It is preferable that the auxiliary wiring is formed into a conductive film to include low resistive material, especially, formed to include lower resistive material than the resistance of an electrode and a wiring that is required to reduce the resistance.
US08759814B2
A semiconductor light-emitting device and a manufacturing method thereof are provided, wherein the semiconductor light-emitting device includes a first type doped semiconductor structure, a light-emitting layer, a second type doped semiconductor layer, a first conductive layer and a dielectric layer. The first type doped semiconductor structure includes a base and a plurality of columns extending outward from the base. Each of the columns includes a top surface and a plurality of sidewall surfaces. The light-emitting layer is disposed on the sidewall surfaces and the top surface, wherein the surface area of the light-emitting layer gradually changes from one side adjacent to the columns to a side away from the columns. The dielectric layer exposes the first conductive layer locating on the top surface of each of the columns, wherein the dielectric layer includes at least one of a plurality of quantum dots, phosphors, and metal nanoparticles.
US08759813B2
An Al0.95Ga0.05N:Mg (25 nm) single electron barrier can stop electrons having energy levels lower than the barrier height. Meanwhile, a 5-layer Al0.95Ga0.05N (4 nm)/Al0.77Ga0.23N (2 nm) MQB has quantum-mechanical effects so as to stop electrons having energy levels higher than the barrier height. Thus, electrons having energy levels higher than the barrier height can be blocked by making use of multiquantum MQB effects upon electrons. The present inventors found that the use of an MQB allows blocking of electrons having higher energy levels than those blocked using an SQB. In particular, for InAlGaN-based ultraviolet elements, AlGaN having the composition similar to that of AlN is used; however, it is difficult to realize a barrier having the barrier height exceeding that of AlN. Therefore, MQB effects are very important. Accordingly, it becomes possible to provide element technology for further improving deep UV light emission intensity using, as a light-emitting layer material, an AlGaInN-based material and, in particular, an AlGaN-based material.
US08759799B2
A charged particle beam writing apparatus according to an embodiment, includes a dose coefficient calculation unit to calculate an n-th dose correction coefficient in iterative calculation of a charged particle beam to be shot in a small region concerned by the iterative calculation, for each small region of small regions made by virtually dividing into mesh-like regions, a change rate calculation unit to calculate, for each small region, a rate of change from an (n-1)th dose correction coefficient to the n-th dose correction coefficient calculated in the iterative calculation, as an n-th change rate, a correction calculation unit to correct, for each small region, the n-th dose correction coefficient by using the n-th change rate, and a dose calculation unit to calculate, for each small region, a dose of a charged particle beam to be shot in a small region concerned by using the n-th dose correction coefficient corrected.
US08759780B2
The present application provides techniques and/or systems for inspecting a pipe, or rather measuring one or more characteristics of a pipe, using radiation. A carriage, mounted to the pipe, may provide a mechanism for propelling a radiation source and a detector along the pipe. The detector is configured such that it can receive radiation that has traversed both a wall of the pipe and an obstacle, such as a pipe support. In this way, portions of a pipe that are traditionally difficult to inspect may be inspected easily with minimal human intervention.
US08759764B2
A split grid multi-channel secondary particle detector for a charged particle beam system includes a first grid segment and a second grid segment, each having independent bias voltages creating an electric field such that the on-axis secondary particles that are emitted from the target are directed to one of the grids. The bias voltages of the grids can be changed or reversed so that each grid can be used to detect the secondary particles and the multi-channel particle detector as a whole can extend its lifetime.
US08759754B2
Provided are methods for determining the amount of vitamin C in a sample using mass spectrometry. The methods generally involve ionizing vitamin C in a sample and detecting and quantifying the amount of the ion to determine the amount of vitamin C in the sample.
US08759745B2
Device to adjust the position and/or size of a pinhole in a laser scanning microscope (LSM) where the pinhole is illuminated via a separate light source or the LSM laser and the pinhole is moved at a right angle to the optical axis until the receiver has the maximum intensity and the pinhole position is captured and saved together with the data attributed to the replaceable optical components.
US08759743B2
An input device capable of lowering the vertical position of light beams traveling within the frame of a frame-shaped optical waveguide without using optical path conversion is provided. The input device includes a light-emitting module incorporating a light-emitting element connected to light-emitting cores of the optical waveguide, and a light-receiving module incorporating a light-receiving element connected to light-receiving cores of the optical waveguide. A section of the optical waveguide on a light-receiving side, in which the light-receiving cores are formed, is placed upside down so that an over cladding layer is positioned on the underside. Accordingly, the light-receiving module is also placed upside down. Thus, the light-receiving module protrudes along the height thereof in such a manner that the amount of downward protrusion is less than the amount of upward protrusion.
US08759726B2
There is described a power splitter for directing electromagnetic power comprising: an input port for receiving the electromagnetic power; at least one dielectric element placed inside the power splitter; at least two output ports for outputting the power according to a splitting ratio, the at least two output ports placed on a surface opposite to the input port; and at least one dielectric moving device for positioning the at least one dielectric element between the at least two output ports to dynamically direct the power into the at least two output ports according to the power splitting ratio.
US08759724B2
The present invention concerns an elongated object (1) including a cable (2) being surrounded by an external protection (3a, 3b, 3c, 3d, 3e), said external protection comprising at least one protection layer including at least two elongated extruded hollow profiles (31a, 31b, 31c, 31d, 31e), each elongated extruded hollow profile comprising at least one elongated empty cavity (32), characterized in that each profile (31a, 31b, 31c, 31d, 31e) of said external protection is a single element along the whole length of the cable portion to be protected, and that the total cross section area of the empty parts of the external protection represents at least 20% of the total cross section area of the external protection.
US08759722B2
A baby feeding apparatus for the preparation and warming of infant formula with audio instructions includes a baby bottle having a well and an electrical probe for insertion into the well for heating the contents of the bottle. The apparatus also includes a reservoir for containing a supply of heated fluids such as water for maintaining the temperature of the infant formula and a visual and audio indicator to advise an individual when the temperature of the formula is appropriate for feeding a child. A brush for cleaning the bottle and a cover for the apparatus are also provided.
US08759710B2
A process is described for form locking joining of two components through plastic deformation of one of the two components. In order for the tool for forming the form locking connection not to get in direct contact with the plasticized area of the joining partners, a third component between the tool and the two components to be joined through form locking is being used, which simultaneously enters into an adhesive bond with one of the two components to be joined through form locking. The thermal energy for creating the plastic state of one of the joining partners and for developing the adhesive bond is applied through electromagnetic radiation through the third component.
US08759699B2
In a push-button switch, a mark for conveying information to a user is disposed on a portion of a front surface of a push-button for operating a switch main body. A light-guiding plate is disposed between the switch main body and the push-button. A mark diffusing portion that diffuses injected light is disposed on a portion of the light-guiding plate that faces the mark. A mark light source portion injects light into the light-guiding plate so as to be directed toward the mark diffusing portion.
US08759698B2
There is provided a key switch structure including: a plate shaped key top; a link mechanism supporting the key top such that the key top can be depressed; a membrane sheet comprising a contact point portion; a back plate supporting the link mechanism and adhered to the membrane sheet; a plurality of holder members insert molded onto the back plate and supporting the link mechanism; and a resilient member provided between the key top and the membrane sheet, the resilient member being compressed by depressing of the key top and pressing the contact point portion to make a continuity.
US08759690B1
According to an embodiment, an die for routing signals in a plurality of metal layers of an integrated circuit device is disclosed. The die comprises a first pair of conductive lines (302A and 302B) having a first reference line and a first signal line, the first reference line having traces and crossover segments in a plurality of metal layers; and second pair of conductive lines (304A and 304B) having a second reference line and a second signal line, the second reference line having traces and crossover segments in the plurality of metal layers which are offset from the traces and crossover segments of the first reference lines; wherein a first signal trace (310) of the first signal line in a first metal layer is adjacent to a first reference trace (308) of the first reference line on a first side of the first signal trace and to a second reference trace (314) of the second reference line on a second side of the first signal trace. A method for routing signals in a plurality of metal layers of an integrated circuit device is also disclosed.
US08759688B2
The invention intends to provide an electronic component mounting structure where the repairability and the impact resistance are combined. In an electronic component mounting structure, a plurality of solder balls disposed in plane between an electronic component and a substrate is melted to bond the electronic component and the substrate and a resin of which tensile elongation after the curing is in the range of 5 to 40% is filled in portions that are gaps between the electronic component and the substrate and correspond to at least four corners of the electronic component to reinforce. Since the reinforcement area is small, the repairability such as the easy removability of the resin and the reusability of the substrate are excellent, the resin itself is allowed to expand to the impact at the drop to play a role of reinforcing the bonding without breaking, and the impact resistance is excellent as well.
US08759683B2
A high-voltage bushing includes a housing and a tube disposed within the housing. A conductor is disposed within the tube. An electrically conductive contact member is connected to the tube and has a first opening to receive and contact the conductor. Accordingly, spark-over between the inner surface of the tube and the outer surface of the draw-lead cable caused by a high-frequency transient is substantially prevented.
US08759679B2
A laser welding structure that is formed by joining a stranded wire (wire) of a signal line and a welding portion (conductive metal plate) by locally applying a laser beam and thereby melting and solidifying the stranded wire of the signal line and the welding portion has the following features. That is, the melting point of the stranded wire of the signal line and the melting point of the welding portion are different. The laser welding structure is obtained by applying a laser beam to one of the stranded wire of the signal line and the welding portion that has a higher melting point, i.e., to the welding portion having a higher melting point.
US08759670B2
A photovoltaic converter device includes a photovoltaic conversion layer containing a plurality of nanoparticles in a first material in a dispersed state, wherein the nanoparticles include a second material in particles and a third material that coats the second material, the third material having a band gap E3 that is greater than a band gap E1 of the first material, and greater than a band gap E2 of the second material.
US08759667B2
Disclosed is a photoelectric conversion device with improved photoelectric conversion efficiency. In the disclosed photoelectric conversion device, an amorphous silicon photoelectric conversion unit with an amorphous i-type layer and a microcrystalline silicon photoelectric conversion unit with a microcrystalline i-type layer are laminated, and an intermediate layer, which is disposed between the amorphous silicon photoelectric conversion unit and the microcrystalline silicon photoelectric conversion unit, has a lower refractive index than the layers in contact with the front or back surfaces thereof, wherein the higher the crystalline fraction of the microcrystalline i-type layer in the panel surface, the thicker the film of the intermediate layer.
US08759661B2
A system and method for audio synthesizer utilizing frequency aperture cells (FAC) and frequency aperture arrays (FAA). In accordance with an embodiment, an audio processing system can be provided for the transformation of audio-band frequencies for musical and other purposes. In accordance with an embodiment, a single stream of mono, stereo, or multi-channel monophonic audio can be transformed into polyphonic music, based on a desired target musical note or set of multiple notes. At its core, the system utilizes an input waveform(s) (which can be either file-based or streamed) which is then fed into an array of filters, which are themselves optionally modulated, to generate a new synthesized audio output.
US08759657B2
A method for providing variable root note support in an audio player is described. A file with Musical Instrument Digital Interface (MIDI) data and a set of user defined instruments is received. A metric is determined using a user defined root note in the user defined instruments, a key number for a MIDI note in the MIDI data, and a player specific root note. The key number is adjusted based on the metric.
US08759653B2
A drum lug assembly for use with a drum, in which the drum lug assembly is attached to the drum shell without the need for a fastener than passes through the drum shell. In some embodiments, an undercut dovetail joint is used to allow the drum lug assembly to be slid into a groove in a wooden drum shell. In other embodiments, a slot is formed in the drum shell, and the drum lug is inserted and rotated to hold it in place.
US08759652B2
A drum mute that is functional in both muting and covering a drum head. A circular cut of fabric with an elastic encased outer edge is made to be fitted over an entire drum head and rim, thereby providing a muted sound while allowing the drummer to retain full drumstick rebound. Various sizes, designs, and types of fabric can be used to construct the drum mute. A drawstring, tie, or other adhesiveless means of fastening can be used in place of elastic to fasten the drum mute fabric cover to a drum.