Network operation data within a confined indoor wireless environment can be determined and utilized for generation of competitive intelligence and strategic network planning. Scanner component(s) survey and compare signals transported in a set of electromagnetic frequency bands, and in accordance with a set of radio technologies associated with competing networks. Collected data can be aggregated and delivered to femto gateway node(s), which can supply the data to an analysis component that generates network operations NetOp intelligence. A report component can manage received and aggregated network operation data and convey a portion thereof to planning tool(s) that can produce competitive intelligence and develop strategic network planning. Planning tool(s) can request specific network operation data or NetOp intelligence. Aggregated network operation data can be employed to identify service provider indoor coverage strengths or weaknesses relative to competitors to focus sales activities related to network services, and network improvement efforts.
In one embodiment, a method includes determining when a predetermined period of time has elapsed, and determining whether at least a first message has been obtained on a first port of a node during the predetermined period of time when it is determined that the predetermined period of time has elapsed. The method also includes identifying the first port as being connected to a single-homed site when it is determined that the at least first message has not been obtained on the first port during the predetermined period of time. The first port is identified as being connected to a multi-homed network, a multi-homed device, or a hierarchical Ethernet segment when it is determined that the at least first message has been obtained on the first port during the predetermined period of time.
A method and an apparatus for performing random access and uplink transmission of a User Equipment (UE) supporting Carrier Aggregation (CA) are provided. The method includes determining whether a Scheduling Request (SR) is pending, determining, when the SR is pending, whether an uplink transmission resource is available in a current Transmission Time Interval (TTI), determining, when the uplink transmission resource is not available, whether a Physical Uplink Control Channel (PUCCH) resource is configured for transmission of the SR, and initiating, when the PUCCH resource is not configured, a random access process in a primary cell. The random access method and apparatus of the present invention is advantageous to reduce the waste of transmission resources.
A modem is disclosed that, in one embodiment, includes: first interface apparatus comprising a first wireless transceiver arranged to connect to a wireless cellular network; second interface apparatus arranged to connect to the terminal; and processing apparatus configured as a wireless cellular modem for accessing packet-based communications. The processing apparatus is arranged to receive at least one first address from the wireless cellular network via the first interface apparatus, the first address being an address of a server of a name-to-address resolution system. The processing apparatus is further configured to intercept, via the second interface apparatus, a name-to-address resolution query being conveyed from the terminal to the wireless cellular network comprising a second address as a destination address, to translate the second address into the first address, and to retransmit the query to the wireless cellular network via the first interface apparatus with the first address as the destination address.
A method for setting up a VPN is described. The VPN is set up in a backbone network having a plurality of PE routers for controlling the transfer of IP traffic to and from CE routers in satellite networks. In a PE router, a VRF is configured for the VPN and populated with local routes for the VPN. A VRF IP loopback address is assigned for the VRF, and a PE IP loopback address is assigned for the ingress PE router. A local route with the VRF and PE IP loopback addresses is then advertised to other PE routers in the backbone network.
A mechanism controls global synchronization, or registration floods, that may result when a large number of endpoints in a Voice over Internet Protocol (VoIP) network such as an Internet Protocol Multimedia Subsystem (IMS) come online simultaneously after a catastrophic failure. The mechanism allows the Domain Name System (DNS) infrastructure to efficiently control the overload condition by registering user end points with backup border elements, and by staggering and by randomizing the time-to-live (TTL) parameter in registrations with backup border elements.
Adaptive generation of channel quality indicators based on a current communication scenario. A plurality of sets of channel quality indicator information may be stored for each of a plurality of UE communication scenarios. The information may be usable in generating a channel quality indicator. During operation of the UE, a current communication scenario of the UE may be determined. A first set of channel quality indicator information may be selected based on the determined current communication scenario being experienced by the UE. At least one channel quality indicator may be determined based on the selected first set of channel quality indicator information. Finally, the channel quality indicator may be provided to a base station.
A fabric login (FLOGI) in a Fiber Channel (FC) adapter is throttled. The system includes a first tracking mechanism, a second tracking mechanism, a switch, and an FC adapter. The FC adapter comprises three or more FLOGIs and a controller. First and second FLOGI requests are transmitted to the switch and indicate, via a first tracking mechanism, that a first FLOGI associated with the first FLOGI request and a second FLOGI associated with the second FLOGI request are active. A third FLOGI request is queued until the first FLOGI request or the second FLOGI request is processed by the switch and indicates, via a second tracking mechanism, that a third FLOGI associated with a third FLOGI request is queued.
A communication controller optimizes transport costs so as to minimize the cost of transmitting message. The communication controller receives a message and calculates the cost of transmitting the message based on a setup cost and a transmission cost. The communications controller selects a communication pathway that has the least cost as the pathway to transmit the message. If the pathway is not established, the communications controller establishes this communication pathway and transmits the message.
A method and apparatus for preventing a user equipment (UE) from forming of a routing loop in a network. The method includes maintaining a list of one or more home addresses associated with the user equipment (UE), in which each home address has been previously associated with the user equipment (UE) by a corresponding packet data network gateway (PDN GW). In response to a request to update a care-of address in a binding cache entry of a packet data network gateway (PDN GW) in the network, the method further includes comparing an address to be used to update the care-of address with the one or more home addresses in the list. If the address to be used to update the care-of address matches a home address in the list, then the update is rejected.
A data communication network includes a client device and multiple aggregation devices coupled to each other and the client via links within a link aggregation group (“LAG”) across the aggregation devices. The aggregation devices appear to the client as a single device coupled thereto, and operate in conjunction with each other by assigning at least one different identifier to each of the plurality of separate aggregation devices and storing information including the identifiers to association tables located on each of the aggregation devices. The multiple aggregation devices can be separate switches, and the LAG can include multiple ports across the switches, with a different identifier being assigned to each of the ports in the LAG. A virtual link trunk interface can couple aggregation devices, which can reconfigure communication paths thereacross with respect to the client device using the identifiers in the stored association tables when a LAG link fails.
Various embodiments of the present invention provide circuits, systems and methods for data processing. For example, a data processing system is disclosed that includes: a data detector circuit, a filter circuit, a gain error generation circuit, and a multiplier circuit. The data detector circuit is operable to apply a data detection algorithm to a data set to yield a detected output. The filter circuit is operable to filter the detected output to yield a filtered output. The gain error generation circuit is operable to calculate an error value based upon a combination of an instance of the data set and a corresponding instance of the filtered output. The multiplier circuit operable to multiply the instance of the data set by a gain feedback value to yield a gain corrected output. The gain feedback value is derived from the error value.
An optical disc drive device has a metallic exterior casing and an internal unit to be housed in the exterior casing. The internal unit further includes an optical pickup unit for performing recording or reproduction of information signals on an optical disc, and a printed wiring substrate on which a connector electrically connected to the optical pickup unit and serving for transmission and reception of electrical signals from and to external electronic equipment is mounted. The exterior casing has an opening for allowing the connector to be exposed outside, the printed wiring substrate has a ground pattern formed to surround the connector, and a fringe portion of the opening of the exterior casing and the ground pattern are in electrical contact with each other. Thus, radiation noise from around wiring lines contained in the optical disc drive device or the like is reduced.
An implementation of a system disclosed herein provides a method of deferring decoding of a data sector received at a read channel of a storage device, in response to determining that a data sector cannot be decoded by a first decoder and storing the data sector for further processing by a second decoder.
According to one embodiment, an information recording apparatus includes a divider, a generator, and a recorder. The divider is configured to divide recording data into a plurality of recording data blocks for each predetermined recording unit. The generator is configured to set, as a first block set, n recording data blocks recorded in corresponding areas in file system management areas of n, first to nth (n: integer, n≧2) storages, and generate first parity data from the n recording data blocks forming the first block set. The recorder is configured to record the n recording data blocks forming the first block set and the first parity data.
An ultrasonic sensor has: a diaphragm that includes at least two partial regions for emitting and/or receiving ultrasonic signals, the two partial regions possessing different resonance characteristics; and at least one electromechanical transducer coupled to the diaphragm, to which transducer a control signal having at least two different control signal frequencies is applied. In this context, a first control signal frequency is in the range of a resonant frequency of a first partial region of the diaphragm, and a second control signal frequency is in the range of a resonant frequency of a second partial region of the diaphragm. Alternatively, two electromechanical transducers are used, which are coupled to a diaphragm and have different resonance characteristics.
A profile is produced based on measured survey data, where the profile contains indications corresponding to refraction events at different depths in a subterranean structure. Based on the profile and a critical angle model that correlates different concentrations of a given material to respective critical angles, a quantity of the given material in a subterranean structure at a particular depth is determined.
A technique includes processing first data indicative of a first image of a subsurface region of interest on a machine to generate second data indicative of a second image. The first image is derived from measurements of seismic waves, which propagate in a plurality of directions, and the second image is generated by partitioning the first image based on the directions. The technique includes processing the second data to determine a dip decomposition for each of the directions; and based on the dip decompositions and the directions, generating an angle domain common image gather.
Embodiments of the present invention provide a data processing method and apparatus. According to the embodiments of the present invention, when it is found that a data hash value in a currently received data stream exceeds a preset first threshold, a part or all of data in the data stream is not deduplicated, and is directly stored, so as to prevent the data in the data stream from being dispersedly stored into a plurality of storage areas; instead, the part or all of the data is stored into a storage area in a centralized manner, so that a deduplication rate is effectively improved on the whole, particularly in a scenario of large data storage amount.
A method of protecting software for embedded applications against unauthorized access. Software to be protected is loaded into a protected memory area. Access to the protected memory area is controlled by sentinel logic circuitry. The sentinel logic circuitry allows access to the protected memory area from only either within the protected memory area or from outside of the protected memory area but through a dedicated memory location within the protected memory area. The dedicated memory location then points to protected address locations within the protected memory area.
A system is provided for multi-rank, partial-width memory modules. A memory controller is provided. Additionally, a memory bus is provided. Further, a memory module with a plurality of ranks of memory circuits is provided, the memory module including a first number of data pins that is less than a second number of data pins of the memory bus.
It is an object to provide a semiconductor device in which power consumption can be reduced. It is another object to provide a highly reliable semiconductor device using a programming cell, such as a programmable logic device (PLD). In accordance with a change in a configuration of connections between basic blocks, power supply voltage furnishing to the basic blocks is changed. That is, when the structure of connections between the basic blocks is such that a basic block does not contribute to a circuit, the supply of the power supply voltage to this basic block is stopped. Further, the supply of the power supply voltage to the basic blocks is controlled using a programming cell formed using a field effect transistor whose channel formation region is formed using an oxide semiconductor, the field effect transistor having extremely low off-state current or extremely low leakage current.
In a storage device such as a solid state disk (SSD), a central controller communicates with a plurality of multi-chip memory packages. Each multi-chip memory package comprises a plurality of memory dies and a local processor, wherein the plurality of memory dies includes different memory tiers. The central controller may handle management of the virtual address space while the local processor in each MCP manages the storage of data within memory tiers in the memory dies of its respective MCP.
A semiconductor memory device includes a first memory device formed on a semiconductor substrate, including a first storage unit, a source, and a drain, a second memory device, including a second storage unit, and a bit line, wherein the second memory device is connected in series between the bit line and the drain.
At least one junction diode fabricated in standard CMOS logic processes can be used as program selectors for memory cells that can be programmed based on direction of current flow. These cells are MRAM, RRAM, CBRAM, or other memory cells that have a programmable resistive element coupled to a P terminal of a first diode and to an N terminal of a second diode. The diodes can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diodes. The memory cells can be used to construct a two-dimensional memory array with the N terminals of the first diodes and the P terminals of the second diodes in a row connected as wordline(s) and the resistive elements in a column connected as a bitline. By applying a high voltage to a selected bitline and a low voltage to a selected wordline to turn on the first diode while disabling the second diode, a selected cell can be programmed into one state. Similarly, by applying a low voltage to a selected bitline and a high voltage to a selected wordline to turn on the second diode while disabling the first diode, a selected cell can be programmed into another state. The data in the resistive memory cell can also be read by turning on a selected wordline to couple a selected bitline to a sense amplifier. The wordlines may have high-resistivity local wordlines coupled to low-resistivity global wordlines through conductive contact(s) or via(s).
A magnetic detecting element includes a laminated structure where a fixed magnetic layer and a free magnetic layer are laminated through a non-magnetic material layer, wherein the fixed magnetic layer is a self-pinned type where a first magnetic layer and a second magnetic layer are laminated through a non-magnetic intermediate layer and the first magnetic layer and the second magnetic layer are antiparallelly magnetization-fixed, and the second magnetic layer is in contact with the non-magnetic material layer. The first magnetic layer is formed using FeCo serving as a material having a higher coercive force than the second magnetic layer. The film thickness of the first magnetic layer falls within a range greater than or equal to 10 Å and less than or equal to 17 Å, and is thinner than the film thickness of the second magnetic layer. The non-magnetic intermediate layer is formed using Rh.
A storage cell is provided with improved robustness to soft errors. The storage cell comprises complementary core storage nodes and complementary outer storage nodes. The outer storage nodes act to limit feedback between the core storage nodes and are capable of restoring the logical state of the core storage nodes in the event of a soft error. Similarly the core storage nodes act to limit feedback between the outer storage nodes with the same effect. This cell has advantages compared with other robust storage cells in that there are only two paths between the supply voltage and ground which limits the leakage power. An SRAM cell utilizing the proposed storage cell can be realized with two access transistors configured to selectively couple complementary storage nodes to a corresponding bitline. A flip-flop can be realized with a variety of transfer gates which selectively couple data into the proposed storage cell.
Junction diodes fabricated in standard CMOS logic processes can be used as program selectors for One-Time Programmable (OTP) devices, such as electrical fuse, contact/via fuse, contact/via anti-fuse, or gate-oxide breakdown anti-fuse, etc. The diode can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diode. The OTP device has an OTP element coupled to the diode. The OTP device can be used to construct a two-dimensional OTP memory with the N terminals of the diodes in a row connected as a wordline and the OTP elements in a column connected as a bitline.
An apparatus is provided. A differential pair of transistors is configured to receive a first differential signal having a first frequency, and a transformer, having a primary side and a secondary side is provided. The primary side of the transformer is coupled to the differential pair of transistors, and the secondary side of the transformer is configured to output a second differential signal having a second frequency, where the second frequency is greater than the first frequency. A first transistor is coupled to the first supply rail, the primary side of the transformer, and the differential pair of transistors, where the first transistor is of a first conduction type. A second transistor is coupled to the second supply rail, the primary side of the transformer, and the differential pair of transistors, where the second transistor is of a second conduction type.
A power converter constituted of: a control circuitry; an electronically controlled switch responsive to the control circuitry; a power transformer exhibiting a primary winding and a secondary winding; a sense transformer comprising a primary current sense winding, an error current sense winding and a feedback winding, the primary current sense winding of the sense transformer and the primary winding of the power transformer coupled in series with the electronically controlled switch; a transconductance error amplifier coupled to an output of the secondary winding of the power transformer, the transconductance amplifier arranged to drive a current through the error current sense winding of the sense transformer whose value reflects an electrical characteristic of the output of the secondary winding of the power transformer, wherein the feedback winding of the sense transformer is coupled to a feedback input of the control circuitry.
An electronic device including a conductive element, a conductive layer, and a case is provided. The case has a surface, a first supporting member, and a second supporting member. The first supporting member and the second supporting member are disposed on the surface, and the first supporting member has a suspending arm. The case, the first supporting member and the second supporting member are integrally formed, and the conductive layer exists on the surface of the case, the first supporting member, and the second supporting member. The conductive element presses the first suspending arm to contact the second supporting member, such that a ground circuit is formed with the conductive element, the first suspending arm, the second supporting member, and the surface.
The present disclosure provides a portable information apparatus, including, an apparatus main body, an incidental article mounted on the apparatus main body when the portable information apparatus is used, a solid-state magnetic memory provided at a portion of the apparatus main body at which the incidental article is mounted and adapted to retain information in accordance with a magnetization state of a magnetic material, and a magnetic shield provided on the incidental article including a portion opposed to the solid-state magnetic memory when the incidental article is mounted on the apparatus main body.
A wiring substrate includes plural insulating layers including an outermost insulating layer; and plural wiring layers which are alternately laminated between the insulating layers and include outermost wiring layers exposed from the outermost insulating layer and through wirings having electrode pads on end portions of the through wirings and penetrating through the outermost insulating layer, wherein the electrode pads of the through wirings are exposed from the outermost insulating layer, and a part of the outermost wiring layers overlaps the end portions of the through wirings and is connected to the through wirings.
A plug-in unit includes: a printed circuit board on which a connector is mounted; and a cover in which the printed circuit board is accommodated; wherein the cover allows the connector to be exposed when the plug-in unit is inserted into a housing and to be covered when the plug-in unit is in a standalone state in which the plug-in unit is not inserted into the housing.
A power supply converter (100) comprising a first FET (210) connected to ground (230), the first FET coupled to a second FET (220) tied to an input terminal (240), both FETs conductively attached side-by-side to a first surface of a metal carrier (120) and operating as a converter generating heat; and a packaged load inductor (110) tied to the carrier and an output terminal (241), the inductor package wrapped by a metal sleeve (113) in touch with the opposite surface of the metal carrier, the sleeve operable to spread and radiate the heat generated by the converter.
A cold worked stainless steel bezel for a portable electronic device. The bezel is secured flush to a housing to form part of the case of the portable electronic device. A brace that includes a slot for receiving a wall extending from the bezel is fixed to the housing. When the bezel engages the housing, the wall of the bezel is inserted in the slot of the brace and releasably held by a spring that engages both the brace and the wall. The bezel can be released by disengaging the spring. The bezel is hard and resistant to impacts. Cold worked steel also facilitates manufacturing within design constraints and tolerances, and requires very little machining after manufacturing to comply with those constraints. The portable electronic device may include a personal media device, a mobile telephone, or any other suitable device or combination thereof.
A multi-rack assembly is provided which includes adjacent first and second electronics racks, each being at least partially air-cooled, and an air-to-liquid heat exchanger associated with the first rack for cooling at least a portion of air passing through the first rack. The heat exchanger, which is disposed at the air inlet or air outlet side of the first rack and is coupled in fluid communication with a coolant loop to receive coolant from the loop and exhaust coolant to the loop, transfers heat from air passing thereacross to coolant passing therethrough. The assembly also includes a cooling unit, associated with the first rack and cooling coolant in the coolant loop, and an airflow director associated with the second rack and facilitating ducting at least a portion of air passing through the second rack to also pass across the heat exchanger associated with the first rack.
A portable electronic device, which including a casing, a circuit board, a fan and a heat dissipating device, is disclosed. The circuit board is disposed in the casing and includes at least one electronic component thereon. The fan is disposed in the casing. The heat dissipating device is disposed in the casing and near the side of an air outlet of the fan. Gaps formed between the outer surfaces of the heat dissipating device and the inner surfaces of the casing as air flow channels. The portable electronic device isolates heat conducted to the casing of the portable electronic device via the gaps.
A fastening device for a hard disk drive (HDD) includes a bottom plate and two fastening members. Two protrusions protrude from the bottom plate. A positioning portion is fastened to the bottom plate. The positioning portion includes an operation tab. A block protrudes from the operation tab. Each fastening member includes a sidewall, and a top wall and a bottom wall extending from top and bottom sides of the sidewall. The top walls are fastened to a bottom of the HDD. Each bottom wall defines an engaging hole. The engaging hole includes a first hole and two second holes communicating with the first hole. When the HDD is being fastened, the HDD is slid to allow each protrusion to enter one of the second holes, and to allow the block to block a corresponding side of the HDD.
A high power drive stack system is provided which includes a cabinet having a vaporizable dielectric fluid cooling system and a plurality of receivers for accepting a plurality of modules containing power electronics. The modules are removably attachable to the receivers by at least two non-latching, dry-break connectors. Each of the at least two connectors providing both a fluid connection and an electrical connection between the cabinet and the module.
A disconnect mechanism, an electrical component assembly including the disconnect mechanism, and an electrical circuit protector in turn including the electrical component assembly. The disconnect mechanism includes a carriage, as well as a switch actuator connected to the carriage for moving the carriage between a switch-closed position and a switch-open position. A contactor is mounted to the carriage so as to move with the carriage, the contactor including first and second contactor terminals and providing selective electrical connection between the contactor terminals. A movable disconnect switch contact is connected to the first contactor terminal, and is movable with the carriage and the contactor. A fixed disconnect switch contact is positioned for selective engagement with the movable disconnect switch contact as the carriage moves to the switch-closed position.
A capacitive device includes a first capacitor including a first wiring layer, a first dielectric film, a first conductive layer, a first insulating layer on the first capacitor, a second capacitor on the first insulating layer including a second conductive layer, a second dielectric film, and a third conductive layer, a second insulating layer on the second capacitor, a second wiring layer on the second insulating layer including first and second connection wires, a first via connecting the first wiring layer to the second conductive layer, a second via connecting the third conductive layer to the second wiring layer, a third via connecting the first connection wire to the first conductive layer, and a fourth via connecting the second connection wire to the first wiring layer.
A capacitor forming method includes forming an electrically conductive support material over a substrate, with the support material containing at least 25 at % carbon. The method includes forming an opening through at least the support material where the opening has an aspect ratio of at least 20:1 within a thickness of the support material. After forming the opening, the method includes processing the support material to effect a reduction in conductivity, and forming a capacitor structure in the opening.
Provided is a fault current limiter, the limiter including a detector detecting an inflow of a fault current and transmitting a turn-off signal to a power semiconductor element; the power semiconductor element changed to an OFF state by the turn-off signal; and a resistance element connected in parallel to the power semiconductor element to block the fault current.
A circuit with an electro-static discharge clamp coupled to a first power source and second power source. The electro-static discharge clamp includes an NMOS stack and an electro-static discharge detector. The NMOS stack has a first NMOS transistor with gate node ng1 and a second NMOS transistor with gate node ng2. The electro-static discharge detector is configured to control the NMOS stack, and may include three switches. A first switch is configured to switch the gate node ng1 to the second power source. A second switch is configured to switch the gate node ng1 to the gate node ng2. A third switch is configured to switch the gate node ng1 to the ground.
An electrical power converter for converting power from a bipolar DC source to supply an AC load is disclosed. For one such embodiment the bipolar DC source is a photovoltaic array and the AC power is sourced into an electric power grid. The bipolar photovoltaic array has positive and negative voltage potentials with respect to earth ground. The converter is a utility interactive inverter which does not require an isolation transformer at the electric power grid interface. Embodiments of the invention include methods of detecting and interrupting DC ground faults in the photovoltaic array.
Systems and methods for providing magnetic storage elements with high magneto-resistance using Heusler alloys are provided. One such method includes depositing a substrate including NiFe, depositing a seed layer on the substrate, depositing a buffer layer on the seed layer, and growing, epitaxially, an upper layer on the buffer layer, the upper layer including a Heusler alloy.
A suspension assembly for a head gimbal assembly of a disk drive includes a laminated flexure that includes a tongue for attachment of a read head. The suspension assembly includes a load beam that, in a first aspect of the present invention has a protruding dimple that contacts the tongue. In this aspect of the invention, a diamond-like carbon (DLC) coating is disposed between and contacting the dimple and the tongue. For example, the DLC may be disposed on the tongue at the location of contact with the load beam dimple. Alternatively, in a second aspect of the present invention, the tongue may have a protruding dimple that contacts the load beam. In this aspect of the invention, a DLC coating is disposed between and contacting the dimple and the load beam.
In one embodiment a magnetic head includes a sensor thin film adapted for producing a planar Hall voltage, the sensor thin film having a thickness along a down-track direction that is greater than a thickness along a cross-track direction. The down-track direction is in a direction of travel of a magnetic medium relative to the sensor thin film, and the cross-track direction is perpendicular to the down-track direction. In another embodiment, at least one magnetic head as described above is included in a magnetic data storage system, which includes a magnetic medium, a drive mechanism for passing the magnetic medium over the at least one magnetic head, and a controller electrically coupled to the at least one magnetic head for controlling operation of the at least one magnetic head. Other heads and systems are described according to various other embodiments.
A rotor hub includes a shaft connecting portion arranged to be connected to a shaft serving as a central axis, a disk loading portion centered about the central axis and arranged to support a disk shaped storage medium mounted thereon, a yoke arranged below the disk loading portion and supporting a field magnet at one of an inner side surface thereof and an outer side surface thereof, and a flexible portion connecting the disk loading portion to the yoke and being flexible with respect to a force applied thereto from the yoke.
Synchronization technologies for disk drives are described. A described technique includes receiving a waveform produced by a read head operated with respect to a recording medium including magnetic data positions, a first servo sync mark (SSM), a second SSM, and phase tracking fields (PTFs); producing, based on the waveform, a servo detect pulse that indicates a detection of at least one of the SSMs; controlling a first adjustment of a phase of a write clock signal, the first adjustment being responsive to the servo detect pulse; producing, based on the write clock signal, samples of the waveform that correspond to the PTFs; and controlling second adjustments of the phase based on the samples to align the write clock signal with at least a portion of the data positions, the second adjustments being responsive to the PTFs, respectively.
Disclosed is a magnetic recording/reproduction device 2 including: a recording/reproduction head 7; and a recording/reproduction head 7 for detecting a leakage magnetic field of each of the plurality of magnetic recording cells 1 so as to reproduce information, the recording/reproduction head 7 carrying out the recording on the magnetic recording medium 4 so that the magnetic recording medium 4 includes continuous recording regions that (i) satisfy Nmin≧2 and that (ii) include a continuous recording region that satisfies N≠n×Nmin, where N represents a number of magnetic recording cells 1 in a continuous recording region; Nmin represents a minimum value for N; and n represents a positive integer, the continuous recording regions each being a region on a reproduction track in which region magnetic recording cells 1 sharing an identical magnetization direction are sequentially arranged in a circumferential direction of the magnetic recording medium 4.
A disk drive is configured to decode data written over a plurality of data tracks using joint self-iterating soft equalization and an iterative turbo 2-D MAP-based detection, by performing soft self-iterating linear 2-D MMSE equalization on received input samples; computing MMSE estimates for coefficients of a 2-D equalization filter based on a-priori values, mean of the a-priori values, the 2-D filter and the received input samples; updating the coefficients of the 2-D filter using a variance based on the a-priori values when carrying out a first iteration and based on an extrinsic LLR when carrying out subsequent iterations; determining values of the individual bits in the input samples using the updated coefficients; computing an output LLR of each individual received sample based on the computed MMSE estimate, the mean and the variance, and computing the extrinsic LLR by subtracting a priori LLR from the output LLR.
A computer-implemented method, apparatus and computer-program product for writing data to a tape data storage medium. The method comprises providing a system service that an application invokes to handle data synchronization events associated with writing a group of files to the tape medium; keeping track of the files and data blocks in each file while writing the files to the tape medium based on file boundaries; and responsive to a data writing failure, invoking the system service to determine the files affected by the data writing failure.
A zoom lens includes an aperture stop and a plurality of lens units which are moved during zooming. The plurality of lens units includes, on an object side of the aperture stop, a lens unit Lp having a positive refractive power and a lens unit Ln having a negative refractive power which is disposed to be adjacent to an image side of the positive lens unit Lp. At least one of the positive lens unit Lp and the negative lens unit Ln includes two or less lenses which are moved during focusing, and a focal length Fp of the positive lens unit Lp and a focal length Fn of the negative lens unit Ln are appropriately set based on predetermined mathematical conditions.
An optical modulation device side lens group has different powers in the longitudinal direction and the lateral direction of a liquid crystal panel. Therefore, as the entire system of the optical projection system, the optical modulation device side lens group has different magnification in the longitudinal and lateral directions. Therefore, it is possible to make the aspect ratio of an image of the liquid crystal panel different from the aspect ratio of an image projected on a screen. That is, conversion can be performed on an aspect ratio. At this time, a distance p between each focus or a diaphragm and the screen SC side end surface of the optical modulation device side lens group satisfies the conditional expressions, so it is possible to achieve a predetermined or higher telecentricity in both states, that is, a first operating state and a second operating state.
An eyepiece for a head mounted display includes a display module, end reflector, and viewing region. The end reflector is disposed at an opposite end of the eyepiece from the display module to reflect the display light back from a forward propagation path to a reverse propagation path. The viewing region is disposed between the display module and the end reflector and includes a partially reflective surface, that passes the display light traveling along the forward propagation path and redirects the display light traveling along the reverse propagation path out of an eye-ward side of the eyepiece along an emission path. The partially reflective surface has a compound folding angle such that the emission path of the display light emitted from the eyepiece is folded along two axes relative to the reverse propagation path between the end reflector and the partially reflective surface.
An image waveguide includes first and second reflective surfaces being substantially parallel and opposing each other. The waveguide receives light from an in-coupling region through the first reflective surface, the light received at a first angle of incidence with respect to the second reflective surface. A reflective end surface positioned at an end of the waveguide and offset from perpendicular to the first and second reflective surfaces reflects the light to a second angle of incidence with respect to the second reflective surface that is less than the first angle of incidence. The light exits through an out-coupling region disposed on the first reflective surface to output the light at the second angle of incidence from the waveguide out the first reflective surface.
A translucent liquid crystal display panel (2) includes pixel pairs as display units each formed by a left-eye pixel (4L) and a right-eye pixel (4R) and arranged in a matrix shape. A through hole (4Ld) arranged in a color layer (4Lc) of a color filter has a slit shape whose longitudinal direction is identical to the orientation direction of a cylindrical lens (3a) constituting a lenticular lens (3). Similarly, a through hole (4Rd) arranged in a color layer (4Rc) of a color filter has a slit shape whose longitudinal direction is identical to the orientation direction of the cylindrical lens (3a) constituting the lenticular lens (3). This suppresses the phenomenon that a hue is changed by a field-of-view angle and/or an external light condition on the translucent display panel capable of displaying an image directed to a plurality of viewpoints.
The present invention relates to a device (12) and to a method for amplifying light impulses (13). The device comprises a stretcher (15) stretching the light impulses over time, at least one amplifier (16) amplifying the stretched light impulses, and a compressor (17) compressing the stretched and amplified light impulses, wherein the amplifier (16) applies a non-linear phase generated by self-phase modulation to the stretched light impulses. In order to provide a device and a method for amplifying light impulses, by means of which light impulses having higher light impulse quality and light impulse peak power can be generated, the invention proposes that means for spectrally shaping the light impulses are disposed ahead of the amplifier (16) in the beam path, wherein the means for spectrally shaping the light impulses bring about a spectral trimming of the light impulses.
This disclosure provides systems, methods and apparatus related to an electromechanical display device. In one aspect, an analog interferometric modulator (AIMOD) includes a reflective display pixel having a movable reflective layer and a stationary absorber layer, the reflective layer and absorber layer defining a cavity therebetween. A color notch filter may be employed to produce an improved white state. In some implementations, the color notch filter is positioned on a side of the substrate opposite the absorber layer. In some other implementations, the color notch filter is positioned between the substrate and the movable reflective layer.
The thermally switched absorptive optical shutter may be a self-regulating “switchable absorber” device that may absorb approximately 100% of incoming light above a threshold temperature, and may absorb approximately 50% of incoming light below a threshold temperature. The shutter may be formed by placing a thermotropic depolarizes between two absorptive polarizers. This control over the flow of radiant energy may occur independently of the thermal conductivity or insulation of the shutter device and may or may not preserve the image and color properties of incoming visible light. This has energy-efficiency implications as it can be used to regulate the internal temperature and illumination of buildings, vehicles, and other structures without the need for an external power supply or operator signals. The shutter device has unique optical properties that are not found in traditional windows, skylights, stained glass, light fixtures, glass blocks, bricks, or other building materials.
A display system includes a substrate guided relay and a scanning projector. The scanning projector exhibits a brightness variation on a resonant scanning axis, and the substrate guided relay exhibits a brightness variation along a length of an output coupler. The scanning projector includes a brightness compensation circuit to compensate for both the brightness variation caused by the resonant scanning and the brightness variation along the length of the output coupler.
An image reader is provided, which includes a first light emitting unit emitting light toward a first side of a document sheet in a predetermined reading area, a second light emitting unit emitting light toward a second side of the document sheet in the predetermined reading area, a first light receiving unit receiving light emitted by the first light emitting unit and reflected by the document sheet and light emitted by the second light emitting unit and transmitted through the document sheet, and a controller that controls the first light emitting unit to emit light of a first color, controls the second light emitting unit to emit light of a second color, the first and second colors being mutually complementary colors, and controls the first light receiving unit to output read image data of the document sheet based on a light receiving result of the first light receiving unit.
The sizes of a sealing member in the X-direction and of a white shading plate in the X-direction are designed so that a peripheral end of the white shading plate faces an adhesive material layer of the sealing member. No gap is generated between the sealing member and the white shading plate. Further, the sealing member includes a white base material layer, so that the sealing member itself, as with the white shading plate, easily reflects light, resulting in a reduction in loss in the amount of light in this area.
A sheet conveying apparatus includes: a sheet placing part; a conveying part; an apparatus wall; and a judging unit. The sheet placing part is configured to receive a sheet placed thereon. The conveying part is configured to convey the sheet from the sheet placing part. The apparatus wall defines a first conveyance opening. The judging unit is configured to judge whether the sheet is able to pass the first conveyance opening. The conveying part conveys the sheet to the first conveyance opening if the judging unit determines that the sheet is able to pass through the first conveyance opening. The conveying part does not convey the sheet to the first conveyance opening if the judging unit determines that the sheet is unable to pass through the first conveyance opening.
A print job management system according to an embodiment has a transmission unit, a time calculation unit, and a list display unit. The transmission unit transmits a print job. The time calculation unit acquires the print job transmitted from the transmission unit and calculates a processing completion time taken for each of a plurality of image forming apparatuses to complete a process for the print job for each of the image forming apparatuses. The list display unit acquires the process completion time for each of the image forming apparatuses calculated by the time calculation unit and displays information regarding the processing completion time for each of the image forming apparatuses as a list.
A method for aligning multi-channel digital image data for a digital printer having a plurality at least one printhead is described. One or more spatial adjustment parameters are determined for each of the printheads. The spatial adjustment parameters can be determined by comparing locations of test pattern indicia in a printed test pattern to predefined reference indicia locations. Digital image data for the non-reference printheads is modified by designating an input pixel neighborhood within which an image pixel should be inserted or deleted, comparing the image pixels in the input pixel neighborhood to a plurality of predefined pixel patterns to identify a matching pixel pattern; and determining a modified pixel neighborhood responsive to the matching pixel pattern.
An image processing apparatus storing an image data to an external memory medium connected to the image processing apparatus is provided. Where there is not enough usable capacity in the external memory medium, the image processing apparatus generates medium identification information and stores the generated medium identification information to the external memory medium. After a user detaches the external memory medium from the image processing apparatus and uses his or her computer to delete or move unnecessary files in the external memory medium to increase the usable capacity therein, the user attaches the external memory medium to the image processing apparatus again. At this moment, the external memory medium is authenticated by the medium identification information stored therein. Thus, this authentication performed using the medium identification information prevents a third person from obtaining the image data of the user while the user is away from the image processing apparatus.
An image processing apparatus includes a determination unit configured to determine whether a repetitive object is appropriate for being measured for density correction, a decision unit configured to decide, from pages including the repetitive object determined as appropriate for being measured for the density correction, a plurality of measurement pages to be measured for the density correction and a measurement position in the measurement pages, a measurement unit configured to measure density of the measurement position in the printed measurement pages, and a density correction unit configured to perform the density correction according to the measured density in the measurement pages for a page different from the measurement pages.
A state acquisition unit is configured to acquire information relating to a state of an apparatus making processing requests regarding jobs. Resources are adjusted by an adjusting unit configured to adjust increase or decrease of each of the first resource and the second resource, based on the basis of the information acquired by the state acquisition unit.
A computer readable device storing print control instructions to be executed by a computer communicatively connected to at least one printer via a network is provided. The print control instructions comprise at least a monitoring program. The monitoring program, when executed by the computer, causes the computer to function as: a monitoring module configured to monitor setting information in which location information of the printer on the network is written to detect writing of the location information, and a port setting module configured to, upon detection of the writing of the location information, set a logical print port having the written location information set therein as a print port to be used.
An image forming device includes an image forming unit configured to execute an image formation process to form an image on a recording medium based on an image formation job, and an information writing control unit configured to write history information based on the image formation job into an external storage device connected to the image forming device via a network, wherein the information writing unit writes the information into the external storage device before completion of the image formation process based on the image formation job by the image formation unit.
Systems, apparatus and methods are provided to allow users to print to a printing device from their computers or portable devices through a cloud print service a cloud print service.
An image displaying apparatus includes a control unit and a display unit. The image displaying apparatus is connected to an image reading apparatus that includes a multifeed detecting mechanism. The control unit includes a display control unit that displays (i) an image of a medium which is read by the image reading apparatus and in which multifeed is detected by the multifeed detecting mechanism and (ii) a multifeed detected portion detected by the multifeed detecting mechanism on the display unit.
A device control apparatus includes: a usage instruction acceptance unit that accepts a usage instruction for a device; a determination unit that determines whether or not the device is a registered device that has been registered in a server based on registration information obtained from the server, and determines whether or not the device is a loaner device for the registered device based on loaner device information; a notification unit that performs a notification prompting a user to register the device as a registered device in the server; a prohibition unit that prohibits the device from being used in accordance with the usage instruction; and a permission unit that permits the device to be used in accordance with the usage instruction.
The present invention teaches and claims an image forming apparatus using a time measuring apparatus to accurately measure the time in which the image forming apparatus stays in one or more modes. The image forming apparatus comprises a first CPU which outputs a pulse signal to a receiving second CPU. The second CPU calculates, by using the received pulse signal, a timer error of a second clock signal. The time measuring apparatus measures time in one or more modes based on the second clock signal and then corrects the measured time using the calculated timer error.
Dual mounting head scanner system measures the thickness of a flexible continuous moving web such as paper by employing an optical senor positioned in the upper head to determine the distance between the optical sensor and the upper surface of the paper while a displacement sensor positioned in the lower head determines the distance between the displacement sensor, which includes an RF coil, and a reference surface on the upper head. An air clamp and vacuum source assembly on the operative surface of the lower head maintains the moving web in physical contact with a measurement surface that is incorporated in the operative surface. The optical sensor directs incident radiation onto the web at the measurement surface. Thermal isolation of the two sensors eliminates thermal interactions.
A standard media suspension body (150) for verification and calibration of an optical particulate measurement instrument and configured to be at least partially immersed in a sample fluid is provided according to the invention. The body (150) includes a substantially solid outer surface including a first end (151) and a second end (152) disposed along an axis of illumination A and at least one outer surface (153). The first end (151) is configured to admit impinging light. The suspension body further includes an inner volume. At least a portion of the inner volume includes a substantially suspended light scattering material (155) that is configured to scatter a predetermined quantum of the admitted light. The suspension body (150) further includes an end cap (156) formed on the second end (152) and comprising a light absorbing material. Light exiting the second end (152) is substantially absorbed by the end cap (156).
A novel technique for model-based metrology. A geometry of structure to be measured on a surface of a substrate is received. A tessellation of the geometry of the structure is produced. The tessellation is used to determine a vertical discretization and a horizontal discretization so as to generate a discrete model for the geometry, and scatterometry computations are performed using the discrete model. Other embodiments, aspects and features are also disclosed.
An aspect of the invention provides a defect inspection apparatus being able to accurately inspect a micro foreign matter or defect at a high speed for an inspection target substrate in which a repetitive pattern and a non-repetitive pattern are mixed.In a foreign matter anti-adhesive means 180, a transparent plate 187 is placed on a placement table 34 through a frame 185. In the foreign matter anti-adhesive means 180, a shaft 181 which is rotatably supported by two columnar supports 184 fixed onto a base 186 is coupled to a motor 182 by a coupling 183. The shaft 181 is inserted into a part of a frame 185 between the two columnar supports 184 such that the frame 185 and the transparent plate 187 are turnable about the shaft 181. Therefore, the whole of the frame 185 is opened and closed in a Z-direction about the shaft 181, and a wafer 1 on the placement table 34 can be covered with the frame 185 and the transparent plate 187.
A method for determining the alignment of a pair of vehicle wheels includes the steps of positioning a beam projecting device consecutively on each wheel, in the same angular relationship to the wheel, and projecting a beam to a receptor, which is located in a predetermined angular relationship the other wheel. The projecting device, the receptor or both is utilized to determine the angle between the beams and the angle is related to the alignment of the pair of wheels; the receptor being maintained in the same position for each beam projection.
A displacement measuring apparatus 100 which measures a displacement amount of a moving object 102 includes a light source that irradiates the moving object 102 using luminous flux emitted from a light emitting area 101, a photo diode array 104, 105 that includes a plurality of light receiving areas in a movement direction of the moving object 102 and that forms an image of the luminous flux reflected on a plurality of indentations 103 of the moving object 102 to receive light, and a measurement unit that measures the displacement amount of the moving object 102 based on a movement amount of a light emitting area image 106 that is formed on the photo diode array 104, 105 by forming the image of the luminous flux.
Provided is a distance measuring apparatus and a distance measuring method enabling measurement of, based on an image, a relative distance from an object even during nighttime. Included are imaging means for taking an image in a traveling direction of an own-vehicle as a taken image; specifying means for respectively specifying combinations of positions, in the taken image, of direct light which is imaged in the taken image and of a reflected light which is a reflection of the direct light on a travel path surface; and measuring means for measuring a relative distance from an object based on the combinations of the positions of the direct light and the positions of the reflected light, which are specified by the specifying means.
An exposure apparatus which projects a pattern of an original onto a substrate via a liquid to expose the substrate, includes a substrate stage which holds the substrate and moves, the substrate stage including a peripheral member arranged to surround a region in which the substrate is arranged, the peripheral member having a holding surface which holds the liquid, wherein a trench which traps the liquid is formed in the peripheral member, and the trench is arranged to surround the region in which the substrate is arranged, and includes a bottom portion, an inner-side surface extending from the holding surface toward the bottom portion, and an outer-side surface, the inner-side surface having a slant which increases stepwise or continuously in a direction away from the holding surface, and the outer-side surface is provided with a spattering preventing portion which prevents spattering of the liquid trapped by the trench.
An exposure apparatus is equipped with a fine movement stage that can hold a liquid with a projection optical system when the stage is at a position facing an outgoing surface of the projection optical system, and a blade that comes into proximity within a predetermined distance of the fine movement stage when the fine movement stage is holding the liquid with the projection optical system, and moves along with the fine movement stage while maintaining the proximity state, and then holds the liquid with the projection optical system after the movement. Accordingly, a plurality of stages will not have to be placed right under the projection optical system interchangeably, which can suppress an increase in footprint of the exposure apparatus.
Projection systems and methods with mechanically decoupled metrology plates according to embodiments of the present invention can be used to characterize and compensate for misalignment and aberration in production images due to thermal and mechanical effects. Sensors on the metrology plate measure the position of the metrology plate relative to the image and to the substrate during exposure of the substrate to the production image. Data from the sensors are used to adjust the projection optics and/or substrate dynamically to correct or compensate for alignment errors and aberration-induced errors. Compared to prior art systems and methods, the projection systems and methods described herein offer greater design flexibility and relaxed constraints on mechanical stability and thermally induced expansion. In addition, decoupled metrology plates can be used to align two or more objectives simultaneously and independently.
An illuminator configured to create a radiation beam for the metrology of a substrate surface includes an arc lamp, a parabolic reflector (150), a double cone (160) and a fly's eye integrator (110) in order to create a homogenized beam with a parabolic distribution.
A slit shaped area of a patterning device is illuminated to impart a radiation beam with a pattern in its cross-section. A projection system projects the patterned radiation beam onto a target portion of a substrate. As the radiation beam is scanned across the target portion of the substrate, a configuration of the projection system is adjusted and applies a pattern to the target portion. The adjusting may affect a magnitude of an image magnification component of the projection system, along the length of the slit shaped area, or an image distortion in a scan direction. The adjusting is arranged to compensate an effect on pattern overlay accuracy of a distortion of the patterning device.
This invention relates to an optical element for the purpose of identification and/or prevention of forgery or copying, including at least one layer with anisotropic optical properties, wherein the anisotropic optical properties are patterned, characterized in that the pattern represents biometric information. In addition, this invention relates to a method for the preparation of an optical element for the purpose of identification and/or prevention of forgery or copying.
On a first light transmissive substrate, a first scale mark portion is formed inside an opening portion, and on a second light transmissive substrate, a second scale mark portion is formed. On the second light transmissive substrate, a first metal layer, a semiconductor layer, and a second metal layer are laminated. A thin film transistor is formed so as to include a part of the first metal layer, a part of the semiconductor layer, and a part of the second metal layer. The second scale mark portion is formed of another part of the second metal layer. Under the second scale mark portion, another part of the semiconductor layer is formed so as to extend off from the second scale mark portion. Below the second scale mark portion and the semiconductor layer, another part of the first metal layer is formed in a size capable of shielding the opening portion.
A display device at which the contact-type wiring inspection can be accurately carried out is provided. In a display device in which two or more kinds of lines are arranged on a substrate by way of an interlayer insulation film, in at least a partial region of the substrate outside a display region, a plurality of upper-layer lines which are arranged parallel to each other on an upper side of the interlayer insulation film, lower-layer lines which are arranged on a lower side of the interlayer insulation film and between the upper-layer lines or adjacent to the upper-layer lines, and adjustment layers for adjusting a height which are arranged on a lower side of the interlayer insulation film and below the upper-layer lines so as to position surfaces of the upper-layer lines at a highest position on the substrate are formed.
A liquid crystal display includes a backlight that provides light and selectively modifies the transmission of light from the backlight to the front of the display. The backlight includes a plurality of spaced apart light waveguides and a plurality of selection elements associated with the light waveguides that change the characteristics of the material of the light waveguides to selectively direct the transmission of light toward the liquid crystal layer. The combination of the waveguides and the selection elements provide light to the front of the display in a non-uniform temporal manner and a non-uniform spatial manner during a frame.
Fringe field switching (FFS) mode liquid crystal display device and method for fabricating the same, are discussed, the device including a gate line formed in one direction on a surface of a first substrate; a data line formed on the first substrate, and crossed with the gate line to thereby define a pixel region; a thin-film transistor formed on the first substrate, and formed at an intersection of the gate line and the data line; an insulating layer having an opening portion located at an upper portion of the thin-film transistor to expose at least a gate portion of the thin-film transistor; a pixel electrode formed at an upper portion of the insulating layer, and connected to the exposed thin-film transistor; a passivation layer formed at the upper portion of the insulating layer; and common electrodes formed at an upper portion of the passivation layer and separated from one another.
Conventionally, photolithography and anisotropic etching are performed to form a plug between an electrode and a wiring, etc., thereby increasing the number of steps, getting the throughput worse, and producing unnecessary materials. To solve the problems, the present invention provides a method for manufacturing a display device, including the formation steps of a conductive layer or wirings, and a contact plug that can treat a larger substrate. In the case of forming a plug for electrically connecting conductive patterns comprising plural layers, a pillar made of a conductor is formed over a base conductive layer pattern, and then, after an insulating film is formed over the entire surface, the insulating film is etched back to expose the conductor pillar, and a conductive pattern in an upper layer is formed by ink jetting. In this case, when the conductor pillar is processed, a resist to be a mask can be formed in itself by ink jetting.
A display apparatus having a display driving unit on a lower part is provided. The LCD display apparatus includes a signal processing unit which performs video decoding, video scaling, and conversion into high-quality video on an input video; and a driving unit which is disposed closer to a lower end of the LCD display apparatus than to an upper end of the LCD display apparatus, and drives a liquid crystal display (LCD) panel to display a video output from the signal processing unit on the LCD panel.
Provided are a video signal processing apparatus and a video signal processing method capable of automatically recognizing whether an input video signal is an analog video signal or a digital video signal and processing the input video signal accordingly. According to the video signal processing apparatus and method, the input signal can be processed appropriately so that a display device can display a video or a video storage device can store a video data even when it is not known whether the input signal is an analog signal or a digital signal.
A camera module includes a lens module having a lens holder having a top surface, a bottom surface, a side surface and a through hole through the top surface and the bottom surface, a liquid crystal lens, wires, and a driving unit, a PCB, and solder balls. The liquid crystal lens is received in the through hole. The wires are arranged on the top surface and the side surface. One end of each wire is electrically connected to the liquid crystal lens, and the other end includes a solder terminal on the side surface. The driving unit drives the liquid crystal lens. The PCB includes a rigid print circuit board supporting the lens holder and a flexible print circuit board having a free end bent toward the side surface. The solder balls interconnect the solder terminals and the free end.
An imaging device includes a lens array including multiple lenses facing a subject; an image sensor obtaining a compound-eye image including single-eye images of the subject formed by the lenses; and a computing unit processing the compound-eye image obtained by the image sensor. The lenses have different radii of curvature and substantially the same back focal length, and the computing unit extracts an in-focus image from the compound-eye image.
A solid-state imaging device including a semiconductor substrate; plural photoelectric conversion units formed side by side on the semiconductor substrate to form a light receiving unit; a peripheral circuit formed in a portion on an outside of the light receiving unit on the semiconductor substrate; a wiring section formed on the light receiving unit and formed for connecting the plural photoelectric conversion units and the peripheral circuit; and a dummy wiring section formed on an opposite side of the wiring section for at least one photoelectric conversion unit among the plural photoelectric conversion units on the light receiving unit and formed for functioning as a non-connected wiring section not connected to the photoelectric conversion units and the peripheral circuit, wherein the dummy wiring section has a predetermined potential.
In various embodiments, image sensors include an imaging array of optically active pixels, a dark-reference region of optically inactive pixels, and two light shields disposed over the dark-reference region and having openings therein.
An imaging system and method that captures compressive sensing (CS) measurements of a received light stream, and also obtains samples of background light level (BGLL). The BGLL samples may be used to compensate the CS measurements for variations in the BGLL. The system includes: a light modulator to spatially modulate the received light stream with spatial patterns, and a lens to concentrate the modulated light stream onto a light detector. The samples of BGLL may be obtained in various ways: (a) injecting calibration patterns among the spatial patterns; (b) measuring complementary light reflected by digital micromirrors onto a secondary output path; (c) separating and measuring a portion of light from the optical input path; (d) low-pass filtering the CS measurements; and (e) employing a light power meter with its own separate input path. Also, the CS measurements may be high-pass filtered to attenuate background light variation.
A digital camera is disclosed. In an embodiment, the digital camera has an imaging unit including an image sensor and imaging optics and a digital image processor connected to receive raw digital images from the imaging unit and to process the raw digital images. The digital camera also includes a memory configured to store digital image data that has been processed by the digital image processor and a processor configured to direct retrieval of the digital image data that is stored in the memory and the digital image processor is further configured to generate control signals for use in operation of the imaging unit.
The present disclosure relates to a sensor network including a plurality of nodes, each node having a directional sensor, a communication module, and a processor configured to receive local measurements of a calibration object from the directional sensor, receive additional measurements of the calibration object from neighboring nodes via the communication module, estimate an initial set of calibration parameters in response to the local and additional measurements, receive additional sets of calibration parameters from neighboring nodes via the communication module, and recursively estimate an updated set of calibration parameters in response to the additional sets of calibration parameters. Additional systems and methods for calibrating a large network of camera nodes are disclosed.
A method is provided for detecting a threat in a distributed multi-camera surveillance system. The method includes: monitoring movement of an object in a field of view of a first camera using software installed at the first camera; detecting a suspicious object at the first camera when movement of the object does not conform with a motion flow model residing at the first camera; sending a tracking request from the first camera to a second camera upon detecting the suspicious object at the first camera; monitoring movement of the object in a field of view of the second camera using software installed at the second camera; assigning threat scores at the second camera when the movement of the object does not conform with a motion flow model residing at the second camera; and generating an alarm based in part on the threat scores detected at the first camera and the second camera.
A task-based imaging system for obtaining data regarding a scene for use in a task includes an image data capturing arrangement for (a) imaging a wavefront of electromagnetic energy from the scene to an intermediate image over a range of spatial frequencies, (b) modifying phase of the wavefront, (c) detecting the intermediate image, and (d) generating image data over the range of spatial frequencies. The task-based imaging system also includes an image data processing arrangement for processing the image data and performing the task. The image data capturing and image data processing arrangements cooperate so that signal-to-noise ratio (SNR) of the task-based imaging system is greater than SNR of the task-based imaging system without phase modification of the wavefront over the range of spatial frequencies.
A technique is provided for using, in a wireless video transmission device and a plurality of wireless video reception devices which intermittently perform signal reception processing within standby periods, a human body detection unit to accelerate the start-up of the wireless video transmission and reception devices. When the presence of a person is detected by the human body detector, a person detection signal is sent to a wireless video reception device or the transmission device to thereby limit usable communication channel candidates in number. The limited number of usable channel candidates are then used to perform intermittent signal reception, thereby shortening the searching time cycle of such intermittent reception within a standby period, thus lessening the startup time from the standby state between the wireless video transmission and reception devices and also reducing standby power thereof.
A three-dimensional imaging apparatus is disclosed. The apparatus includes a generated first planar light screen, and a first and second detector offset from the perpendicular plane of the light screen. The first detector is located on a first side of the perpendicular plane, and the second detector is located on the opposite side of the perpendicular plane. The first and second detectors detect the instantaneous projection of the first planar light screen upon an object within the first planar light screen, and to output first and second data corresponding to the detected projection. A velocity sensor determines the instantaneous velocity of the object as the object moves relative to the first planar light screen, and to output third data corresponding to the determined velocity. A processor acquires the data from the first and second detector, and the velocity sensor at least two instantaneous times as the object moves relative to the first planar light screen and combines the first, second, and third data to create a three-dimensional image of the object.
A stereo camera apparatus includes a first image capturing unit having first and second lens units, a first light synthesis unit, a first area-divided filter, and a first image capturing element. The first light synthesis unit and the first area-divided filter guide S-polarized and P-polarized light components to the first image capturing element. The second image capturing unit includes third and fourth lens units, a second light synthesis unit, a second area-divided filter, and a second image capturing element. The second light synthesis unit and the second area-divided filter guide S-polarized and P-polarized light components to the second image capturing element. The control unit includes first and second controllers to compute three-dimensional data of object using the S-polarized and P-polarized light component images, respectively.
The systems and methods described herein include a device that can scan the surrounding environment and construct a 3D image, map, or representation of the surrounding environment using, for example, invisible light projected into the environment. In some implementations, the device can also project into the surrounding environment one or more visible radiation pattern patterns (e.g., a virtual object, text, graphics, images, symbols, color patterns, etc.) that are based at least in part on the 3D map of the surrounding environment.
Provided is a method for providing a phone book using business card recognition in a mobile communication terminal. An image of a business card is captured and recognized character fields from the captured image are searched. Any one of the searched character fields to be set as a name is selected. The selected character field is converted to text and set as the name. The captured image is stored with the name in a predetermined directory. In addition, it enables to use all functions available in an existing phone book, thereby being more convenient to the user.
According to an embodiment, an image erasing apparatus includes an erasing unit, an input unit, and a control unit. The erasing unit erases an image formed on a recording medium. The input unit inputs identification data which identifies an apparatus which forms the image on the recording medium. The control unit controls an operation of the erasing unit based on the identification data input by the input unit. According to another embodiment, an image forming apparatus includes an image forming unit which forms an image on a recording medium, the erasing unit, the input unit, and the control unit.
A change-information obtaining unit determines a pixel having a rapid decrease in luminance from an input video signal. A light-emitting-region determination unit determines whether or not the pixel having a rapid decrease in luminance is a light emitting pixel. When the area of a region formed by light emitting pixels is greater than or equal to a predetermined value, the light-emitting-region determination unit notifies a drive signal correction unit of the address of the region. The drive signal correction unit corrects a drive signal so that the luminance of the region at the notified address can be lower than that obtained without correction, and generates a display frame.
A method of dynamically adjusting screen brightness is adapted for a screen to adjust the screen brightness. First, an original ambient light level and an original brightness adjustment factor are determined. Then, a relationship curve of an ambient light level and a brightness adjustment factor is determined. The current ambient light level is continuously monitored and compared with the original ambient light level to determine if the current ambient light level is equal to the original ambient light level. If not equal, a brightness adjustment factor corresponding to the current ambient light level is obtained based on the relationship curve, and the screen brightness is adjusted based on the brightness adjustment factor. The obtained screen brightness and the corresponding brightness adjustment factor are set to be the original screen brightness and the original brightness adjustment factor, and thus the background brightness is monitored again and the screen brightness is adjusted.
This method is an improvement to a method used to enlarge the display of a first portion of a map, without hiding a first peripheral portion of this map. This improvement involves detecting an event which appears in said first peripheral portion (SPP4′). The improvement further involves defining a second portion to be enlarged (SPA5), centered on the position (BS2) of this event, defining a second peripheral zone (SPP5) associated with this second portion to be enlarged, displaying (SPA5′) the second portion to be enlarged (SPA5) by applying respective enlargement ratios greater than 100% to at least some elements of that portion, so as to make the event more legible, and displaying (SPP5′) the second peripheral portion (SPP5) by applying at least to some elements of this portion respective enlargement ratios lower than 100% so as to save surface area to avoid hiding a portion of the map.
An image processing apparatus and an image processing method are provided. The image processing apparatus includes: a first receiving unit which receives a first image data and an auxiliary information for receiving a second image data forming an improved image in cooperation with the first image data; a second receiving unit which receives the second image data; an image processing unit which generates an image; and a controller which controls the second receiving unit to receive the second image data based on the auxiliary information and controls the image processing unit to generate the improved image based on the first image data and the second image data.
The present disclosure relates to the use of inverse dithering of color or grey-scale images. In certain embodiments, an image area may be selected having a center pixel. A predictive value of the image area may be found by averaging the values of the pixels in the image area. This predictive value may be compared to the center pixel's real value. A difference between the real value and the predictive value may then be found and used to diffuse the energy removed from the center pixel to neighboring pixels. By inverse dithering images using an energy diffusion approach, the images may be presented as having a more visually appealing display, even in situations where the images may undergo further edge enhancements.
The present invention relates to a unique color management method for calibrating and characterizing a light mixing system comprising a set of primary light modules emitting self-luminous color primaries, which may be intimately mixed to produce a batch color that matches a standard color. The radiant output of each self-luminous color primary, or channel, is modulated by a setting a light controller to a Digital-to-Analog-Conversion (“DAC”) value. In the event that the radiant output of the color primary channels is non-linearly proportioned to the DAC input values, it is useful to employ an innovative “iterative best-fit” method of simultaneously calculating admixtures of light from all color primaries that match a standard color. Otherwise, a matrix method based on matrix algebra may also be used to create a batch color that matches a standard color. A best fit tristimulus value method or best fit minimum RMSD can be used in conjunction with these spectral color matching methods. In addition, an optical feedback method may be used to correct systematic drift of the individual color primary channels.
Methods, chips, systems, computer program products and data structures are described for conducting modification of color video signals from a first color format associated with an originating format to a second format compatible with a display media of a display device.
One embodiment of the present invention sets forth a technique for reducing overhead associated with transmitting primitive draw commands from memory to a graphics processing unit (GPU). Command pairs comprising an end draw command and a begin draw command associated with a conventional graphics application programming interface (API) are selectively replaced with a new construct. The new construct is a reset topology index, which implements a combined function of the end draw command and begin draw command. The new construct improves efficiency by reducing total data transmitted from memory to the GPU.
Example embodiments of the present disclosure provide mechanisms for generating an improved grid for use in caching and classification when transmitting graphics data to a client computer. Such a grid may have the property that it is aligned to captured screen content such as user interface elements and borders between images and text. In some embodiments, an algorithm may be used that analyzes a screen and generates a subdivision grid of the screen that is likely to partition the screen into areas that substantially separate image and text content. This subdivision grid can also be further sub-divided (i.e., tiled) into regions that may be better suited for caching. In further embodiments, the algorithm may produce the grid using information from a window manager regarding window hierarchies and user interface element placement.
A method of determining the profile of a surface of an object is disclosed that does not require that the video inspection device be at a certain angle relative to the surface when an image of the surface is obtained (e.g., allows non-perpendicular captures of the image 30). The method determines a reference surface and a reference surface line. The reference surface line is then used to determine a surface contour line on the surface of the object. The profile is then determined by determining the distances between the reference surface and the surface contour line.
Provided is an image processing apparatus and method that may perform rendering based on a plurality of viewpoints to generate a stereoscopic image. Through this, it is possible to decrease a calculation amount.
The present invention discloses a method of brightness correction for the electronic display, which consists of the following steps: take pictures of the electronic display; get the characteristic values of all the light-emitting components in the pictures; calculate the correction values of each light-emitting component with the characteristic values; correct the brightness of the display with the correction values. The present invention reduces the time cost of measuring the actual brightness values of the light-emitting components, and improves the efficiency of correcting the brightness uniformity of the electronic display.
Disclosed is a display control device which is configured to instruct a predetermined display unit to display information of one or more files stored in a predetermined storing device, wherein the display control device is configured to instruct the predetermined display unit to display the information of the stored file which can be processed in a processing mode selected from a plurality of processing modes of a predetermined processing apparatus for processing the file, by using a first display form, and to instruct the predetermined display unit to display the information of the stored file which cannot be processed in the selected processing mode, by using a second display form which is different from the first display form.
An object is to provide a display device in which deterioration in display quality due to a change in voltage applied is reduced and a lower visible efficiency in changing display is prevented. The display device has a display controller configured to make the display portion perform display by switching a first still image display period including a writing period in which a first image signal is written and a holding period in which the first image signal is held, and a second still image display period including a writing period in which a second image signal is written and a holding period in which the second image signal is held. The display controller is configured to make a length of the writing period of the first still image display period and a length of the writing period of the second still image display period different from each other.
A photoelectric blackboard pen includes a pen tube, a photoelectric element, a spring, and a spherical lens. The pen tube includes an upper portion and a lower portion away from the upper portion. The lower portion defines a circular through hole. The photoelectric element is positioned on an internal sidewall of the upper portion. The diameter of the spherical lens is slightly larger than that of the through hole. The spherical lens is rotatably positioned in the through hole and partially passes through the through hole. One end of the spring is positioned on the internal sidewall of the upper portion. The diameter of the spherical lens is slightly larger than that of the spring, the other end of the spring sleeves around and resists against the spherical lens.
Devices and methods for interpreting an input key from a keystroke are disclosed. In an implementation, the method includes displaying a keyboard including keys. The method also includes defining targets on the keyboard. Each one of the targets is associated with one of the keys, an area of the keyboard, and a swipe direction. Each one of the keys is associated with at least two of the targets. The method also includes determining a location and a swipe direction of the keystroke, and comparing the location of the keystroke with the areas associated with at least some of the targets. The method also includes comparing the swipe direction of the keystroke with the swipe directions associated with at least some of the targets, and defining the input key based on the comparisons of the location of the keystroke and the swipe direction of the keystroke with the targets.
A touch sensitive active matrix display device is provided. The device includes a display fabricated on a first flexible substrate, said display having a viewing surface. The device further includes a touch sensitive sensor including a second flexible substrate, under said display. The touch sensor is operated by touching said viewing surface of said display, and said combined display and touch sensitive sensor is flexible.
In a system and a method, a selection of an input data field is detected. In response to the selection of the input data field, a user interface having an inner concentric circle and an outer concentric circle is generated. A contact point corresponding to a location of a touch gesture submitted via a touch-enabled input device within one of the inner concentric circle and the outer concentric circle is detected. An angular velocity of circular movement from the contact point around one of the concentric circles is measured. An input data value is adjusted at a granularity based on the contact point and at a rate based on the measured angular velocity of circular movement.
Provided are an apparatus and method for improving usability of a touch screen. The apparatus includes a touch sensing unit that senses a first touch and a second touch and detects the touched locations of the sensed touches, a pointer setting unit that sets a pointer to the detected location of the first touch, and a coordinate transforming unit that transforms movement of a touched location, which is caused by movement of the second touch, into movement of a location of the pointer.
The present invention relates to a combination of a 6-axis motion sensor having a 3-axis gyroscope and a 3-axis linear accelerometer, a motion processor and a radio integrated circuit chip (IC), wherein the intelligence in the motion processor enables the communication between the motion sensor, the radio IC and the external network. The motion processor also enables power savings by adaptively controlling the data rate of the motion sensor, depending on the amount or speed of the motion activity.
An image display apparatus includes: a backlight configured to emit light; a liquid crystal panel configured to modulate light emitted from the backlight to make an image display; a backlight luminance calculating unit configured to calculate a light-emission luminance of the backlight such that a center value of a luminance range displayable on the liquid crystal panel defined depending on the light-emission luminance of the backlight substantially agrees with a center value of luminances of pixels forming an input image; a backlight controlling unit configured to control light emission of the backlight so that the light from the backlight is emitted with the calculated light-emission luminance; a luminance correcting unit configured to correct the luminance of each pixel in the input image in accordance with the calculated light-emission luminance; and a liquid crystal controlling unit configured to control modulation of the liquid crystal panel based upon the corrected input image.
A liquid crystal display includes a liquid crystal display panel on which gate lines and data lines cross one another and liquid crystal cells are respectively arranged at crossings of the gate lines and the data lines in a matrix form, a panel common line connected to common electrodes of the liquid crystal cells, a power supply circuit generating a common voltage to be applied to the common electrodes, data circuit groups each including a data driver integrated circuit (IC) for driving the data lines, and gate circuit groups each including a gate driver IC for driving the gate lines. The gate circuit groups is connected to one of the plurality of data circuit groups through a first line-on-glass (LOG) type signal line group.
Methods and apparatus of a switching multi-mode antenna of a user device are described. A switching multi-mode antenna is coupled to receive an RF input from one of at least two radio frequency (RF) feeds via a switch. The switching multi-mode antenna includes multiple antenna structures to communicate information in multiple frequency bands. A first antenna structure is configured to transmit first information in one of the frequency bands and a second antenna structure is configured to receive second information in the same one of the frequency bands.
A communication system including an antenna array with feed network coupled to communication electronics. In one example, a communication subsystem comprises a plurality of antennas each adapted to receive an information signal and a plurality of orthomode transducers coupled to corresponding ones of the plurality of antennas, each OMT is adapted to provide at a first component signal having a first polarization and a second component signal having a second polarization. The communication subsystem also comprises a feed network that receives the first component signal and the second component signal from each orthomode transducer and provides a first summed component signal at a first feed port and a second summed component signal at a second feed port, and a phase correction device coupled to the first and second feed ports and adapted to phase match the first summed component signal with the second summed component signal.
A solid-state image sensing device comprises a pixel which outputs a pixel signal, a first conversion unit which converts the pixel signal into a digital signal with a first bit length, and a second conversion unit which converts, into a digital signal with a second bit length, an analog signal obtained by subtracting, from the pixel signal, an analog signal corresponding to the digital signal with the first bit length. The second conversion unit comprises a current source, a first capacitance, and a switching unit for switching a supply destination of a current supplied from the current source to one of the first capacitance and a reference potential. The second conversion unit performs the conversion based on comparison between a reference voltage and the analog signal which is charged in the first capacitance and is obtained as a subtraction result.
A data converter module is provided with an analog interface to receive analog signals, a digital interface to transmit digital signals, and a configuration interface to accept configuration signals. The data conversion module also includes a data conversion array (DCA) with selectively engageable data conversion circuits for the conversion of analog input signals to digital output signals, where the data conversion circuits are responsive to the configuration signals. The DCA's data conversion circuits include configurable data resolution circuits and configurable data conversion speed circuits. For example, the configurable data resolution circuits may be selected from averaging, oversampling, and multi-stage pipelining circuits. The DCA configurable data speed circuit may interleave the outputs from multiple parallelly connected ADCs operating at different clock phases. In one aspect, the number of clock phases is selectable. Also provided are methods for configurable data conversion.
A continuous-time delta sigma converter includes a loop filter having a plurality of serially coupled integrators including a first integrator responsive to an input of the Delta Sigma converter and a last integrator responsive to a first feedback loop and providing an integrated output signal, and a voltage controlled oscillator (VCO) based quantizer responsive to the loop filter for integrating the integrated output signal and providing a digital output signal. The first feedback loop includes a first time delay circuit responsive to the output of the quantizer and at least one switched capacitor digital to analog converter (DAC) responsive to the first time delay circuit. The first feedback loop is configured to differentiate the digital output signal twice and provide the last integrator of the loop filter with a double differentiated analog signal to reduce excess loop delay.
An analog-to-digital converter for converting an input signal includes a sigma-delta modulator for receiving an analog modulator input signal and for providing a digital modulator output signal and an interference cancellation loop. The interference cancellation loop includes a digital filter, a digital-to-analog converter, and a signal combiner. The digital filter is configured to amplify the sigma-delta output signal in a frequency band, attenuate the sigma-delta output signal outside the frequency band and a transition band surrounding the frequency band, and provide a filtered digital feedback signal. The digital-to-analog converter is configured to convert the filtered digital signal to a cancellation signal. The signal combiner is configured to combine the input signal with the cancellation signal resulting in the modulator input signal, in order to at least partially cancel interference signal portions within the input signal.
A method for detecting and processing key scan codes of a computer keyboard is disclosed. At least one scan code table is established for a computer device in advance and is stored in a scan code table memory that is accessible by a keyboard controller so that the keyboard controller, after initialization, may load the scan code table from the scan code table memory to a scan code table load-in area within the keyboard controller. The keyboard controller, upon detecting the actuation of any key of the keyboard, generates a interrupt request signal to the south bridge, which in turn retrieves the scan code; or alternatively, the keyboard controller generates an interrupt signal to the south bridge, which in turn retrieves and transmits the interrupt query number of the interrupt signal to the computer operating system, which in turn executes a preset target program corresponding to the interrupt query number.
A method for monitoring of traffic patterns and securely processing events of violations of traffic regulations on at least one designated surface incorporating steps of positioning at least one mobile traffic monitoring and recording module arranged to monitor traffic on at least one designated surface, to detect events of potential violations of traffic regulations, to store information pertinent to the monitored traffic and detected events of potential violations of traffic regulations, and to transmit, using a secure wireless method, at least a portion of the stored information for further processing. The method also include establishing at least one traffic information processing center arranged to securely receive and process transmitted portion of the stored information, to process received portion of the stored information pertinent to traffic regulations violations, and to generate actionable portfolio of documents for communication to subjects having interest in the processed traffic regulations violations.
A transponder communication system and method for communicating with a transponder in an electronic toll collection system. A roadside reader attempts to program the transponder in a normal mode in which a programming signal is transmitted to a first coverage area. If the programming attempt in the normal mode is unsuccessful, the reader attempts to program the transponder in an enhanced mode in which a programming signal is transmitted to a second coverage area. The coverage area is adjusted after the programming attempt in the normal mode by using an adjacent antenna to the antenna used to transmit in the normal mode or by increasing the power of the programming signal to a level that is greater than the level used to transmit the programming signal in the normal mode.
In accordance with embodiments, a system includes a plurality of component slots and at least one indicator associated with each of said slots. The system also includes a controller coupled to the indicators. The indicators selectively provide installation guidance of components into said slots based on signals from the controller.
A dewatering system includes a selective calibrating sensor circuit configured to receive sensor readings from an electronic sensor, to determine if the electronic sensor is immersed in water, to allow a user to adjust a pump down time in the field, and to generate a control output signal accordingly. The selective calibrating sensor circuit periodically performs a self-calibration when the electronic sensor is not immersed in water to cancel the effect of potential contaminants deposited on the electronic sensor over its operating life. The selective calibrating sensor circuit inhibits calibration when the electronic sensor is immersed in water. In some applications with multiple electronic sensors, the selective calibrating sensor circuit disconnects from one of the electronic sensors before performing the self-calibration. In certain embodiments, a pump control circuit including the selective calibration sensor circuit can be configured to be mounted with a housing of the pump.
Generally, in accordance with various exemplary embodiments of the present invention, the present method comprises collecting data from monitoring devices, uploading the data from a monitoring device to a central database, pairing the data with secure transactional data to provide one or more secure transactional stamp(s), storing the data and the paired secure transactional stamp(s) in the central database, producing a report comprising the data and the paired transactional stamp, and providing the report to an authorized third party. Preferably, the transactional stamp comprising the name of personnel, time, and any changes made to the data collected from the monitoring device is generated and attached to the data. Further, the present invention discloses methods for transactional stamping all reviews of the monitoring device data and/or all client input data to produce a secure report, admissible under the Federal Rules of Evidence.
Methods, systems, and computer-readable media provide for the real-time notification of user events. According to various embodiments described herein, a user initiates a notification process in which the geographic location of a device associated with the user, as well as any desired activity data, is generated into a real-time notification for another party. The location of the user device is determined upon the initiation of the notification process. Original or pre-programmed messages may be posted on a website or delivered along with the location of the user device to any number of communication devices. The various embodiments provide an efficient manner of updating selected individuals with the location of a user and of providing those individuals with desired information.
A sensing device transmits wireless signals when an error between at least one sampled parameter value and at least one predicted parameter value is too great, such that the sensing device transmits wireless signals to a load control device using a variable transmission rate that is dependent upon the amount of change in a value of the parameter. The sensing device uses the one or more estimators to determine the predicted parameter value, and may transmit the estimators to the load control device if the error is too great. The load control device uses the estimators to determine at least one estimated parameter value and controls the electrical load in response to the estimated parameter value. The sensing device may comprise, for example, a daylight sensor for measuring a total light intensity in the space around the sensor or a temperature sensor for measuring a temperature around the sensor.
A data entry device including a housing formed of at least two portions, data entry circuitry located within the housing, at least one case-open switch assembly operative to sense when the housing is opened and tamper indication circuitry operative to receive an input from the at least one case-open switch assembly and to provide an output indication of possible tampering with the data entry circuitry located within the housing. The at least one case-open switch assembly includes an arrangement of electrical contacts arranged on a base surface and a resiliently deformable conductive element, which defines a short circuit between at least some of the arrangement of electrical contacts only when the housing is closed.
A first responder task-optimization system includes a network-connected server having at least one processor and data repository, software running on the at least one processor from a non-transitory medium, the software providing a first function for receiving evacuation-success notification information from persons evacuating from pre-specified locations in the path of the progression of a disaster, a second function for associating the received evacuation-success notification information to the pre-specified locations on at least one digitally rendered geographic representation of the area in the path of the disaster, and a third function for serving the at least one geographic representation including the associated notification information to first responders in the field.
A system and method for providing communication with a tracking device are disclosed. An example tracking device includes a location detector, a communication device, memory, a processor, and a configuration routine. The location detector is operative to determine locations of the tracking device. The communication device is operative to communicate with a remote system. The memory stores data and code, the data including location data determined by the location detector and configuration data. The processor is operative to execute the code to impart functionality to the tracking device. The functionality of the tracking device depends at least in part on the configuration data. The configuration routine is operative to modify the configuration data responsive to communications from the remote system. Thus, functional access to the tracking device is provided to the remote system.
A collision detector accurately detects a situation where a subject vehicle is likely to come into contact with an external object. The collision detector defines a subject area including an enter-determination area and an exist-determination area. The enter-determination area is defined to determine that the external object entering therein is likely to come into contact with the subject vehicle. The exist-determination area is defined to determine that the external object existing therein is likely to come into contact with the subject vehicle. The detector determines whether the external object comes into the enter-determination area or the external object exists in the exist-determination area. The detector outputs that the subject vehicle is likely to come into contact with the external object when the external object comes into the enter-determination area or when the external object exists in the exist-determination area.
When a cargo trailer is coupled to a truck, a trailer tracking device on the trailer acquires an identifier of a truck tracking device attached to the truck. The trailer tracking device then transmits a message to a central server indicating that the trailer is coupled to the truck, which message includes the identifiers of the two tracking devices. The central server associates the identifiers of the two tracking devices in a database. When the trailer is decoupled from the truck, the trailer tracking device transmits a message to the central server indicating that the trailer is decoupled. The trailer tracking device then goes into a sleep mode until the trailer is again coupled to a truck, a predetermined time interval expires, a motion sensor indicates trailer movement, location coordinates indicate a geofence violation, or a low battery voltage condition occurs. Upon any of these events, the trailer tracking device wakes up and transmits to the central server a message indicating which situation caused the transmission and including the location coordinates of the trailer.
An energy management system. The energy management system includes at least one energy monitoring and control device configured to monitor the power usage of one or more electrical devices, and a security system communicatively coupled to at least one energy monitoring and control device and having at least one sensor configured to sense a security event. The security system is configured to receive information about the power usage of the electrical device and to determine an abnormal operation of the electrical device based, at least in part, on the received information about the power usage of the electrical device and a state of the security system.
On-chip high performance slow-wave coplanar waveguide structures, method of manufacture and design structures for integrated circuits are provided herein. The structure includes at least one ground and signal layer provided in a same plane as the at least one ground. The signal layer has at least one alternating wide portion and narrow portion with an alternating thickness. The wide portion extends toward the at least one ground.
The invention may be embodied in a resynchronizing, push-pull drive circuit for driving the gate electrodes of a digital Class-S Radio Frequency Power Amplifier (RF-PA). A binary bitstream received from a bitstream generator, such as a sigma-delta modulator, Viterbi-based optimal-bit-pattern modulator sigma-delta, or other suitable modulator, is resynchronized to a low-jitter master clock, then converted to fast-rise, high-swing complementary digital signals to drive the gates of the Class-S RF-PA. The drive circuit provides a high slew-rate, large-swing, quasi-digital gate drive circuit to drive the significant gate capacitance of the RF-PA with sufficient rise times. A combination of bipolar transistor current switches and cascoded CMOS devices is employed to attain requisite performance. For example, the driving circuit is well suited for use with Class-S RF-PAs used in wireless communication systems.
A switching circuit according to one embodiment is a switching circuit including at least one semiconductor switch element having an input, output, and a common terminals, a pulse-like signal being applied between the input and common terminals to switch a current between the output and common terminals. The switching circuit further includes a capacitance suppression element section connected at least one of between the input and output terminals, between the input terminal common terminals, and between the output and common terminals. The capacitance suppression element section reduces a parasitic capacitance between the terminals of the semiconductor switch element where the capacitance suppression element section is connected to less than that obtained when the capacitance suppression element section is not connected at a frequency N times (N is an integer of 1 or more) as high as a clock frequency of the pulse-like signal.
A reference voltage generator circuit may include at least one MOS transistor and at least one bipolar transistor coupled together to provide an electrical path from an input reference potential to an output of the generator circuit. The electrical path may extend through a gate-to-source path of the MOS transistor and further through a base-to-emitter path of the bipolar transistor. The MOS transistor may be biased by a bias current that is proportional to T2·μ(T), where T represents absolute temperature and μ(T) represents mobility of a MOS transistor in the bias current generator. Optionally, the reference voltage generator may include N MOS and M multiple bipolar transistors (N≧1, M≧1), and the output reference voltage may be N*VGS+M*VBE as compared to the input reference potential.
A circuit configured to output a ramp signal having a potential varying depending on time includes a voltage supply unit configured to supply a plurality of voltages having different amplitudes, a current supply unit, an integration circuit configured to output the ramp signal, and a capacitive element. The voltage supply unit is connected to one terminal of the capacitive element. The integration circuit and the current supply unit are connected to another terminal of the capacitive element.
An apparatus may include a storage circuit that may have a first terminal and a second terminal and may have two cross-coupled inverters. The apparatus may include a feedback circuit coupled to the first terminal. The feedback circuit may include electronic logic elements to determine if the storage circuit is in a metastable state. The feedback circuit may couple at least one of the first and second terminals to one of a voltage reference and a voltage source if determined that the storage circuit is in a metastable state.
A semiconductor integrated circuit includes: a plurality of the functional blocks; a plurality of configuration data memories in which a plurality of configuration data are stored; and a plurality of programmable switches configured to control connection between said plurality of functional blocks based on one of the plurality of configuration data which is stored in a common one of said plurality of configuration data memories.
Disclosed is a system and method for providing Process-Voltage-Temperature (PVT) compensation for an Input/Output interface. An embodiment may connect an analog section and a digital section together to generate and measure an oscillation frequency (FOSC) used to look up a corresponding PVT control bit value in a look-up table. The analog section may be comprised of a voltage reduction system that reduces a bandgap reference voltage (VBGR) to half the supplied VBGR to a current mirror that supplies a PVT current (IPVT) to driver bit cells and a proportional mirrored control current (ICNTL) to a current controlled oscillator (CCO), which generates FOSC. The digital section may be used in combination with a frequency variable resistor and beta multiplier connected to the CCO to calibrate the capacitance of the CCO to tune out the process variation of the CCO capacitance and render FOSC to be linearly dependent on ICNTL.
A differential voltage mode driver for implementing symmetric single ended termination includes an output driver circuitry having a predefined termination impedance. The differential voltage mode driver also includes an output driver replica having independently controlled first and second portions. The first and second portions are independently controlled to establish a substantially equal on-resistance of the first and the second portions. The output driver replica controls the predefined termination impedance of the output driver circuitry.
A hydrocarbon vapor detection instrument includes a hydrocarbon vapor detector, with conductivity proportional to contiguous airborne concentration of hydrocarbon vapor. The instrument further includes electronic circuitry providing an electrical signal proportional to the vapor detector conductivity and to a switch-selected sensitivity setting. The instrument further includes indicators to signal recharging status while a power switch is off and an external power supply is recharging the battery, namely that the battery is partially or fully charged and if the battery temperature is excessive, to signal that operating power is on, to signal that a low battery condition exists, and to signal different concentrations of hydrocarbon vapor. For the last of these, indicator position on a housing corresponds to vapor concentration. The instrument further includes an audible indication of power-on status and vapor concentration, changing with vapor concentration.
[Object]To provide a method for measuring a target component in an erythrocyte-containing specimen with high reliability while suppressing the influence of the Ht value of the specimen.[Solution to Problem]In the measurement method of the present invention, first, prior to measurement, a relationship between amounts of the target component and a plurality of signals corresponding thereto is provided. Then, a plurality of signals derived from the target component in the erythrocyte-containing specimen are acquired with a biosensor. With reference to the relationship, the amount of the target component in the specimen is determined based on the thus-acquired plurality of signals.
A phase shifter is provided. The phase shifter includes a first phase shifter that is continuously adjustable within a range of 0 degrees to 90 degrees, two 4-way switches each configured to selectively switch on one of a capacitance, an inductance, an open circuit, and a short circuit under control of a control voltage, and a bridge. A first input end and a first output end of said bridge are respectively connected to a first 4-way switch of the two 4-way switches. A second input end of said bridge is connected to an output end of said first phase shifter or a second output end of said bridge is connected to an input end of said first phase shifter.
A system and method for enhanced contrast MR imaging include a computer programmed to perform a first scan of an imaging object based on a first fast spin echo (FSE) scan sequence comprising a first series of RF pulses having a first flip angle sequence to acquire a first MR data set and perform a second scan of the imaging object based on a second FSE scan sequence comprising a second series of RF pulses having a second flip angle sequence, wherein the second flip angle sequence is different from the first flip angle sequence to acquire a second MR data set. The computer is further programmed to generate a difference image based on the first and second MR data sets.
A current sensor including a magnetic detecting bridge circuit which is constituted of four magneto-resistance effect elements with a resistance value varied by application of an induced magnetic field from a current to be measured, and which has an output between two magneto-resistance effect elements. The four magneto-resistance effect elements have the same resistance change rate, and include a self-pinned type ferromagnetic fixed layer which is formed by anti-ferromagnetically coupling a first ferromagnetic film and a second ferromagnetic film via an antiparallel coupling film therebetween, a nonmagnetic intermediate layer, and a soft magnetic free layer. Magnetization directions of the ferromagnetic fixed layers of the two magneto-resistance effect elements providing the output are different from each other by 180°. The magnetic detecting bridge circuit has wiring symmetrical to a power supply point.
A multiferroic antenna and sensor where the sensor includes a multiferroic stack of multiple connected multiferroic layer-pairs, each multiferroic layer-pair comprising an alternating layer of a magnetostrictive material and a piezoelectric material bonded together enabling a high signal sensitivity, a magnetic field of an incident signal causing mechanical strain in the magnetostrictive material layers that strains adjacent piezoelectric material layers producing an electrical voltage in each multiferroic layer-pair proportional to the incident signal. An output of the multiferroic stack comprises the electrical voltage amplified proportional to a total number of multiple connected multiferroic layer-pairs in the multiferroic stack.
A strain sensor element comprises a laminated film which has a magnetic free layer, a spacer layer, and a magnetic reference layer. The free layer has a variable magnetization direction and a out-of-plane magnetization direction. The reference layer has a variable magnetization direction which is pinned more strongly than the magnetization of the free layer. The spacer layer provided between the free layer and the reference layer. A pair of electrodes is provided with a plane of the laminated film. A substrate is provided with either of the pair electrodes and can be strained. The rotation angle of the magnetization of the free layer is different from the rotation angle of the magnetization of the reference layer when the substrate is distorted. Electrical resistance is changed depending on the magnetization angle between the free layer and the reference layer, which allows the element to operate as a strain sensor.
An apparatus is provided for securing to and collecting power from an electrical conductor, including a current transformer comprising a core and an electrical winding that receives an induced current from magnetic flux generated according to alternating current present on the electrical conductor, and a clamping mechanism that attaches the apparatus to the electrical conductor. According to various aspects, apparatus may include a housing that encloses circuitry for monitoring conditions of the electrical conductor, where the circuitry includes one or more sensors, and wireless communications circuitry.
A multiple-input comparator is disclosed. The multiple-input comparator includes a pair of differential transistors connected by a resister. The gate terminals of the transistor pair serve as the input terminals of the comparator for receiving external voltage for comparison. The terminal of the resistor serves as the current input terminal and is either connected to a current source or a current sink. A power inverter utilizing the multiple-input comparator is also disclosed.
A frequency-hopping pulse-width modulator is disclosed, which facilitates a switching regulator to use smaller-size inductive and capacitive elements, to have an improved power efficiency at light load, as well as predictable spectrum at different load levels. The improved modulator automatically determines the switching frequency of a switching regulator according to the load current delivered by the switching regulator from a number of pre-defined frequencies, which are all multiples of a fundamental frequency. By designing the maximum switching frequency of frequency-hopping pulse-width modulator in the MHz range, a switching regulator is able to use smaller-size inductive and capacitive elements. Light-load efficiency of the switching regulator with the frequency-hopping pulse-width modulator is also greatly improved as switching frequency of such switching regulator is reduced with decreased load current. More importantly, spectrum of a switching regulator with the frequency-hopping pulse-width modulator is as predictable as spectrum of a switching regulator with a conventional pulse-width modulator operated at the fundamental frequency.
A system or module has a 3-or-more layer current-controlled switching device, such as a bipolar power transistor, for driving a load and a base driver circuit coupled to drive it. The driver has a buck-converter configuration for efficiently driving the switching device. In an embodiment, the driver has an inductor, the inductor having a first terminal coupled to a base of the bipolar junction transistor, a high-side switching device coupled to drive a second terminal of the inductor; and a rectification device coupled to the second terminal of the inductor. The driver also has a control circuit for providing a sequence of pulses through the high-side switching device when a control signal indicates the bipolar junction transistor is to be turned on.
According to one aspect of the embodiment, a linear regulator circuit includes an output transistor outputting an output current based on a input voltage, an error amplifier outputting a control signal based on an electric potential difference between an output voltage based on the output current and a reference voltage, a buffer circuit coupled between the error amplifier and the output transistor, and a drive capability adjustment circuit adjusting a load drive capability of the buffer circuit in synchronization with the output current.
Disclosed is an output stage, and associated apparatus, for a voltage regulator that includes a clamp circuit that is operable to ensure that the output voltage recovers quickly, i.e. that the perturbation of this voltage is limited and remains within a given specification, when entering a standby mode and which is controlled in a supply independent manner.
An actuator is sequentially charged with output voltage “E/2” of a voltage source and output voltage “E” of a voltage source. After the charging, “Q/2” of electric charge “Q” stored in the actuator is discharged on a path returning to the voltage source. Subsequent to the discharging, the remaining all electric charge “Q/2” stored in the actuator is discharged on a closed circuit.
A power distribution network includes multiple charge storage components and multiple charging circuits to control the charging and discharging of the charge storage components, which may comprise a battery and a supercapacitor. By appropriate arrangement and selection of the storage components, ripple in the power supply voltage, whose propagation to other components relying on the power distribution network may cause an audible buzz, may be significantly reduced. Additionally, appropriate arrangement and selection of the storage components, electromagnetic interference may also be significantly reduced.
The invention concerns a method, voltage source converter and computer program product for supporting an associate AC system and comprising: a number of cells (CA1, CA2, CA3, CA4, CA5, CA6, CB1, CB2, CB3, CB4, CB5, CB6, CC1, CC2, CC3, CC4, CC5, CC6), each cell comprising a string of switching elements in parallel with a cell capacitor, at least some cells further including a battery module group comprising at least one battery module connectable in parallel with the cell capacitor and a control unit (20) configured to selectively connect the battery module groups of a number of cells in parallel with corresponding cell capacitors for exchanging power with the associated AC system.
A charger includes a charging cable and a charging connector. A heater is configured to heat the charging connector using electric power supplied through the charging cable. A state determining device is configured to detect a charge state of a vehicle-mounted battery and to determine whether a heating condition to heat the charging connector is met. A heating controller is configured to control heating performed by the heater based on a determination made by the state determining device. The heater is able to be switched into a post-charge heating state in which the heater heats the charging connector after completion of charging of the vehicle-mounted battery. The heating controller switches the heater into the post-charge heating state and controls heating performed by the heater when the state determining device detects that charging of the vehicle-mounted battery is completed and determines that a heating condition is met.
Exemplary embodiments are directed to timing and control of wireless power transfer. A wireless power charging device includes at least one transmitter and a processor in communication with the at least one transmitter. The transmitter is configured for transmitting wireless power to one or more electronic devices, and the processor is configured to deactivate the transmitter during a pre-determined time interval. The charging device may include charging modes that a user may select between from an interface of the charging device. Charging modes may be related to times of operation such as those based on a user schedule, based on energy rates, or with modes programmed by a user. A charging schedule may be created by a user through the interface of the charging device or from an external device in communication with the charging device.
A vehicle carries a battery package as its power source. Plural battery modules in the battery package respectively have a memory device for memorizing identification information that proves authenticity of each of the battery modules. A battery control unit in the vehicle has an authentication unit. The authentication unit determines whether or not each of the battery modules is a genuine product. When the battery module is determined as a non-genuine product, a control unit performs a restricted charging. The restricted charging restricts a charge amount of the battery, for effectively improving usability of the battery and for restricting use of a non-compliant battery.
An output power controller in a system having two or more secondary batteries connected in parallel. A battery ECU transfers all the stored electric charge from one secondary battery to another secondary battery when battery temperature and state of charge (SOC) are so low that an output power requirement cannot be satisfied. The SOC of the secondary battery increases by the transfer of the stored electric charge and output power sufficient for the output power requirement can be obtained. Further, the secondary batteries are heated by thermal energy generated by the transfer of the stored electric charge.
An electricity distribution system includes an electricity supply control unit that receives information on power consumption, estimates the current and the future power consumption, and controls the supply of electricity to the electric device; an information display unit that displays information on a power use situation of an electric device electrically connected with the electricity supply control unit; and a battery server that accumulates power, in which the electricity supply control unit communicates the information on the power consumption with a new electric device when the new electric device is electrically connected, and when the amount of available power is exceeded by supplying electricity to the electric device, does not supply electricity to the electric device, makes the information display unit display that the amount of available power is exceeded by supplying electricity to the information display unit, and determines whether to use the power accumulated in the battery server.
A method for pulse width modulation control of a multiple phase drive includes identifying at least one phase from the plurality of phases for the drive as eligible for clamping to one of a plurality of extreme power supply voltages, including excluding from the eligible phases those phases with intermediate control signal levels and excluding phases according to a proximity criterion on the control signal levels. A phase is selected from the eligible phases. An offset signal is determined as a difference between a control signal level for the selected phase and an extreme control signal level associated with one of the plurality of extreme power supply voltages. A modified control signal is determined for each of the phases, by forming a combination of the offset signal and a control signal level for each phase to determine the modified control signal for each phase.
In an impact driver, a link unit (a link sleeve and first and second elongated protrusions) is provided between the mode switching ring for selecting an operation mode and the slide button for selecting the rotation speed. With the link unit, a switching operation of a slide button to the high-speed side is performed in coordination with a selecting operation of a mode switching ring to an impact mode or a vibration drill mode and the rotation speed is held at high speed.
To prevent demagnetization of a permanent magnet synchronous rotating machine, a rotating machine control device according to the present invention is a rotating machine control device comprising: a power converter having a switch part on each of a positive side and a negative side for each phase; and short circuit detection unit for detecting a short circuit of the switch part, wherein a command to turn on positive-side switches and negative-side switches of a plurality of phases of the switch part is issued in the case where the short circuit detection unit detects the short circuit.
This disclosure relates to a control system for driving a motor. The motor may include a cut-out circuit. The control system may include a buck-boost circuit to limit the rate of change of an output voltage before the output voltage is applied to operate the motor.
A truckle for a mobile medical device is provided. The truckle includes at least one electromagnetism torque balancing motor mounted on the truckle and configured to balance out friction generated by the truckle.
A driving apparatus for a fluorescent tube and a method thereof and an illumination apparatus using the same are provided. The driving apparatus stops providing power, when a fluorescent tube has broken, to both ends of the broken fluorescent tube regardless of whether a power switch related to the fluorescent tube is in ON or OFF state, and thus making sure that a person is under a safety condition without getting an electric shock during replacing the broken fluorescent tube; moreover, the driving apparatus automatically detects the newly installed fluorescent tube and automatically light up the newly installed fluorescent tube after the broken fluorescent tube is replaced and it is unnecessary to switch the power switch related to the fluorescent tube anymore, and thus avoiding a potentially hazard for the person who climbs up and down a ladder repeatedly.
A method for operating a high pressure discharge lamp, with the high pressure discharge lamp being operated by a current inverter with a square wave lamp current having a positive phase with positive current flow and a negative phase with negative current flow, and with the current inverter being controlled by a control arrangement wherein the method comprises the steps of measuring a value for the positive current flow representing the lamp wattage or the square wave lamp current, measuring a value for the negative current flow representing the lamp wattage or the square wave lamp current; calculating a predetermined setpoint value in each case from a guide variable of a lamp wattage or of the square wave lamp current and the measured value for the phase with positive current flow; calculating a predetermined setpoint value in each case from a guide variable of a lamp wattage or of the square wave lamp current and the measured value for the phase with negative current flow; and outputting the two predetermined setpoint values to the current inverter.
A backlight driver includes current sources that are connected between LED strings and a number of bias voltages. There can be any number of different bias voltages, each at a ground potential or higher voltage. The bias voltage is selected for a particular LED string in order to reduce a current drop across the current source. This reduces the power consumption of the current source and LED string. Heat dissipation is also reduced.
An electron cyclotron resonance ion generator includes a vacuum-tight chamber configured to contain a plasma, a magnetic field generator configured to generate a magnetic field in the chamber, a waveguide configured to propagate a high-frequency wave inside the chamber, a first ionization stage located at one end of the chamber, the first stage including an ionization zone in which ions are generated, the magnetic field being approximately parallel to a longitudinal axis in the ionization zone, a second magnetic confinement stage for the ions generated in the ionization zone, the second stage using a first high-frequency wave being propagated in the chamber from the waveguide, the magnetic field being approximately parallel to the longitudinal axis between the ionization zone and the second confinement stage, such that the ions generated in the ionization zone migrate towards the second confinement stage and the first and second stages contain the same continuous plasma.
An energy switch assembly includes probe components that can undergo and survive elevated temperatures of a bake-out procedure, and drive components that have capabilities of continuous positioning a probe throughout the stroke of the probe. The drive components can be removable from the probe components and replaceable without breaking the vacuum of the accelerator guide assembly.
A light-emitting apparatus including light-emitting devices emitting light of different single colors in a visible wavelength region, wherein each light-emitting device including: an organic layer between first and second electrodes and in which a first or second light-emitting layer emitting light of a different single color is included at a first or second position separated from each other in a direction from the first electrode to the second electrode; a first reflective interface on the side of the first electrode; and a second reflective interface and a third reflective interface which on the side of the second electrode in that order at mutually separated positions in a direction from the first electrode to the second electrode.
Disclosed herein is a display panel based on active matrix driving having a display area made up of N pixel control lines, M video signal lines orthogonally intersecting the N pixel control lines, and pixel circuits arranged at intersections between the N pixel control lines and M video signal lines, wherein positional identification patterns are arranged on every k (k being a natural number) pixel control lines inside each of the pixel circuits.
An electrode material may be used in spark plugs and other ignition devices including industrial plugs, aviation igniters, glow plugs, or any other device that is used to ignite an air/fuel mixture in an engine. In one embodiment, the electrode material has one or both of iridium (Ir) or ruthenium (Ru), and has rhenium (Re).
A lighting device and a lighting fixture of the embodiment of the present invention comprises a thermally conductive main body having a substrate support portion in one end portion, and having a through-hole and a groove portion formed in the substrate support portion, the through-hole penetrating from the one end portion to the other end portion of the main body, the groove portion extending continuously from the through-hole, a substrate mounted with a semiconductor light-emitting device, and disposed on the substrate support portion, an electrical connector connected to the semiconductor light-emitting device, a power supply device housed in the main body and configured to light the semiconductor light-emitting device, a wire connected to the power supply device and to the electrical connector while being inserted through the through-hole and the groove portion, and a base member provided in the other end portion of the main body and connected to the power supply device. Therefore, a lighting device and a lighting fixture of this embodiment of the present invention reduced in size, is configured to be suitable for mass production and is capable of producing a certain luminous flux.
A resonator element includes: a base portion provided on a plane including a first axis and a second axis orthogonal to the first axis; a vibrating arm extending from the base portion in the first axis direction; and a first mass portion for adjusting a resonance frequency of the vibrating arm, wherein the vibrating arm performs flexural vibration in a direction perpendicular to the plane and has a first surface which contracts or expands with the flexural vibration and a second surface which expands when the first surface contracts and contracts when the first surface expands, and wherein the first mass portion is provided on at least one of the first and second surfaces and approximately at the center of the length of the vibrating arm from a base-side end to a tip end thereof.
Apparatus for coupling a piezoelectric motor to a moveable body, the motor having a coupling surface for coupling to the moveable body, the apparatus comprising: at least one elastic element that provides at least a portion of a coupling force for pressing the coupling surface of the piezoelectric motor to the moveable body; and at least one shape memory component that is controllable to change shape and/or phase; wherein the at least a portion of the coupling force provided by an elastic element of the at least one elastic element changes responsive to changes in shape and/or phase of the at least one memory component.
A vibration wave driving apparatus includes a vibrator for driving a driven body and a member for supporting the vibrator. The construction can restrain increases in the number of components and in necessary space and can maintain a stable contact state of frictional surfaces of the vibrator and the driven body.
A SAW resonator which, using a quartz crystal substrate with Euler angles (−1.5°≦φ≦1.5°, 117°≦θ≦142°, and 42.79°≦|105|≦49.57°, includes an IDT which excites a stop band upper end mode SAW, and grooves hollowed out of the substrate positioned between electrode fingers configuring the IDT, wherein, when the wavelength of the SAW is λ and the depth of the inter-electrode finger grooves is G, λ and G satisfy the relationship of 0.01λ≦G and wherein, when the line occupation rate of the IDT is η, the groove depth G and line occupation rate η satisfy the relationships of −2.0000×G/λ+0.7200≦η≦−2.5000×G/λ+0.7775 provided that 0.0100λ≦G≦0.0500λ, −3.5898×G/λ+0.7995≦η≦−2.5000+G/λ+0.7775 provided that 0.0500λ
An energy recovery device including: at least one capacitor with variable capacitance, the capacitor including a fixed electrode, a dielectric layer, and a liquid electrode; and a mechanism to inject an electric charge into the capacitor and to remove the electric charge therefrom, including a charge injection electrode forming a portion of the second face positioned upstream from the fixed electrode in the direction of displacement of the liquid electrode, and a charge removal electrode forming a portion of the second face positioned downstream from the fixed electrode in the direction of displacement of the liquid electrode.
An electromechanical transducer of the present invention includes a first electrode, a vibrating membrane formed above the first electrode through a gap, a second electrode formed on the vibrating membrane, and an insulating protective layer formed on a surface of the second electrode side. A region where the protective layer is not formed is present on at least part of a surface of the vibrating membrane.
A stator includes a core-back portion, teeth portions, insulators, and coils. The teeth portions extend radially from a circumferential surface of the core-back portion. The insulators are respectively mounted to the teeth portions. The coils are respectively mounted to the insulators. A tip end of the tooth portion has a circumferential width equal to or smaller than that of a base end of the tooth portion. The tip end has an axial width equal to or smaller than that of the base end. The insulator includes a tube portion accommodating the tooth portion. The tube portion includes a first opening existing at the tip end and a second opening existing at the base end. The first opening has an axial width smaller than an axial width of the second opening in a state that each of the insulators is removed from each of the teeth portions.
A rotor includes first and second permanent magnets provided in each magnetic pole inside a rotor core. The rotor is configured such that when a first end of the first permanent magnet located on the outer circumferential side of the rotor core and the second permanent magnet side is located at a position that faces a first end in the circumferential direction of one of teeth of a stator, a second end of the first permanent magnet located on the axis of rotation side of the rotor core and the second permanent magnet side is located at a position that faces a second end in the circumferential direction of the tooth that faces the first end of the first permanent magnet.
A rotor core defines a plurality of cavities, and includes one magnet disposed within each cavity. Each magnet includes a cross section that defines an arcuate shape having an arc center. The magnets are arranged about a pole axis to define a first group of magnets disposed on a first side of the pole axis, and a second group of magnets disposed on a second side of the pole axis. The arc centers of each of the magnets of the first group of magnets and the second group of magnets are spaced from each other and are spaced from the pole axis. The plurality of magnets is arranged in a plurality of layers. The arc centers of each of the magnets in each of the layers are spaced from each other.
An electric machine includes a casing have a first end plate and a second end plate, the first end plate having an air inlet and the second end plate having an air outlet; an outer rotor positioned inside the casing; a stator positioned inside the outer rotor; a hub positioned inside the stator; a fan positioned within the casing, the fan drawing air from the air inlet and exhausting air out the air outlet.
A hand-held power tool with a drive motor and a gear mechanism has elastomer elements molded onto the inner side of the housing. At least two elastomer elements form elastomer bearings for bearing the drive motor.
A control method of an uninterruptible power supply (UPS) for extending a discharge time under a no-load condition instructs a battery of the UPS to discharge by repeating an alternate on and off cycle when the UPS enters a battery mode and after a no-load condition continues over a period of time so that the UPS alternately and repeatedly discharges and stops discharging based on the alternate on and off cycle, and detects if the no-load condition is not present during the discharging period. If not present, the battery is restored to continuously discharge. Additionally, the discharge voltage can be reduced during the discharging period to alleviate the power discharged under the no-load condition. Accordingly, the control method can reduce to discharge under the no-load condition and further extend a discharge time under a no-load condition.
The present invention relates generally to electrical power distribution, for example, in aircraft. More particularly, according to a first aspect, the present invention relates to a power supply system for power distribution to one or more loads in a safety-critical power supply network. The power supply system comprises at least one power source, a power bus and a distributed control system. The distributed control system comprises a central controller operably coupled to at least one bus module through a data bus. Bus modules include bus controllers that are operable to connect respective power sources to the power bus.
An exhaust energy recovery and electrical generation system includes a conduit having a first end and a second end, wherein the first end of the conduit is configured to receive a gas flow transmitted by a gas flow channel of a gas flow source and wherein the conduit is configured to transmit the received gas flow from the first end thereof toward the second end thereof. A first blade assembly is coupled to the conduit, wherein the first blade assembly is configured to be moved when the received gas flow is transmitted from the first end of the conduit; and an electrical generator coupled to the first blade assembly to generate electricity when the first blade assembly moves. A cross-sectional area of the first end of the conduit may be less than a cross-sectional area of the gas flow channel.
A semiconductor device according to one embodiment includes: a semiconductor substrate provided with a semiconductor element; a connecting member formed above the semiconductor substrate configured to electrically connect upper and lower conductive members; a first insulating film formed in the same layer as the connecting member; a wiring formed on the connecting member, the wiring including a first region and a second region, the first region contacting with a portion of an upper surface of the connecting member, and the second region located on the first region and having a width greater than that of the first region; and a second insulating film formed on the first insulating film so as to contact with at least a portion of the first region of the wiring and with a bottom surface of the second region.
An integrated circuit structure includes a plurality of insulator layers (connected to each other) that form a laminated structure. Further included are via openings within each of the insulator layers, and conductive via material within the via openings. The conductive via material within corresponding via openings of adjacent insulator layers are electrically connected to form continuous electrical via paths through the insulator layers between the top surface and the bottom surface of the laminated structure. Within each of the continuous electrical via paths, the via openings are positioned relative to each other to form a diagonal structural path of the conductive via material through the laminated structure. The corresponding via openings of the adjacent insulator layers partially overlap each other. The diagonal structural paths are non-perpendicular to the top surface and the bottom surface.
In various embodiments, an integrated circuit die is provided. The integrated circuit die may include a circuit on a surface of a semiconductor substrate that has a peripheral sidewall extending substantially perpendicular to and away from the surface. A first protective layer may cover the sidewall of the semiconductor substrate and peripheral edges of the circuit to provide protection from contaminant diffusion. In some embodiments, a semiconductor substrate is provided that has a plurality of dice contained thereon. Each of the dice may have an integrated circuit region and a peripheral sidewall etched into the semiconductor substrate. A first protective layer may be used to cover the peripheral sidewall of the semiconductor substrate to provide protection from contaminant diffusion. Additional apparatuses, systems, and methods are disclosed.
A semiconductor memory apparatus includes a first pad group located along a first edge of a plurality of banks, a second pad group located along a second edge of the plurality of banks opposite the first pad group, and a pad control section configured to provide first and second bonding signals and to implement control operation in response to a test mode signal and a bonding option signal to selectively employ signals from the first and second pad groups.
A method of forming a package structure with reduced damage to semiconductor dies is provided. The method includes providing a die comprising bond pads on a top surface of the die; forming bumps on the bond pads of the die, wherein the bumps have top surfaces higher than the top surface of the die; mounting the die on a chip carrier, wherein the bumps are attached to the chip carrier; molding the die onto the chip carrier with a molding compound; de-mounting the chip carrier from the die; and forming redistribution traces over, and electrically connected to, the bumps of the die.
A template having tapered openings can be employed to enable injection of underfill material through gaps having a width less than a lateral dimension of an injector needle for the underfill material. Each tapered opening has a first lateral dimension on an upper side and a second lateral dimension on a lower side. Compliant material portions can be employed to accommodate variations in distance between the template and stacked semiconductor chips and/or an injector head. Optionally, another head can be employed to apply compressed gas to push out the underfill material after the underfill material is applied to the gaps. Multiple injector heads can be employed to simultaneously inject the underfill material at different sites. An adhesive layer can be substituted for the at least one lower compliant material portion.
In a stacked semiconductor device, a Peltier element may be incorporated as a distributed element so as to provide active heat transfer from a high power device into a low power device, thereby achieving superior temperature control in stacked device configurations. For example, a CPU and a dynamic RAM device may be provided as a stacked configuration, wherein waste heat of the CPU may be efficiently distributed into the low power memory device.
Conventional semiconductor devices have a problem that it is difficult to prevent the short circuit between chips and to improve accuracy in temperature detection with the controlling semiconductor chips. In a semiconductor device of the present invention, a first mount region to which a driving semiconductor chip is fixedly attached and a second mount region to which a controlling semiconductor chip is fixedly attached are formed isolated from each other. A projecting area is formed in the first mount region, and the projecting area protrudes into the second mount region. The controlling semiconductor chip is fixedly attached to the top surfaces of the projecting area and the second mount region by use of an insulating adhesive sheet material. This structure prevents the short circuit between the two chips, and improves accuracy in temperature detection with the controlling semiconductor chip.
An integrated circuit package system provides a leadframe having a short lead finger and a long lead finger, and the long lead finger and the short lead finger reside substantially within the same horizontal plane. A first die is placed in the leadframe. A second die is offset from the first die. The offset second die is attached over the first die and the long lead finger with an adhesive. The first die is electrically connected to the short lead finger. The second die is electrically connected to at least the long lead finger or the short lead finger. At least portions of the leadframe, the first die, and the second die are encapsulated in an encapsulant.
An apparatus includes a radio-frequency die with shielding through-silicon vias and a die backside lattice lid that shield a sector in the RF die from radio- and electromagnetic interference.
Back-side MOM/MIM structures are integrated on a device with front-side circuitry. Embodiments include forming a substrate having a front side and a back side that is opposite the front side, the substrate including circuitry on the front side of the substrate; and forming a metal-oxide-metal (MOM) capacitor, a metal-insulator-metal (MIM) capacitor, or a combination thereof on the back side of the substrate. Other embodiments include forming a through-silicon via (TSV), in the substrate, connecting the MOM capacitor, the MIM capacitor, or a combination thereof to the circuitry on the front side of the substrate.
A fuse structure, an e-fuse including the fuse structure and a semiconductor device including the e-fuse are disclosed. The fuse structure includes first and second electrodes extending in a first direction, and spaced a predetermined distance apart from each other and having one ends thereof facing each other, an insulation layer formed between the one end of the first electrode and the one end of the second electrode facing each other, and a conductive film overlapping portions of the first and second electrodes on the insulation layer and contacting the first electrode and the one end of the second electrode.
A semiconductor device includes a superjunction structure. The influence of external charge on device performance is suppressed using a shield electrode, field plate electrodes, and cover electrodes in various configurations. Optional embodiments include placing an interconnection film between certain electrodes and the upper surface of the superjunction structure. Cover electrodes may also be connected to various potentials to limit the effects of external charge on device performance.
A power semiconductor device includes an active device region disposed in a semiconductor substrate, an edge termination region disposed in the semiconductor substrate between the active device region and a lateral edge of the semiconductor substrate and a trench disposed in the edge termination region which extends from a first surface of the semiconductor substrate toward a second opposing surface of the semiconductor substrate. The trench has an inner sidewall, an outer sidewall and a bottom. The inner sidewall is spaced further from the lateral edge of the semiconductor substrate than the outer sidewall, and an upper portion of the outer sidewall is doped opposite as the inner sidewall and bottom of the trench to increase the blocking voltage capacity. Other structures can be provided which yield a high blocking voltage capacity such as a second trench or a region of chalcogen dopant atoms disposed in the edge termination region.
Various aspects of the technology provide a dual semiconductor power and/or switching FET device to replace two or more discrete FET devices. Portions of the current may be distributed in parallel to sections of the source and drain fingers to maintain a low current density and reduce the size while increasing the overall current handling capabilities of the dual FET. Application of the gate signal to both ends of gate fingers, for example, using a serpentine arrangement of the gate fingers and gate pads, simplifies layout of the dual FET device. A single integral ohmic metal finger including both source functions and drain functions reduces conductors and contacts for connecting the two devices at a source-drain node. Heat developed in the source, drain, and gate fingers may be conducted through the vias to the electrodes and out of the device.
The present invention provides a semiconductor device structure and a method for manufacturing the same. The method comprises: providing a semiconductor substrate, forming a first insulating layer on the surface of the semiconductor substrate; forming a shallow trench isolation embedded in the first insulating layer and the semiconductor substrate; forming a stripe-type trench embedded in the first insulating layer and the semiconductor substrate; forming a channel region in the trench; forming a gate stack line on the channel region and source/drain regions on opposite sides of the channel region. Embodiments of the present invention are applicable to manufacture of semiconductor devices.
Disclosed are embodiments of a metal oxide semiconductor field effect transistor (MOSFET) structure and a method of forming the structure. The structure incorporates source/drain regions and a channel region between the source/drain regions. The source/drain regions can comprise silicon, which has high diffusivity to the source/drain dopant. The channel region can comprise a silicon alloy selected for optimal charge carrier mobility and band energy and for its low source/drain dopant diffusivity. During processing, the source/drain dopant can diffuse into the edge portions of the channel region. However, due to the low diffusivity of the silicon alloy to the source/drain dopant, the dopant does not diffuse deep into channel region. Thus, the edge portions of the silicon alloy channel region can have essentially the same dopant profile as the source/drain regions, but a different dopant profile than the center portion of the silicon alloy channel region.
A high-voltage transistor device comprises a spiral resistive field plate over a first well region between a drain region and a source region of the high-voltage transistor device, wherein the spiral resistive field plate is separated from the first well region by a first isolation layer, and is coupled between the drain region and the source region. The high-voltage transistor device further comprises a plurality of first field plates over the spiral resistive field plate with each first field plate covering one or more segments of the spiral resistive field plate, wherein the plurality of first field plates are isolated from the spiral resistive field plate by a first dielectric layer, and wherein the plurality of first field plates are isolated from each other, and a starting first field plate is connected to the source region.
A method of increasing the radiation hardness of a semiconductor device using a modified high density plasma oxide (MHDPDX) film is described. In the method a high density plasma (HDP) process is used to deposit the MHDPDX film. During the HDP process, the silicon source gas to oxygen source gas ratio is chosen so as to deposit an excess silicon content within the MHDPDX film. The MHDPDX film is then annealed to cause the excess silicon to migrate and amalgamate, creating silicon nanoclusters having an average size of about 3-5 nm. The rad-hard properties of conventional BPSG films and various MHDPDX films are then compared.
An integrated circuit device includes a substrate including a first region and a second region. A pit is formed in the first region. A stack of active layers alternating with insulating layers is deposited in the pit. The stack includes a particular insulating layer. The particular insulating layer has a first thickness, where a sum of the first thickness, thickness of active layers, and thicknesses of other insulating layers is essentially equal to a depth of the pit. The first thickness is different than the thicknesses of the other insulating layers by an amount within a range of process variations for the depth of the pit, for the thicknesses of the active layers, and for the thicknesses of other insulating layers. The device includes a planarized surface over the first and second regions, where an uppermost one of the active layers has a top surface below the planarized surface.
Methods of forming multi-tiered semiconductor devices are described, along with apparatus and systems that include them. In one such method, an opening is formed in a tier of semiconductor material and a tier of dielectric. A portion of the tier of semiconductor material exposed by the opening is processed so that the portion is doped differently than the remaining semiconductor material in the tier. At least substantially all of the remaining semiconductor material of the tier is removed, leaving the differently doped portion of the tier of semiconductor material as a charge storage structure. A tunneling dielectric is formed on a first surface of the charge storage structure and an intergate dielectric is formed on a second surface of the charge storage structure. Additional embodiments are also described.
A semiconductor device includes active regions separated by a trench, a separation layer dividing the trench, and buried bit lines buried in the trench with the separation layer interposed between the buried bit lines.
Disclosed are methods of forming transistors. In one embodiment, the transistors are formed by forming a plurality of elliptical bases in a substrate and forming fins form the elliptical bases. The transistors are formed within the fin such that they may be used as access devices in a memory array.
A Schottky diode includes an n+-substrate, an n-epilayer, trenches introduced into the n-epilayer, floating Schottky contacts being located on their side walls and on the entire trench bottom, mesa regions between the adjacent trenches, a metal layer on its back face, this metal layer being used as a cathode electrode, and an anode electrode on the front face of the Schottky diode having two metal layers, the first metal layer of which forms a Schottky contact and the second metal layer of which is situated below the first metal layer and also forms a Schottky contact. Preferably, these two Schottky contacts have different barrier heights.
To manufacture a micro structure and an electric circuit included in a micro electro mechanical device over the same insulating surface in the same step. In the micro electro mechanical device, an electric circuit including a transistor and a micro structure are integrated over a substrate having an insulating surface. The micro structure includes a structural layer having the same stacked-layer structure as a layered product of a gate insulating layer of the transistor and a semiconductor layer provided over the gate insulating layer. That is, the structural layer includes a layer formed of the same insulating film as the gate insulating layer and a layer formed of the same semiconductor film as the semiconductor layer of the transistor. Further, the micro structure is manufactured by using each of conductive layers used for a gate electrode, a source electrode, and a drain electrode of the transistor as a sacrificial layer.
A solid-state image capturing device including: a substrate; a substrate voltage source which applies a first potential to the substrate during a light reception period and applies a second potential to the substrate during a non-light reception period; and a plurality of pixels which each includes a light receiver which is formed on a front surface of the substrate and generates signal charges in accordance with received light, a storage capacitor which is formed adjacent to the light receiver and accumulates and stores signal charges generated by the light receiver, dark-current suppressors which are formed in the light receiver and the storage capacitor, an electronic shutter adjusting layer which is formed in an area facing the light receiver in the substrate and distant from the storage capacitor and which adjusts potential distribution, and a floating diffusion portion to which the signal charges accumulated in the storage capacitor are transmitted.
A heterostructure that includes, successively, a support substrate of a material having an electrical resistivity of less than 10−3 ohm·cm and a thermal conductivity of greater than 100 W·m−1·K−1, a bonding layer, a first seed layer of a monocrystalline material of composition AlxInyGa(1-x-y)N, a second seed layer of a monocrystalline material of composition AlxInyGa(1-x-y)N, and an active layer of a monocrystalline material of composition AlxInyGa(1-x-y)N, and being present in a thickness of between 3 and 100 micrometers. The materials of the support substrate, the bonding layer and the first seed layer are refractory at a temperature of greater than 750° C., the active layer and second seed layer have a difference in lattice parameter of less than 0.005 Å, the active layer is crack-free, and the heterostructure has a specific contact resistance between the bonding layer and the first seed layer that is less than or equal to 0.1 ohm·cm2.
A semiconductor device containing a GaN FET has n-type doping in at least one III-N semiconductor layer of a low-defect layer and an electrical isolation layer below a barrier layer. A sheet charge carrier density of the n-type doping is 1 percent to 200 percent of a sheet charge carrier density of the two-dimensional electron gas.
This invention teaches stress release metal electrodes for gate, drain and source in a field effect transistor and stress release metal electrodes for emitter, base and collector in a bipolar transistor. Due to the large difference in the thermal expansion coefficients between semiconductor materials and metal electrodes, significant strain and stresses can be induced in the devices during the fabrication and operation. The present invention provides metal electrode with stress release structures to reduce the strain and stresses in these devices.
A memory cell is disclosed. The memory cell includes a vertical base disposed on a substrate. The vertical base includes first and second channels between top and bottom terminals. The memory cell also includes a first gate surrounding the first channel and a second gate surrounding the second channel. The first and second gates form a gate-all-around transistor of the memory cell.
A bispectral detector comprising upper and lower semiconductor layers of a first conductivity type in order to absorb a first and a second electromagnetic spectrum, separated by an intermediate layer that forms a barrier; semiconductor zones of a second conductivity type implanted in upper layer and lower layer and each implanted at least partially in the bottom of an opening that passes through upper layer and intermediate layer; and conductor elements connected to semiconductor zones. At least that part of each opening that passes through upper layer is separated from the latter by a semiconductor cap layer: whereof the concentration of dopants of the second conductivity type is greater than 1017 cm−3; and whereof the thickness is chosen as a function of said concentration so that it exceeds the minority carrier diffusion length in the cap layer.
A structure and method of fabrication thereof relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced σVT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. A novel dopant profile indicative of a distinctive notch enables tuning of the VT setting within a precise range. This VT set range may be extended by appropriate selection of metals so that a very wide range of VT settings is accommodated on the die. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. The result is the ability to independently control VT (with a low σVT) and VDD, so that the body bias can be tuned separately from VT for a given device.
A semiconductor light-emitting device of the invention includes: a semiconductor layer including a light-emitting layer and having a first major surface and a second major surface opposite to the first major surface; a phosphor layer facing to the first major surface; an interconnect layer provided on the second major surface side and including a conductor and an insulator; and a light-blocking member provided on a side surface of the semiconductor layer and being opaque to light emitted from the light-emitting layer.
A light emitting diode including a substrate, a first semiconductor layer, an active layer, and a second semiconductor layer is provided. The substrate includes an epitaxial growth surface and a light emitting surface. The first semiconductor layer, the active layer and the second semiconductor layer is stacked on the epitaxial growth surface. The first semiconductor layer includes a first surface and a second surface, and the first surface is connected to the substrate. The active layer and the second semiconductor layer are stacked on the second surface in that order. A first electrode electrically is connected with the first semiconductor layer. A second electrode is electrically connected with the second semiconductor layer. A number of three-dimensional nano-structures are located on the surface of the first surface of the first semiconductor layer and aligned side by side, and a cross section of each of the three-dimensional nano-structure is M-shaped.
According to one embodiment, a semiconductor device includes a substrate and a stacked body on the substrate via a joining metal layer. The stacked body includes a device portion and a peripheral portion. The device portion includes from a bottommost layer to a topmost layer included in the stacked body. The peripheral portion surrounding and provided around the device portion; the peripheral portion is a portion of the bottommost layer to the topmost layer included in the stacked body and includes a portion of a semiconductor layer in contact with the joining metal layer.
According to one embodiment, a nitride semiconductor device includes a foundation layer and a functional layer. The foundation layer is formed on an Al-containing nitride semiconductor layer formed on a silicon substrate. The foundation layer has a thickness not less than 1 micrometer and including GaN. The functional layer is provided on the foundation layer. The functional layer includes a first semiconductor layer. The first semiconductor layer has an impurity concentration higher than an impurity concentration in the foundation layer and includes GaN of a first conductivity type.
A component including a substrate, at least one layer including a color conversion material including quantum dots disposed over the substrate, and a layer including a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material including quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein. In certain embodiments, a lighting device includes a component described herein.
According to one embodiment, provided are a package utilized for a high frequency semiconductor device and a fabrication method for such the package, the package including: a conductive base plate including a CTE control layer composed of compound material, and a heat conduction layer disposed on the CTE control layer and composed of Cu.
A thin film transistor (TFT) array substrate includes a TFT including an active layer, a gate electrode, source and drain electrodes, a first insulating layer between the active layer and the gate electrode, and a second insulating layer and a third insulating layer between the gate electrode and the source and drain electrodes, the first insulating layer and the second insulating layer extending in the TFT, a pixel electrode including a transparent conductive oxide material, the pixel electrode being on the first insulating layer and the second insulating layer and being connected to the source or drain electrodes via an opening in the third insulating layer, a capacitor including a first electrode on a same layer as the gate electrode and a second electrode on a same layer as the pixel electrode; and a fourth insulating layer covering the source and drain electrodes and exposing the pixel electrode via an opening.
A thin film transistor (“TFT”) array panel is provided. The TFT array panel includes an insulation substrate, a gate line formed on the insulation substrate and including a gate electrode, a data line insulated from and intersecting the gate line, and including a source electrode, a drain electrode opposite to the source electrode on the gate line, and a semiconductor formed in a layer between the data line and the gate line, and having a protruding portion extending below the drain electrode, wherein a portion of the semiconductor extending towards the drain electrode, from an area occupied by the data line, is positioned within an occupying area of the gate line including the gate electrode.
A ZnO-based semiconductor device includes an n type ZnO-based semiconductor layer, an aluminum oxide film formed on the n type ZnO-based semiconductor layer, and a palladium layer formed on the aluminum oxide film. With this configuration, the n type ZnO-based semiconductor layer and the palladium layer form a Schottky barrier structure.
The organic electroluminescent element (100) of the present invention comprises, on a substrate (1), electrodes (positive electrode (2) and negative electrode (8)) forming a pair and an organic functional layer (20) having at least an electron transport layer (6) and a light emitting layer (5). At least one of the electron transport layer (6) and the light emitting layer (5) contain semiconductor nanoparticles having a conduction band energy level of −5.5-−1.5 ev.
An object is to provide a transistor in which light deterioration is suppressed as much as possible and electrical characteristics are stable, and a semiconductor device including the transistor. The attention focuses on the fact that light is reflected by a film used for forming a transistor and multiple interaction occurs. When the optical thickness of the film which causes the reflection is roughly an odd multiple of λ0/4 or roughly an even multiple of λ0/4, reflectance in a wavelength region of light which is absorbed by an oxide semiconductor is increased without a loss of a function of the film with respect to the transistor, whereby the amount of light absorbed by the oxide semiconductor is reduced and an effect of reducing light deterioration is increased.
This invention relates to deuterated aryl-anthracene compounds that are useful in electronic applications. It also relates to electronic devices in which the active layer includes such a deuterated compound.
The disclosure relates to a nitride based semiconductor light emitting device with improved luminescence efficiency by increasing a recombination rate of electrons and holes contributing to luminescence, which results from matching the spatial distribution of electron and hole wave functions. The nitride based semiconductor light emitting device according to the present invention includes an n-type nitride layer, an active layer formed on the n-type nitride layer, and a p-type nitride layer formed on the active layer. At this stage, a strain control layer, and the at least one layer has a larger energy bandgap than a quantum well layer in the active layer. The strain control layer is disposed in an area where the quantum well layer of the active layer is formed. Moreover, an energy bandgap of the strain control layer is less than that of quantum barrier of the active layer.
An integrated circuit has a nonvolatile memory cell that includes a first electrode, a second electrode, and an ion conductive material there-between. At least one of the first and second electrodes has an electrochemically active surface received directly against the ion conductive material. The second electrode is elevationally outward of the first electrode. The first electrode extends laterally in a first direction and the ion conductive material extends in a second direction different from and intersecting the first direction. The first electrode is received directly against the ion conductive material only where the first and second directions intersect. Other embodiments, including method embodiments, are disclosed.
A semiconductor memory device in an embodiment comprises memory cells, each of the memory cells disposed between a first line and a second line and having a variable resistance element and a switching element connected in series. The variable resistance element includes a variable resistance layer configured to change in resistance value thereof between a low-resistance state and a high-resistance state. The variable resistance layer is configured by a transition metal oxide. A ratio of transition metal and oxygen configuring the transition metal oxide varies between 1:1 and 1:2 along a first direction directed from the first line to the second line.
A method and apparatus for performing a slice and view technique with a dual beam system. The feature of interest in an image of a sample is located by machine vision, and the area to be milled and imaged in a subsequent slice and view iteration is determined through analysis of data gathered by the machine vision at least in part. A determined milling area may be represented as a bounding box around a feature, which dimensions can be changed in accordance with the analysis step. The FIB is then adjusted accordingly to slice and mill a new face in the subsequent slice and view iteration, and the SEM images the new face. Because the present invention accurately locates the feature and determines an appropriate size of area to mill and image, efficiency is increased by preventing the unnecessary milling of substrate that does not contain the feature of interest.
Articles, methods of validating the articles, and validating systems are provided herein. In an embodiment, an article includes a substrate and a security feature on the substrate. The security feature includes a first region that has a first ink composition and a second region that has a second ink composition. The first ink composition includes a first luminescent phosphor and the second ink composition includes a second luminescent phosphor that is different from the first luminescent phosphor. The first luminescent phosphor and the second luminescent phosphor have indistinguishable excitation energy wavelengths, indistinguishable emission wavelengths, and distinguishable temporal decay properties.
Method for determining material parameters of a doped semiconductor substrate, including: applying electromagnetic excitation radiation in order to produce luminescent radiation in the semiconductor substrate, the temporal profile of the excitation radiation intensity is periodically modulated, so that the rate of generation of charge carrier pairs in the substrate has a maximum and minimum during an excitation period, and at least the relative temporal profile of the rate of generation G(t) is determined by time-dependent measurement of the excitation radiation intensity, time-resolved measuring luminescent radiation intensity emanating from a measuring region, at least the relative temporal profile of the intensity of the luminescent radiation Φ(t) is measured during an excitation period, determining a material parameter of the semiconductor substrate based on G(t) and Φ(t). The effective lifetime of the substrate is determined from the time difference between the maximum of G(t) and a corresponding maximum of Φ(t).
The invention relates to a charged particle lithography system for patterning a target. The lithography system has a beam generator for generating a plurality of charged particle beamlets, a beam stop array with a beam-blocking surface provided with an array of apertures; and a modulation device for modulating the beamlets by deflection. The modulation device has a substrate provided with a plurality of modulators arranged in arrays, each modulator being provided with electrodes extending on opposing sides of a corresponding aperture. The modulators are arranged in groups for directing a group of beamlets towards a single aperture in the beam stop array. Individual modulators within each group have an orientation such that a passing beamlet, if blocking is desired, is directed to a blocking position onto the beam stop array. Beamlet blocking positions for different beamlets are substantially homogeneously spread around the corresponding single aperture in the beam stop array.
A high-energy radiation detector apparatus, comprising a high-energy radiation detector substrate and a plurality of charge collection electrodes operatively coupled to first and second opposing sides of the detector substrate is disclosed. Charge collection circuitry is associated with the plurality of charge collection electrodes for collecting charge induced on the charge collection electrodes by a high energy radiation photon interaction event caused by high-energy radiation incident on the detector substrate.
An infrared sensor includes a MOSFET sensor, and a current source MOSFET which is connected to the MOSFET sensor in series and constitutes a constant current source for driving the MOSFET sensor with a constant current, wherein a terminal between the MOSFET sensor and the current source MOSFET constitutes a sensor output terminal, the MOSFET sensor is disposed on a heat-insulated structure, the current source MOSFET is disposed outside the heat-insulated structure, and the MOSFET sensor and the current source MOSFET are constituted by a same conductivity type MOSFET and operate in a subthreshold region.
A system for qualifying usability risk associated with subsurface defects in a multilayer coating includes a component having a multilayer coating, an infrared detection device for capturing infrared images of the multilayered coating and a processing unit that is in electronic communication with the infrared detection device where the processing unit generates a subsurface defect map of the multilayer coating based on the infrared images. The system further includes a risk map of the component.
An apparatus for counting the number of ions emitted by an ion source of a handheld domestic appliance is disclosed. The apparatus includes a collector housing for collecting ions impinging on the inner surface of the collector housing and a determining means coupled with the collector housing for determining the number of ions collected by the collector housing. The collector housing has an input opening dimensioned such that the domestic appliance is at least partially insertable into the collector housing via input opening. A method for counting the number of ions emitted by an ion source of a handheld domestic appliance is also disclosed.
Various systems and methods for implementing a directional radiation detection tool are disclosed. One such method involves receiving outputs from several radiation sensors (e.g., gamma ray sensors), which are each facing a different direction. The received outputs are then combined, such that a directional error in one of the outputs is reduced, based upon another one of the outputs.
A method of operating a spectrometer to determine the wavelength of an optical signal, in particular for determining the resonant wavelength of an optical fiber Bragg grating. The spectrometer comprises an array of photosensitive pixels each of which generates an output signal in response to the intensity of light incident on the pixel, and a refractive element arranged to direct light to a particular position in the array depending on the wavelength of the light. The method involves selecting a first group of pixels in the array by reference to an expected wavelength distribution of the optical signal and monitoring the output signals from the first group of pixels. On the basis of the output signals from the first group of pixels a second group of pixels is selected and the wavelength of the optical signal is determined from the output signals of the second group of pixels. The method has the advantage that the wavelength of the optical signal can be determined without scanning every pixel in the array individually.
A titanium black dispersion includes titanium black particles, a dispersant, and an organic solvent. When the titanium black dispersion is for a wafer level lens, 90% or more of dispersed objects that consist of the titanium black particles have particle diameters of 30 nm or less, or dispersed objects including the titanium black particles contains Si atoms and the content ratio of Si atoms to Ti atoms (Si/Ti) in the dispersed objects is 0.05 or higher. When the titanium black dispersion is used for formation of a light-shielding film that is provided on one side of a silicon substrate having an image pickup device section on the other side, and that shields against infrared light, 90% or more of dispersed objects that consist of the titanium black particles have particle diameters of 30 nm or less.
Provided is a solid-state imaging device that includes capacitors in a number greater than a unit read-out number that are connected to a plurality of pixels via transfer lines, and that performs a step of transferring to and retaining in separate capacitors from each other a noise signal output from the pixels in a number corresponding to the unit read-out number; and a step of repeating, for as many times as the unit read-out number, by switching the pixels and the capacitors, an operation in which a signal-plus-noise signal output from one of the pixels is transferred to and retained in one of the other capacitors, and the noise signal and the signal-plus-noise signal that have been output from the same pixel and retained in separate capacitors are subsequently output at the same time.
An imaging element includes a plurality of pixels that are two-dimensionally arranged and each have a light receiving part including a photoelectric conversion element and a light collecting part that collects incident light toward the light receiving part. Each of the light collecting parts in the plurality of pixels includes an optical functional layer having, in a surface, a specific projection and depression structure depending on the pixel position.
A carton including multiple focused susceptors can be configured to provide multiple heating configurations for microwave heating of a packaged food product. In at least one heating configuration, the microwave susceptors are arranged such that food product has a softer texture when heated. In a second heating configuration, the microwave susceptors such that the food product has a crispier texture when heated. In use a consumer can select any of the multiple carton configurations for heating the food product.
A method of delivering energy to an object in a cavity may include transmitting electromagnetic energy to the cavity at a plurality of frequencies. At each of the plurality of frequencies, the method may also include determining an efficiency of energy transfer into the object and adjusting power transmitted at each of the plurality of frequencies such that a multiplicative product of the efficiency and the power transmitted is substantially constant across each of the plurality of frequencies.
A method of arc welding with a cored electrode comprising creating a positive waveform with a first shape and having a first time; creating a negative waveform with a second shape and having a second time; making one of the first and second shapes greater in magnitude than the other of the shapes; and, adjusting the percentage relationship of the first and second times so the time of the shape with the greater magnitude is substantially less than the time of the other shape.
A system may include a portable welding unit having an engine, a generator coupled to the engine, a compressor coupled to the engine, and a smart battery charger coupled to the generator. The smart battery charger may be configured to monitor a temperature of a battery, an ambient temperature, a battery charge time, or a combination thereof. The smart battery charger may also be configured to adjust an output based on a battery type, a battery voltage rating, a sensed feedback, a battery test, or a combination thereof.
A push button-type switch device includes a pair of fixed contacts, an operable member to be pushed, an actuating member elastically deformable upon the operable member being pushed, a movable contact which short-circuits the pair of fixed contacts due to elastic deformation of the actuating member, and a limiting part arranged to limit a direction in which the operable member moves and making the operable member move in a fixed orientation. The limiting part includes a pair of link members that engage with each other, one ends of the link members rotatably supported by the base portion, and the other ends thereof slidably supported by the operable member. This produces a good click irrespective of a position where the operable member is operated.
A switch includes an insulative housing, a fixed contact, a movable contact and an actuator. The insulative housing defining a receiving cavity enclosed by a number of peripheral walls each of which includes an inner surface exposed to the receiving cavity. The actuator includes a bottom portion slidably received in the receiving cavity, a bottom operator for deforming of the moveable contact and a button. The bottom portion includes a first side wall and a first rib protruding sidewardly therefrom. The first rib is slidable against a first inner surface of the peripheral walls while the first side wall is separated a distance from the first inner surface. As a result, contacting areas of the actuator and corresponding inner surface are greatly reduced, and soldering materials, such as flux, originally influencing movement of the actuator can be avoided.
An apparatus for handling portions of products, in particular food products, having a product conveyor which conveys the portions after one another to at least one main conveyor track along a direction of conveying and having at least one sensor for recognizing portions of incorrect weight. A correction track is provided which has a first conveying section and a second conveying section. The first conveying section serves to branch off portions of incorrect weight from the main conveying track and to convey them to a weight correction station. The second conveying section serves to supply weight-corrected portions back to the main conveying track. The first conveying track and the second conveying track are separated from one another in the region of the weight correction station by an interruption of the correction track which prevents a transfer of portions of incorrect weight from the first conveying section to the second conveying section.
The invention relates to a long-distance line for high voltage, having an outer jacket pipe extending in a longitudinal direction, having an inner conductor led in the interior of the jacket pipe in parallel to the longitudinal direction, and having a number of mounting insulators, by means of which the inner conductor is held on the jacket pipe at a distance therefrom transverse to the longitudinal direction, and a correspondingly embodied mounting insulator. The mounting insulators serve for adjusting the distance between the inner conductor and the jacket pipe. The long-distance transmission line is particularly air insulated in design. The mounting insulators allow simple assembly and installation of the inner conductor.
A communications cable includes: a cable jacket; first, second, third and fourth twisted pairs of insulated conductors positioned within the jacket, the first, second, third and fourth twisted pairs having, respectively, first, second, third and fourth twist lengths, wherein a first difference between the first and third twist lengths and a second difference between the second and fourth twist lengths are greater than the difference between the twist lengths of any other combination of twisted pairs, and wherein a third difference between the third twist length and the fourth twist length is greater than the difference between the twist lengths of any other combination of twisted pairs except for the first and second differences; and a separator positioned between the third and fourth pairs. There is no separator present between the first and second pairs, the second and third pairs, and the first and fourth pairs.
Frames (3) applied on a wafer (1) are leveled and covered with a covering film, such that gas-tight housings are formed for component structures (5), in particular for filter or MEMS structures. Inner columns (4) can be provided for supporting the housing and for the ground connection; outer columns (4) can be provided for the electrical connection and are connected to the component structures by means of conductor tracks (6) that are electrically insulated from the frames (3).
An electrical box assembly includes an electrical box, a movable partition plate, and a cover having an opening for receiving and supporting an electrical wiring device such as a switch or duplex receptacle. The electrical box has a rear wall with a centrally located emboss having a plurality of screw holes for receiving a ground screw and ground wire. The partition plate has a recess for mating with the emboss and a top end for coupling with the cover member. The partition plate and cover member are adapted for coupling to the electrical box in different orientations so that the partition plate divides the electrical box into substantially equal size compartments for receiving high voltage and low voltage requirements.
An apparatus includes a photovoltaic device (PVD) having a quantum dot (QD) array structure that is capable of performing wavelength conversion. The PVD is configured to generate charge carriers from incident photons. An electric field generator is operable to apply an electric field to the PVD. Strength of the electric field is sufficient to cause the charge carriers to transition through a plurality of discrete energy states formed within a corresponding one of a conductive band and a valence band of the QD array structure. The transition of the charge carriers through the plurality of discrete energy states enables the PVD to generate emitted photons being radiated as an electromagnetic wave. A frequency (and hence wavelength) of the emitted photons being radiated as the electromagnetic wave is tunable by configuring physical attributes of the QD array structure and controlling the electric field strength.
Thermoelectric elements may be used for heat sensors, heat pumps, and thermoelectric generators. A quantum-dot or nano-scale grain size polycrystalline material the effects of size-quantization are present inside the nanocrystals. A thermoelectric element composed of densified Groups IV-VI material, such as calcogenide-based materials are doped with metal or chalcogenide to form interference barriers form along grains. The dopant used is either silver or sodium. These chalcogenide materials form nanoparticles of highly crystal grains, and may specifically be between 1- and 100 nm. The compound is densified by spark plasma sintering.
The present invention is directed to a banjo bridge base plate, constructed of natural wood in a simple rectangle shaped form, or an irregular or fancy decorative shaped form, or constructed from various other materials, including synthetic wood, plastics, ebony, ivory, pearl and like materials, or combinations thereof, that will achieve the a similar operational effect, that effect being to confer upon a banjo so equipped with improved tonal quality.
This invention pertains to the neck for a stringed electronic musical instrument that is constructed of a pipe made of a steel alloy. The instrument has superior sound qualities, has optimal ergonomic properties that fit the natural grip of the human hand, maintains tune under conditions of environmental extremes and mechanical stress, and can be easily manufactured with a high degree of precision and accuracy on a mass scale.
An inbred corn line, designated D054245, the plants and seeds of the inbred corn line D054245, methods for producing a corn plant, either inbred or hybrid, produced by crossing the inbred corn line D054245 with itself or with another corn plant, and hybrid corn seeds and plants produced by crossing the inbred line D054245 with another corn line or plant and to methods for producing a corn plant containing in its genetic material one or more transgenes and to the transgenic corn plants produced by that method. This invention also relates to inbred corn lines derived from inbred corn line D054245, to methods for producing other inbred corn lines derived from inbred corn line D054245 and to the inbred corn lines derived by the use of those methods.
An inbred corn line, designated SRD02BM, the plants and seeds of the inbred corn line SRD02BM, methods for producing a corn plant, either inbred or hybrid, produced by crossing the inbred corn line SRD02BM with itself or with another corn plant, and hybrid corn seeds and plants produced by crossing the inbred line SRD02BM with another corn line or plant and to methods for producing a corn plant containing in its genetic material one or more transgenes and to the transgenic corn plants produced by that method. This invention also relates to inbred corn lines derived from inbred corn line SRD02BM, to methods for producing other inbred corn lines derived from inbred corn line SRD02BM and to the inbred corn lines derived by the use of those methods.
A novel maize variety designated X08C983 and seed, plants and plant parts thereof, produced by crossing Pioneer Hi-Bred International, Inc. proprietary inbred maize varieties. Methods for producing a maize plant that comprises crossing hybrid maize variety X08C983 with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into X08C983 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. This invention relates to the maize variety X08C983, the seed, the plant produced from the seed, and variants, mutants, and minor modifications of maize variety X08C983. This invention further relates to methods for producing maize varieties derived from maize variety X08C983.
A soybean cultivar designated 25261523 is disclosed. The invention relates to the seeds of soybean cultivar 25261523, to the plants of soybean cultivar 25261523, to the plant parts of soybean cultivar 25261523, and to methods for producing progeny of soybean cultivar 25261523. The invention also relates to methods for producing a soybean plant containing in its genetic material one or more transgenes and to the transgenic soybean plants and plant parts produced by those methods. The invention also relates to soybean cultivars or breeding cultivars, and plant parts derived from soybean cultivar 25261523. The invention also relates to methods for producing other soybean cultivars, lines, or plant parts derived from soybean cultivar 25261523, and to the soybean plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid soybean seeds, plants, and plant parts produced by crossing cultivar 25261523 with another soybean cultivar.
The cloning and broad characterization of a lyso-phosphatidic acid acyltransferase (LPAT2) from Tropaeolum majus is described. The TmLPAT2 enables the production of plants, seeds and cells with enhanced oil and/or fatty acid content. In particular, recombinant TMLPAT2 increases levels of very long chain fatty acids (VLCFA), especially erucic acid, in plants, seeds and cells.
The present invention relates to a novel transformation system for generating transformed corn plants. In particular, the invention relates to a rapid selection system at an elevated temperature that allows faster and more efficient transformation.
Absorbent product, such as a diaper, a sanitary napkin or an incontinence product, having a longitudinal and a lateral direction, including a back sheet, being distal from the body of the wearer in use of the product, and a top sheet, being proximal to the body of the wearer in use of the product, the product having a front part, a rear part and a crotch part lying between the front and rear parts, the product further including an absorbent structure, between the top and back sheet, extending longitudinally from the front part to the rear part, and whereby the product includes at least one starch-based odor control agent having a specific area of at least 5 m2/g, preferably at least 10 m2/g, more preferably at least 50 m2/g, even more preferably at least 100 m2/g, and most preferably at least 200 m2/g. Hereby, an enhanced capacity to absorb malodorous compounds of large size intervals in wet and dry systems is achieved.
A hemostatic device includes a flexible band adapted to be wrapped around a patient's limb at a site on the limb where bleeding is to be stopped, a portion for securing the band in a wrapped state to the limb, a curved plate which is made of a material more rigid than the band and at least a portion of which is curved toward the inner peripheral side thereof, a main balloon which is provided on the inner peripheral side of the curved plate and which inflates when a fluid is introduced therein, and a pressing member which is provided between the curved plate and the main balloon so that at least a portion thereof overlaps with the balloon and which is adapted for pressing against the balloon. The device provides an excellent hemostatic effect and prevents numbness and poor circulation in areas peripheral to the site of attachment.
Devices and methods are disclosed for achieving hemostasis in traumatized patients. Such haemostatic packing devices and methods are especially useful in the emergency, trauma surgery or military setting. The patient may have received trauma to abdominal viscera, the thoracic cavity or the periphery. The devices utilize fluid impermeable outer surfaces and distributed pressure to achieve tamponade and hemostasis, primarily by exertion of pressure. The devices come in a variety of configurations including sheet, rolled sheet, folded sheet and polygonal solids including extruded shapes. The devices are capable of serving as carriers for thrombogenic or anti-pathogenic agents. The devices are flexible, bendable, and conformable in their wet or dry state so that they exert distributed pressure on the wound. The hemostatic packing devices may be placed and removed by open surgery or laparoscopic access without generating excessive re-bleeding, and may further comprise antimicrobial or thrombogenic regions.
The disclosure describes a new class of isomorphously metal-substituted aluminophosphate materials with high phase purity that are capable of performing selective Brönsted acid catalyzed chemical transformations, such as transforming alcohols to olefins, with high conversions and selectivities using mild conditions. Isomorphous substitutions of functional metal ions for both the aluminum ions and the phosphorous ions were successful in various AlPO structures, along with multiple metal substitutions into a single aluminum site and/or a phosphorous site. This invention can be used towards the catalytic conversion of hydroxylated compounds of linear and/or branched moiety with the possibility of being substituted to their respective hydrocarbon products, preferably light olefins containing 2 to 10 carbon atoms, among other chemistries.
The present invention discloses a method for intermittently producing 4,4′-diaminodicyclohexyl methane (H12MDA) with a low amount of the trans-trans isomer thereof, which comprises: controlling the reaction process by stopping the reaction when, except for a solvent, the reaction solution comprises MDA of 0-5 wt % and H6MDA of 1-20 wt %; and b) separating the reaction solution obtained from step a) by conventional means to obtain H12MDA product with desired purity, and allowing the un-reacted material and intermediate product to be recycled to the reactor after being accumulated. The method of the present invention decreases the amount of the trans-trans isomer in H12MDA, increases the yield of the reaction, and reduces the production cost. The present invention also provides a post treatment process of the reaction mixture.
Provided is a method of preparing 4,4′-dinitrodiphenylamine (4,4′-DNDPA) in high yield by reacting 4-nitroaniline with excess nitrobenzene via the NASH reaction, and a method of preparing 4,4′-bis(alkylamino)diphenylamine (4,4′BAADA) in high yield and purity by hydrogenating the resulting 4,4′-DNDPA with a ketone compound in the presence of hydrogen and hydrogenation catalyst. The disclosed process is simple, allows selective preparation of 4,4′-DNDPA without byproducts, and thus allows preparation of 4,4′-BAADA in high yield without a complicated purification procedure.
The invention encompasses a novel class of cyclobutyl sulfone derivatives which inhibit the processing of APP by the putative γ-secretase while sparing Notch signaling pathway, and thus are useful in the treatment or prevention of Alzheimer's disease without the development of Notch inhibition mediated gastrointestinal issues. Pharmaceutical compositions and methods of use are also included.
With this method for manufacturing fluorine-containing imide compounds, a method for manufacturing a fluorine-containing imide compound ((Rf1SO2)(Rf2SO2)NH) is selected which includes reaction of a fluorine-containing sulfonic acid (Rf1SO3H) and a fluorine-containing sulfonamide (Rf2SO2NH) in the presence of thionyl chloride. Wherein, Rf1 and Rf2 are fluorine, or straight-chain or branched perfluoroalkyl groups with a carbon number of 1-4.
The invention relates to a process for preparing isocyanates by reacting the corresponding amines with phosgene, optionally in the presence of an inert medium, in which phosgene and amine are first mixed and converted to the isocyanate in a reactor, and in which a reaction gas which comprises isocyanate and hydrogen chloride leaving the reactor is cooled in a quench by adding a liquid quench medium to form a mixture of reaction gas and quench medium as the product stream. The walls of the quench are essentially completely wetted with a liquid.
The present invention provides an organosilicon composition comprising diethoxymethylsilane, a concentration of dissolved residual chloride, and a concentration of dissolved residual chloride scavenger that does not yield unwanted chloride salt precipitate when combined with another composition comprising diethoxymethylsilane.
Novel synthetic routes, which are highly applicable for industrial preparation of therapeutically beneficial oxidized phospholipids are disclosed. Particularly, novel methods for efficiently preparing compounds having a glycerolic backbone and one or more oxidized moieties attached to the glycerolic backbone, which are devoid of column chromatography are disclosed. Further disclosed are novel methods of introducing phosphorous-containing moieties such as phosphate moieties to compounds having glycerolic backbone and intermediates formed thereby.
The current application relates to a metal catalyst of formula (I): M[ADC][X]n, wherein M is a metal, ADC is a chiral acyclic diaminocarbene ligand, and X is a neutral or anionic ligand. The ADC ligand is prepared from the corresponding chiral formamidium salt precursor. The metal catalyst is used for asymmetric organic synthesis reactions such as hydrosilations, hydrogenations, conjugate additions, and cross-couplings.
N-[4-(3-Amino-1H-indazol-4-yl)phenyl]-N′-(2-fluoro-5-methylphenyl)urea Hydrate Crystalline Form 1, ways to make it, formulations comprising it and made with it and methods of treating patients having disease using it are disclosed.
This invention relates to compounds that inhibit protein tyrosine kinase activity. In particular the invention relates to compounds that inhibit the protein tyrosine kinase activity of growth factor receptors, resulting in the inhibition of receptor signaling, for example, the inhibition of VEGF receptor signaling. The invention also provides compounds, compositions and methods for treating cell proliferative diseases and conditions and opthalmological diseases, disorders and conditions.
Panchromatic photosensitizers having a Formula of ML1L2X were synthesized, wherein M represents ruthenium atom; X represents a monodentate anion; L1 is heterocyclic bidentate ligand having one of formulae listed below: wherein G2 has one of formulae listed below: and L2 is a tridentate ligand having a formula listed below: Substituents R1, R2, R3 and R4 of L1 are the same or different and are selected from the group consisting of hydrogen, halogen, amino-group alkyl, alkoxy, alkylthio, alkylamino, halogenated alkyl, phenyl and substituted phenyl group. Substituents R5, R6 and R7 of L2 are the same or different and are selected from the group consisting of carboxylic, carboxylate, sulfonic acid, sulfonate, phosphoric acid and phosphate. The above-mentioned photosensitizers are suitable to use as sensitizers for fabrication of high efficiency dye-sensitized solar cell.
Disclosed herein are compounds that form covalent bonds with Bruton's tyrosine kinase (Btk). Also described are irreversible inhibitors of Btk. Methods for the preparation of the compounds are disclosed. Also disclosed are pharmaceutical compositions that include the compounds. Methods of using the Btk inhibitors are disclosed, alone or in combination with other therapeutic agents, for the treatment of autoimmune diseases or conditions, heteroimmune diseases or conditions, cancer, including lymphoma, and inflammatory diseases or conditions.
Cyclic phosphate of nucleoside derivatives for the treatment of viral infections in mammals, which is a compound, its stereoisomers, salts (acid or basic addition salts), hydrates, solvates, or crystalline forms thereof, represented by the following structure:
The compounds are of class of chromophoric 1,2,3-triazolyl equipped silyl linking groups that are useful in the chemical synthesis of RNA. An example of a nucleoside comprising this group is
The invention relates to methods for the identification and use of introns with gene expression enhancing properties. The teaching of this invention enables the identification of introns causing intron-mediated enhancement (IME) of gene expression. The invention furthermore relates to recombinant expression construct and vectors comprising said IME-introns operably linked with a promoter sequence and a nucleic acid sequence. The present invention also relates to transgenic plants and plant cells transformed with these recombinant expression constructs or vectors, to cultures, parts or propagation material derived there from, and to the use of same for the preparation of foodstuffs, animal feeds, seed, pharmaceuticals or fine chemicals, to improve plant biomass, yield, or provide desirable phenotypes.
The present invention provides for the use of soluble forms of CD83 and nucleic acids encoding them for the treatment of diseases caused by the dysfunction or undesired function of a cellular immune response involving dendritic cells, T cells and/or B cells. The invention moreover provides soluble CD83 molecules specifically suited for said purpose, antibodies against said specific soluble CD83 proteins and assay methods and kits comprising said antibodies.
A protecting group for 1-nitrogen atom of an indole group including a sulfonylethyl carbamate group, wherein the protecting group is represented by the following General Formula (I) and capable of being removed from the 1-nitrogen atom of the indole group in an aprotic solvent: where R represents an alkyl group, a derivative of the alkyl group, a phenyl group or a derivative of the phenyl group.
The present invention relates to an antibody that recognizes a first antibody, the antibody specifically recognizing one of a free first antibody and an antigen-binding first antibody. More specifically, the above antibody is a domino antibody that specifically recognizes and binds to an antigen-binding first antibody, or an antibody-unlocking antibody that specifically recognizes and binds to a free first antibody.
The present invention relates generally to polypeptides whose primary sequence has high sequence homology with human interleukin 2 (IL-2) with some punctual mutations in the sequence of native IL-2. The polypeptides of the present invention have an immunomodulatory effect on the immune system, which is selective/preferential on regulatory T cells. The present invention also relates to specific polypeptides whose amino acid sequence is disclosed herein. In another aspect the present invention relates to pharmaceutical compositions comprising as active ingredient the polypeptides disclosed. Finally, the present invention relates to the therapeutic use of the polypeptides and pharmaceutical compositions disclosed due to their immune modulating effect on diseases such as cancer and chronic infectious diseases.
The present invention provides peptides having an amino acid sequence as set forth in SEQ ID NO: 19, 22, 30, 34, 344, 358, 41, 44, 46, 48, 78, 376, 379, 80, 100, 101, 110, 111, 387, 112, 394, 114, 116, 117, 121, 395, 133, 135, 137, 426, 143, 147, 148, 149, 150, 152, 153, 154, 156, 160, 161, 162, 163, 166, 174, 178, 186, 194, 196, 202, 210, 213, 214, 217, 223, 227, 228, 233, 254, 271, 272 or 288, as well as peptides having the above-mentioned amino acid sequences in which 1, 2, or several (e.g., up to 5) amino acids are substituted, deleted, or added, provided the peptides possess cytotoxic T cell inducibility. The present invention also provides drugs for treating or preventing a disease associated with over-expression of the CDH3, EPHA4, ECT2, HIG2, INHBB, KIF20A, KNTC2, TTK and/or URLC10, e.g. cancers containing as an active ingredient one or more of these peptides. The peptides of the present invention find further utility as vaccines.
A method for preparing polyarylene sulfide having reduced iodine content and excellent thermal stability is described. The method includes reacting a composition comprising diiodide aromatic compounds, sulfur compounds, and a polymerization terminator. The preparation method may effectively reduce iodine content of polyarylene sulfide to prevent corrosion of post processing equipment, improve properties of polyarylene sulfide such as thermal stability, and the like, and thus, it may be usefully applied in the industrial field relating to preparation of polyarylene sulfide.
The process for preparing a polyamide based on dicarboxylic acids and diamines has the following stages: 1) providing an aqueous monomer mixture of dicarboxylic acids and diamines, the molar ratio of dicarboxylic acids to diamines being adjusted such that a molar deficiency of dicarboxylic acids or diamines of from 1 to 10 mol % is present at the outlet of stage 3), based on the other component in each case, 2) transferring the aqueous mixture from stage 1) to a continuous evaporator reactor in which diamines and dicarboxylic acids are reacted at a temperature in the range from 100 to 370° C. and a pressure in the range from 1 to 50 bar, 3) transferring the mixture from stage 2) to a separator which is operated at a temperature in the range from 100 to 370° C. with removal of gaseous components, 4) transferring the mixture from stage 3) together with diamine or dicarboxylic acid in an amount suitable to balance out the molar deficiency into an extruder which is operated at a temperature in the range from 150 to 400° C. for a residence time in the range from 10 seconds to 30 minutes to remove gaseous components through devolatilizing orifices.
An high mobility structured organic film comprising a plurality of segments and a plurality of linkers arranged as a covalent organic framework, wherein the structured organic film may be a multi-segment thick structured organic film.
Mixed polycycloaliphatic amines (MPCA) and alkylates thereof (MPCA alkylates), methods for making mixed polycycloaliphatic MPCA amines and MPCA alkylates thereof, as well as polymeric compositions, such as spray-applied polyurea coating compositions, comprising said mixed amines MPCA and MPCA alkylates thereof are described herein. In one embodiment, the polymeric composition comprises an isocyanate component, and a resin component comprising an organic compound having the following Formula I: where R1, R2 and R3 are each independently selected from a hydrogen atom, an alkyl group comprising from 1 to 20 carbon atoms, an aryl group comprising from 3 to 12 carbon atoms, an aralkyl group comprising from 3 to 12 carbon atoms and combinations thereof, provided that there is at least one alkyl group within Formula I, and X is a methylene bridged polycycloaliphatic amine (MPCA).
The moisture and gas barrier properties of an organopolysiloxane having at least two substituents which are able to undergo crosslinking reactions per molecule shall be improved. This is achieved by providing an organopolysiloxane wherein at least 10 mol % of all substituents are represented by formula (1) wherein q is an integer from 0 to 5 and R1, R2, R3 each independently are methyl or ethyl groups. Furthermore, the invention is directed to a composition based on the aforementioned organopolysiloxane and to the use of the organopolysiloxane and of the composition.
A compound which is the Michael addition reaction product of (A) a mono or polyacrylate of the formula R1(Ac)n wherein R1 is an organic radical having at least 2 carbon atoms, Ac is an acrylate radical of the formula CH2═CHC(O)O—, and n is from at least 1; with (B) is a primary or secondary amine of the formula R2NHR3, wherein R2 is a polyhydroxyl radical and R3 is H or an organic radical having at least one carbon atom is disclosed. The compound is useful as, for example, an oxygen barrier, flame retardant, polymer flocculant, surfactant, and/or high hydroxyl-functional intermediate.
The invention generally relates to chain shuttling agents (CSAs), a process of preparing the CSAs, a composition comprising a CSA and a catalyst, a process of preparing the composition, a processes of preparing polyolefins, end functional polyolefins, and telechelic polyolefins with the composition, and the polyolefins, end functional polyolefins, and telechelic polyolefins prepared by the processes.
The present invention is directed to a method of making a graft copolymer, comprising the steps of: obtaining a first polymer comprising at least one carbon-carbon double bond, the first polymer derived from at least one monomer, the at least one monomer comprising a conjugated diene monomer; polymerizing a second monomer in the presence of a thiocarbonylthio RAFT chain transfer agent to form a polymer comprising a terminal thiocarbonylthio group; cleaving the terminal thiocarbonylthio group to a thiol group to form the second polymer comprising a terminal thiol group; reacting the second polymer with the first polymer to form a graft copolymer, the graft copolymer comprising a backbone derived from the first polymer and sidechains derived from the second polymer.
A compatibilizer contains a polymer (A) obtained by reacting a modified olefin-based polymer (a-1) with a polymer (a-2) containing a terminal functional group, wherein the modified olefin-based polymer (a-1) is a polymer modified with from 0.01 to 2 mass % of unsaturated carboxylic acid or a derivative thereof, and the polymer (a-2) is a ring opening polymer or condensation polymer containing a terminal functional group, capable of reacting with the modified olefin-based polymer (a-1), at both ends or one end thereof and has a number average molecular weight from 1,500 to 100,000. This provides an excellent compatibilizer. Particularly, upon melt processing a recovery of a multilayer structure including an EVOH layer and a thermoplastic resin layer, a recycling agent is provided that gives sufficient improvement effects to any of the adhesion of a degraded resin to a screw of a molding machine, the generation of die build-up, the generation of fish eyes, and the decrease in transparency.
The invention relates to a curable composition comprising: at least one benzoxazine and at least one toughening additive which can be bound to the at least one benzoxazine in the curing process, characterized in that the toughening additive is distributed in the cured composition in form of discrete domains, and that at least 50% of the discrete domains related to the total amount of discrete domains have a maximum length in any direction of space in the range of 10 nm to 500 nm as determined by transmission electron microscopy (TEM).
A pigment dispersion includes a color pigment and a polymeric dispersant having at least one pending chromophore group covalently bound to the polymeric backbone of the polymeric dispersant through a linking group, wherein the at least one pending chromophore group is a derivative from a color pigment selected from the group consisting of monoazo pigments, disazo pigments, β-naphtol pigments, naphtol AS pigments, azo pigment lakes, benzimidazolone pigments, disazo condensation pigments, metal complex pigments, isoindolinone pigments, isoindolinine pigments, phthalocyanine pigments, quinacridone pigments, diketopyrrolo-pyrrole pigments, thioindigo pigments, anthraquinone pigments, anthrapyrimidine pigments, indanthrone pigments, flavanthrone pigments, pyranthrone pigments, anthanthrone pigments, isoviolanthrone pigments, aluminum pigment lakes, dioxazine pigments, triarylcarbonium pigments, and quinophthalone pigments; the at least one pending chromophore group is a chromophore group occurring as a side group on the polymeric backbone and not a group in the polymeric backbone itself or occurring solely as an end group of the polymeric backbone; the linking group consists of all the atoms between the polymeric backbone and the first atom of the aromatic group by which the pending chromophore group is linked to the polymeric backbone; the polymeric dispersant has a polymeric backbone with a polymerization degree between 5 and 1,000; and at most 30 % of the monomer units of the polymeric backbone have a pending chromophore group. The pigment dispersion can be advantageously used in inkjet inks. Also disclosed is a method for preparing the pigment dispersion including the step of preparing the polymeric dispersant by copolymerizing a monomer already containing the pending chromophore group.
The present invention relates to a tire, the tread of which comprises an elastomer composition comprising: from 10 to 60 phr of a polybutadiene (BR) elastomer; from 10 to 60 phr of a saturated thermoplastic styrene (TPS) elastomer; a reinforcing filler.The combined use of BR and saturated TPS elastomers makes it possible to increase the stiffness and thus to improve the handling performance of the tires, without adversely affecting the hysteresis and therefore the rolling resistance of these tires.
In a composite component assembled from at least one component piece comprising a polyamide molding composition with at least one component piece comprising a vulcanized elastomer, the polyamide molding composition comprises at least 40% by weight of a mixture of the following constituents: a) 60 to 99 parts by weight of polyamide and b) 1 to 40 parts by weight of a graft copolymer obtainable using the following monomers: a) 0.5% to 25% by weight, based on the graft copolymer, of a polyamine having at least 4 nitrogen atoms and also β) 75% to 99.5% by weight, based on the graft copolymer, of polyamide-forming monomers selected from lactams, ω-amino carboxylic acids and/or equimolar combinations of diamine and dicarboxylic acid, wherein the parts by weight of a) and b) sum to 100. The presence of the graft copolymer effectuates improved adherence between the component pieces.
The present invention relates to a polymer composition comprising the following components: a) 76.6-99.49 mass % of aromatic polycarbonate, b) 0.5-20 mass % of laser direct structuring additive, c) 0-2.4 mass % of rubber like polymer, and d) 0.01-1 mass % of acid and/or acid salt wherein the mass % is calculated relative to the sum of a), b), c) and d). The invention also relates to a moulded part containing this composition, to a circuit carrier containing such moulded part and to a process for producing such circuit carrier.
Disclosed herein is a flame-retardant copolyetherester composition comprising: (a) at least one copolyetherester; (b) about 5-35 wt % of at least one halogen-free flame retardant; (c) about 0.1-20 wt % of at least one nitrogen-containing compound; (d) about 0.1-10 wt % of at least one aromatic phosphate and (e) about 0.1-10 wt % of at least at least one novolac resin. Further disclosed herein are articles comprising component parts formed of the flame-retardant copolyetherester composition.
The present invention discloses additive compositions, cementitious compositions, and methods for controlling air in cementitious compositions in which colloidal nano-particles are used for stabilizing a water-dispersible defoamer within a cement-dispersant-containing aqueous additive formulation for modifying hydratable cementitious compositions such as cement or concrete.
A water-based ink for ink-jet recording includes a self-dispersible pigment modified by phosphate group; water; a water-soluble organic solvent; at least one of a cationic polymer and basic amino acid; and at least one selected from the group consisting of boric acids, a chelate agent, a reducing sugar and a sugar alcohol.
This invention aims to provide a thermally foamable microsphere which is excellent in heat resistance, has a high expansion ratio, and shows stable foaming behavior; a method of producing the thermally foamable microsphere; and suitable use thereof. This invention provides a thermally foamable microsphere in which an outer shell encapsulating a foaming agent is formed of a copolymer having a polymethacrylimide structure. In particular, this invention provides a thermally foamable microsphere in which monomers capable of forming the polymethacrylimide structure by a copolymerization reaction are methacrylonitrile and methacrylic acid. Moreover, this invention provides a method of producing the thermally foamable microsphere and use of the thermally foamable microsphere as an additive.
Tire vulcanizing/retreading and de-vulcanization system including an autoclave and heating based on an induction system, which will lead to vulcanization or de-vulcanization of a tire.
The invention provides the use of a photosensitizer which is 5-aminolevulinic acid (5-ALA) or a derivative (e.g. an ester) of 5-ALA, or a pharmaceutically acceptable salt thereof, in the manufacture of a composition for use in methods of photodynamic therapy (PDT) on an animal, wherein said PDT comprises: (a) administering to said animal a composition comprising said photosensitizer; and (b) photoactivating said photosensitizer, and wherein side-effects (e.g. pain and/or erythema) of said PDT are prevented or reduced by use of one or more of (i)-(iv): (i) said composition comprises said photosensitizer in a concentration of less than 10% wt (e.g. 0.5 to 8% wt), (ii) said composition is administered for less than 2 hours (e.g. 30 minutes to 90 minutes) prior to said photoactivation, (iii) said photoactivation is carried out with a light source having a fluence rate of less than 50 mW/cm2 (e.g. 5 to 40 mW/cm2), (iv) said photoactivation is carried out with sunlight. Preferably, side-effects of PDT are prevented or reduced by using (iii) or (iv) in combination with (i) and/or (ii).
This invention relates to novel derivatives of 4-hydroxybutyric acid and prodrugs thereof, and pharmaceutically acceptable salts of the foregoing. This invention also provides pharmaceutical compositions comprising a compound of this invention and the use of such compositions in methods of treating narcolepsy, fibromyalgia, other disorders or conditions that are beneficially treated by improving nocturnal sleep or by administering sodium oxybate.
Pyrazole compounds of formula (Ia) or (Ib) and pharmaceutically acceptable salts thereof, wherein Ra, Rb, Rc, Rd, Y1, Y2, Y3, Y4, Y5, Z, R1, R2, n and R3 have one of the meanings as indicated in the specification and claims, to their use as medicaments, to pharmaceutical formulations containing the compounds and to pharmaceutical formulations containing the compounds in combination with one or more active substances.
Disclosed are novel derivatives of propargyl-trifluoromethoxy-amino-benzothiazole which are effective in treating neurologic disorders, including Parkinson's disease and multiple sclerosis.
Disclosed are fluorescent compounds useful as intracellular pH probes. In particular, the invention teaches a two-photon absorbing, water soluble, fluorescent compound, a fluorene derivative, which is effective as a near-neutral pH indicator and particularly as an intracellular probe. A method for chemical synthesis of the claimed compounds is provided.
The present application provides for a compound of Formula I, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, compositions containing such compounds, therapeutic methods that include the administration of such compounds, and therapeutic methods and include the administration of such compounds with at least one additional therapeutic agent.
Chemical entities that modulate smooth muscle myosin and/or non-muscle myosin, pharmaceutical compositions and methods of treatment of diseases and conditions associated with smooth muscle myosin and/or non-muscle myosin are described.
Various aspects disclosed herein relate to aryl substituted aminopyrimidines according to Formula 1: wherein, X1 is N or C—R3; X2 is N or C—R4 provided that X1 and X2 are not both N; R1-R7 are H, CN, CHO, —SCN, NO2, F, Cl, Br, I, substituted or unsubstituted C1-C4-alkyl, substituted or unsubstituted halo-C1-C4-alkyl, substituted or unsubstituted C1-C4-alkoxy, substituted or unsubstituted halo-C1-C4-alkoxy, substituted or unsubstituted C1-C4-thioalkyl, substituted or unsubstituted halo-C1-C4-thioalkyl, substituted or unsubstituted C3-C-7-cycloalkyl, substituted or unsubstituted C2-C4-alkenyl, C2-C4-alkynyl, substituted or unsubstituted C1-C4-acylalkyl, C1-C4-acyloxy, C1-C4 alkoxycarbonyl, C1-C4-alkoxy-amino, C1-C4-alkyl-S(O)═NH, substituted or unsubstituted aryl, substituted or unsubstituted heterocycle, wherein the substituents are one or more of the following F, Cl, Br, OH, CN, NO2, CHO, —SCN, S(O)n-C1-C4-alkyl (where n=0-2), C1-C4-alkyl, halo-C1-C4-alkyl, C1-C4-alkylamine, C1-C4-alkoxy, halo-C1-C4-alkoxy, C1-C4-thioalkyl, halo-C1-C4-thioalkyl, C1-C4-alkylacyl, C1-C4-acyloxy, C1-C4 alkoxycarbonyl, C1-C4-alkoxy-imino, hydroxy-imino; C1-C4-alkyl-S(O)═NH; and Q is a substituted or unsubstituted aryl, substituted or unsubstituted heterocycle wherein the substituents of Q are taken from R1-R7.
The present invention relates to compounds of general formula (I) and the tautomers and the salts thereof, particularly the pharmaceutically acceptable salts thereof with inorganic or organic acids and bases, which have valuable pharmacological properties, particularly an inhibitory effect on epithelial sodium channels, and the use thereof for the treatment of diseases, particularly diseases of the lungs and airways.
The present invention provides a family of benzodiazepinone compounds and pharmaceutical compositions thereof. The present invention also provides methods of treating certain skin conditions, e.g., atopic dermatitis, rosacea, or psoriasis, by administering a benzodiazepinone and methods of reducing the proliferation of keratinocyte cells by exposing such cells to a benzodiazepinone.
New compounds, compositions and methods of inhibition of Provirus Integration of Maloney Kinase (PIM kinase) activity associated with tumorigenesis in a human or animal subject are provided. In certain embodiments, the compounds and compositions are effective to inhibit the activity of at least one PIM kinase. The new compounds and compositions may be used either alone or in combination with at least one additional agent for the treatment of a serine/threonine kinase- or receptor tyrosine kinase-mediated disorder, such as cancer.
This invention provides novel compounds that are modulators of gamma secretase. The compounds have the formula (Chemical formula should be inserted here as it appears on abstract in paper form). Also disclosed are methods of modulating gamma secretase activity and methods of treating Alzheimer's Disease using the compounds of formula (I).
Novel compounds, methods, and compositions for treating various viral infections are described. In some embodiments the novel compounds of the invention are 3-oxo-phenothiazine derivatives; more specific embodiments include 3-oxo-phenothiazine derivatives having substituents at the 1-, 7-, and 9-positions of the phenothiazine parent ring. In other embodiments, the invention provides compositions and methods for treating viral infections, especially HIV.
Compounds are disclosed that have a formula represented by the following: These compounds may be prepared as a pharmaceutical composition, and may be used for the prevention and treatment of a variety of conditions in mammals including humans, including by way of non-limiting example inflammatory conditions, infectious diseases, autoimmune diseases, diseases involving impairment of immune cell functions, cardiometabolic diseases, and/or proliferative diseases.
Disclosed are compounds, compositions and methods for treating various diseases, syndromes, conditions and disorders, including pain. Such compounds are represented by Formula (I) as follows: wherein Q and Z are defined herein.
The present invention relates to an improved transdermal hydroalcoholic testosterone gen formulation that provides, among other things, a desirable pharmacokinetic hormone profile, and methods of use.
Drug combinations which contain a PDE4-inhibitor and a non-steroidal anti-inflammatory drug (NSAID), processes for preparing them, and their use in treating in particular respiratory complaints such as COPD, chronic sinusitis, and asthma. The PDE4 inhibitors of the drug combinations include compounds of general formula 1 wherein X is SO or SO2, but preferably SO, R3 is an optionally substituted, mono- or bicyclic, unsaturated, partly saturated or saturated heterocyclic group or an optionally substituted, mono- or bicyclic heteroaryl, and R1 and R2 have the meanings given in claim 1.
A method of treating cancer through use of guanosine 3′,5′-cyclic monophosphate (cyclic GMP). Cyclic GMP decreases the number of human breast cancer and prostate adenocarcinoma as well as small-cell and squamous lung cells in culture by 30% (1 μM), 84% (1 mM), 31% (1 μM), and 30% (1 μM), respectively. Cyclic GMP decreases DNA synthesis in human pancreatic, breast, and prostate adenocarcinomas as well as small-cell and squamous cell carcinomas of the lung at its 1 μM concentration by 51%, 54%, 56%, 50% and 52%, respectively. Cyclic GMP when infused for one week decreases the tumor volume of human pancreatic adenocarcinomas in athymic mice 95% compared to untreated animals with human pancreatic adenocarcinomas.
RNAi sequences that are useful as therapeutics in the treatment of cancers of various types, including prostate cancer, sarcomas such as osteosarcoma, renal cell carcinoma, breast cancer, bladder cancer, lung cancer, colon cancer, ovarian cancer, anaplastic large cell lymphoma and melanoma; and Alzheimer's disease. These sequences target clusterin, IGFBP-5, IGFBP-2, both IGFBP-2 and -5 simultaneously, Mitf, and B-raf. The invention further provides for the use of these RNAi sequences in the treatment of cancers of various types, including prostate cancer, sarcomas such as osteosarcoma, renal cell carcinoma, breast cancer, bladder cancer, lung cancer, colon cancer, ovarian cancer, anaplastic large cell lymphoma and melanoma; and Alzheimer's disease, and a method of treating such conditions through the administration of the RNA molecules with RNAi activity to an individual, including a human individual in need of such treatment.
The present invention describes a new non-compound based approach for insect and/or arachnid control. The present inventors have identified for the first time novel targets for RNAi, which can effectively control insect and/or arachnid pest populations. Accordingly, the invention provides both nucleotide and amino acid sequences for the novel targets. Also provided are RNA constructs including double stranded RNA regions for mediating RNAi in insects, DNA constructs, expression vectors, host cells and compositions for controlling insects and/or arachnids using RNAi. Finally, the invention also provides for the use of the constructs, vectors, host cells and compositions in control of insects and/or arachnids populations and suitable kits for use in an RNAi based method of controlling insect and/or arachnid pests.
The present invention relates to methods and compositions for increasing telomerase activity in cells. Such compositions include pharmaceutical, including topical, and nutraceutical formulations. The methods and compositions are useful for treating diseases subject to treatment by an increase in telomerase activity in cells or tissue of a patient, such as, for example, HIV infection, various degenerative diseases, and acute or chronic skin ailments. They are also useful for enhancing replicative capacity of cells in culture, as in ex vivo cell therapy and proliferation of stem cells.
Polypeptides comprising at least one carboxy-terminal peptide (CTP) of chorionic gonadotrophin attached to the carboxy terminus but not to the amino terminus of a coagulation factor and polynucleotides encoding the same are disclosed. Pharmaceutical compositions comprising the polypeptides and polynucleotides of the invention and methods of using and producing same are also disclosed.
Disclosed herein are compositions and methods useful for the treatment of cancer, such as breast cancer. In some embodiments, the methods and compositions include human prolactin, or human prolactin in conjunction with a cytotoxic agent. In other embodiments, the methods and compositions include one or more of human prolactin, growth hormone and placental lactogen, or one or more of human prolactin, growth hormone and placental lactogen in conjunction with a cytotoxic agent. In some embodiments, the cytotoxic agent comprises a chemotherapeutic agent.
A solidification matrix includes a straight chain saturated carboxylic acid salt, sodium carbonate, and water. The straight chain saturated carboxylic acid salt is selected from a salt of a mono-, di-, or tri-carboxylic acid. The solidification matrix may be used, for example, in a solid detergent composition.
The present invention provides a method of treating a hydrocarbon containing formation comprising (a) providing a hydrocarbon recovery composition to at least a portion of the hydrocarbon containing formation, wherein the composition comprises one or more internal olefin sulfonates having 17 or more carbon atoms, (b) adding water and/or brine from the hydrocarbon formation to the composition, (c) adding a solubilizer which comprises an ethoxylated alcohol wherein the alcohol before ethoxylation had an average molecular weight of at least about 220 and (d) allowing the composition to interact with hydrocarbons in the hydrocarbon containing formation. The solubilizer may comprise less than about 0.1 wt %, preferably from about 0.02 to about 0.05 wt %, of the total composition and it may have from about 5 to about 9 moles of ethylene oxide per mole of alcohol.
Embodiments of the invention are directed to a one-bead-two-compound method for the creation of encoded cyclic peptoid libraries. This scheme is useful for the creation of cyclic peptoid microarrays since only the cyclic peptoid, not the linear encoding molecule, contains an attachment residue and thus can be spotted onto an activated substrate.
Methods, compositions and kits for diagnosing osteoarthritis in a feline are disclosed. The methods of the invention comprise detecting differential expression of at least one biomarker in a body sample. preferably a blood sample, where the biomarker is differentially expressed in osteoarthritis.
Described are herbicide compositions and methods for their preparation and use, in particular, herbicide compositions and methods relating to herbicide compositions containing herbicide compounds in acid form, and further including an acidifying agent.
A process for handling an active catalyst includes introducing a mixture of active catalyst particles and a molten organic substance, which is at a temperature Ti, and which sets at a lower temperature T2 so that T2
The present disclosure relates to a method and composition to limit crystalline defects introduced in a semiconductor device during ion implantation. A high-temperature low dosage implant is performed utilizing a tri-layer photoresist which maintains the crystalline structure of the semiconductor device while limiting defect formation within the semiconductor device. The tri-layer photoresist comprises a layer of spin-on carbon deposited onto a substrate, a layer of silicon containing hard-mask formed above the layer of spin-on carbon, and a layer of photoresist formed above the layer of silicon containing hard-mask. A pattern formed in the layer of photoresist is sequentially transferred to the silicon containing hard-mask, then to the spin-on carbon, and defines an area of the substrate to be selectively implanted with ions.
A package substrate, a semiconductor package having the same, and a method for fabricating the semiconductor package. The semiconductor package includes a semiconductor chip, a package substrate, and a molding layer. The package substrate provides a region mounted with the semiconductor chip. The molding layer is configured to mold the semiconductor chip. The package substrate includes a first opening portion that provides an open region connected electrically to the semiconductor chip and extends beyond sides of the semiconductor chip to be electrically connected to the semiconductor chip.
A patterning process includes (1) forming, on a body to be processed on which a titanium-containing hard mask is formed, an organic underlayer film; (2) forming, on the organic underlayer film, a titanium-containing resist underlayer film having a titanium content of 10% to 60% by mass; (3) forming a photoresist film on the titanium-containing resist underlayer film; (4) forming a photoresist pattern by exposing the photoresist film and developing; (5) pattern-transferring onto the titanium-containing resist underlayer film by using the photoresist pattern as a mask; (6) pattern-transferring onto the organic underlayer film by using the titanium-containing resist underlayer film as a mask; and (7) removing the titanium-containing hard mask and the titanium-containing resist underlayer film by wet stripping method. A patterning process including removing a resist underlayer film using a wet stripper having a milder condition than the conventional stripper without causing damage to a body to be processed.
A method forms interlayer connectors extending to conductive layers of a stack of W conductive layers interleaved with dielectric layers. The stack is etched to expose landing areas at W−1 conductive layers using a set of M etch masks. For each etch mask m, m going from 0 to M−1, there is a first etching step, at least one mask trimming step, and a subsequent etching step following each trimming step. The etch mask may cover Nm+1 of the landing areas and the open etch region may cover Nm of the landing areas. N equals 2 plus the number of trimming steps. The trimming step may be carried out so that the increased size open etch region overlies an additional 1/N of the landing areas. Part of the stack surface may be shielded during the removing step to create dummy areas without contact openings.
A solder structure for joining an IC chip to a package substrate, and method of forming the same are disclosed. In an embodiment, a structure is formed which includes a wafer having a plurality of solder structures disposed above the wafer. A ball limiting metallurgy (BLM) layer disposed beneath each of the solder structures, above the wafer. At least one of the plurality of solder structures has a first composition, and at least another of the plurality of solder structures has a second composition.
A method of forming an integrated circuit structure includes forming an insulation layer over at least a portion of a substrate; forming a plurality of semiconductor pillars over a top surface of the insulation layer. The plurality of semiconductor pillars is horizontally spaced apart by portions of the insulation layer. The plurality of semiconductor pillars is allocated in a periodic pattern. The method further includes epitaxially growing a III-V compound semiconductor film from top surfaces and sidewalls of the semiconductor pillars.
The present invention discloses that under modified chemical vapor deposition (mCVD) conditions an epitaxial silicon film may be formed by exposing a substrate contained within a chamber to a relatively high carrier gas flow rate in combination with a relatively low silicon precursor flow rate at a temperature of less than about 550° C. and a pressure in the range of about 10 mTorr-200 Torr. Furthermore, the crystalline Si may be in situ doped to contain relatively high levels of substitutional carbon by carrying out the deposition at a relatively high flow rate using tetrasilane as a silicon source and a carbon-containing gas such as dodecalmethylcyclohexasilane or tetramethyldisilane under modified CVD conditions.
A method for preparing a substrate for detaching a layer by irradiation of the substrate with a light flux for heating a buried region of the substrate and bringing about decomposition of the material of that region to detach the detachment layer. The method includes fabricating an intermediate substrate including a first buried layer, and a second covering layer that covers all or part of the first layer, with the covering layer being substantially transparent to the light flux and with the buried layer formed by implantation of particles into the substrate, followed by absorbing the flux, and selectively and adiabatically irradiating a treated region of the buried layer until at least partial decomposition of the material constituting it ensues.
Device structures, design structures, and fabrication methods for fin-type field-effect transistor integrated circuit technologies. First and second fins, which constitute electrodes of the device structure, are each comprised of a first semiconductor material. The second fin is formed adjacent to the first fin to define a gap separating the first and second fins. Positioned in the gap is a layer comprised of a second semiconductor material.
A method of fabricating a semiconductor device includes forming a first insulating layer over a semiconductor substrate, a contact plug within the first insulating layer, an etch stop layer over the first insulating layer, and a second insulating layer over the etch stop layer. The second insulating layer has an opening over the contact plug. A first metal layer, a dielectric material, and a second metal layer are deposited in the opening. The first metal layer engages the contact plug and is free of direct contact with the first insulating layer.
A first impurity region is formed by ion implantation through a first opening formed in a mask layer. By depositing a spacer layer on an etching stop layer on which the mask layer has been provided, a mask portion having the mask layer and the spacer layer is formed. By anisotropically etching the spacer layer, a second opening surrounded by a second sidewall is formed in the mask portion. A second impurity region is formed by ion implantation through the second opening. An angle of the second sidewall with respect to a surface is 90°±10° across a height as great as a second depth. Thus, accuracy in extension of an impurity region can be enhanced.
A method of forming a semiconductor device may include forming a metal layer on a silicon portion of a substrate, and reacting the metal layer with the silicon portion to form a metal silicide. After reacting the metal layer, unreacted residue of the metal layer may be removed using an electrolyzed sulfuric acid solution. More particularly, a volume of sulfuric acid in the electrolyzed sulfuric acid solution may be in the range of about 70% to about 95% of the total volume of the electrolyzed sulfuric acid solution, a concentration of oxidant in the electrolyzed acid solution may be in the range of about 7 g/L to about 25 g/L, and a temperature of the electrolyzed sulfuric acid solution may be in the range of about 130 degrees C. to about 180 degrees C.
A method of fabricating a device, including the steps of forming a first silicon oxide layer within a first region of the device and a second silicon oxide layer within a second region of the device, implanting doping ions of a first type into the first region, implanting doping ions of a second type into the second region, and etching the first and second regions for a determined duration such that the first silicon oxide layer is removed and at least a part of the second silicon oxide layer remains.
A semiconductor device with efficient heat dissipating structures is disclosed. The semiconductor device includes a first semiconductor chip that is flip-chip mounted on a first substrate, a heat absorption portion that is formed between the first semiconductor chip and the first substrate, an outer connection portion that connects the first semiconductor chip to an external device and a heat conduction portion formed between the heat absorption portion and the outer connection portion to dissipate heat generated by the first semiconductor chip.
An encapsulated micro-electro-mechanical device, wherein a MEMS chip is encapsulated by a package formed by a first, a second, and a third substrates that are bonded together. The first substrate has a main surface bearing the MEMS chip, the second substrate is bonded to the first substrate and defines a chamber surrounding the MEMS chip, and the third substrate is bonded to the second substrate and upwardly closes the chamber. A grid or mesh structure of electrically conductive material is formed in or on the third substrate and overlies the MEMS chip; the second substrate has a conductive connection structure coating the walls of the chamber, and the first substrate incorporates an electrically conductive region, which forms, together with the conductive layer and the grid or mesh structure, a Faraday cage.
A method of forming a material comprises conducting an ALD layer cycle of a first metal, the ALD layer cycle comprising a reactive first metal precursor and a co-reactive first metal precursor. An ALD layer cycle of a second metal is conducted, the ALD layer cycle comprising a reactive second metal precursor and a co-reactive second metal precursor. An ALD layer cycle of a third metal is conducted, the ALD layer cycle comprising a reactive third metal precursor and a co-reactive third metal precursor. The ALD layer cycles of the first metal, the second metal, and the third metal are repeated to form a material, such as a GeSbTe material, having a desired stoichiometry. Additional methods of forming a material, such as a GeSbTe material, are disclosed, as is a method of forming a semiconductor device structure including a GeSbTe material.
A method of forming a photovoltaic device containing a buried emitter region and vertical metal contacts is provided. The method includes forming a plurality of metal nanoparticles on exposed portions of a single-crystalline silicon substrate that are not covered by patterned antireflective coatings (ARCs). A metal nanoparticle catalyzed etching process is then used to form trenches within the single-crystalline silicon substrate and thereafter the metal nanoparticles are removed from the trenches. An emitter region is then formed within exposed portions of the single-crystalline silicon substrate, and thereafter a metal contact is formed atop the emitter region.
A method for making a light emitting chip package, comprises: providing a substrate; forming a plurality of recesses on the bottom surface of the substrate; forming an etch stop layer on the bottom surface; forming a step hole on the top surface; forming an insulation layer on the top surface; defining a plurality of first through holes in the insulation layer and a plurality of second through holes in the etch stop layer, the number of the first through holes being different from the number of the second through holes; filling the first through holes and the second through holes with metal to respectively form first electrical conductor portions and second electrical conductor portions; forming a patterned electric conductive layer on the insulation layer; arranging a light emitting chip on the electric conductive layer; and encapsulating the light emitting chip with an encapsulation.
A clinical tester has been described that includes a probe to aspirate a fluid. The probe is washed between aspirations to reduce carryover. The wash operation includes both an internal and an external wash, where the internal wash operation is terminated prior to terminating the external wash. In one embodiment, the probe wash can be implemented on an integrated clinical chemistry/immunoassay tester.
The disclosed islet isolation method comprises: an injection step of injecting a preservation solution into the pancreatic duct of an excised pancreas; a preservation step of immersing the pancreas into an immersion fluid for preservation; a digestion step of breaking down the pancreas to provide pancreatic tissue; and a purification step of immersing the pancreatic tissue in a purification solution to provide islets. The digestion step consists of: an enzyme injection step of injecting an enzyme solution containing a digestion enzyme into the pancreas; a digestion initiation step of activating the digestion enzyme; a digestion termination step of inactivating the digestion enzyme; and a collection step of collecting the broken-down pancreatic tissue. The islet isolation method is characterized in that, by adding a neutrophil elastase inhibitor to the system before the digestion initiation step, the neutrophil elastase inhibitor is present inside the pancreas at the time point of starting the digestion initiation step. By using the above method and a protective solution which can be used in the method, islets having a size and shape suitable for transplantation can be obtained in high yields.
An instrument for ascertaining a viable aerobic microbe count at to employing a two-point calibration curve of tthreshold to TVC for each type of sample. One point on the calibration curve is the x-intercept value (i.e., an estimated or experimental value for the logarithm of the minimum viable aerobic microbe count at commencement of testing (to) in a sample effective for causing the sample to reach tThreshold substantially instantaneously upon commencement of incubation). The other point is ascertained experimentally from a sample having a smaller known viable aerobic microbe count at to.
A test element, analytical system and method for optical analysis of fluid samples is provided. The test element has a substrate and a microfluidic channel structure, which is enclosed by the substrate and a cover layer. The channel structure has a measuring chamber with an inlet opening. The test element has a first level, which faces the cover layer, and a second level, which interconnects with the first level such that the first level is positioned between the cover layer and the second level. A part of the measuring chamber extending through the first level forms a measuring zone connecting with a part of the measuring chamber that extends partially into the second level, forming a mixing zone. Optical analysis of fluid samples is carried out by light guided through the first level parallel to the cover layer, such that the light traverses the measuring zone along an optical axis.
An apparatus for automatically analyzing a nucleic acid includes: a sample preprocessing device including a plurality of chambers in which reagents mixed with a sample are accommodated according to sample preprocessing process order for extracting a nucleic acid from the sample; and a nucleic amplifying and detecting device connected with the sample preprocessing device to receive the nucleic acid extracted from the sample.
A sensor for detecting an electric field fluctuation associated with the permeabilization of a bacterial cell wall comprises a substrate, at least two electrodes integrated on the substrate, an amplifier integrated on the substrate, and a processor electrically connected to the amplifier to analyze the amplified signal. The substrate and the at least two electrodes define a well between the at least two electrodes, and the at least two electrodes being configured to generate a signal in response to an electric field fluctuation in close proximity to the well or the electrodes triggered when at least one antibacterial agent associated with the well contacts a cognate target. The amplifier is configured to generate an amplified signal in response to the signal. In addition, the processor is electrically connected to the amplifier to analyze the amplified signal.
Collection devices and kits for biological sample collection include a biologic sample collection device having a hydrophilic swab matrix that includes a modified polycaprolactone (PCL). Methods of production and use thereof are also described herein. The biologic sample collection devices, kits and methods described herein are used to collect a biologic sample (e.g., blood, buccal cells, etc.) and to enable extraction of nucleic acids (e.g., DNA) from that biologic sample so that the nucleic acids can be analyzed (e.g., sequencing and subsequent analysis of DNA).
The present invention relates to an enzyme determining amino acid sequences of an enzyme involved in pyrethrin biosynthesis and a base sequence of the gene thereof; constructing vectors bearing the gene and transformants; and extractable from plant bodies producing pyrethrin by applying such creative techniques to plant bodies with faster growth aiming to provide a method to efficiently produce pyrethrin; and the enzyme is a gene encoding a protein of the following (i) or (ii) or (iii): (i) a protein consisting of an amino acid sequence shown in Sequence No. 1; or (ii) a protein consisting of an amino acid sequence shown in Sequence No. 5, or a protein consisting of an amino acid sequence shown in Sequence No. 6, or a protein consisting of an amino acid sequence shown in Sequence No. 7, or a protein consisting of an amino acid sequence shown in Sequence No. 8, (iii) a protein consisting of an amino acid sequence including one or more of a substitution, deletion, insertion, and/or addition of amino acid in the amino acid sequence shown in Sequence No. 1, in which the protein exhibits activity of pyrethrin biosynthetic enzyme.
The present invention provides improved polysaccharides (e.g., gellan and diutan) produced by mutant gene I Sphingomonas strains containing at least one genetic modification that favors slime-forming polysaccaride production. Methods of making the mutant Sphingomonas strains and the culture broth containing such mutant Sphingomonas strains are also provided.
Contamination was controlled in fermentations using Zymomonas mobilis as the biocatalyst, without negative impact on fermentation production, by the addition of hop acids. The effective concentration of hop acids was found to be dependent upon the type of fermentation medium used.
Disclosed are mutant DNA polymerases having increased 3′-mismatch discrimination relative to a corresponding, unmodified polymerase. The mutant polymerases are useful in a variety of disclosed primer extension methods. Also disclosed are related compositions, including recombinant nucleic acids, vectors, and host cells, which are useful, e.g., for production of the mutant DNA polymerases.
A process for purifying laccase from an ectomycorrhizal fruiting body is disclosed. The process includes steps of homogenization, sonication, centrifugation, filtration, affinity chromatography, ion exchange chromatography, and gel filtration. Purified laccase can also be separated into isomers.
A fuel cell is provided with an anode and a cathode. The anode is in electrical communication with an anode enzyme and the cathode is in electrical communication with a cathode enzyme. The anode enzyme is preferably an oxidase or a dehydrogenase. The cathode enzyme is a copper-containing enzyme, such as a lacasse, an ascorbate oxidase, a ceruloplasmine, or a bilirubin oxidase. Preferably, the cathode enzyme is operable under physiological conditions. Redox polymers serve to wire the anode enzyme to the anode and the cathode enzyme to the cathode. The fuel cell can be very small in size because it does not require a membrane, seal, or case. The fuel cell can be used in connection with a biological system, such as a human, as it may operate at physiological conditions. By virtue of its size and operability at physiological conditions, the fuel cell is of particular interest for applications calling for a power source implanted in a human body, such as a variety of medical applications.
The present invention relates to the isolation and to the characterization of two proteins having a novel enzymatic activity, i.e. a porphyranase activity. These proteins are useful for hydrolyzing polysaccharides containing sulfated agaro-colloids and for producing oligo-porphyrans, notably oligo-porphyrans with a defined structure and size.
Novel extender units for Type I polyketide synthases are provided. Also provided are genes, compounds, and methods for generating these units, and for incorporation of the novel extender units into polyketides for the purpose of generating new structural derivatives of polyketide-containing products.
The present invention relates to humanized antibodies binding to CD47; diabodies binding to human CD47, characterized in that a disulfide bond exists between diabody-forming fragments; genes encoding any one of said antibodies; vectors containing said genes; host cells containing said vectors; processes for preparing antibodies comprising the step of culturing said host cells; and therapeutic agents for hematological disorders comprising said antibodies.
Provided are a microorganism for use in quantification of homocysteine and methionine and a method of quantifying homocysteine and methionine in a sample by using the microorganism.
A method for determining an appropriate treatment option for a patient who has been diagnosed with disseminated intravascular coagulation (DIC) but who may have thrombotic thrombocytopenic purpura (TTP), by analyzing the amount and/or enzyme activity of a von Willebrand factor (vWF)-cleaving protease (ADAMTS13) and the amount of vWF in a patient that has been diagnosed with DIC is disclosed. Using the method of the present invention, a differential diagnosis of patients with thrombotic thrombocytopenic purpura (TTP) can be made from among patients diagnosed with DIC, which could not previously be distinguished on the basis of only clinical findings or known markers. Also disclosed is a kit for determining an appropriate treatment option, the kit comprising an antibody or a fragment thereof which specifically binds to ADAMTS13.
Described herein are primers and probes useful for the binding, detecting, differentiating, isolating, and sequencing of influenza A, influenza B, 2009 influenza A/H1N1, and a 2009 influenza A/H1N1 RNA sequence mutation associated with oseltamivir resistance.
Methods, algorithms, processes, circuits, and/or structures for laser patterning suitable for customized RFID designs are disclosed. In one embodiment, a method of laser patterning of an identification device can include the steps of: (i) depositing a patternable resist formulation on a substrate having configurable elements and/or materials thereon; (ii) irradiating the resist formulation with a laser tool sufficiently to change the solubility characteristics of the resist in a developer; and (iii) developing exposed areas of the resist using the developer. Embodiments of the present invention can advantageously provide a relatively low cost and high throughput approach for customized RFID devices.
A method is described for the direct photochemical modification and micro-patterning of polymer surfaces, without the need to use a photoresist. For example, micropatterns of various functional chemical groups, biomolecules, and metal films have been deposited on poly(carbonate) and poly(methyl methacrylate) surfaces. These patterns may be used, for example, in integrated electronics, capture elements, or sensing elements in micro-fluidic channels.
Provided is an apparatus and method of manufacturing a color filter adsorbing toner nano-particles by using electrostatic force. In the apparatus for manufacturing the color filter, a laser driver generates at least one laser control signal according to electrification data, at least one laser device forming a laser irradiation unit which irradiates a laser for a predetermined time according to the at least one laser control signal. According to the irradiated laser, electrostatic latent images are formed in positions of color filter cells having a predetermined resolution standard requirements in a glass substrate, and toner nano-particles are electrostatically adsorbed to the formed electrostatic latent images.
A hologram reticle and method of patterning a target. A layout pattern for an image to be transferred to a target is converted into a holographic representation of the image. A hologram reticle is manufactured that includes the holographic representation. The hologram reticle is then used to pattern the target. Three-dimensional patterns may be formed in a photoresist layer of the target in a single patterning step. These three-dimensional patterns may be filled to form three-dimensional structures or else used in a multi-surface imaging composition. The holographic representation of the image may also be transferred to a top photoresist layer of a top surface imaging (TSI) semiconductor device, either directly or using the hologram reticle. The top photoresist layer may then be used to pattern an underlying photoresist layer with the image. The lower photoresist layer is used to pattern a material layer of the device.
A mask set is described. In one implementation, the mask set includes: a first layer mask including a plurality of first tiles of a first tile size; and a second layer mask including a plurality of second tiles of a second tile size, where the second tile size is different from the first tile size. Also, a method of fabricating a plurality of integrated circuits (ICs) is described. In one implementation, the method includes: using a first layer mask having a first tile size to fabricate a first layer of a first IC of the plurality of ICs and a first layer of a second IC of the plurality of ICs; and using a second layer mask having a second tile size to fabricate a second layer of the first IC, where the second tile size is different from the first tile size.
The processes include: a layer superposition step in which the step of sputtering or vapor-depositing a mixture layer including a first pore-forming metal and a catalyst metal on a substrate and the step of forming an interlayer of a second pore-forming metal or a fibrous-carbon interlayer are alternately conducted repeatedly two or more times to thereby form a multilayer structure containing mixture layers and interlayers; and a pore formation step in which after the layer superposition step, the multilayer structure is subjected to a pore formation treatment.
Ligand additives having two or more coordination sites in close proximity can be used in the polymer electrolyte of membrane electrode assemblies in solid polymer electrolyte fuel cells in order to reduce the dissolution of catalyst, particularly from the cathode, and hence reduce fuel cell degradation over time.
Membranes and processes for preparing membranes having weakly acidic or weakly basic groups comprising the steps of: (i) applying a curable composition to a support; (ii) curing the composition for less than 30 seconds to form a membrane; and (iii) optionally removing the membrane from the support; wherein the curable composition comprises a crosslinking agent having at least two acrylic groups. The membranes are particularly useful for producing electricity by reverse electrodialysis.
This invention provides a positive electrode material having high capacity and safety, and a lithium ion secondary battery using the positive electrode material, the lithium ion secondary battery using a positive electrode active substance comprising a first transition metal oxide represented by the compositional formula: Lix1Nia1Mnb1Coc1Md1O2; a second transition metal oxide represented by the compositional formula: Lix2Nia2Mnb2Coc2Md2O2; and a third transition metal oxide represented by the compositional formula: Lix3Nia3Mnb3Coc3Md3O2; in which a3
A secondary battery including an electrode assembly having a top and a bottom, a case containing the electrode assembly and comprising a bottom plate, wherein the bottom of the electrode assembly is proximate the bottom plate, a cap assembly coupled to the case, and a short induction plate between the electrode assembly and the case, the short induction plate adapted to fracture when the case is compressed to induce a short of the electrode assembly.
A battery pack including a housing for accommodating a plurality of secondary batteries; a cooling unit for cooling the secondary batteries, the cooling unit including an inlet through which a cooling fluid flows in and an outlet through which the cooling fluid flows out; and a terminal unit detachably connectable to the cooling unit, the terminal unit including a first terminal for circulating the cooling fluid.
Techniques associated with energy storage devices are generally described. An example energy storage device includes a battery integrated with a sensor such as an optical waveguide. The sensor can be arranged in contact with an outer wall of the battery and can be configured to detect a safety condition associated with the battery.
A module unit includes a main body attached to a plurality of battery cells, a bus bar provided on the main body to electrically connect the battery cells, and a temperature sensor retained to the main body to measure a temperature of at least one of the battery cells. The main body has a through hole. The temperature sensor includes a retaining portion which is retained to an edge part of the through hole from a first side of the main body facing to the battery cells after the retaining portion passes through the through hole from a second side of the main body opposite to the first side with respect to the main body, and an attaching portion which has an operation part at an end part thereof and is formed so as not to pass through the through hole. When the main body is attached to the battery cells, the temperature sensor comes into contact with the at least one battery cell.
A multilayer interlayer polymer film and a high clarity safety glass laminate made using the same include: (1) a core layer comprising one of an ionomer polymer material and a thermoplastic polyurethane polymer material; (2) at least one intermediate layer laminated to the core layer and comprising the other of the ionomer polymer material and the thermoplastic polyurethane polymer material; and (3) at least one skin layer laminated to the at least one intermediate layer and comprising a non-ionomer polyolefin polymer material. The multilayer interlayer polymer film provides the high clarity safety glass laminate with enhanced performance with respect to optical properties and manufacturability. In an alternative embodiment the at least one skin layer may be omitted when the intermediate layer comprises a thermoplastic polyurethane material with adequate adhesion to glass.
Disclosed are a compound that emits fluorescence, particularly in its solid state, and is suited to provide a color converting material with various improved performance properties over prior art and a light emitter, a color conversion filter, a color conversion device, and a photoelectric device each containing the compound; particularly a Schiff base type compound of formula (I) and a coloring material, a color conversion layer, a light absorbing layer, a color conversion filter, a light absorbing filter, a color-converting light-emitting device, and a photoelectric device each containing the compound. The definition of the symbols in formula (I) is the same as in the specification.
A transparent laminate comprises an optically clear, cured coating layer including abrasion-resistant nanoparticles, and one or more monomers and/or one or more oligomers that are reacted in the presence of an ultraviolet light photoinitiator. The coating layer also contains a surface portion rich in hydrophilic surfactant so that the coating layer when residing on a transparent substrate forms a laminate having good abrasion resistant properties as well as good anti-fog properties.
The present invention provides enamelware and a glaze improving the bondability between the steel substrate and enamel layer and superior in resistance to dew point corrosion by sulfuric acid and hydrochloric acid, that is, a steel substrate of a composition containing, by mass %, Cu: 0.05 to 0.5%, Si: 0.1 to 2.0%, Mn: 0.05 to 2.0%, P: 0.005 to 0.10%, and S: 0.005 to 0.1%, restricting C to C: 0.20% or less, and comprising a balance of Fe and unavoidable impurities on the surface of which an enamel layer of a thickness of 50 to 700 μm is provided. At that time, the content of Co oxides in the enamel layer is made, converted to Co, 0.01 to 10% and/or the content of Ni oxides is made, converted to Ni, 0.05 to 20% or the total content of Ni in the steel substrate and enamel layer is made 0.005 to 4.5% with respect to the total mass of the enamelware and/or the total content of Co is made 0.008 to 4.0% with respect to the total mass of the enamelware.
A compressible, thermally conductive foam interface pad is adapted for emplacement between opposed heat transfer surfaces in an electronic device. One heat transfer surface can be part of a heat-generating component of the device, while the other heat transfer surface can be part of a heat sink or a circuit board. An assembly including the foam interface pad and the opposed electronic components is also provided.
A coated cutting tool includes a substrate and a PVD coating having an outermost zone C being a nitride, carbide, boride, or mixtures thereof, of Si and at least two additional elements selected from Al, Y, and groups 4, 5 or 6 of the periodic table and zone C is free from a compositional gradient of an average content of Si. Zone C has a laminar, aperiodic, multilayered structure with alternating individual layers X and Y having different compositions from each other. The coating further includes a zone A closest to the substrate, a transitional zone B, where zone A is essentially free from Si, zone B includes a compositional gradient of the average content of Si, and where the average content of Si is increasing towards zone C.
A primer/topcoat coil coating system employs crosslinkable branched hydroxyl-functional polyester-imide resins derived or derivable from a symmetric aromatic imide triol and a diacid or acid-producing derivative. The primer resin has a hydroxyl number greater than about 90 but not more than about 215, the topcoat resin has a hydroxyl number greater than about 100 but not more than about 215, and the primer and topcoat can each be hardened in 30 seconds or less to provide a coating having at least 0T flexibility with no tape off and at least 2H pencil hardness.
A multilayer porous membrane formed of an extrudable polymer is provided. The membrane is formed by co-extruding at least two compositions, each of which comprises a heated porogen and polymer while in contact with each other under conditions to minimize or prevent unstable interfacial flow between extruded layers. In a preferred embodiment, the two compositions are different such that the layers have a different average pore size.
An optical device is provided. The optical device according to one embodiment may be a light-dividing device, for example, a device that can divide incident light into at least two kinds of light having different polarization states. For example, the optical device can be used to realize a stereoscopic image.
The metal part is one where a carboxyl group or an amino group, or a hydroxyl group is imparted onto the surface. On the other hand, the resin part is one into which an adhesiveness modifier containing an epoxy group is blended. A process for producing a composite of metal and resin, wherein the metal part and the resin part are bonded by interaction of the carboxyl group or the amino group, or the hydroxyl group with the epoxy group.
Methods for creating coatings composed of a single material or a composite of multiple materials, beginning with ESC to deposit the base layer and then using other methods for the binding step beyond CVI. Also, for certain materials and applications, some pre-processing or pre-treatment of the coating materials is necessary prior to deposition in order to achieve a satisfactory coating. This application discloses methods for pre-deposition treatment of materials prior to ESC deposition. It also discloses methods for post-processing that provide additional functionality or performance characteristics of the coating. Finally, this application discloses certain apparatus and equipment for accomplishing the methods described herein.
A method for applying a liquid material in a specific application amount includes an initial parameter setting step of specifying, as a total pulse number, the number of times both ejection pulse signals and pause pulse signals are sent, specifying the number of ejection pulse signals in the total pulse number, which is needed to achieve the specific application amount, and specifying the remainder of the total pulse number as the pause pulse signals; a correction amount calculation step of measuring, per preset correction period, an ejection amount from the nozzle at the timing of the correction period, and calculating a correction amount for the ejection amount; and an ejection amount correction step of adjusting the number of ejection pulse signals and the number of pause pulse signals on the basis of the correction amount calculated in the correction amount calculation step.
The present invention provides a dairy product which endures cryopreservation for a long period, and also has viscosity suited for use in a dispenser for beverage. An emulsified composition containing a milk fat content, a milk protein content, a disaccharide alcohol and an emulsifier in a certain ratio is prepared. A ratio of each component of the emulsified composition can be obtained by accurately adjusting the amounts of raw materials such as milk, whole milk powders, butter, cheese, cream, condensed milk, butter oil, butter milk and butter milk powders serving as a milk fat source and a milk protein source; a disaccharide alcohol; an emulsifier; and moisture.
Process equipment for the separation of gluten from wheat starch including gluten process equipment configured to process gluten after the gluten is initially separated from a starch, the gluten processing equipment having a dewatering press configured to dewater gluten and modified gluten process equipment including at least one component selected from the group of a high pressure water wash system located upstream of the dewatering press, a kneader located upstream of the dewatering press, a homogenizer located upstream of the dewatering press, a dispersion tank configured to precipitate fines downstream of the dewatering press, a solids-ejecting centrifuge downstream, and combinations thereof.
It is described a composition comprising as active ingredients green tea extract and pomegranate extract for the prevention or reduction of the progression of prostate cancer.
The present invention relates to a cosmetic, nutraceutical or dermatological composition for treating or preventing acne, comprising a peptide and oside extract of Schizandra fruit and a suitable excipient. Preferably, the extract is obtained from Schizandra sphenanthera. The composition may also comprise at least one anti-acne agent selected from a sebum-regulating agent, an antibacterial and/or antifungal agent, a keratolytic agent and/or a keratoregulating agent, an astringent, an anti-inflammatory and/or anti-irritant, an antioxidant and/or a free-radical scavenger, a cicatrizing agent, an anti-ageing agent and a moisturizing agent. The invention also relates to a method for cosmetic treatment of acne, characterized in that a cosmetic composition according to the invention is applied to the affected areas of the skin, or in that the affected individual takes a nutraceutical composition according to the invention orally.
The present invention relates to respirable dry powders that contain respirable dry particles that comprise about 20% (w/w) leucine, about 75% (w/w) calcium lactate, and about 5% (w/w) sodium chloride, or about 37.5% (w/w) leucine, about 58.6% (w/w) calcium lactate, and about 3.9% (w/w) sodium chloride, and methods for treating a subject using the respirable dry powders.
This invention relates to a liquid or semisolid oral drug formulation comprising a therapeutically active compound of the formula (I) or a geometric isomer, a stereoisomer, a pharmaceutically acceptable salt, an ester thereof or a metabolite thereof, in combination with a pharmaceutically acceptable carrier.
The present invention provides pharmaceutical compositions comprising azelastine, or a pharmaceutically acceptable salt or ester thereof including azelastine hydrochloride, and optionally one or more additional active agents. Preferred such compositions further comprise one or more pharmaceutically acceptable carriers or excipients that reduce the amount of post-nasal drip, and/or that minimize or mask the unpleasant bitter taste associated with post-nasal drip, of the compositions into the oral cavity, upon intranasal or ocular administration of the compositions. Especially effective excipients used in the compositions of the present invention are hypromellose as a viscosity modifier and sucralose as a taste-masking agent. The invention also generally relates to pharmaceutical compositions comprising one or more active pharmaceutical ingredients, such as azelastine or pharmaceutically acceptable salts or esters thereof including azelastine hydrochloride, particularly wherein the compositions are provided in unit dosage form. In certain embodiments, the invention provides such unit dosage pharmaceutical compositions comprising azelastine hydrochloride formulated for use as nasal sprays and/or ocular solutions or drops. The invention also provides methods of treating or preventing certain disorders, or symptomatic relief therefrom, by administering the compositions of the invention to a patient, e.g., for the symptomatic relief of a variety of allergic and non-allergic conditions, particularly conjunctivitis, sinusitis, rhinitis and rhinosinusitis. The compositions and methods of the present invention provide significant value in terms of patient acceptability, convenience, and compliance.
A polyacrylate formulation suitable for delivery of drug to through a body surface of an individual. By loading the drug and permeation enhancers at a high concentration into a polyacrylate proadhesive that has inadequate adhesive properties for typical adhesive application on the skin, a formulation with desirable adhesive characteristics and effective therapeutic properties can be made. The proadhesive has higher glass transition temperature than typical pressure sensitive adhesives.
Surgical implants are provided which include a film comprising a first therapeutic agent and a mesh comprising a second therapeutic agent. The surgical implant includes a film in direct contact with a mesh. The first therapeutic agent may be released at a first rate and the second therapeutic agent may be released at a second rate.
The present invention relates to compositions including medium chain peroxycarboxylic acid, methods for making these compositions, and methods for reducing the population of a microorganism. The compositions can include advantageously high levels of the medium chain peroxycarboxylic acid, can be readily made, and/or can exhibit reduced odor.
The present invention relates to human metabolism, in particular fat reduction and a cosmetic and pharmaceutical formulation, as well as respective uses in particular together with a dressing material according to the invention.
Novel methods and compositions for treating aged and environmentally damaged skin are disclosed which provide improvements in the skin's visual appearance, function and clinical/biophysical properties by activating at least one proteolytic enzyme in the skin's stratum corneum. The disclosed treatment methods involve topical application of a novel cosmetic composition containing a combination of a cationic surfactant such as N,N-dimethyldodecyl amine oxide (DMDAO), an anionic surfactant such as sodium dodecyl sulfate (SDS), or monoalkyl phosphate (MAP) and a chelating agent such as ethylene diamine tetraacetate (EDTA) to stimulate a chronic increase in the replacement rate of the skin's stratum corneum by means of corneum protease activation. This chronic, low level stimulation is effective to induce repair and replacement of the stratum corneum, epidermis, and dermis of the skin and improvements in the appearance, function, and anti-aging properties of the skin.
A process is described for the production of an immunostimulant by submerged cultivation of Lentinus edodes in which mycelium from agar plates or a fermentation broth is added to a liquid medium in a shake flask or a bioreactor containing nutrients such as malt extract, yeast extract, peptone and glucose having access to air or to which air is added, and which is kept in constant movement at approx. 28° C. At the proper conditions, there will be an increase in the production of extracellular lentinan, which is shown to be a better immunostimulant than intracellular lentinan. The extracellular product is precipitated from the growth medium by means of methods for the precipitation of microbial polysaccharide.
This invention relates to monovalent and multivalent, monospecific binding proteins and to multivalent, multispecific binding proteins. One embodiment of these binding proteins has one or more binding sites where each binding site binds with a target antigen or an epitope on a target antigen. Another embodiment of these binding proteins has two or more binding sites where each binding site has affinity towards different epitopes on a target antigen or has affinity towards either a target antigen or a hapten. The present invention further relates to recombinant vectors useful for the expression of these functional binding proteins in a host. More specifically, the present invention relates to the tumor-associated antigen binding protein designated RS7, and other EGP-1 binding-proteins. The invention further relates to humanized, human and chimeric RS7 antigen binding proteins, and the use of such binding proteins in diagnosis and therapy.
Methods are provided for treatment of hematologic cancers, particularly lymphomas and leukemias, including without limitation myelogenous and lymphocytic leukemias. A combination of antibodies specific for CD47; and specific for a cancer associated cell surface marker are administered to the patient, and provide for a synergistic decrease in cancer cell burden. The combination of antibodies may comprise a plurality of monospecific antibodies, or a bispecific or multispecific antibody. Markers of interest include without limitation, CD20, CD22, CD52, CD33; CD96; CD44; CD123; CD97; CD99; PTHR2; and HAVCR2.
A coenzyme Q10-containing composition comprising a coenzyme Q10 and a hydrophilic fatty acid ester of a polyhydric alcohol; a coenzyme Q10-containing composition comprising a coenzyme Q10, a lipophilic fatty acid ester of a polyhydric alcohol and a hydrophilic fatty acid ester of a polyhydric alcohol; and a food or beverage comprising the coenzyme Q10-containing composition as defined above.
The present invention relates to compositions of cyanoacrylate monomer, a method of improving the viscosity and the curing speed with a single additive and a process of providing sterilized cyanoacrylate adhesive compositions for application in the medical field.
A liquid evaporative cooling composition has been discovered which is peculiarly effective in providing relief from heat-related discomfort. The composition utilizes a concentrate, dissolved in water, which preferably consists essentially of (a) about forty-three percent by weight of an alcohol; (b) about twelve percent by weight of a surfactant; (c) about four percent by weight of an aromatic oil; (d) about one percent by weight of a cooling agent; and (e) about forty percent by weight of water.Various ranges of concentrations for the composition components have been discovered, the concentration ranges featuring various advantages and disadvantages, and these ranges are disclosed herein.The composition can be applied to the surface to be cooled (typically, a user's skin) in a number of ways and has even been found to relieve heat-related discomfort in animals.
The present invention provides the use of surface active proteins, especially class I and class II hydrophobins, in topically applied pharmaceutical formulations. The invention is particularly directed to topically applied pharmaceutical products for enhancing the penetration to achieve a transungual delivery of a prophylactically and/or therapeutically effective amount of an active ingredient (drug) to a patient (including animals and humans) into and/or through a nail, of the animal or human body, in order to treat one or more of a variety of diseases or disorders. Related embodiments of the invention are also disclosed.
The present subject matter provides foamable suspension gels that foam after release from a container. The foamable suspension gels contain at least one pharmaceutically active agent that is sparingly soluble to insoluble in water, a second pharmaceutically active agent, and optionally a third active agent.
The present application discloses compositions and methods of synthesis and use of 18F or 19F-labeled molecules of use in PET, SPECT and/or MR imaging. Preferably, the 18F or 19F is conjugated to a targeting molecule by formation of a complex with a group IIIA metal and binding of the complex to a bifunctional chelating agent, which may be directly or indirectly attached to the targeting molecule. In other embodiments, the 18F or 19F labeled moiety may comprise a targetable construct used in combination with a bispecific antibody to target a disease-associated antigen. The disclosed methods and compositions allow the simple and reproducible labeling of molecules at very high efficiency and specific activity in 30 minutes or less. In preferred embodiments, the labeled molecule may be used for imaging in a subject without purification after labeling.
It is intended to provide a novel amino acid organic compound which can be used as a labeling precursor compound for radioactive halogen-labeled amino acid compounds including [18F]FACBC, and which prevents methanol from remaining in the radioactive halogen-labeled amino acid compounds produced therefrom. The novel amino acid organic compound is a compound represented by the following formula: wherein n is an integer of 0 or of 1 to 4; R1 is an ethyl, 1-propyl or isopropyl substituent; X is a halogen substituent or a group represented by —OR2; R2 is a straight-chain or branched-chain haloalkylsulfonic acid substituent with one to 10 carbon atoms, trialkylstannyl substituent with 3 to 12 carbon atoms, fluorosulfonic acid substituent or aromatic sulfonic acid substituent; and R3 is a protective group.
A method of cutting, thinning, welding and chemically functionalizing multiwalled carbon nanotubes (CNTs) with carboxyl and allyl moieties, and altering the electrical properties of the CNT films by applying high current densities combined with air-exposure is developed and demonstrated. Such welded high-conductance CNT networks of functionalized CNTs could be useful for device and sensor applications, and may serve as high mechanical toughness mat fillers that are amenable to integration with nanocomposite matrices.
A clinical diagnostic sample analyzer for analyzing a sample of a patient is disclosed. The analyzer includes a telescoping closed-tube sampling assembly with a sample probe concentrically housed within a piercing probe and a venting mechanism. The closed-tube sampling assembly is used for aspirating a sample from a sample tube for analysis by a clinical diagnostic sample analyzer.
A disposable cartridge adapted to be used with a sensor-dispensing instrument comprises a housing, test sensors, a mechanical mechanism and moveable seals. The housing forms at least one opening therethrough. The test sensors are stacked in the housing. The test sensors are adapted to assist in testing at least one analyte. The mechanical mechanism is adapted to urge the test sensors in a first direction. One of the test sensors is positioned for ejection from the cartridge. The moveable seals is adapted to be in a closed position that seals the at least one opening so as to provide a substantially moisture-proof and a substantially air-tight cartridge, and one of the moveable seals is adapted to be in an open position that allows one of the test sensors to be moved therethrough.
An apparatus for controlling on site generation and mixing of a two or more part chemistry, such as a peroxide source and a catalyst. In particular, the invention discloses an apparatus and dispensing method for separating solid surfaces that undergo an uncontrolled, continuous reaction when contacted with water and allows for delivery of solid reactive chemistries at the same time in a standard spray from the bottom dispensing configuration while preventing continued reaction after the dosing is complete.
A holding sealing material includes laminated mats. One or more fixed parts partially combine the mats. Each of the mats has a basic rectangular shape. Each of the mats has a recess on one of shorter sides of the rectangular shape and a projection on another shorter side and is designed to be wound around an object to be wound so that the projection and the recess are fitted to each other. The mats have respective longitudinal lengths that increase as a distance from the object to each of the mats increases. A mat that is placed at a closest position to the object has a shortest longitudinal length. An area of the projection of the mat that is placed at a closest position to the object is smaller than an area of the projection of a mat that is placed at a farthest position from the object.
An automatic analysis system, which is capable of quickly performing reinspection, includes a sample rack which holds a sample vessel containing a sample; a sample rack input unit in which the sample rack is input; a carrier line which carries the sample rack; a plurality of automatic analyzers arranged along the carrier line; a sample rack holding unit which holds the sample rack storing an analyzed sample; a sample rack collection unit which collects the sample rack storing an analyzed sample; a carrier line for reinspection which returns the sample rack containing a sample subjected to reinspection depending on analysis results; and a controller for returning the sample rack from the sample rack holding unit through the carrier line for reinspection and controlling any one of automatic analyzers different from one that has previously performed analysis to perform reanalysis of the sample.
The present invention relates to a method and a device for small scale reactions, such as sample preparation of a desired substance in a sample. In the method using the device samples mixed with functionalized magnetic particles are magnetically transferred between different working stations on the device. The method uses a hydrophobic surface, such as a Petri dish, provided with hydrophilic spots of, for example, agarose beads located on said hydrophobic surface and provided with buffers, reactants or ligands.
Nozzle for guiding molten metal, including an inlet at an upstream first end, at least one outlet towards a downstream second end, and an inner surface between the inlet and the outlet defining a bore through the nozzle having a throat region adjacent the inlet. An annular channel is provided in the inner surface of the nozzle, and a fluid supply is arranged to introduce fluid into the bore via the annular channel or downstream thereof. The throat region has a convexly curved surface and the annular channel is located within or adjacent the convexly curved surface of the throat region.
A method of making an aircraft component is provided, wherein the method comprises the steps of: providing a mold (1) for the receipt of a material (3) from which the aircraft component is to be made providing the mold with said material providing an intensification tool (14) in spaced relationship to the mold and heating the material, tool and mold so that the tool expands and applies pressure to the material and so as to form the component and wherein the linear coefficient of thermal expansion of the tool in a first direction is matched to the coefficient of thermal expansion of the component in the first direction, and the coefficient of thermal expansion of the tool in a second direction is greater than the coefficient of thermal expansion of the component in the second direction, the tool being provided with at least one contacting surface for contacting the material and through which pressure is applied to the material, the expansion of the tool in the second direction causing the at least one contacting surface to contact, and exert pressure on, the material.
A uniaxially compressed dosage form manufactured by three-dimensional printing that preserves the predetermined internal architecture of the dosage form while producing an improved surface finish. The compression compacts the dosage form, eliminating at least some of the void space that remains at the end of conventional three-dimensional printing. Surface finish obtained as a result of the uniaxial compression process can be essentially equal to that obtained from conventional tablet pressing. Additionally, the internal structure or spatial variation of composition of the dosage form is preserved during the pressing operation, with geometric shrinkage occurring mostly in the direction of the axis of pressing. Further, as a result of compression, a greater quantity of API can be packed into a given final volume of dosage form.
A conductive slurry for a solar battery is disclosed, which comprises a first-order aluminum powder having a median diameter D50 of about 2-8 um, a second-order powder having a median diameter D50 of about 20-100 nm, a glass powder, and an organic carrier. The conductive slurry may be stable on a screen without leakage through screen, and there are no agglomeration and sedimentation during long-time storage. A method of preparing a conductive slurry for a solar battery is also disclosed, which comprises steps of mixing a first-order aluminum powder, a second-order powder, a glass powder, and an organic carrier to obtain a mixture; and then ball milling the mixture to obtain the conductive slurry. The method may be simple and easy to realize, so that it's advantageous for mass production in the industry.
A method for the removal of copper oxide from a copper and dielectric containing structure of a semiconductor chip is provided. The copper and dielectric containing structure may be planarized by chemical mechanical planarization (CMP) and treated by the method to remove copper oxide and CMP residues. Annealing in a hydrogen (H2) gas and ultraviolet (UV) environment removes copper oxide, and a pulsed ammonia plasma removes CMP residues.
Disclosed is a composition for and applying said method for micro etching of copper or copper alloys during manufacture of printed circuit boards. Said composition comprises a copper salt, a source of halide ions, a buffer system and a benzothiazole compound as an etch refiner. The inventive composition and method is especially useful for manufacture of printed circuit boards having structural features of ≦100 μm.
Aspects and embodiments of the present invention are directed to apparatus and methods of filtering a fluid to reduce a level of at least one contaminant therein. The filtering of the fluid may be accomplished with a radial flow filtration column comprising a fluid chamber having an inlet, an outlet, and a side wall, an inner permeable retainer positioned in the fluid chamber, an outer permeable retainer positioned in the fluid chamber spaced apart from and surrounding the inner permeable retainer, a media bed compartment formed between the inner permeable retainer and the outer permeable retainer, and an adjustable element biased into the media bed compartment and configured to maintain a predetermined packing density of a media bed to be disposed within the media bed compartment.
A method for reducing fecal coliforms in waste water wherein the flow of water is directed through a reactor having removable cover, inlet and outlet, two UV lamps, six irradiating chambers, each interconnected by apertures, a UV lamp control box, and a heat a conducting pipe to transfer heat from the control box into the flowing water.
The disclosure pertains to systems and methods for removing hydrocarbon contaminants from a contaminated solid using an environmentally benign extractant and an oleophilic absorber, where the environmentally benign extractant and the oleophilic absorber are separate components.
A cartridge having at least one layer containing sodium zirconium phosphate and at least one layer containing a combination of acid zirconium phosphate and alkaline hydrous zirconium oxide is described. Methods of using the cartridge for water purification are also described.
One exemplary embodiment can be a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, a lanthanide-series metal including one or more elements of atomic numbers 57-71 of the periodic table, and a support. Generally, an average bulk density of the catalyst is about 0.300-about 0.620 gram per cubic centimeter, and an atomic ratio of the lanthanide-series metal:noble metal is less than about 1.3:1. Moreover, the lanthanide-series metal can be distributed at a concentration of the lanthanide-series metal in a 100 micron surface layer of the catalyst less than about two times a concentration of the lanthanide-series metal at a central core of the catalyst.
A hydrocarbon conversion catalyst comprising a modified beta zeolite, an amorphous inorganic oxide and a hydrogenation component wherein the said catalyst support has an NH3-AI of less than 3.5 and/or an IEC-AI of less than 3.7.
An adhesive composition for use in devices and methods for measuring a presence or a concentration of a particular component, such as an antigen, in a sample, such as blood, are provided. In one exemplary embodiment of an adhesive composition, the composition includes an adhesive, water, a poloxamer, and an anticoagulant. The adhesive can include particular properties, such as being hydrophilic, pressure-sensitive, heat-activated, and/or water soluble. The adhesive is particularly useful because it can help improve the flow of sample a device. For example, when the device is an immunosensor, the adhesive can help prevent the blood from clotting in chambers of the immunosensor. This results in a more efficient and accurate determination of the concentration of the sample. Methods of making the composition and device in which the composition can be used are provided, as are methods of using the same.
An antireflection film of the present invention includes a plurality of first raised portions, each of which has a two-dimensional size of not less than 1 μm and less than 100 μm when seen in a direction normal to the film, and a plurality of second raised portions, each of which has a two-dimensional size of not less than 10 nm and less than 500 nm when seen in a direction normal to the film. In at least one embodiment, the antireflection film has a first surface shape or a second surface shape that is inverse to the first surface shape relative to a film surface. In the first surface shape, the second raised portions are provided on the first raised portions and between the plurality of first raised portions, and the elevation angle α of a surface of the first raised portions relative to the film surface is about 90° or more. The antireflection film of the present invention has a more excellent antiglare function than conventional ones.
The present invention is intended to enable silver ions in an internal electrolyte solution of a reference electrode to be suppressed from being eluted, and also suppress a potential variation that occurs due to production of a poorly-soluble silver compound on surfaces of a liquid communication part and the like, and specifically provided with: an internal electrode formed of a silver/silver chlorides electrode; an internal electrolyte solution that is in contact with the internal electrode; and a containing body that contains the internal electrolyte solution, in which the containing body is formed of a material that does not have anionic conductivity but has cationic conductivity and moisture permeability.
A system for electroplating a rotogravure cylinder out of a plating solution having a concentration of copper ions wherein the cylinder is connectable to a current source is provided. The system includes a plating apparatus configured to copper plate the cylinder comprising a non-dissolvable anode, a plating tank configured to receive the cylinder, a controller configured to control operation of the apparatus, and a tube for delivering a mixture of a hardener and the plating solution to the plating tank.
A method of making a nonwoven fibrous mat that retains good strength and recovery after scoring and folding, properties making the mat useful in making collapsible ceiling tile. The mat comprises a majority of glass fibers and a minority of polymer fibers, the fibers being bound together with up to 35 wt. percent of a polyacrylic acid and polyol polymer binder based on the dry weight of the mat. The mat can be cured to “B stage”, thermoformed into the desired shape and then heated further to complete the cure of the binder.
The present invention relates to a cellulosic material having one or more smoke diluents within its cellular structure and, optionally, one or more smoke diluents on its surface.
A process for producing fibrous material which includes the following: preparing a solution of chemicals that includes less than 25% of sulphite (calculated as Na2SO3), based on the oven-dry amount of the lignocellulosic raw material; mixing the solution of chemicals with wood in a specified liquor material; heating the solution of chemicals and the wood to a temperature above room temperature; and then either of the following alternatives: (1) removing the free-flowing solution of chemicals and digestion of the wood in the vapor phase; (2) having the wood digested in the liquid phase and separating the free-flowing solution of chemicals and the wood.
A method for inhibiting the formation, deposition and adherence of calcium salt scale to metallic and other surfaces in the equipment, vessels and/or piping of a chemical pulp process facility comprising adding an effective scale inhibiting amount of a composition to the alkaline aqueous mixture in the digester of said chemical pulping process. Said composition consists of at least one phosphonate component (I) and at least one component (II) consisting of at least one carboxylated fructan compound.
The present disclosure provides a method of manufacturing body adhering absorbent articles orientated in the cross-machine direction, body adhering absorbent article having reduced or eliminated curl. The articles are manufactured with reduced curl by selectively reducing or eliminating the shell elastic tension in regions where components of the body adhering absorbent article are to be attached to form the composite absorbent article web. In certain aspects the body adhering absorbent articles are manufactured by supplying an elastic web of shell material having a longitudinal and transverse direction, that is stretchable only in the transverse direction, attaching at least one component to form a composite web material, and cutting the composite web material to form a body adhering absorbent article.
A disposable absorbent article comprises an outer cover, and an absorbent member attached to the skin facing side of the outer cover. The absorbent member includes an absorber. At least a crotch zone of the outer cover is subjected to a softening process for softening a material of the outer cover.
Embodiments of the present invention generally relate to a wrist protecting glove and methods of manufacturing the same. More specifically, embodiments of the present invention relate to a wrist protecting glove providing maximum protection with minimal restriction on range of movement, and method of manufacturing the same. In one embodiment, a wrist protecting glove comprises a polyurethane pad, formed to fit over a user's palm, a holding material integrally formed within the pad, a set of snap fasteners for closing the holding material around a user's thumb, a palm strap for affixing the wrist protecting glove on a user's hand, the palm strap affixed to the holding material, and a D-ring assembly for receiving the palm strap, wherein the palm strap comprises a hook and loop fastener strap for looping through the D-ring assembly and fastening onto itself to affix the wrist protecting glove on the user's hand.
A method for laying carbon nanotube film includes following steps. A carbon nanotube film is provided. The carbon nanotube film includes a number of carbon nanotube strings substantially parallel to each other and extending along a first direction. The carbon nanotube film is stretched along a second direction substantially perpendicular with the first direction to form a deformation along the second direction. The carbon nanotube film is placed on a surface of a substrate. The deformation along the second direction is kept.
An apparatus includes a counter top sized outer case; first and second electric motors disposed inside of the case. A positive displacement liquid pump with a pulsating output is operatively connected to said first electric motor and has an input and output port. A positive displacement gas pump with a pulsating output is operatively connected to the second electric motor and has an input and output port. A liquid source is fluidly connected to the input port of the liquid pump. The method further includes connecting a medical line or instrument to be cleaned to the output port of the liquid pump and operating the pump until the line or instrument has been cleaned. The line or instrument is then disconnected and connected to the output line of the gas pump. The gas pump is operated until the line or instrument has been cleared of liquid and then disconnected.
A processing apparatus includes a loading chamber; a buffer chamber connected to the loading chamber; a first process chamber connected to the buffer chamber; and an unloading chamber connected to the first process chamber, wherein a processing path through the processing apparatus is a forward in-line path in a direction through the loading chamber, the buffer chamber, the first process chamber, and the unloading chamber.
A vapor deposition reactor and a method for forming a thin film. The vapor deposition reactor includes at least one first injection portion for injecting a reacting material to a recess in a first portion of the vapor deposition reactor. A second portion is connected to the first space and has a recess connected to the recess of the first portion. The recess of the second portion is maintained to have pressure lower than the pressure in the first space. A third portion is connected to the second space, and an exhaust portion is connected to the third space.
Techniques for the formation of silicon ingots and crystals using silicon feedstock of various grades are described. A common feature is adding a predetermined amount of germanium to the melt and performing a crystallization to incorporate germanium into the silicon lattice of respective crystalline silicon materials. Such incorporated germanium results in improvements of respective silicon material characteristics, including increased material strength and improved electrical properties. This leads to positive effects at applying such materials in solar cell manufacturing and at making modules from those solar cells.
Provided is a sputtering target of sintered Ti—Nb based oxide, wherein the sputtering target consists of titanium (Ti), niobium (Nb), and remainder being oxygen and unavoidable impurities, and the atomic ratio of Ti and Nb is 0.39≦(Nb/(Ti+Nb))≦0.79. The sputtering target of sintered Ti—Nb based oxide has a high refractive index and a low extinction coefficient. Also provided is a thin film of Ti—Nb based oxide obtained by using the foregoing target, which enables high-rate deposition. The thin film has superior transmittance, is subject to minimal reduction and variation of reflectivity, and is useful as an interference film or a protective film of an optical information recording medium, or as a part of a constituent layer of an optical recording medium. The thin film can also be applied to a glass substrate; that is, it can be used as a heat reflecting film, an antireflection film, or an interference filter.
A solid ink composition comprises a crystalline compound, an amorphous compound and a pigment concentrate. The pigment concentrate includes a diester crystalline compound, a dispersant and a pigment (magenta/yellow). The incorporation of such pigment concentrate in the solid ink composition produces a stable ink.
A process for the recovery of ammonia contained in a gaseous stream is described, said process comprising the following phases: (a) subjecting the gaseous stream containing ammonia to a washing (S) with an aqueous washing solution (5a) having a pH lower than 7.0, with the formation of a purified gaseous stream (6) and an aqueous solution (7) containing an ammonium salt; (b) subjecting the aqueous solution containing the ammonium salt coming from phase (a) to a distillation process (MD) with a hydrophobic microporous membrane at a temperature ranging from 50 to 250° C. and a pressure ranging from 50 KPa to 4 MPa absolute with the formation of a regenerated washing solution (16) and a gaseous stream (18) comprising NH3 and H2O; (c) recycling said generated washing solution to phase (a). The equipment for carrying out the above process is also described.
A Pressure Swing Adsorption filtration that separates a first set of particles and a second set of particles to produce a purified gas output can be monitored in real-time. A sentinel component can provide real-time in situ tracking of a parameter associated with the PSA filtration and dynamically adjusts the PSA filtration based upon the real-time tracked parameter. The real-time monitoring of the parameter further enables maintenance of equipment utilized with the PSA filtration as well as equipment down-the-line that utilize the purified gas output.
A process is described for the recovery of nickel and/or cobalt from laterite or partially oxidized lateritic ores having a substantial proportion of the iron present in the ferrous state. The process includes providing a laterite or partially oxidized laterite ore wherein a substantial proportion of the iron present in the ore is in the ferrous state; acid leaching the ore to provide a product leach solution containing at least ferrous iron, nickel and cobalt together with acid soluble impurities; and recovering the nickel and cobalt from the product leach solution with a selective ion exchange resin in an ion exchange process leaving the ferrous iron and other acid soluble impurities in the raffinate.
A urea fertilizer having reduced ammonia volatilization upon application to soil including a central particle having an outer surface and comprising ammonia volatilization inhibiting compounds containing one or more of boron and iodine, and a coating of urea on the outer surface of the central particle, and further a process of making the fertilizer including the steps of: granulating ammonia volatilization inhibiting compounds containing one or more of boron and iodine, with a binder to produce volatilization inhibitor particles; screening the inhibitor particles to a preselected particle size; spraying melted urea onto the surface of the inhibitor particles to produce a coating on the inhibitor particles; granulating the coated inhibitor particles with sprayed melted urea to produce granules of urea coated central volatilization particles; and cooling the granules.
A mat includes a first main face and a second main face opposite to the first main face. At least two layers include a first layer occupying a first area from the first main face along a thickness direction of the mat. The first layer includes a first long fibrous substance which includes an inorganic fibrous substance. A second layer is adjacent to the first layer. The second layer includes a short fibrous substance which includes an inorganic fibrous substance and which has an average fiber length shorter than an average fiber length of the first long fibrous substance. An intertwined portion extends from the first main face to the second main face. The intertwined portion includes the first long fibrous substance and the short fibrous substance being more closely intertwined with each other than the inorganic fibrous substances in a portion except the intertwined portion.
The present invention relates to a separator and more specifically, but not exclusively, to a centrifugal separator for the cleaning of a gaseous fluid. A centrifugal separator is provided as comprising a housing defining an inner space, and a rotor assembly for imparting a rotary motion onto a mixture of substances to be separated. The rotor assembly is located in said inner space and is rotatable about an axis relative to the housing. The rotor assembly comprises an inlet for receiving said mixture of substances, an outlet from which said substances are ejected from the rotor assembly during use, and a flow path for providing fluid communication between the inlet and outlet, wherein the outlet is positioned more radially outward from said axis than the inlet.
A device in a pipe has an annular partition spaced radially inwardly from an inner face of the pipe and defining therewith an upstream annular space opening axially upstream of the direction into the pipe such that a secondary gas stream is separated from the primary gas stream along with a liquid film on the inner surface, a downstream annular space larger than the upstream annular space, and a droplet separator opening into the downstream annular space. The separator has a plurality of lamellas, a condensate sump, and a drain, so that the edge film intercepted by the partition into the upstream space passes therefrom into the downstream space and therefrom through the separator such that the liquid of the film flows into the sump and out the drain and the secondary gas stream passes out of the separator.
A catalyst composition for the oxidation of carbon monoxide and volatile organic compounds and for hydrogenation reactions comprises at least two different high surface area oxide support materials wherein at least one of the high surface area support material supports at least one base metal promoter.