Embodiments described herein reduce latency and improve packet delivery when transmitting audio packets from a source device to one or more sink devices. For example, one or more operating modes that introduce latency when transmitting packets may be disabled at the source device and/or sink device(s). Additionally, certain operational behavior of the source device and/or sink device(s) may be changed based on the quality of the channel used to transmit audio packets to further improve the latency. Such operational behavior includes changing the jitter buffer size of the sink device(s), the number of retry attempts performed by the source device when re-transmitting packets that have been lost, and changing the channel used to transmit the audio packets. Embodiments described herein further enable the synchronization of playback between the sink devices to ensure that sink devices playback audio packets in a synchronized fashion.
A sound enrichment system for provision of tinnitus relief, the sound enrichment system includes a noise generator, at least one signal modulator for random or pseudo-random modulation of a noise signal that is obtained using the noise generator, and an output transducer for conversion of the modulated noise signal to an acoustic signal for presentation to a user. A method of providing a noise enriched sound signal for provision of relief of tinnitus includes generating a randomly or pseudo-randomly modulated noise signal, generating an acoustic noise signal using the modulated noise signal, and presenting the acoustic noise signal to a tinnitus suffering person.
A MEMS microphone may include a backplate comprising first and second electrodes electrically isolated from one another and mechanically coupled to the backplate in a fixed relationship relative to the backplate and a diaphragm configured to displace relative to the backplate as a function of sound pressure incident upon the diaphragm, the diaphragm comprising third and fourth electrodes electrically isolated from one another and mechanically coupled to the diaphragm in a fixed relationship relative to the diaphragm such that the third and fourth electrodes displace relative to the backplate as a function of sound pressure incident upon the diaphragm. The first and third electrodes may form a first capacitor and the second and fourth electrodes may form a second capacitor, the capacitance of each which may be a function of the displacement of the diaphragm, and each of which may be biased by an alternating-current voltage waveform.
Described are systems, methods, and computer readable medium for dynamic power usage and data transfer rate management in a sensor network including synchronous and asynchronous links. Exemplary embodiments provide a lightweight communication protocol enabling dynamic management of data buffer size in a sensor network and corresponding control of power usage and data transfer rates in the sensor network.
A broadcast signal transmission method is disclosed. The broadcast signal transmission method according to one embodiment of the present invention comprises the steps of: processing video data and audio data; encoding a broadcast service component, including the video data and audio data, and service layer signaling (SLS) information on the broadcast service component on the basis of a delivery protocol; subjecting the broadcast service component, the SLS information, and service list table (SLT) information to IP packetization; and subjecting the broadcast service component, the SLS information, and the SLT information to physical layer processing.
A system and method for presenting video asset information to a viewer to assist the view in selecting a video asset for viewing. The video assets can be available from a plurality of different video asset sources, such as VOD (video on demand), PVR (personal video recorders) and broadcast (including over the air, cable, and satellite). Images from the video assets are displayed in a uniform manner, along with information about the video assets. The information includes data in a metadata category. The view can select one of the video assets for viewing, but also can navigate using metadata categories such as genre, actors, director etc. This allows a much easier and natural navigating and selection process for viewers.
Methods and systems for capturing, transmitting and processing data for generating ratings relating to multimedia programming based on passively obtained user cues are disclosed herein.
A playback method according to one aspect of the present disclosure is performed by a playback device connected to a display device. The playback method includes obtaining a type of the display device; selecting each of a version of High-Definition Multimedia Interface (HDMI) and a version of High-bandwidth Digital Content Protection (HDCP), according to the obtained type of the display device; obtaining a video signal of content recorded on a recording medium; decoding the obtained video signal; encrypting the decoded video signal using the selected version of HDCP; and outputting the encrypted video signal to the display device using the selected version of HDMI.
Embodiments described herein are directed at apparatus, systems and methods generally related to satellite, cable or other television receiver/DVR video systems for structuring a centralized content-processing device and/or its associated EPG in facilitating delivery and recording of audiovisual content when the centralized content-processing device is associated with multiple remote content-processing devices. In one implementation, a centralized content-processing device may create device-specific folders for the centralized content-processing device and one or more remote devices. The device-specific folders may, for example, include information for one or more programming events associated with content (e.g., TV shows, sports, movies, music, documentaries). In some embodiments, the device-specific folders for the remote content-processing devices are logically separated from one another in a manner such that a remote device is restricted access to the device-specific folder for the remote device.
Systems and methods are operable to present an enhanced electronic program guide (EPG). The enhanced EPG comprises a reduced size video, a mini guide, a single channel guide bar, and an optional preview guide bar.
Embodiments described herein provide systems and methods for sharing encoder output of video streams. In a particular embodiment, a method provides determining video profiles for each of a plurality of devices. The method further provides determining if two or more of the video profiles are similar by determining if parameters associated with each video profile differ by less than a threshold value. The method further provides transmitting a video stream encoded in a single format to the devices if they have similar profiles and transmitting video streams encoded in different formats to the devices if they do not have similar profiles.
According to an embodiment, a method of transmitting multimedia comprising assigning media processing unit (MPU) metadata included in a first MPU and a second MPU such that the MPU metadata is transmitted as last of the first MPU and the second MPU; generating the first MPU and the second MPU based on the assignment; generating interval information indicating a transmission time interval for transmitting the first MPU and the second MPU; transmitting the first MPU; transmitting control information within the transmission time interval indicated by the interval information; and transmitting the second MPU based on the interval information, after transmitting the control information is provided.
A device can receive, from a user device, a request for content in a target format for playback. The device can determine information identifying the content in a source format based on the request for content associated with the target format. The device can request the content in the source format using the information identifying the content in the source format. The device can receive the content from a content source in the source format based on requesting the content in the source format. The device can convert the content in the source format to generate a set of files associated with the target format. The device can provide the set of files in the target format to a content delivery network associated with the user device.
A method and system for generating highlights from scored data streams is disclosed. According to one embodiment, media content containing time-stamped payloads is received in a data stream from one or more sources. The received media content is recorded in a buffer for a predetermined period of time and sliced into data buckets. For each of the data buckets, a score is assigned according to user-provided keywords. The data buckets are recorded along with the assigned score to generate highlights from the one or more sources using the scores of the recorded data buckets.
A method includes receiving head-tracking data that describe one or more positions of people while the people are viewing a three-dimensional video. The method further includes generating a probabilistic model of the one or more positions of the people based on the head-tracking data, wherein the probabilistic model identifies a probability of a viewer looking in a particular direction as a function of time. The method further includes generating video segments from the three-dimensional video. The method further includes, for each of the video segments: determining a directional encoding format that projects latitudes and longitudes of locations of a surface of a sphere onto locations on a plane, determining a cost function that identifies a region of interest on the plane based on the probabilistic model, and generating optimal segment parameters that minimize a sum-over position for the region of interest.
The present disclosure relates to an image decoding device and method through which it is possible to suppress an increase in a load of a decoding process. The present disclosure is provided with a decoding unit configured to generate decoded image data by decoding encoding data obtained by encoding image data for each coding unit (CU) that is recursively divided, and a filter processing unit configured to perform a filter process of the decoded image data generated by the decoding unit according to information set for each data unit corresponding to header information of the encoding data. The present disclosure is applicable, for example, to an image decoding device and the like.
Aspects of the disclosure include a method of video coding. The method includes receiving input data associated with a first block and a second block of an image frame, the first block and the second block corresponding to different color space components. The method further includes identifying a reference region in the first block, identifying at least two reference unit cells among a plurality of unit cells in the reference region, identifying respective intra prediction modes for processing the identified reference unit cells, determining an intra prediction mode for processing a sub-block in the second block based on the identified intra prediction modes, and generating an intra predictor of the sub-block based on the determined intra prediction mode. The reference region and the sub-block correspond to a same region in the image frame. The method further includes encoding or decoding the sub-block based on the intra predictor of the sub-block.
Embodiments of a picture prediction method and a related apparatus are disclosed. A picture prediction method includes: determining K1 pixel samples in a picture block x, and determining a candidate motion information unit set corresponding to each pixel sample in the K1 pixel samples, where the candidate motion information unit set corresponding to each pixel sample includes at least one candidate motion information unit; determining a merged motion information unit set i including K1 motion information units, where each motion information unit in the merged motion information unit set i is selected from at least a part of motion information units in candidate motion information unit sets corresponding to different pixel samples in the K1 pixel samples; and predicting a pixel value of the picture block x by using a non-translational motion model and the merged motion information unit set i.
A method includes acquiring a current picture from a coded video bitstream, where the current picture is segmented into a plurality of units, each unit is divided into a plurality of blocks, and the plurality of blocks in each unit being arranged as a grid. The method further includes decoding, a current block from the plurality of blocks using an entry from a history motion vector (HMVP) buffer. The method further includes updating the HMVP buffer with a motion vector of the decoded current block. The method further includes determining whether a condition is satisfied, the condition specifying that (i) the current block is a beginning of a row included in the grid of the one of the units, and (ii) the plurality of blocks are decoded in accordance with a parallel process. The method further includes, in response to determining that the condition is satisfied, resetting the HMVP buffer.
An encoder determines a compression ratio for compressive sensing and a quantization level used to quantize a media signal based on a target indicator. The encoder accesses compressive sensing measurements performed using the compression ratio and quantizes the compressive sensing measurements based on the quantization level. A decoder receives a compressed signal generated from the signal acquired by the signal acquisition device using the compression ratio and the quantization level. The decoder also receives information indicating the compression ratio or the quantization level. The decoder decompresses the compressed signal based on the compression ratio and the quantization level.
Disclosed are a method and an apparatus for image encoding/decoding that support a plurality of layers. The method for image decoding that supports a plurality of layers includes decoding information of a first layer which a picture of a second layer including a current decoding target block refers to; mapping the information of the first layer to a picture size of the second layer, configuring a reference picture list for the picture of the second layer by adding the mapped information of the first layer and generating prediction samples of the current decoding target block by predicting the current decoding target block of the second layer based on the reference picture list, and the information of the first layer includes at least one of a sample value and motion information of the first layer picture.
An encoder that performs quantization based on a deadzone and a video processing system including the encoder are provided. The encoder includes: a domain transform unit configured to transform first image data of a spatial domain into second image data of a frequency domain including first to N-th pieces of frequency data (wherein N is an integer equal to or greater than 1); a deadzone determination unit including a human visual system (HVS) table including human visual frequency sensitivities and configured to determine, based on the HVS table, a deadzone regarding each of the first to N-th pieces of frequency data; and a quantization unit configured to perform, based on the deadzone, quantization regarding the second image data.
A video coding or decoding method using inter-image prediction to encode input video data in which each chrominance component has 1/Mth of the horizontal resolution of the luminance component and 1/Nth of the vertical resolution of the luminance component, where M and N are integers equal to 1 or more, comprises: storing one or more images preceding a current image; interpolating a higher resolution version of prediction units of the stored images; detecting inter-image motion between a current image and the one or more interpolated stored images so as to generate motion vectors between a prediction unit of the current image and areas of the one or more preceding images; and generating a motion compensated prediction of the prediction unit of the current image with respect to an area of an interpolated stored image pointed to by a respective motion vector.
Various embodiments of the present invention relate generally to systems and methods for analyzing and manipulating images and video. According to particular embodiments, the spatial relationship between multiple images and video is analyzed together with location information data, for purposes of creating a representation referred to herein as a multi-view interactive digital media representation for presentation on a device. Once a multi-view interactive digital media representation is generated, a user can provide navigational inputs, such via tilting of the device, which alter the presentation state of the multi-view interactive digital media representation. The navigational inputs can be analyzed to determine metrics which indicate a user's interest in the multi-view interactive digital media representation.
Depth information can be used to assist with image processing functionality, such as to generate modified image data including foreground image data and background image data having different amounts of blur. In at least some embodiments, depth information obtained from first image data associated with a first sensor and second image data associated with a second sensor, for example, can be used to determine the foreground object and background object(s) for an image or frame of video. The foreground object then can be located in later frames of video or subsequent images. Small offsets of the foreground object can be determined, and the offset accounted for by adjusting the subsequent frames or images and merging the adjusted subsequent frames or images. Such an approach provides modified image data including a foreground object having a first amount of blur (e.g., a lesser amount of blur) and/or background object(s) having a second amount of blur (e.g., a greater amount of blur), while providing simplified processing and reduced power consumption.
A method and apparatus for correcting an image error in a naked-eye three-dimensional (3D) display may include controlling a flat-panel display displaying a stripe image, calculating a raster parameter of the naked-eye 3D display based on a captured stripe image, and correcting a stereoscopic image displayed on the naked-eye 3D display based on the calculated raster parameter, wherein the naked-eye 3D display includes the flat-panel display and the raster.
A projection system and a method for calibrating display image are provided. The method includes: setting a correction image having identification patterns, and establishing first coordinate information of the identification patterns; using a projection device to project the correction image on a display screen; performing an image capturing operation to the correction image and the display screen to obtain a captured image; calculating second coordinate information of the identification patterns in the captured image, and calculating coordinate translation information according to the first coordinate information and the second coordinate information; calculating boundary information of the display screen according to a plurality of boundary coordinate values of the display screen in the captured image and the coordinate translation information, such that the projection device adjusts a size of a projection image for corresponding to the display screen according to the boundary information.
This disclosure describes techniques implemented partly by a communications service for identifying and altering undesirable portions of communication data, such as audio data and video data, from a communication session between computing devices. For example, the communications service may monitor the communications session to alter or remove undesirable audio data, such as a dog barking, a doorbell ringing, etc., and/or video data, such as rude gestures, inappropriate facial expressions, etc. The communications service may stream the communication data for the communication session partly through managed servers and analyze the communication data to detect undesirable portions. The communications service may alter or remove the portions of communication data received from a first user device, such as by filtering, refraining from transmitting, or modifying the undesirable portions. The communications service may send the modified communication data to a second user device engaged in the communication session after removing the undesirable portions.
A method and system for spatially arranging a plurality of video frames for display on a layout region is provided. The plurality of video frames are selected from a video sequence based on a determination of motion of an object within the video sequence. An image layout path is determined for the selected video frames. An anchor point is determined for each selected video frame based on a determination of motion of the object depicted in the video frame, each said anchor point locating a selected video frame with respect to the layout path. The selected plurality of video frames are spatially arranged on the layout region relative to the determined image layout path and in accordance with the determined anchor points.
A control unit 21 of a main device 20 is configured to recognize a predetermined subject (face of person) included in a wide-angle image taken by an imaging device 10 and to correct distortion of an image (face image of the person) of a part of the subject, and to associate a part of the wide-angle image with the corrected image of the part of the subject, e.g., to display a part of the wide-angle image with the corrected image of the part of the subject on a reproduction screen.
Detecting the start of a credit roll within video program may allow for the automatic extension of video recordings among other functions. The start of the credit roll may be detected by determining the number of text blocks within a sequence of frames and identifying a point in the sequence of frames where a difference between the number of text blocks in frames occurring before the point and the number of text blocks in frames occurring after the point is greatest and exceeds a specified threshold. Text blocks may be identified within each frame by partitioning the frame into one or more segments and recording the segments having a pixel of a sufficiently high contrast. Contiguous segments may be merged or combined into single blocks, which may then be filtered to remove noise and false positives. Additional content may be inserted into the credit roll frames.
An image sensor pixel may include a photodiode, a charge storage region, a floating diffusion node, and a capacitor. A first transistor may be coupled between the photodiode and the charge storage region. A second transistor may be coupled between the charge storage region and the capacitor. The photodiode may generate image signals corresponding to incident light. Multiple image signals may be summed at the charge storage region. The second transistor may determine a portion of the image signal that may be sent to the capacitor for storage. The portion of the image signal that is sent to the capacitor may be a low gain signal. A remaining portion of the image signal may be a high gain signal. The image sensor pixel may also include readout circuitry that is configured to readout low and high gain signals stored at the floating diffusion node in a double-sampling readout operation.
System and method for detecting adverse atmospheric conditions ahead of an aircraft. The system has multiple, infrared cameras 8 adjusted to spatially detect infrared radiance in different bands of infrared light, wherein each camera is connected to an image processing computer that processes and combines the images, and generates video display signals for producing a video display which indicates the position of the adverse atmospheric conditions relative to the aircraft. Each of the cameras is provided with a respective filter adjusted to filter infrared light with a bandwidth corresponding to infrared bandwidth characteristics of an adverse atmospheric condition from a set of adverse atmospheric conditions. The image processing computer is adapted to identify adverse atmospheric conditions, said identifying being based on threshold conditions and using the detected infrared radiance, data from a look-up table and measured parameters including information on the position and/or attitude of the aircraft. The image processing computer is further adapted to display the identified adverse atmospheric conditions as a spatial image on a display.
An audio/video output device includes a first output component for video and audio output, a second output component for audio output, a video memory and a controller. The video memory stores video signal. The controller allocates at least part of an area of the video memory to the second output component in response to determining that an external device connected to the second output component supports video input.
An apparatus and a method for capturing image frames using interlaced exposure. The apparatus includes a digital camera and a memory. The digital camera includes an image sensor and the memory includes camera settings. The apparatus further includes a processor and a user interface. The user interface enables a user to manually input or adjust image capture parameter values including at least one first capture parameter value for a first set of pixels from the image sensor, and, at least one second capture parameter value for a second set of pixels from the image sensor. The processor controls the digital camera to expose the first set of pixels using the at least one first capture parameter value and the second set of pixels using the at least one second capture parameter value, where exposures of the first set of pixels and the second set of pixels overlap in time.
Methods, systems, and non-transitory computer readable storage media are disclosed for generating focused preview images that include the subjects of interest of digital images. For example, in one or more embodiments, the disclosed system utilizes a machine-learning model to generate a saliency map for a digital image to indicate one or more salient objects portrayed within the digital image. Additionally, in one or more embodiments, the system identifies a focus region based on focus information captured by a camera device at the time of capturing the digital image. Furthermore, the system can then utilize the saliency map and the focus region to generate a focused preview image. For instance, in one or more embodiments, the system crops the digital image based on an overlapping portion of the saliency map and the focus region to generate a focused preview image.
A mobile terminal includes a camera configured to acquire a preview image, a display configured to display the acquired preview image, an artificial intelligence unit configured to sense photographing state information of the preview image, to recognize a direction of a user's hand gripping the mobile terminal according to the sensed photographing state information, and to display a floating button on the display at a position corresponding to the recognized direction of the user's hand, and a controller configured to perform a function corresponding to the floating button selected according to a request for selecting the floating button. The artificial intelligence unit may change attributes of the floating button according to sensing of additional photographing state information after displaying the floating button.
The imaging apparatus to which an interchangeable lens is mountable includes an imaging device, a shake detector that detects a shake amount of the imaging apparatus, an image stabilization unit that performs an image stabilization operation by moving the imaging device based on the detected shake amount and a focal length of the interchangeable lens, a display unit that displays a setting screen for inputting focal length information item of the interchangeable lens, and a controller that controls the display unit and the image stabilization unit. The controller reflects the focal length information item displayed in the setting screen in the image stabilization operation performed by the image stabilization unit while causing the display unit to display and overlay the setting screen on a live view image.
The present embodiment relates to a camera module comprising: a first body; a second body coupled to the first body; a lens unit coupled to the second body; a circuit substrate unit located in an internal space formed by the first body and the second body and having an image sensor mounted thereon; and a focusing unit formed in the second body, and moving and fixing the lens unit or the circuit substrate unit in an optical axis direction of the lens unit, wherein a distance between the lens unit and the image sensor in the optical axis direction is adjusted through the focusing unit.
The present technology relates to an image processing apparatus, an image processing method, and a surgical system, by which a captured image can be displayed with low latency in almost real time. A DMA controller 51 of a CPU 31 divides image data, which is input via an IF card 34, by the number of GPU cards 35-1, 35-2 in a horizontal direction and allocates them. In each of the GPU cards 35-1, 35-2, the image data is subjected to time division processing in the vertical direction. With this, the use of the plurality of GPU cards 35-1, 35-2 increases the speed of processing associated with display for the image data. High-speed display is realized due to reduction in latency. The present technology is applicable to an endoscopic camera, a surgical microscope, and the like.
An imaging processing system includes an image pickup device that has circuitry which creates, from raw image data, image data including a first gamut, and compression-codes the image data including the first gamut to generate compression-coded image data. The system also includes an image processing device that has circuitry which decodes the compression-coded image data to generate uncompressed image data, which includes the first gamut. The circuitry of the image processing device also converts the uncompressed image data including the first gamut into image data including a second gamut, where the first gamut encompasses the second gamut.
According to examples, multi-color printing may include generating, based on an analysis of a print job image, a plurality of contone planes that represent the print job image. Multi-color printing may further include generating, based on an analysis of two or more sets of the contone planes determined from the plurality of contone planes, two or more corresponding sets of halftone planes and a fixer plane for each set of the halftone planes. Multi-color printing may further include generating, based on an analysis of the fixer plane for each set of the halftone planes, a combined fixer plane, and generating, based on an analysis of the two or more corresponding sets of halftone planes and the combined fixer plane, print data to print the print job image.
Embodiments of systems and methods for the sending, delivery and receiving of faxes are disclosed herein. In particular, certain embodiments include a fax connector that may be deployed at a user's site, and a faxing system that may be deployed remotely from the user's site. The fax connector can be accessed at the user's site over a computer based network in order to perform functions associated with faxing, including sending, receiving and obtaining status on faxes. The fax connector deployed at the user's site communicates with the remotely deployed faxing system to send, receive, obtain status on, or perform other functions associated with, faxing.
A system of tracking a location of a print device in an environment. For each of one or more users of a print device during a time period, the system identifies an event that is initiated at the print device over a network where the event is associated with the user and a print job, and determines whether the user is registered with the location tracking system. In response to determining that the user is registered with the location tracking system, the system determines a login location of the user, determines whether the login location is current, and in response to determining that the login location is current, stores the one or more location coordinates in a data store such that they are associated with the print device. The system estimates a location of the print device, and provides the location of the print device to an asset management system.
An image reading device includes a feeder, a flexible transmission path, and a charge remover. The feeder conveys an image sensor in a forward direction directed from a reading start position toward a reading end position, and a backward direction opposite thereto. The flexible transmission path extends from a connection portion that is electrically connected to the image sensor, to a specific location within a reading range between the reading start position and the reading end position, and curved the connection portion and the specific location. The charge remover includes a conductor which abuts on an upper surface of the flexible transmission path and is grounded. With a reciprocal movement of the image sensor, the charge remover moves between a stop position being away from the reading start position in the forward direction, and a position being on the reading end position side of the stop position.
A facsimile apparatus is provided with: a first interface; a second interface configured to establish a connection to a network; a processor; and memory storing computer readable instructions that, when executed by the processor, causing the apparatus to perform: inquiry processing of making an inquiry to a communication server through the second interface; facsimile-side determination processing of determining whether an image file and transmission information are associated with identification information and stored in the communication server; acquisition processing of, when it is determined in the facsimile-side determination processing that image file and the transmission information are stored in the communication server by being associated with the identification information, acquiring the image file and the transmission information from the communication server through the second interface; and transmission processing of transmitting facsimile data including the image file to another facsimile apparatus specified by the transmission information through the first interface.
First representative pixel data is a maximum amount of light, when a light source is turned off. Second representative pixel data and third representative pixel data respectively represent a minimum amount of light and a maximum amount of light for a conspicuous channel to which a piece of data representing an amount of light smaller than an amount of light corresponding to a first threshold belongs. In an image reading device, a determination device, when the third representative pixel data represents an amount of light that is equal to or larger than an amount of light corresponding to at least a second threshold corresponding to the first representative pixel data, or a third threshold corresponding to the second representative pixel data and the first representative pixel data, determines that a device state is defective.
Novel tools and techniques are provided for delivering plain old telephone service (“POTS”) telephony over high speed data networks. In particular, various embodiments provide tools and techniques for concurrent transmission of POTS voice signals and data signals over the same wire(s) of high-speed data lines or data cables. Various systems and methods might, in some instances, utilize upbanding or rebanding of the POTS voice band to a higher frequency band above the data stream band spectrum for transport of voice concurrent with data over the same wire(s) in the cable. The system might comprise interface devices at either end of a cable segment, one interface device to reband the voice signal and to combine the voice signal with the data signal for each dual-transport wire in the cable, and another interface device at the other end to separate the voice signal from the data signal.
In a crowd sourcing approach, responses to customer service inquiries are provided by routing a subset of the inquiries to an independent group of experts. The customer service inquiries are optionally routed to specific experts based on matches between identified subject matter of the inquiries and expertise of the experts. Embodiments include methods of classifying customer service inquiries, training a machine learning system, and/or processing customer service inquiries. Customer service inquiries and answers from a first enterprise and/or industry are optionally used to train an inquiry classifier for a second enterprise and/or industry. The classifier being configured to predict if a new customer service inquiry will require access to confidential information for a human to generate an answer that resolves the inquiry.
Cognitive routing of an incoming call includes analyzing respective captured audio and video data related to each of a plurality of agents of an enterprise, each agent associated with a respective mobile device; and determining a respective current activity in which each agent is engaged based on the agent's related captured audio and video data. Such routing also includes selecting one of the plurality of agents to receive an incoming call based at least in part on the determined respective current activity in which each agent is engaged; and routing an incoming call to the mobile device associated with the selected one agent.
An adaptive conversational system may simultaneously monitor multiple active calls or ongoing voice or telephone conversations, may extract a different set of conversation elements from a current point in each conversation in real-time as each conversation proceeds, may determine different rules that apply to current points of different ongoing conversations based on the extracted conversation elements satisfying different rule triggers, and may control different conversations at different times according to actions of different rules that are applied at different times to different conversations. The system may selectively control the conversations when the conversations become non-compliant, deviate from best practices, or can be controlled to more effectively reach a positive disposition than when allowing a telephone agent to independently control the conversation. The system may use machine learning and/or artificial intelligence to define rules based on tracked actions that are produce a positive disposition more effectively than existing rules.
A method and apparatus are disclosed that identify a motor vehicle operation and whether a driver is operating a mobile device. One example of operation may include a method that includes receiving vehicle data based on active operation of a vehicle and compiling a candidate driver identification profile (DIP) based on the received vehicle data. The method may also include comparing the candidate DIP to a pre-stored DIP and determining a match between the candidate DIP and the pre-stored DIP. The method may also include applying a restriction to a mobile station operated by a driver of the vehicle responsive to the match determination.
An artificial intelligence system and method are disclosed herein. The system includes a processor which implements the method, including: receiving by an input unit a first user input including a request to execute a task using at least one of the electronic device or an external device, transmitting by a wireless communication unit first data associated with the first user input to an external server, receiving a first response from the external server including information associated with at least one of the first user input and a sequence of electronic device states for performing at least a portion of the task, receiving a second user input assigning at least one of a voice command and a touch operation received by a touch screen display as the request to perform the task, and transmitting second data associated with the second user input to the external server.
A doorbell system can include a doorbell and a chime. The chime can emit a notification sound in response to a visitor pressing a button of the doorbell. Electrical switches can be electrically coupled between the doorbell and the chime to control the flow of electricity to the chime. In some embodiments, the switches prevent the chime from emitting notification sounds.
A mobile terminal capable of fingerprint identification includes a fingerprint identification module and a terminal screen. The terminal screen includes a display area and a non-display area located at an end of the display area, and the display area has a display surface. The fingerprint identification module is adjacent to the non-display area relative to the display area, a forward projection of the fingerprint identification module on a plane where the display surface is located is at least partially overlapped with a forward projection of the non-display area on the plane where the display surface is located.
A mobile terminal, a housing component and a manufacturing method thereof are provided. The housing component of the mobile terminal includes a conductive housing and at least one conductive component. The conductive housing is provided with at least one slot. The at least one slot is configured to divide the conductive housing into a plurality of regions, and is filled with an insulating layer. The at least one conductive component is attached to the conductive housing and across the at least one slot, so as to electrically connect the plurality of regions together. The housing component of the mobile terminal realizes grounding and conduction of an antenna through electrically connecting the plurality of regions of the conductive housing using the at least one conductive component.
An apparatus includes an encoder circuit and a scrambler circuit configured to receive a frame, the frame including a preamble and a payload. The scrambler circuit is further configured to scramble contents of the frame including the payload and at least a portion of the preamble, provide synchronization information with results of scrambling the contents, and send results of scrambling the contents to the encoder circuit.
A method for fetching a content from a web server to a client device is disclosed, using tunnel devices serving as intermediate devices. The client device accesses an acceleration server to receive a list of available tunnel devices. The requested content is partitioned into slices, and the client device sends a request for the slices to the available tunnel devices. The tunnel devices in turn fetch the slices from the data server, and send the slices to the client device, where the content is reconstructed from the received slices. A client device may also serve as a tunnel device, serving as an intermediate device to other client devices. Similarly, a tunnel device may also serve as a client device for fetching content from a data server. The selection of tunnel devices to be used by a client device may be in the acceleration server, in the client device, or in both. The partition into slices may be overlapping or non-overlapping, and the same slice (or the whole content) may be fetched via multiple tunnel devices.
Among other things, this document describes systems, devices, and methods for improving cache efficiency by automatically discovering and updating time to live (TTL) settings for cached content. TTL values define how long content may be served from a cache before the cache should return to origin to verify the freshness of the content. TTL values may be set by an origin server, using an appropriate HTTP header for example, or by manual configuration action, or otherwise. A cache may adjust this TTL value—or generate a TTL value if none is provided, based at least in part on cache performance characteristics and targets, along with an analysis of the history of purge events.
Service models may be generated in response to services exposed by two or more IaaS service providers, and an interface may be provided for selection and specification of the service models.
An apparatus and method for resource scheduling on an application system utilizing a proxy server, the application system including one or more hosts and running one or more applications, each of the one or more applications having one or more instances. The method includes monitoring a request queue of application requests, at the proxy server, to be processed by the application system for the one or more applications, and scheduling computing resources of the application system for an application of the one or more applications according to a predetermined scheduling rule and a status of the request queue.
A device for processing alarms includes a processor and a computer-readable medium storing instructions which, when executed by the processor, cause the processor to perform operations for processing building management system data. The operations include retrieving a first source driver and a first destination driver. The first source driver is for accessing the building management system data from a first source and the first destination driver is for transforming the data from the first source into a first standard format utilized by a first destination data storage system. The operations further include accessing the data from the first source using the first source driver, transforming the data from the first source into the first standard format using the first destination driver, and storing the data from the first source that is transformed into the first standard format into the first destination data storage system.
A content management system receives presence information from a client application on a device indicating interaction information of a user relative to a content item synchronized to the content management system. The interaction information includes presence information describing presence information of a native application interacting with the content item. The presence information indicates whether the native application opened, is viewing, or is editing the content item. The presence information may specify a user interface element and process associated with the presence information. The content management system stores presence records describing the presence information and uses the presence records to generate and transmit a presence status associated with a user. When a new version of a content item is received, the content management system may also use the presence records to determine an action to perform with the user interface window associated with the prior version.
A method for utilizing a decentralized agreement protocol to rank storage locations in a dispersed storage network (DSN) for data access operations. In response to receiving a DSN access request including data for dispersed storage, a DSN address is determined based, at least in part, on the DSN access request. A storage unit pool including a plurality of storage units is identified, and a resource level selection approach is determined with respect to the storage unit pool. The method continues with requesting and obtaining ranked scoring information for the plurality of storage units in accordance with the resource level selection approach. Based on the ranked scoring information and the resource level selection approach, an information dispersal algorithm (IDA) width number of storage units of the storage unit pool are selected for storage of the data as encoded by the IDA into encoded data slices.
A method and apparatus for providing digital streaming media data to client devices via a digital media control room is described. The method may include receiving a request at a server computer system from a mobile device to join a digital media control room, where the digital media control room is a virtual location that provides access to digital media data of a real-world event captured by a plurality of different mobile devices. The method may also include locating one or more available media streams associated with the digital media control room that capture the real-world event as the real-world event occurs. The method may also include transmitting data indicative of the one or more available media streams to the mobile device.
Aspects of the disclosure relate to multicomputer processing of client device request data using a centralized event orchestrator and a dynamic endpoint engine. A computing platform may receive, from a client computing device, event definition information defining an event. Subsequently, the computing platform may receive, from a recipient computing device associated with the event, a request for a recipient-selection user interface, and may determine that a dynamic endpoint option is available for a user of the recipient computing device. Thereafter, the computing platform may send, to the recipient computing device, a delivery selection user interface that includes a user-selectable option that, when invoked, causes the computing platform to create a new endpoint. The computing platform may receive delivery selection information from the recipient computing device, and may generate and send one or more event orchestration commands directing an event processor to execute one or more actions associated with the event.
Systems and methods are provided for enhancing streaming performance through controlled and selectively-applied reductions in the color depth of streamed video content. In various embodiments, the method includes receiving, at a streaming media server, a request transmitted over a communications network to stream video content to a client media receiver. In response to this request, a streaming video session is initiated between the client media receiver and the streaming media server. During the streaming video session, the streaming media server obtains the video content as video input data having an original color depth; generates an encoded video stream from the video input data, while selectively reducing a color depth of the encoded video stream; and transmits the encoded video stream over the communications network to the client media receiver. The streaming media server repeats the steps of generating and transmitting until termination of the streaming video session.
Described are examples for obtaining data from a single stream output. An indication of requested data from multiple stream sources can be received from an application. A single stream output including one or more output frames can be received from a stream server where at least one output frame includes at least data from each of the multiple stream sources. The requested data can be extracted from the single stream output and provided to the application.
A technique for detecting an encoder functionality issue in a media distribution system is presented. In the media distribution system consecutive media segments generated by an encoder are transmitted to a media client, and media descriptions describe expected availability times of media segments for the media client. A method implementation of the technique comprises the step of monitoring an availability time of a media segment compared to an expected availability time of the media segment, wherein the expected availability time is described by, or derived from, a media description. The method further comprises determining whether a deviation of the monitored availability time of the media segment from the expected availability time of the media segment is present, and detecting the encoder functionality issue based on a result of the determination. The encoder functionality issue may comprise one or more of an encoder restart, an encoder malfunction and an encoder time drift.
Methods and systems for a content server to select sets of video streams having different encoding parameters for transmitting the sets of video streams to a media device are disclosed herein. In some embodiments, a method for transmitting video streams for a media program from a server to a media device includes: selecting, by the server, first encoding parameters including a first bitrate for a first set of video streams for the media program based on a first estimated bandwidth capacity for a network linking the server and the media device, transmitting the first set of video streams from the server to the media device, determining, by the server, second encoding parameters including a second bitrate for a second set of video streams for the media program, and transmitting the second set of video streams from the server to the media device.
A software-defined media platform having one or more media processing units that may be dynamically instantiated, interconnected and configured according to changes in demand, resource availability, and other parameters affecting system performance relative to demand. In one example media processing method, a source media stream may be received via multicast or unicast. The source media stream may be processed into one or more levels of work product segments having different media characteristics by a plurality of transcoding processing units, as needed. One or more levels of work product segments, or the source media stream, may be packaged (e.g., including resegmenting) into final work product segments having select media characteristics, which may be uploaded to a cloud storage unit for delivery to end users.
The present invention discloses a method and an apparatus for media stream transmission, and user equipment. According to the method and the apparatus for media stream transmission, and the user equipment in embodiments of the present invention, same media content, of multiple users, on unicast bearers is multicast by using an MBMS channel, so that a backhaul network resource and an air interface resource that is of a base station can be saved, thereby reducing costs for transmitting a media stream.
Mechanisms are provided for presenting a media location browsing interface to facilitate a media search and/or seek. A client device receives a media stream from a streaming server. This client device provides a media location browsing interface after receiving the media stream. This media location browsing interface includes a plurality of key frames representing locations along the media stream that are selectable at the client device. A seek request to play the media stream from a seek location corresponding to one of the plurality of key frames is captured. The client device begins playback of the media stream at the seek location.
Technologies for audiovisual communication include an audiovisual server and a number of audiovisual client devices, including a presenter device and a number of audience devices. Each audience device captures an audiovisual stream and transmits the audiovisual stream to the audiovisual server. Each audience device also captures sensor input data such as eye tracking data or facial expression data and transmits abstracted sensor input data to the audiovisual server. The abstracted sensor input data may be based on the captured audiovisual stream. The audiovisual server determines an interestingness rating associated with each audience device based on the sensor input data, and selects one or more audiovisual streams based on the interestingness ratings. The audiovisual server transmits the selected audiovisual streams to the presenter device. The audiovisual server may update the interestingness rating algorithm based on feedback from the presenter device or the audience devices. Other embodiments are described and claimed.
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for collecting call data, feeding call data to applications, and providing advanced call features.
Preserving privacy related to networked media consumption activity. Source privacy zones are defined and associated with privacy standards Privacy standards include frequency criteria governing the storage of datasets including information associated with networked media consumption activity collected from the source privacy zone. Transaction requests including a networking protocol address are received over a network from a client device at a target location by a networked privacy system. The source privacy zone associated with the client device is identified. Using the networking protocol address to access characteristics having characteristic value(s), a dataset can be created including associating the networked media consumption activity with the characteristic and characteristic value(s). The dataset is pre-processed to comply with the privacy standards. The networking protocol address is discarded. The pre-processed dataset can be stored in a filtered database on a physical storage device at a storage location coupled to the networked privacy system.
The security of network connections on a computing device is protected by detecting and preventing compromise of the network connections, including man-in-the-middle (MITM) attacks. Active probing and other methods are used to detect the attacks. Responses to detection include one or more of displaying a warning to a user of the computing device, providing an option to disconnect the network connection, blocking the network connection, switching to a different network connection, applying a policy, and sending anomaly information to a security server.
An internal network can include a plurality of linked internal nodes, each internal node being configured to communicate with other internal nodes or with one or more external servers over an external network. The internal network can analyze the configuration of the internal nodes and the network traffic between internal nodes of the internal network and external servers. Based on the analysis, a network vulnerability score measuring the vulnerability of the internal network to attack can be determined. If the vulnerability score is below a threshold, the internal network can be isolated from the external network, for example by preventing internal nodes from communicating with or over the external network.
Methods and apparatus for detecting fraudulent device operation. In one exemplary embodiment of the present disclosure, a device is issued a user access control client that is uniquely associated with a shared secret that is securely stored within the network and the access control client. Subsequent efforts to activate or deactivate the access control client require verification of the shared secret. Each change in state includes a change to the shared secret. Consequently, requests for a change to state which do not have the proper shared secret will be disregarded, and/or flagged as fraudulent.
An integrity check for a first file is initiated. In response, a first key corresponding to the first file is obtained. The first file is hashed to determine that the first key is not equivalent to the hashed first file. A second key is then obtained that corresponds to the hashed first file. A second file is then obtained using the second key. This second file is hashed to determine whether the second key is equivalent to the hashed second file. Integrity of the first file is confirmed if the second key is equivalent to the hashed second file or integrity of the first file is rejected if the second key is not equivalent to the hashed second file. Related apparatus, systems, techniques and articles are also described.
User permissions for a search on content managed by a content management system (CMS) can be evaluated in a search engine based on a user identity of a user providing a query input for the query rather than after return of an initial results set to the CMS or some other front-end application. The search engine can constrain possible results returned from a search for the query input using a content index of a plurality of content items maintained in a repository of the content management system. The constraining can include limiting the search engine from adding a content item of the plurality of content items to a permissions-filtered results set unless the evaluating of the user permissions and the search for the query input against the content index do not exclude the content item. Other aspects can support index updating by selective use of a metadata index.
A principal database is described in which each entry includes one principal identity, and one or more alias identities that may each have an authorization scope. Principal identity attributes include a principal identifier and login credentials, and alias identity attributes include an authorization scope and login credentials. Responsive to successfully authenticating the user for a first application (a multiple-identity application), based on the alias identity login credentials, an access token containing both the alias identity attributes and the principal identity attributes is transmitted to the first application, causing the first application to grant a scope of access based on the authorization scope. Responsive to a request to authenticate the user for a second application (a single-identity application), the access token is transmitted to the second application without re-authenticating the user, causing the second application to grant a scope of access based on the principal identifier.
Embodiments of the invention are directed to a system, method, or computer program product for a transaction apparatus for secure data storage and consolidation of medication adherence, health and wellness data for easy implementation and utilization during a transaction. The transaction apparatus may be configured, in various embodiments, for receiving, storing, encrypting, decrypting, encoding, decoding, accessing, transferring, writing, and/or presenting transaction data including, but not limited to, health care data, medication adherence data, wellness data, location data, authentication data, identification data, access data, personal data, and/or other data associated with a user. As such, the transaction apparatus may receive data from a user and store the data. The user may then provide authorization to access the data. The user may then select the data to be copied to an output device associated with the apparatus. The output devices may include, but are not limited to, an E-ink display, mobile devices, and the like.
A cloud card application platform is provided. The cloud card application platform enables one or more card applications to be virtualized on at least one server that is available to mobile devices via a communication network, such as the Internet. The one or more card applications virtualized on the cloud card application platform are capable of being managed remotely by service providers that have deployed and developed the one or more applications.
A user may access an institution system via more than one communications channel, either by the same device (e.g., a mobile device accessing the institution system via a voice channel and a data channel) or by different devices (e.g., a personal computer via a web channel and a phone via a voice channel). If a user is not currently authenticated to a communications channel and attempts to access the institution system via a communications channel, the user may be authenticated using strong authentication. If the user is currently authenticated to the institution system via a communications channel and would like to engage a second communications channel to access the institution system, the user may authenticate to the second communications channel using both communications channels and weak authentication, such as single factor authentication or a challenge question.
A system for re-authentication comprises a re-authentication server, implemented by one or more processing devices. The re-authentication server is configured to receive a re-authentication request from an organizational server, process the re-authentication request, and transmit a re-authentication prompt to a user device, wherein the re-authentication request is transmitted from the organizational server to the re-authentication server without being communicated to an application server configured to receive a request for at least one of a service and data from the user device.
A Virtual network computing (VNC) server receives a client launch request from a VNC client and provides a log-in page for display at the VNC client. The log-in page includes a graphical representation of a keyboard having a plurality of keys. Individual key designations at the keyboard are unique and are generated randomly in response to the client launch request. The VNC server receives pointing device movement coordinates from the VNC client; the movement coordinates indicating selection of individual keys at the keyboard by a user of the VNC client.
The present disclosure relates to a 5th-Generation (5G) or pre-5G communication system to be provided to support a higher data rate than a 4th-Generation (4G) communication system like Long Term Evolution (LTE). The present invention provides a method for encrypting a multimedia content comprising: encrypting multimedia contents including a plurality of variants and a plurality of samples; and transmitting the encrypted multimedia contents, wherein the plurality of variants correspond to the samples included in the multimedia contents, respectively, and are configured with reference to a predetermined number of samples, and each of the plurality of variants is configured with reference to a combination of different samples.
A recursive DNS nameserver system and related domain name resolution techniques are disclosed. The DNS nameservers utilize a local cache having previously retrieved domain name resolution to avoid recursive resolution processes and the attendant DNS requests. If a matching record is found with a valid (not expired) TTL field, the nameserver returns the cached domain name information to the client. If the TTL for the record in the cache has expired and the nameserver is unable to resolve the domain name information using DNS requests to authoritative servers, the recursive DNS nameserver returns to the cache and accesses the resource record having an expired TTL. The nameserver generates a DNS response to the client device that includes the domain name information from the cached resource record. In various embodiments, subscriber information is utilized to resolve the requested domain name information in accordance with user-defined preferences.
A communications device determines the appropriate method for providing a message depending upon the content of the message without prompting or querying a user of the device. When the user selects a name as the recipient of the created message, the mobile device determines delivery options. If the message contains text only and if the user enters/selects a mobile device phone number, the message is sent via SMS. If the message contains multimedia and if the user enters or selects a mobile device phone number, the message is sent via MMS. If the message is text only or multimedia, and if the user enters or selects an email address, the message is sent via email. In various implementations, the message is delivery via determined delivery options including a lowest cost delivery option, a subscriber preferred delivery option, or a delivery options as indicated by an intended recipient's presence information.
An approach is presented for interacting with a messaging user interface. A presentation is caused, at least in part, of a messaging user interface associated with one or more messaging services at a device. Presentation of a user interface element providing a link to one or more communications sessions corresponding to the messaging services is caused, at least in part. Selection of the user interface element causes, at least in part, presentation of representations of the communications sessions as one or more overlay elements on the user interface.
A technique increases capacity in a topic-subscription messaging system. The technique involves, during a first time period, operating a first topic structure of the system. The first topic structure includes a first topic and a plurality of first subscriptions coupled with the first topic. The technique further involves, during a second time period, providing a second topic structure which includes a second topic and a plurality of second subscriptions coupled with the second topic. The technique further involves, during a third time period, providing a link from the second topic structure to the first topic structure making (i) the second topic structure a parent to the first topic structure and (ii) the first topic structure a child to the second topic structure, the link conveying messages from a particular second subscription of the second topic structure to the first topic of the first topic structure.
Techniques for controlling a network fabric are disclosed. Labels are assigned to paths between endpoints in the network fabric. Switches in the path are configured to communicate data communication packets having the label along the path. Upon receiving a first data communication packet from a first one of the switches in the network fabric for communication to a destination endpoint over the network fabric, the label for a path from the first switch to the destination is obtained, the first packet is communicated to the destination endpoint and the first switch is caused to communicate subsequent data communication packets corresponding to the first data communication packet over the path.
Various aspects optimize memory page latency and minimize inter processor interrupts associated with network nodes in a virtual computer system. For example, a system can include a first network node and a second network node. The first network node generates a memory page request in response to an invalid memory access associated with a virtual central processing unit of the first network node. The memory page request includes an identifier for the virtual central processing unit. The second network node receives the memory page request and provides memory data associated with memory page request to the first network node.
In one example, the present disclosure describes a device, computer-readable medium, and method for dynamically modifying parameters for the delivery of data services over a network. For instance, in one example, a plurality of network slices is provided in a communications network. Each network slice of the plurality of network slices is configured to carry data over the communications network subject to a different combination of network service metrics. When a triggering event is detected in data carried over the communications network using a default slice of the plurality of network slices, the data is dynamically reassigned from the default network slice to a new network slice of the plurality of network slices in response to the detecting.
A tenant-based distributed computing environment management system includes a service that is executed on a computing system to allocate a subset of the resources for use by each of a plurality of tenants, and generate a plurality of tags for each resource in the subset in which each tag includes tenant information associated with the tenant to whom the subset of resources are allocated. The service may then identify, for at least one of the tenants, the subset of resources allocated to the tenant, and transmit information associated with the identified subset of resources to a computing device of the tenant.
A network device receives a packet at a port from among a number of ports. A queue threshold is randomly adjusted for a queue having an output buffer to which the packet is stored. When a fullness of the queue exceeds the adjusted queue threshold, at a time when the packet is to be enqueued into the queue, an action is performed. The action includes either dropping the received packet, or flow-controlling the port at which the packet is received.
According to one aspect, a method includes identifying at least a first chunk to be obtained, the at least first chunk including at least a first packet, and determining a deadline for the first chunk, the deadline being indicative of an amount of time before the first chunk is needed. The method also includes determining whether the deadline for the first chunk is relatively long, and de-prioritizing the first chunk with respect to obtaining the first chunk for queueing in a buffer when it is determined that the deadline for the first chunk is relatively long. Finally, the method includes obtaining the first chunk for queueing in the buffer, wherein obtaining the first chunk for queueing in the buffer includes obtaining the first chunk after obtaining a second chunk for queueing in the buffer, the second chunk having a shorter deadline than the deadline for the first chunk.
A data transmission system includes a sending node, including a link queue storing data packets to be transmitted to a receiving node on a network link and a link-specific congestion control, associated with the link queue, the link-specific congestion control controlling a congestion window based on an available capacity of the network link to determine a size of the link queue for the data packets to be transmitted. The sending node further includes flow senders transmitting data packets of data flows to flow receivers on the receiving node, and flow-specific receive window controls, independent from the link-specific congestion control. One flow-specific receive window control is associated with each data flow, and each flow-specific receive window control controls a receive window of the associated flow sender based on an available capacity of the corresponding flow receiver to specify an amount of data available to be entered into the link queue.
An apparatus is provided for the adaptive and dynamic enforcement of quality of service or quality of experience. The apparatus may be caused to monitor user plane traffic for the start of an application session, instantiate a buffer for an application session, configure at least one service parameter in the buffer with a quality of service or quality of experience parameter, and correlate uplink and downlink user plane traffic to enforce scheduling in accordance with the quality of service or quality of experience parameter. A corresponding method and non-transitory computer readable storage medium are also provided.
In one embodiment, a method comprises establishing, by a deterministic device interface circuit, a deterministic link with a peer deterministic interface circuit within a deterministic data network based on identifying a repeating deterministic schedule for transmitting each data packet, allocated to the deterministic schedule, at a corresponding transmission instance coinciding with a reception instance by the peer deterministic interface circuit; determining a latency between sending a request for data to a host device via a non-deterministic data link provided by a network switch, and receiving from the host device a transport layer packet responsive to the request; and sending an instruction to the host device for initiating transfer of the transport layer packet, the instruction correcting for the latency and enabling the deterministic device interface circuit to receive the transport layer packet for transmission of a corresponding data packet on the deterministic link at the corresponding transmission instance.
Measures, including methods, systems, non-transitory computer-readable storage mediums and computer programs for use in routing packet data. At a network switching device, a data packet is received from a device located upstream of the network switching device. The received data packet comprises routing data associated with a routing decision which has been taken for the data packet upstream of the network switching device. The routing data comprises an abstract media access control (MAC) address corresponding to a next hop destination for the data packet located downstream of the network switching device. At the network switching device, the abstract MAC address in the data packet is replaced with a real MAC address of the next hop downstream destination. At the network switching device, the data packet is forwarded towards the next hop downstream destination.
A network device, such as a Packet Data Network (PDN) Gateway (PGW), may receive network traffic, determine traffic processing services associated with a subscriber corresponding to the traffic, and identify a sequence of external traffic processing components to provide traffic processing services as though the external traffic processing components where part of the core network. The network device may modify the traffic in accordance with the sequence of external traffic processing components and forward the traffic to the first external traffic processing component of the sequence. The network device may later receive the traffic from the last external traffic processing component of the sequence, process the traffic in accordance with instructions provided by the external traffic processing components, and forward the traffic in accordance with a destination address of the traffic.
Embodiments described herein provide a switch. The switch can include one or more ports, a communication module, and a flow rule management module. During operation, the communication module obtains a flow rule from a notification message from a controller of a software-defined network. The flow rule management module then determines whether a priority value of the flow rule is in a local flow table. The flow table can store flow rules received from the controller. If the priority value of the flow rule is not in the local flow table, the flow rule management module stores the flow rule in a location of the flow table allocated for the priority value.
One embodiment of the present invention provides a switch. The switch includes a processor, a storage device, a multicast management module, and a graceful recovery module. The multicast management module participates in a multicast tree of a multicast group. The graceful recovery module determines a recovery event and constructs a message indicating the recovery event for a second switch. The switch and the second switch belong to a first virtual local area network (VLAN). The graceful recovery module then identifies a completion notification message from the second switch indicating a completion of replaying multicast information stored in the second switch and includes multicast information received from the second switch in a local multicast database.
Aspects of the present disclosure relate to transmitting prioritized path data to a device based on a set of topology rules and metrics associated with a storage target. A storage target path discovery request is received from the device. In response to the storage target path discovery request, metrics associated with the storage target are collected. Based on the collected metrics, available paths to the storage target are identified. A set of topology rules are then determined. Based on the topology rules and the collected metrics, a subset of available paths are selected. The subset of available paths are then prioritized into prioritized path data. The prioritized path data is then stored and transmitted to the device.
This document describes systems, devices, and methods for testing the integration of a content provider's origin infrastructure with a content delivery network (CDN). In embodiments, the teachings hereof enable a content provider's developer to rapidly and flexibly create test environments that send test traffic through the same CDN hardware and software that handle (or at least have the ability to handle) production traffic, but in isolation from that production traffic and from each other. Furthermore, in embodiments, the teachings hereof enable the content provider to specify an arbitrary test origin behind its corporate firewall with which the CDN should communicate.
Systems and methods are disclosed for routing messages to one or more of a plurality of user devices associated with a particular user to whom a particular message is to be provided. The message destination user device(s) may be determined by evaluating the user interactions on each of the plurality of user device. The message destination user device(s) may be selected as the user device(s) that are predicted to have a relatively high level of interaction and/or activity with the user to whom the message is to be provided or is in relative proximity of the user to whom the message is to be provided. When the message destination user device(s) are determined, the message may be transmitted to that/those message destination user device(s) for rendering to the user to whom the message is to be provided.
A receiver is configured to be coupled to a television and data service provider headend via a hybrid fiber coaxial (HFC) network. The receiver comprises front-end circuitry operable to receive a signal that carries a plurality of television and/or data channels, and digitize the received signal to generate a digitized signal. The receiver comprises channelizer circuitry operable to select a first portion of the digitized signal, and select a second portion of the digitized signal. The receiver comprises processing circuitry operable to process the selected second portion of the digitized signal to recover information carried in the plurality of channels. The receiver comprises monitoring circuitry operable to analyze the selected first portion of the digitized signal to measure a characteristic of the received signal; and control the transmission of network management messages back to the headend based on the measured characteristic of the received signal.
A method for optimizing network design includes identifying a set of terminal-to-terminal shortest paths in a network, wherein a terminal-to-terminal shortest path is a best connection between two terminals, evaluating a terminal betweenness for each non-terminal vertex in the network, wherein the terminal betweenness of a vertex is a fraction of the total number of terminal-to-terminal shortest paths that include said vertex, calculating an average terminal betweenness for each terminal-to-terminal shortest path based on the terminal betweenness of the vertices in the path, iteratively adding the terminal-to-terminal shortest paths to an output graph in order of decreasing average terminal betweenness until all terminals are represented on the output graph, and using the output graph to design or adjust a network. The method may also include displaying the output graph to a user. A computer program product and computer system corresponding to the method are also disclosed.
Systems, methods, and computer-readable media for implementing zero-configuration networking over a wide area network. Disclosed are systems, methods, and computer-readable storage media for implementing zero-configuration networking over a wire area network by utilizing agents, application programming interfaces (API), and a controller. The controller can implement polices for communication between the agents and APIs, enabling zero-configuration network
A method of determining component dependencies in an enterprise application architecture implemented over an enterprise network, including identifying structures of hosts connected to the network; wherein the structures includes applications executed by the host, obtaining configuration parameters from said hosts, determining dependencies between applications of hosts based on the configuration parameters, receiving a template for identifying dependencies between components in the enterprise network, identify candidate mappings of hosts based on the template, further identifying candidate mappings of host pairs based on the determined dependencies between hosts and the template, analyzing the candidate mappings to calculate a probability score for the candidate mappings, output the candidate mappings having the highest score.
Defining a configuration settings for an application is described. Performance data and device specification information is used to define a configuration data set, which is provided to a user device running the application. Settings of the application are further optimized according to the configuration data set.
That each switch is configured with a series of new commands, such as NELD, which include various parameters, the parameters matching predefined terms, such as STP, BGP or DROP, and specifying a particular port or interface, if relevant. By predefining the parameters, the switch is configured to obtain data relevant to a particular problem. When a problem occurs, the administrator sends the command to all relevant switches with a parameter relevant to the problem being analyzed. Preferably, this sending of the command is done using a management application, so that the command can be sent to each switch by the management application in an extremely short period. By capturing all of the data in a small window, the odds are greatly improved on obtaining the relevant data. By having the preprogrammed commands, all of the desired data can be obtained in a single command rather than a series of commands.
A communication terminal communicates protocol data units across a first virtual interface and a shared interface. The first virtual interface corresponds to an upper layer protocol and a first logical network. The shared interface corresponds to a lower layer protocol. The terminal also communicates protocol data units across a second virtual interface and the shared interface, with the second virtual interface corresponding to the upper layer protocol and a second logical network. The first logical network can be a wide area network that includes devices within a premises and devices outside a premises, and the second logical network may be a local area network that only includes devices within the premises.
Provided are a D2D operation method performed by a terminal in a wireless communication system, and a terminal using said method. The method comprises the steps of: receiving a public land mobile network (PLMN) list and performing a D2D on the basis of the PLMN list, wherein the PLMN list comprises at least one PLMN.
A wireless communication device receives OFDM radio signals having different numerologies (i.e. different sub-carrier spacing) and determines whether the transmission, by one or more transmitting nodes, of the OFDM signals are coordinated. The meaning of “coordinated” is to be understood as the OFDM signals are time-synchronized and the determination of whether the OFDM signals are coordinated may involve such actions as reading broadcast or receiving configuration message transmitted in the system, determining a relation (for instance cell/access point beam identity) between transmitted synchronization or reference signals. If the OFDM signals are determined to be coordinated, time and/or frequency offset for the second OFDM signal having the second subcarrier spacing is derived based on the time and/or frequency offset associated with the first OFDM signal having the first subcarrier spacing.
Systems, methods, and processor readable media for distributing digital data and electrical power to a plurality of devices over high-impedance cables are disclosed. Certain embodiments include a gateway device connected to a power source, a first device connected to the gateway device by a cable, the cable being a high-impedance cable having at least two conductive paths, and wherein the first device receives electrical power and digital data from the gateway device via the cable over the same conductive path of the cable, a second device connected to the gateway device by the cable wherein the second device receives power and digital data from the gateway device via the cable over the same conductive path, and wherein the power source provides power to the first and second devices via the cable, and wherein the second device is connected to the gateway device through the first device via a daisy-chain topology.
A persistent World Wide Name (WWN)-Fiber Channel Identifier (FCID) assignment system includes a Fiber Channel (FC) networking device and a server device that sets a persistent WWN-FCID bit in a second fabric login that is directed to the FC networking device subsequent to a first fabric login that was directed to the FC networking device and that resulted in the assignment of an FCID to a WWN for the server device. An FC Forwarder (FCF) device receives the second fabric login from the server device. In response to determining that the persistent WWN-FCID bit is set in the second fabric login, the FCF device sends the FC networking device a second fabric discovery corresponding to the second fabric login through a port that was used to send the FC networking device a first fabric discovery corresponding to the first fabric login.
A control device, a method of controlling the same, and an integrated control system are provided. The method includes in response to a setting command being input, registering a setting state of at least one device connected to the control device at a time point when the setting command is input as a preferred setting state of the at least one device, and, in response to an execution command being input, transmitting a control command to the at least one device based on the registered preferred setting state.
Methods and apparatus for generating and using multicast transaction messages in an exchange system are described. A unicast transaction message is received, e.g., by a gateway device which interacts with devices outside the exchange system. The gateway device generates a multicast transaction message from the unicast transaction message and sends transmits it to other devices in the exchange system. A multicast transaction message is received by the gateway device. The gateway generates a unicast transaction response message and sends it to the trader system which sent the transaction message to which the response corresponds. Traders are permitted to include information in a transaction message field which is not interpreted or used by the exchange to control message processing. The information in the uninterpreted field is echoed back to the trader system and allows the trader to correlate the transaction messages to one or more clients or to perform other operations.
Disclosed are: a communication technique and a system therefor for fusing, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system. Provided is a method for installing a profile of a terminal having an embed universal integrated circuit card (eUICC) in a mobile communication system, the method comprising: requesting for an eUICC authentication certificate to an eUICC and receiving the eUICC authentication certificate; and transferring a profile package to the eUICC so as to install a profile, wherein the received eUICC authentication certificate further comprises an eUICC manufacturer (EUM) authentication certificate.
In an example system for private key recovery performed by a processor of a key recovery computing system, a key recovery computing system is configured to provide an original private key. The original private key is associated with a storage location of a blockchain-based asset. The key recovery computing system is configured to receive supplemental recovery information provided by a user via a user computing device. A recovery seed is derived from at least a subset of the supplemental recovery information, wherein the recovery seed is non-invertible. The original private key and the recovery seed are stored relationally to the supplemental recovery information. In some embodiments, the processor is further configured to cryptographically protect at least one of the original private key and the recovery seed via a universal second-factor authentication (U2F) device.
According to an embodiment, a communication device includes a receiver, an allocator, a first communication unit, an encryption processor, a second communication unit, and a controller. The receiver is configured to receive a shared key shared with another device. The allocator is configured to allocate the shared key to a transmission key or a reception key. The first communication unit is configured to receive data from an application. The encryption processor is configured to encrypt the data with the transmission key and decrypt the data encrypted by the other device with the reception key. The second communication unit is configured to communicate with the other device by using the encrypted data. The controller is configured to control at least one of allocation of the shared key, traffic of the first communication unit, and traffic of the second communication unit, by using state information of the device.
A cryptographic system is provided comprising multiple configuration servers (200, 201, 202) arranged to configure multiple network devices (300, 350, 360) for key sharing. Each configuration server comprising a computation unit (220) arranged to compute local key material for the network device from root key material specific to the configuration server and the network device identity number of the network device that is being configured. At least two configuration servers of the multiple configuration servers provide computed local key material to said network device. The network devices are configured to determine a shared key with any one of multiple network devices. A network device comprises a shared key unit (330) arranged to derive a shared key from another network device's identity number and at least two of the multiple local key materials of the network device.
Radio frequency (RF) communication systems with dynamic waveform control and power boost are provided herein. In certain embodiments, an RF communication system includes a power amplifier configured to amplify an RF signal to generate an RF transmit signal for transmission over a time-division duplex (TDD) communication link having a duty cycle, and a transmitter configured to provide the RF signal to the power amplifier. The transmitter is operable to change a type of waveform of the RF signal from a first waveform type to a second waveform type in response to a decrease in a signal-to-noise ratio (SNR) of the TDD communication link, and to boost a power of the RF transmit signal by an amount based on the duty cycle.
Certain aspects of the present disclosure provide techniques for implicitly linking aperiodic channel state information (A-CSI) reports to CSI-reference signal (CSI-RS) resources. In an aspect, the UE may be instructed to report on specific CSI-RS resource(s) via explicit signaling in the UE grant. Other aspects disclose techniques for implicit CSI-RS resource selection by the UE that require fewer signaling resources. Instead of explicitly signaling CSI-RS resources to the UE, the UE may implicitly select CSI-RS resource for CSI feedback reporting based on information known to the UE, e.g. a subframe on which a reporting request is received. This may reduce the impact of the additional signaling in the UE grant.
Exemplary embodiments include methods and/or procedures for determining transmission parameters for downlink communication channels from one or more network nodes to one or more wireless communication devices, comprising: receiving information identifying a first data service type, of a plurality of available data service types, associated with a first wireless communication device; configuring a first plurality of antenna elements as a second plurality of channel state information (CSI) ports based on the first data service type, wherein the second plurality varies for the available data service types; and determining, based on transmission or reception using the second plurality of CSI ports, first downlink transmission parameters for the first data service. In some embodiments, the second plurality is less than the first plurality for a particular data service type. Exemplary embodiments also include network nodes configured to perform, and computer-readable media comprising instructions embodying, operations of the exemplary methods and/or procedures.
Systems, methods, and devices for wireless communication are disclosed herein. One aspect of the disclosure provides a method of transmitting to two or more wireless communication devices. The method includes transmitting a first section of a preamble according to a first format, the first section of the preamble containing information informing devices compatible with the first format to defer to the transmission, transmitting a second section of the preamble according to a second format, the second section of the preamble containing tone allocation information, the tone allocation information identifying two or more wireless communication devices; and transmitting data to the two or more wireless communication devices simultaneously, the data contained on two or more sub-bands.
Methods, systems, and devices for wireless communications are described, including receiving, at a first base station, channel measurement information from a first user equipment (UE); identifying a zone associated with the first base station based at least in part on the received channel measurement information; receiving, from a second base station, zone information associated with one or more UEs that transmitted channel measurement information to the second base station; identifying a network reuse pattern for coordinated multi-point (CoMP) communication based at least in part on the identified zone and the received zone information; and transmitting a multi-point transmission to a second UE based at least in part on the identified network reuse pattern.
When transmitting signals from a plurality of base stations (broadcasting stations), the base stations include at least a first base station having a first antenna with a first polarization and a second base station having a second antenna with a second polarization that is different from the first polarization. Then, when the first base station transmits a signal from the first antenna having the first polarization, the second base station transmits the same signal as the first antenna of the first base station from a second antenna having the second polarization, at the same time.
The objective of the invention is to achieve efficient downlink non-orthogonal multiple access using a limited amount of control information. A base station device that adds and transmits symbols addressed to a first terminal device and one or more second terminal devices, using portion of available subcarriers, includes: a power setting unit that sets the first terminal device to a lower energy than the one or more second terminal devices; a scheduling unit that, for signals addressed to the one or more second terminal devices, performs resource allocation that is different from resource allocation for a signal addressed to the first terminal device; and an MCS determining unit that controls modulation schemes such that, when allocating resources for the signal addressed to the first terminal device, the modulation schemes used by the one or more second terminal devices, to be added to the signal addressed to the first terminal device, are the same.
Techniques for energy-efficient device discovery are described. In one embodiment, for example, user equipment may comprise logic, at least a portion of which is in hardware, the logic to initiate a synchronous operation mode, determine to announce one or more characteristics of a discovery zone of a wireless channel, and send a discovery announcement signal over the wireless channel, the discovery announcement signal describing the one or more characteristics of the discovery zone. Other embodiments are described and claimed.
An apparatus and method for broadcast signal frame using a boundary between Physical Layer Pipes (PLPs) of a core layer are disclosed. An apparatus for generating broadcast signal frame according to an embodiment of the present invention includes a combiner configured to generate a multiplexed signal by combining a core layer signal and an enhanced layer signal at different power levels; a power normalizer configured to reduce the power of the multiplexed signal to a power level corresponding to the core layer signal; a time interleaver configured to generate a time-interleaved signal by performing interleaving that is applied to both the core layer signal and the enhanced layer signal; and a frame builder configured to generate a broadcast signal frame including a preamble for signaling time interleaver information corresponding to the time interleaver, the time interleaver uses one of time interleaver groups, and a boundary between the time interleaver groups is a boundary between Physical Layer Pipes (PLPs) of a core layer corresponding to the core layer signal.
Methods and apparatus for transmitting and receiving broadcast signals are provided. The method for transmitting a broadcast signal includes encoding mobile data for forward error correction (FEC), encoding signaling data, forming data groups including the encoded mobile data and the encoded signaling data and transmitting a signal frame that includes the data groups.
A host device communicates with a stylus device. A digitizer at the host device receives a scrambled stylus code frame transmitted from the stylus device. The scrambled stylus code frame includes a scrambled data field and an unscrambled data field. The scrambled data field has been scrambled by the stylus device using a pseudo-random sequence. A descrambler descrambles the at least one scrambled data field of the scrambled stylus code frame using the pseudo-random sequence to output at least one descrambled data field in a descrambled stylus code frame. The descrambled stylus code frame further includes the at least one unscrambled data field. A synchronizer synchronizes the at least one descrambled data field and the at least one unscrambled data field of the descrambled stylus code frame with a supported code pattern.
A telecommunications module includes an optical wavelength division multiplexer/demultiplexer configured to demultiplex a first optical signal input into the telecommunications module into a plurality of different wavelengths, a fiber optic splitter configured to split a second optical signal input into the telecommunication module into a plurality of optical signals, and a plurality of optical add/drop filters, each of the optical add/drop filters configured to combine one of the optical signals that has been split by the fiber optic splitter and one of the wavelengths that has been demultiplexed by the optical wavelength division multiplexer/demultiplexer into a combination output signal that is output from the telecommunications module.
A method for service list table associated with a bitstream, the method includes receiving a service receiving a service list table within said service guide that includes a service list table element that is a root element of said service list table; receiving a sltInetUrl element that is an element of said service list table and indicates a base URL to acquire electronic service guide or service layer signaling files available via broadband for services in said service list table; and receiving a first urlType attribute that is an attribute of said sltInetUrl element and indicates types of files available with said base URL.
A system, method, and apparatus for managing interference are presented. The interference may be between i) a fixed wireless link, FL, formed by a first FL node and a second FL node which communicate at a frequency f1 and ii) a radio access network, RAN, node. The method may comprise the first FL node monitoring radio link quality, QL, of fixed wireless link signals at f1. The first FL node may determine whether QL is worse than a predetermined QL threshold. If QL is worse than the predetermined QL threshold, the first FL node may measure, during a silent period, how much one or more signals transmitted from the RAN node 108 interferes with the first FL node at the f1. The first FL node may transmit, to an interference mitigation controller, interference measurement information which indicates how much the RAN node interferes with the first FL node at f1.
Certain aspects of the present disclosure provide techniques and apparatus employing an isolation ring having a center strip of conductive material used to isolate magnetic fields generated by common-mode and differential-mode current flow through one or more inductors disposed in the ring. The apparatus generally includes an electrical component having an inductive element and a ring of electrically conductive material encircling the inductive element, wherein the ring has a strip of electrically conductive material disposed in the ring and connecting a first point on the ring to a second point on the ring.
Methods and systems for waveguide delay based equalization summing at single-ended to differential converters in optical communication are disclosed and may include: in an optoelectronic receiver including a directional coupler, photodetectors, transimpedance amplifiers (TIAs), and a gain stage, receiving an input optical signal; splitting the input optical signal into first and second optical signals using the directional coupler; generating a first current from the first optical signal using a first photodetector; generating a first voltage from the first current using a first TIA; communicating the first voltage to a first input of the gain stage; generating a second current from the second optical signal using a second photodetector; generating a second voltage from the first signal using a second TIA; communicating the second voltage to a second input of the gain stage; and generating a differential output voltage from the first and second voltages using the gain stage.
A receiving device receives a received signal in which a data signal, modulated by using a phase modulation method, and a pilot signal are time-multiplexed. The receiving device includes a synchronizing circuit that synchronizes the phase of the received signal. The synchronizing circuit extracts a pilot signal from the received signal. The synchronizing circuit estimates a phase error by comparing the extracted pilot signal and a predetermined pattern. The synchronizing circuit conducts phase rotation on constellation points of the received signal in accordance with the reference phase, obtained from the phase error, and the phase in the modulation method related to the received signal. The synchronizing circuit estimates a phase estimate value of the received signal in accordance with the constellation points, on which phase rotation has been conducted. The synchronizing circuit compensates for a phase error of the received signal in accordance with the phase estimate value.
In some embodiments, an apparatus includes a processor configured to receive a set of digital samples associated with a set of optical signals received at a coherent optical receiver. The set of digital samples is associated with a set of optical channels. Each optical channel from the set of optical channels is spaced from at least one adjacent optical channel from the plurality of optical channels. The processor is configured to calculate, for each optical channel from the set of optical channels, a spacing between that optical channel and at least one adjacent optical channel from the set of optical channels based on digital signal processing of the set of digital samples. The processor is configured to send a signal indicating, for each optical channel from the set of optical channels, the spacing between that optical channel and the at least one adjacent optical channel.
A demultiplexing unit that is provided in an optical device and performs demultiplexing into a plurality of optical signals having wavelengths different from each other includes a plurality of optical filters that are coupled in multiple stages and in which a period of a peak wavelength of a transmission spectrum differs among different stages, a monitoring optical filter coupled to one of the plurality of optical filters, a monitoring photodetector coupled to the output side of the monitoring optical filter, and a plurality of wavelength adjustment units that are provided individually for the plurality of optical filters and the monitoring optical filter and cause wavelength shifts of an equal amount in a same direction.
A local node of an optical network obtains local operating parameters associated with a bi-directional link to a remote node of the optical network, including a nominal local wavelength and a local temperature. The local node also obtains remote operating parameters of the remote node, including a nominal remote wavelength and a remote temperature. The local node further determines a target local wavelength based on a comparison of the local operating parameters and the remote operating parameters, and tunes a local transmitter to generate light at the target local wavelength. The local node also tunes a local filter to transmit light at the target local wavelength and reflect light at a target remote wavelength. This may be done by exchanging a configuration identifier with the remote node. The configuration identifier from the remote node is encoded in pulses of light from a remote transmitter in the remote node.
A wireless data communication network controls wireless network relays. The wireless network relays wirelessly exchange user data with user communication devices responsive to network signaling. The wireless network relays wirelessly exchange the user data and the network signaling with wireless access points. The wireless access points exchange the user data with data gateways. The wireless access points exchange the network signaling with a relay signaling gateway. The relay signaling gateway exchanges the network signaling with a Mobility Management Entity (MME). The MME control the wireless network relays over the network signaling.
There is provided mechanisms for beam selection. A method is performed by a first radio transceiver device. The method comprises obtaining link quality estimates of a radio signal conveyed to the first radio transceiver device from a second radio transceiver device by means of at least a first beam taken from a first beam set and a second beam. The second beam is wider than the first beam. The method comprises selecting which one of the first beam and the second beam to use for continued communications of radio signals with the second radio transceiver device in accordance with a comparison between the link quality estimates of the first beam and compensated link quality estimates of the second beam.
The present invention provides a method of reporting, by a UE, CSI in a wireless communication system, the method comprising: receiving, from a base station, a RRC signaling that comprises a plurality of reporting settings, wherein each reporting setting comprises a corresponding list of first values representing time offsets for transmitting a CSI report, forming a plurality of lists of first values; receiving, from the base station, DCI triggering the CSI report, wherein the DCI comprises an index value related to a time at which to transmit the CSI report on a PUSCH; determining, based on the DCI, a plurality of list entries; determining a second value that is largest among the plurality of list entries; and transmitting, to the base station, the CSI report on the PUSCH based on the second value.
The present invention relates to a wireless communication system. A method for transmitting CSI by a terminal in a wireless communication system according to an embodiment of the present invention comprises: subsampling a first codebook associated with a first PMI and a second codebook associated with a second PMI according to a report sub-mode for four antenna ports; and reporting channel state information based on the subsampled first codebook and the subsampled second codebook, wherein a first codebook index for the first PMI may be determined as one of 0, 4, 8, and 12 when RI is 1 or 2, a second codebook index for the second PMI may be determined as one of 0, 2, 8, and 10 when the RI is 1, and the second codebook index for the second PMI may be determined as one of 0, 1, 4, and 5 when the RI is 2.
A radio communication device includes: a baseband portion that generates a plurality of transmit signals destined for a same area; an antenna including a plurality of antenna elements; and a signal processing portion that splits each of the plurality of transmit signals generated by the baseband portion into signals for the respective plurality of antenna elements, multiplies each of the plurality of split transmit signals by a corresponding element of a weighting matrix, and then combines those of the transmit signals provided for each corresponding antenna element.
Front-end architectures for multiple antennas. In some embodiments, a front-end architecture for wireless application can include a first mid-band amplifier system configured to amplify transmit and receive signals in a first mid-band. The front-end architecture can further include a second mid-band amplifier system configured to amplify at least a transmit signal in a second mid-band, such that the front-end architecture is capable of simultaneous uplink operations in the first mid-band and the second mid-band.
Systems and methods for relaying in broadcast single-frequency networks are disclosed herein. A single-frequency network can be formed in part using transmitters that receive data via a cooperative relay channel instead of a studio-to-transmitter link. In some embodiments, transmitter may use a portion of its transmission time to relay in-band information to the single-frequency network transmitter using time-division multiplexing.
A method for a relay user equipment (UE) to forward packets between a base station and a remote UE is disclosed. The method includes assigning network functions by the base station to at least one of the remote UE and the relay UE for a relay network slice, and selecting one or more sidelink radio resources and a corresponding RAN profile for forwarding the packets between the remote UE and the relay UE, where the selecting the one or more sidelink radio resources includes sending a sidelink-measurement configuration from the base station to at least one of the remote UE and the relay UE. The sidelink-measurement configuration includes a list of sidelink-candidate component carriers having licensed band and/or unlicensed band component carriers.
A coordinated beamforming method and device. The method includes: upon receipt of coordination request from multiple coordinated multi-point user equipments (CoMP UE), determining a target CoMP UE from multiple CoMP UEs; calculating a channel correlation value between the target CoMP UE and each candidate coordinated UE in a coordinated cell; determining, on basis of channel correlation value between the target CoMP UE and each candidate coordinated UE, a target coordinated UE; if the channel correlation value between target coordinated UE and the target CoMP UE is lower than a preset lower channel correlation threshold, then not performing beamforming orthogonalization adjustment on the target coordinated UE; and if the channel correlation value between target coordinated UE and target CoMP UE is greater than or equal to the preset lower channel correlation threshold, then performing beamforming orthogonalization adjustment on target coordinated UE. The present application can greatly reduce the probability of a performance decline of the target coordinated UE.
In accordance with a first aspect of the present disclosure, a near field communication (NFC) controller is provided, comprising a load modulation amplitude control unit configured to control a load modulation amplitude of one or more signals transmitted through an NFC antenna, wherein said load modulation amplitude control unit is further configured to change said load modulation amplitude in dependence on a supply voltage. In accordance with a second aspect of the present disclosure, a corresponding method of operating a near field communication (NFC) controller is conceived. In accordance with a third aspect of the present disclosure, a corresponding computer program is provided.
A circuit includes a transmitter, a transmission line, and a receiver coupled to the transmitter through the transmission line, the transmission line used to transmit data at high-speed rates. At least one of the transmitter or receiver has associated therewith an unmatched termination, wherein either the transmitter or the receiver includes a finite impulse response (FIR) filter configured to cancel a reflected signal at a cancellation point situated at an input of the receiver, at an input of a driver, or at an output of the driver, the driver being coupled to an output of the transmitter, such that the reflected signal is substantially removed from the signal detected by the receiver.
An analog-to-digital conversion method and an A/D conversion device for a temperature sensor are provided. An analog front-end circuit generates an A/D converter input signal positively correlated to a temperature and an A/D converter reference voltage signal negatively correlated to the temperature, and an operation is performed on a ratio of amplitudes of the generated signals to obtain a quantized output value. Since the amplitude of the A/D converter input signal is less than that of the A/D converter reference voltage signal, measurements on other signals is compatible with the measurement on the temperature in a multi-sensor system. A digitized output value is calculated by a digital-assisted readout method to generate a linear output relating to a temperature, thereby improving the accuracy of temperature measurement and reducing complexity of analog circuit design.
A multi-bit continuous-time sigma-delta modulator, SDM, includes an input configured to receive an input analog signal; a first summing junction configured to subtract a feedback analog signal from the input analog signal; a loop filter configured to filter an output signal from the first summing junction: an analog-to-digital converter, ADC, configured to convert the filtered analog output signal to a digital output signal; and a feedback path for routing the digital output signal to the first summing junction. The feedback path includes a plurality of digital-to-analog converters, DACs, configured to convert the digital output signal to an analog form. The ADC includes multiple per-bit parallel loops, each loop configured to provide a per-bit current summation of the filtered analog output signal such that an output of the multiple per-bit parallel loops is a multi-bit quantization digital output signal.
A semiconductor device includes a reference voltage generator configured to output a reference voltage. The reference voltage generator includes a boosting code circuit and a first digital-analog converter (DAC). The boosting code circuit includes a first boosting pulse generator configured to generate a first boosting pulse and a first boosting code controller configured to output a first boosting code based on a reference code and the first boosting pulse. The first DAC is configured to output the reference voltage by converting the first boosting code. The first boosting code has a first code value different from the reference code when the first boosting pulse has a first logic level, and the first boosting code has the same value as the reference code when the first boosting pulse has a second logic level opposite to the first logic level.
The present application discloses an analog-to-digital conversion (ADC) circuit. The circuit includes an integral circuit including an operational amplifier and an integral capacitor. The circuit further includes a comparator and a timer. The operational amplifier includes a positive input terminal configured to receive a first voltage, a negative input terminal coupled to a signal-collection line configured to collect an analog current signal, and an output terminal configured to output a first output signal. The comparator is configured to compare the first output signal with a second voltage to generate a second output signal to the timer. The timer is configured to start a timing operation when the operational amplifier receives the analog current signal and end the timing operation when the second output signal changes. A binary data resulted from the timing operation characterizes a digital signal corresponding to the analog current signal.
In some examples, a system includes a first transistor comprising a first source terminal coupled to a first input terminal, a first drain terminal coupled to a first top plate sampling capacitor, and a first gate terminal. The system also includes a first input-dependent dual clock boost circuit coupled to the first input terminal via a first boost circuit input and to the first gate terminal via a first boost circuit output. The system further includes a second transistor comprising a second source terminal coupled to a second input terminal, a second drain terminal coupled to a second top plate sampling capacitor, and a second gate terminal. The system also includes a second input-dependent dual clock boost circuit coupled to the second input terminal via a second boost circuit input and to the second gate terminal of the second transistor via a second boost circuit output.
Disclosed systems, methods and devices relate, generally, to autonomous signal processing and autonomous signal processing units of a microcontroller. The autonomous data processing units may be configured to perform one or more functions independently, without input from a processing unit of the microcontroller, and may, monitor and/or perform operations that are part of one or more control loops that operate independent of the microcontroller processor. The control loops may or may not be in support of control loops monitored by the processor of the microcontroller.
The present application relates to a circuit of a frequency divider arranged to divide a frequency of an input clock signal by odd integer N and a method of operating the circuit. A shift register comprises a number of N+1 clock gating cells, which are connected in series to each other, and a shift logic. An input clock signal is fed into clock signal inputs of each one of the number of N+1 clock gating cells. The shift logic is configured to receive enable signals from a set of the number of N+1 clock gating cells and to generate a feedback signal, which is supplied to a gate enable input of the first one of the number of N+1 clock gating cells. A multiplexer is configured to receive at input ports N+1 gated clock signals and to output a rotation clock signal, which has a frequency of 2/N of the frequency of the input clock signal. A frequency generator is configured to receive the rotation clock signal and to generate an output clock signal having a frequency of 1/N.
A customizable data aggregating, data sorting, and data transformation system is disclosed. In particular, the system may allow for the application of various filters to a sample of data corresponding to various measurables associated with objects. A mean and standard deviation for each of the measurables in the filtered sample of data may be calculated and may be utilized in determining z-scores for a first set of raw measurements corresponding to the measurables. Once the z-scores for the first set of raw measurements are determined, selected weights may be applied to each of the z-scores to determine a weighted z-score for each of the measurables in the first set. Each weighted z-score may then be aggregated to generate a score for an object associated with the first set. The score for the object may be utilized to rank the object relative to other objects in the filtered sample of data.
Certain aspects of the present disclosure relate to multi-band filter architectures and methods for filtering signals using the multi-band filter architectures. One example multi-band filter generally includes a transconductance-capacitance (gm-C) filter and a reconfigurable load impedance coupled to an output of the gm-C filter, the reconfigurable load impedance comprising a first gyrator circuit coupled to a second gyrator circuit.
The present application is directed to a MEMS device. The MEMS device includes a substrate having a first end and a second end extending along a longitudinal axis, the substrate including an electrostatic actuator. The device also includes a movable plate having a first end and a second end. The device also includes a thermal actuator having a first end coupled to the first end of the substrate and a second end coupled to the first end of the plate. The actuator moves the plate in relation to the substrate. Further, the device includes a power source electrically coupled to the thermal actuator and the substrate. The application is also directed to a method for operating a MEMS device.
A common mode noise filter includes a laminated body having insulator layers therein and first and second spiral conductors provided on layer planes different from each other. The first spiral conductor includes a first spiral conductor line, a first pad provided at an outer end of the first spiral conductor line, and a second pad provided at an inner end of the first spiral conductor line. The second spiral conductor includes a second spiral conductor line, a third pad provided at an outer end of the second spiral conductor line, and a fourth pad provided at an inner end of the second spiral conductor line. The first spiral conductor line faces the second spiral conductor line. Each of the second pad and the sixth pad overlaps none of the fourth pad and the eighth pad viewing from above.
A method of fabricating an RF filter comprising an array of resonators comprising the steps of: Obtaining a removable carrier with release layer; Growing a piezoelectric film on a removable carrier; Applying a first electrode to the piezoelectric film; Obtaining a backing membrane on a cover, with or without prefabricated cavities between the backing film and cover; Attaching the backing membrane to the first electrode; Detaching the removable carrier; Measuring and trimming the piezoelectric film as necessary; Selectively etching away the piezoelectric layer to fabricate discrete resonator islands; Etching down through coatings and backing membrane to a silicon dioxide layer between the backing membrane and the cover to form trenches; Applying a passivation layer into the trenches and around the piezoelectric islands; Depositing a second electrode layer over the piezoelectric film islands and surrounding passivation layer; Applying connections for subsequent electrical coupling to an interposer; Selectively removing second electrode material leaving coupled resonator arrays; Creating a gasket around perimeter of the resonator array; Thinning down cover to desired thickness; Optionally fabricating upper cavities between the backing membrane and cover by drilling holes through the cover and then selectively etching away the silicon dioxide; Dicing the wafer into flip chip single unit filter arrays; Obtaining an interposer; Optionally applying a dam to the interposer surface to halt overfill flow; Coupling the flip chip single unit filter array to pads of the interposer by reflow of the solder cap; Encapsulating with polymer underfill/overfill; and Singulating into separate filter modules.
According to one embodiment, a differential power amplifier includes a pair of transistors, a transformer coupled to the drain terminals of the transistors, and an output transmission line. The differential power amplifier operates in a range of frequencies from a lower operating frequency to an upper operating frequency to provide a relatively linear gain between the lower operating frequency and the higher operating frequency. The drains of the transistors are coupled to the primary winding of the transformer. The output transmission line is coupled to the secondary winding of the transformer. The output transmission line further includes at least one inductor-capacitor (LC) circuit that is configured to match predetermined output impedance in view of the lower and upper operating frequencies of the differential power amplifier.
An “all-digital” operational amplifier architecture, that does not have the constraint of maintaining devices in their saturation region, can leverage the high speed achievable by deeply scaled technology to replace traditional linear current referenced continuous-time operational amplifier circuits with CMOS-like dynamic circuits that require no referencing structure, have no static power consumption, and are compatible with ultra-low supply voltages. Techniques are described to replace analog continuous-time linear operational amplifier input and output stages by a discrete-time comparator circuit, e.g., CMOS-style, and a switched capacitor charge pump circuit, respectively.
A switching amplifier, such as a Class D amplifier, includes a current sensing circuit. The current sensing circuit is formed by replica loop circuits that are selectively coupled to corresponding output inverter stages of the switching amplifier. The replica loop circuits operated to produce respective replica currents of the output currents generated by the output inverter stages. A sensing circuitry is coupled to receive the replica currents from the replica loop circuits and operates to produce an output sensing signal as a function of the respective replica currents.
Methods and devices for improving AM-AM and AM-PM performance of an RF amplifier are presented. According to one aspect, input and output harmonic terminations coupled to the input and output of the amplifier are tuned at frequencies near to, but different than, a second harmonic frequency of an RF signal to be amplified. Improved AM-AM and AM-PM performance is obtained when i) the input harmonic termination is tuned at a frequency that is below the second harmonic frequency and the output harmonic termination is tuned at a frequency that is above the second harmonic frequency, and ii) the input harmonic termination is tuned at a frequency that is farther away from the second harmonic frequency than the frequency used for tuning of the output harmonic termination.
Temperature compensation circuits and methods for adjusting one or more circuit parameters of a power amplifier (PA) to maintain approximately constant Gain versus time during pulsed operation sufficient to substantially offset self-heating of the PA. Some embodiments compensate for PA Gain “droop” due to self-heating using a Sample and Hold (S&H) circuit. Other embodiments include bias compensation circuits that directly regulate a bias signal to an amplifier stage as a function of localized heating of one or more of amplifier stages. Such bias compensation circuits include physical placement of at least one bias compensation circuit element in closer proximity to at least one amplifier stage than other bias compensation circuit elements. One bias compensation circuit embodiment includes a temperature-sensitive current mirror circuit for regulating the bias signal. Another bias compensation circuit embodiment includes a temperature-sensitive element having a positive temperature coefficient (PTC) for regulating the bias signal.
An output of a first amplifier is coupled to an input of a first track and hold circuit and an input of a second track and hold circuit. An input of a first summing circuit is also coupled to an output of the first track and hold circuit and an output of the second track and hold circuit. In addition, an input of a second summing circuit is coupled to the output of the first track and hold circuit and the output of the second track and hold circuit. Moreover, an input of a third summing circuit coupled to an output of a modulator and an output of the second summing circuit, and an output of the third summing circuit coupled to an input of the first amplifier.
Apparatus and methods for power amplifiers with positive envelope feedback are provided herein. In certain implementations, a power amplifier system includes a power amplification stage that amplifies a radio frequency signal, at least one envelope detector that generates one or more detection signals indicating an output signal envelope of the power amplification stage, and a wideband feedback circuit that provides positive envelope feedback to a bias of the power amplification stage based on the one or more detection signals. The power amplifier system further includes a supply modulator that controls a voltage level of a supply voltage of the power amplification stage based on the one or more detection signals such that the supply voltage is modulated with the output signal envelope through positive envelope feedback.
A solar cell module includes a solar cell panel and a first frame. The solar cell panel includes first and second substrates that are rectangular, and a photoelectric convertor. The first substrate includes a first extension portion and has: a first surface; a second surface on a back of the first surface; and a first A-side and a second A-side facing to each other. The second substrate has a third surface facing the second surface, a fourth surface on a back of the third surface, and a first B-side and a second B-side facing to each other. The photoelectric convertor is arranged between the second surface and the third surface. The first frame includes a first fixing portion that fixes an end of the first extension portion that extends more outside than the first B-side of the second substrate. The first fixing portion forms a groove with the second substrate.
A ballast block has a uniquely designed framework consisting of lightweight, pre-fabricated, metal panel members and cross-bracing and elongated bracing members. The various components of the ballast block framework are compactly bundled and shipped to the end use location for assembly on-site. Once assembled, the ballast block framework is properly positioned on its permanent, end use location and concrete or equivalent ballast material is poured into the framework, completely filling its internal space. The ballast block can be sized and fabricated for the specific desired purpose.
A method for controlling temperature of a switching device of a power converter of an electrical power system includes monitoring, via one or more sensors, at least one operating condition of the electrical power system. Further, the method includes monitoring a temperature of the switching device. Moreover, the method includes controlling, via a control system communicatively coupled to the one or more sensors, torque of a generator of the electrical power system based on the at least one operating condition of the electrical power system so as maintain the temperature of the switching device below a predetermined threshold.
A vibration-type actuator that is capable of reducing an unnecessary vibration during driving includes a vibration body configured by connecting an electro-mechanical energy conversion element and an elastic body. A driven body is in pressure contact with the vibration body. A controller moves the vibration body and the driven body relatively by a vibration that is excited in the vibration body by applying driving voltage to the electro-mechanical energy conversion element so that a difference between a resonance frequency in a natural vibration mode of the vibration body that is higher than an upper limit frequency of a predetermined driving frequency range and that is nearest to the upper limit frequency and a frequency of the driving voltage is greater than a difference between a resonance frequency in a natural vibration mode used for moving the vibration body and the driven body relatively and the frequency of the driving voltage.
A power conversion device includes a first switching element configured by using a first semiconductor material and a second switching element connected in parallel with the first switching element and configured by using a second semiconductor material having a band gap narrower than that of the first semiconductor material. The power conversion device further includes a control device configured to selectively execute any one of first switching control and second switching control of intermittently turning on the first switching element and the second switching element, respectively, according to a current command value. A size of the first switching element is smaller than a size of the second switching element. The control device selects the first switching control if the current command value is smaller than a first threshold value and selects the second switching control if the current command value is larger than a second threshold value.
A system and method for controlling a grid-connected inverter to provide negative sequence current during unbalanced grid operating conditions. The system uses a combination of feedforward and feedback controls to compute voltage signals which are used to control the inverter switches. The system includes both positive and negative sequence current controllers with voltage feedforward terms. The measured grid voltage is directly fed forward to the positive sequence control through a predictive algorithm, so that the instantaneous voltage information is kept, reducing the influence of grid voltage harmonics on the quality of the output current. The predictive voltages include positive, negative and harmonic component information of the grid voltage signals.
In an example embodiment, an apparatus includes a bridge rectifier circuit having branches between the AC and DC nodes formed by a set of transistors. A load current measurement circuit includes a current-controlled current source coupled to the bridge rectifier circuit. The current control current source is configured to generate a mirrored current that is a scaled version of a current through at least one of the set of transistors. A current integration circuit is configured to integrate the mirrored current by charging a capacitor with the scaled current in a first mode and discharging the capacitor in a second mode. A sample and hold circuit is configured to set an output node to a voltage equal to a voltage stored by the capacitor in response to the current integration circuit entering the second mode and prior to the discharge of the capacitor.
The present invention provides a circuit for generating a control voltage depending on voltage phase of an input signal. The circuit comprises a first transistor; a second transistor, a diode, a Zener diode and a capacitor. Base and collector of first transistor along with collector of second transistor are connected to a DC voltage source. Anode of the diode is connected to base of the first transistor and cathode of the diode receives the input signal. Anode of the Zener diode is connected to the base of the second transistor and cathode of the Zener diode connected to the collector of the first transistor. The capacitor is connected between cathode of the Zener diode and ground terminal. During positive half cycle and negative half of input signal, the circuit outputs a high control voltage and a low control voltage respectively.
A method, apparatus, and system to control a multi-phase converter having at least one power channel with a plurality of power modules, and involves detecting the voltage and the current of the power modules, calculating a command voltage based on a product of a programmed virtual resistance and the detected current, and transmitting a command voltage signal to the power modules based on the calculated command voltage.
An isolated power converter includes primary side switch devices coupled to secondary side rectifying devices by a transformer and a controller. Responsive to a transient load condition, the controller switches the primary side switch devices at an initial switching period having a positive half cycle and a negative half cycle to transfer energy across the transformer during the positive half cycle and the negative half cycle. The positive half cycle and the negative half cycle of the initial switching period have the same initial duration. The controller is further operable to symmetrically reduce the duration of the positive half cycle and the negative half cycle for at least one subsequent switching period during the transient load condition.
A switch-mode power supply controller controls a circuit that includes a flyback-based, switch-mode power supply in the context of an input voltage source, a USB Type-C PD controller and an output load. The switch-mode power supply controller may be configured to estimate input voltage based on a measured magnetizing inductance discharge time. Furthermore, the switch-mode power supply controller may be configured to estimate output voltage based on the measured magnetizing inductance discharge time and the estimated input voltage. Still further, the estimated voltages may be used by the switch-mode power supply controller to limit certain currents and optimize power efficiency. Even further, the estimated and measured value may be employed by the switch-mode power supply controller to estimate and indicate brownout conditions.
Methods and apparatus for providing a time-interleaved current-feedback droop function for multiphase buck converters. An example method includes outputting a first control signal to enable a first set of switches corresponding to a first voltage of a first phase from a multiphase converter, the first phase included in a plurality of phases; enabling a first current associated with the first phase to be measured by a sample and hold circuit associated with the first phase; sampling the first current; holding the first current, the first current based on a load current for the first phase of the multiphase converter; and outputting a droop voltage based on a plurality of currents corresponding to the plurality of phases of the multiphase converter, the plurality of currents including the load current for the first phase.
Operating a resonant Dickson converter. At least some of the example embodiments are methods including: driving a voltage output of the Dickson converter by a resonant current through a first branch for a first on time, the resonant current has a resonant half-period; driving the voltage output by a resonant current through a third branch for a second on time, the resonant current through the third branch has a resonant half-period; and then electrically isolating the first branch and the third branch; detecting, during a first dead time, that the first on time was different than the resonant half-period of the first branch; and adjusting the first on time used in a subsequent cycle of driving the resonant currents, the adjusting makes the first on time more closely match the resonant half-period of the first branch.
A control system of a switching voltage regulator includes an adjustable switched-capacitor conversion circuit, an error generator, and a controlling module. The adjustable switched-capacitor conversion circuit has a plurality of discrete conversion rates, and selects a corresponding conversion rate and outputs an output voltage according to a signal of the conversion rate. An error generator is connected to the adjustable switched-capacitor conversion circuit and compares the output voltage with an external reference voltage to obtain an error voltage. The controlling module is connected between the error generator and the adjustable switched-capacitor conversion circuit to store a plurality of control variable sets, and selects one of plurality of control variable sets according to the error voltage. Afterwards, the controlling module calculates to output the signal of the conversion rate and further adjust the output voltage according to the selected control variable sets.
A power supply electronic circuit comprises: an intermediate bus converter (IBC), arranged to convert a voltage inputted to the IBC to an intermediate bus voltage on an intermediate bus; at least one direct current to direct current (DC-DC) or point of load (POL) converter, connected to the intermediate bus and arranged to convert the intermediate bus voltage to a voltage for feeding a load; and a capacitor tank connected to the intermediate bus and arranged as hold up capacitor tank to preserve power supply to the load. The IBC comprises a current ripple control circuit for suppressing current ripple in an input of the power supply electronic circuit.
A power transformation system that may incorporate inductive-capacitive circuits configured to receive AC power and filter out output power, a voltage regulator (e.g., microprocessor), a transistor/switch configured to connect or disconnect the input inductive-capacitive circuit to or from, respectively, an output filter, and a level shifter configured to provide a control signal to the transistor to connect or disconnect the inductive-capacitive circuit via the transistor/switch, to or from, respectively, the output filter. The input inductive-capacitive circuit may provide power factor correction for the AC power. The level shifter may provide pulse width modulation control signals to the transistor/switch for connection or disconnection between the inductive-capacitive circuit and the output filter. An input for controlling the level shifter may be provided by an output from a micro controller which is developed by a program that processes information from the output voltage received by the inductive-capacitive circuit output filter.
In an embodiment, an adaptive drive strength switching converter includes a driver and a control loop coupled to the driver. In an embodiment, the control loop includes a peak detector, a comparator coupled to an output of the peak detector, a counter coupled to an output of the comparator, and a digital-to-analog converter (DAC) coupled to an output of the comparator.
An ion separator for a water pump is provided, comprising a stator cylinder with input and output ports, homopolar north poles, and homopolar south poles, a drive shaft, a rotor core, and seals. Salt water pumped through the ion separator water pumps is desalinated by alternatively flushing out the positive and negative ions at various points as the water flows through the proposed devices. Two pump configurations are presented for use in desalination of salt water.
An actuator is provided, including a fixed assembly and a movable assembly. The fixed assembly includes a coil module, a base, a first screwing member, and a linear rail. The first screwing member passes through the base and the linear rail, and the linear rail is positioned on the base. The movable assembly includes a U-shaped back board having an inner space, a first magnetic module, a second magnetic module aligned with the first magnetic module, and a sliding block. The first and second magnetic modules are disposed on the U-shaped back board and accommodated in the inner space. The coil module is disposed between the first magnetic module and the second magnetic module. The sliding block is positioned on the U-shaped back board in the inner space, and slidably connected to the linear rail.
A rotational electric machine achieving both of productivity and insulation property is provided. A rotational electric machine includes an iron core having a plurality of slots, and a plurality of segment conductive bodies arranged in the slots, wherein the iron core includes a coil guide arranged at, at least, one of opening portions of the slots, and the coil guide includes a slot insertion portion located between the slot and the segment conductive body and at least one separation portion located between the segment conductive bodies, and the slot insertion portion and the separation portion are arranged in the slot together with the segment conductive body.
According to various embodiments, a synchronous reluctance machine is disclosed. The synchronous reluctance machine includes a stator, a synchronous reluctance rotor disposed within the stator and configured to rotate relative to the stator, and a non-magnetic sleeve disposed circumferentially around the rotor, where sleeve thickness is between about 1 mm and 2 mm and an air-gap radius is between about 80 mm and 100 mm.
A microstrip antenna for use in a wireless power transmission system and a method for forming the microstrip antenna are described. The antenna includes a first multi-layer printed circuit board (PCB) that includes a top surface and a bottom surface. The top and bottom surfaces of the first multi-layer PCB include a first electrically conductive material. The antenna includes a second multi-layer PCB that includes a top surface and a bottom surface. The top and bottom surfaces of the second multi-layer PCT include a second electrically conductive material. A first plurality of vias each substantially pass through the top and bottom surfaces of the first multi-layer PCB. A second plurality of vias each substantially pass through the top and bottom surfaces of the second multi-layer PCB. The antenna further comprises a dielectric slab that is configured to receive the first multi-layer PCB and the second multi-layer PCB.
A wireless power transfer system comprises a power transmitter generating a wireless power signal providing power to a plurality of power receivers (105, 109). The power transmitter (101) comprises a receiver (203) receiving data messages from the power receivers (105, 109) on a load modulation channel divided into time slots. A time slot processor (205) allocates time slots as dedicated time slots for individual power receivers or as common time slots for load modulation by any power receiver (105, 109). An identity controller (207) links a temporary identity to each of the power receivers (105) and a message processor (209) determines the source power receiver for messages in response to temporary identity information in the messages. Specifically, the message processor (209) determines the source for a first message received in a common time slot as the first power receiver (105) if the temporary identity information in the first message is indicative of a temporary identity assigned to the first power receiver (105).
A method for controlling a stand-alone modular microgrid unit, including: detecting connection between the microgrid unit and a first power source having a first capacity and a second power source having a second capacity larger than the first capacity; detecting a power demand of a load connected to the microgrid unit; in response to a total power demand from loads electrically connected to the microgrid unit falling below the first capacity, controlling the first power source to operate in a power supply mode and supplying power to the load; in response to the total power demand exceeding the first capacity, disconnecting the load from the microgrid unit, controlling the second power source to operate in a power supply mode, and in response to the second power source producing a threshold amount of power, electrically connecting the load to the microgrid unit and supplying power to the load.
This invention consists of an apparatus to interface an electric vehicle battery with a solar photovoltaic system and a method of using the apparatus to provide back up power during grid outages and ancillary service revenue from the grid. The apparatus uses the solar PV inverter to provide bidirectional power flow from the battery during night-time hours, or whenever the solar array is producing insufficient power. The apparatus thus consists only of switches and control and measurement equipment. It relies on the otherwise underutilized inverter and the on-board vehicle battery charger as the power electronic components, thus minimizing cost.
A computer is programmed to upon determining that a battery charge level of a battery of a vehicle is below a first threshold, determine a first fuel quantity for an engine to charge the battery to a second threshold; and actuate a vehicle component according to the first fuel quantity. The computer may transmit a message specifying a second fuel quantity that is a sum of a preset fuel quantity and the first fuel quantity. The computer may, upon determining that an ambient temperature is below a temperature threshold, provide an instruction to the engine to charge the battery to the second threshold.
Techniques pertaining to battery protection circuits are disclosed. According to one embodiment of the present invention, the battery protection circuit includes a power button, a power detection circuit, a first switch coupled between the power button and the power detection circuit, the power detection circuit configured to output a power-off signal when either the first switch or the power button is in a switch-off state, a low-voltage detection circuit coupled with a battery and configured to detect whether a voltage of the battery is lower than a low-voltage detection threshold or not, and switch off the first switch to cut off an electric leakage path of the battery when the voltage of the battery is determined to be lower than the low-voltage detection threshold, and a power management circuit coupled with the power detection circuit and configured to cut off an electric discharge path of the battery to prohibit the battery from discharging when receiving the power-off signal.
The modular cell phone storage locker may comprise a cabinet with one or more doors. The interior space of the cabin may comprise one or more internal compartments defined by the exterior walls of the cabinet and internal dividers. A charging port and a disinfecting device may be located within each compartment. The doors may be prevented from opening by a lock, which is responsive to a timer. Locked periods and unlocked periods may be defined through a keypad on an operator panel. While locked, cell phones left in a compartment may be recharged and disinfected. A software application on the phone may prevent usage of the phone and modify phone operation during locked periods. One or more time displays visible on the exterior of the cabinet may display information pertinent to the operation of the timer. A fingerprint reader may allow administrator access to the lock.
A charging apparatus for charging electrical energy stores for motor vehicles, having a conversion device for converting a power supplied from a medium-voltage grid to a power suitable for the charging process of the energy store. Here, the conversion device includes at least one phase unit connected to at least one phase of the medium-voltage grid, said phase unit having at least two strands, namely at least one strand for a positive component of the phase and at least one strand for a negative component of the phase. At least one module, having at least one input unit and at least one inverter unit and at least one transformer unit and at least one rectifier unit associated with the transformer unit and at least one output unit, is associated in each case with the strands.
An electrical assembly comprises a power converter including first and second DC terminals and an AC terminal. The electrical assembly also includes a grounding circuit to connect the AC terminal to ground. The grounding circuit defines first and second current flow paths between the AC terminal and ground. The first current flow path includes a switching element. The second current flow path includes a first current flow control element that is configured to operate in a first mode in which it reduce the flow of current between the AC terminal and ground when the first current flow path is open. The electrical assembly additionally includes a control unit configured to operate the switching element to maintain open the first current flow path following an occurrence of a DC network fault. The power converter is configured to continue transferring power between the DC and AC networks throughout the DC network fault.
A serial acquisition of multiple power sources via one or more multiplexers which is circulated in many corridors of a multi-port system with a resonant engine. A controller manages multiplexer/switches connecting a first plurality of DC power sources and an auxiliary DC power source to a circulator. A multiplexer/switch revolves each source of power to inverters for DC-AC conversion. Reciprocity of power sharing and management of signal routing between input power sources can be performed to maintain discrete operation between the input/output power sources and individual power inverters for precise load power delivery. Regenerative power from a motor load can be directed to “recharge” an input power source. The resonant engine applied to each power source provides a constant conduit of energy during off-operation/cycles.
A method protects an electrical generator or power station unit connected to a power distribution network or to a power transmission line. A short circuit near the generator in the power distribution network or on the power transmission line is detected, and a short-circuit detection signal is generated, when a set of predetermined trigger conditions is satisfied. The electrical generator is disconnected from the network or line if, after generation of the short-circuit detection signal, the trigger conditions are satisfied at the instant when a predetermined delay time elapses, and have remained satisfied until the predetermined delay time elapses. The delay time is a variable duration which is reestablished regularly or irregularly before it elapses, as a function of the operating profile after the short-circuit occurrence, and the generator is disconnected if the trigger conditions are satisfied at the instant when the delay time elapses.
A biomedical stimulation protection device includes a current source, a first upper P-channel metal oxide semiconductor field effect transistor (PMOSFET), a first adaptive bias circuit, and six first stimulating metal oxide semiconductor field effect transistors (MOSFETs). The first adaptive bias circuit receives a power voltage (VDD), a double power voltage (2VDD), and a triple power voltage (3VDD). The first upper MOSFET and the first stimulating MOSFETs are electrically cascoded with each other. The first adaptive bias circuit turns on at least one of the first stimulating MOSFETs according to VDD, 2VDD, and 3VDD, so as to stimulate a physiological tissue and control a voltage difference between two terminals of each of the first upper MOSFET and the first stimulating MOSFETs to be lower than or equal to VDD.
A seal system for an oil-filled cable termination including a cable extending through each of a cable gland and a stress cone that is spaced apart from the cable gland. The seal system includes: a first oil seal layer surrounding the cable between the cable gland and the stress cone; a second oil seal layer overlapping and contacting the first oil seal layer; a first oil barrier layer overlapping and contacting an upper portion of the second oil seal layer; a second oil barrier layer overlapping and contacting a lower portion of the second oil seal layer, the second oil barrier layer spaced apart from the first oil barrier layer; and a heat shrinkable tube secured around the first and second oil barrier layers.
A substrate unit includes a circuit board, a connector portion installed at the front end portion of the upper side of the circuit board, a busbar connected to the circuit board and fixed to the lower side of the circuit board, a bottom portion including a recessed portion overlapping the front end portion of the circuit board and arranged on the lower side of the busbar, and a bonding layer fixing the busbar to the bottom portion. The busbar includes a non-bonding region that faces the recessed portion. A bonding region includes the bonding layer surrounding three sides other than a front side, namely a left side, a right side, and a rear side, of the non-bonding region. Notches are located on a left side and a right side of the front end portion and overlap extension lines of boundary between the non-bonding and the bonding region.
A wire harness capable of combining low voltage wires and high-voltage wires without using shielded wires. The harness is provided with high-voltage wires, which are passed through a pipe possessing shielding properties and shape retention properties, and a low voltage wire, in which a shape-retaining conductor that runs parallel to the pipe and possesses electrically conductive properties and shape retention properties is encased by an insulating member. The low voltage wire is placed on the outside of the pipe and, as a result, the low voltage wire is not affected by the electromagnetic noise of the high voltage wires, which makes it possible to combine the high-voltage wires and the low voltage wire.
Provided is a wire gripper that can make it easier to lift its tip being grasped by fingers. A wire gripper 10 includes: a wire gripper body member 12 including a fixed gripping body 20 having a linear body pressing portion 24; an operating member 14 pivotably mounted to the wire gripper body member 12 through a support shaft 70; a movable gripping body member 16 including a linear body holding portion 22 that pivotally moves toward the linear body pressing portion 24 of the fixed gripping body 20 in accordance with the pivotal movement of the operating member 14; and a coupling member 18 coupled to the operating member 14 through a rotary shaft 72 for coupling member for pivotally moving the operating member 14. The coupling member 18 includes a ring portion 130 provided at the backward end of an elongate coupling member body 80. The ring portion 130 is bent at a prescribed angle in the bending region 100 relative to a reference plane Pyz including a lateral axis along which the linear body pressing portion 24 and the linear body holding portion 22 extend.
A VCSEL is described that provides for emission from the substrate side. The VCSEL comprises a substrate having first and second major surfaces, a first distributed Bragg reflector (DBR) on the first major surface of the substrate, an active region on the first DBR, and a second DBR on the active region. These elements are aligned on a longitudinal axis along which laser radiation is emitted. In an illustrative embodiment of the invention, an open region extends through the substrate along the longitudinal axis between the second major surface of the substrate and the first DBR. An anti-reflection coating and a first ohmic contact are located on the first DBR in this region. Preferably the first ohmic contact extends around all or part of the anti-reflection coating. A second ohmic contact is located on the surface of the second DBR. The two DBRs form a laser cavity; and emission takes place along the longitudinal axis through the anti-reflection coating. A method for forming the VCSEL is also described.
The disclosure relates to crimping pliers configured to crimp cable lugs onto electrical conductors. The crimping pliers includes two crimping jaws which can be swiveled towards one another. In each crimping jaw, a crimping matrix configured with a plurality of different crimping dies over a circumference is rotatably mounted with respect to an axis of rotation. The crimping matrices are permanently coupled to each other via the gearing independently of a swivel position of the crimping jaws.
An elastic piece structure and an adapter are disclosed. The elastic piece structure includes a mounting portion, a T-shaped curved elastic piece and an anti-falling structure. The T-shaped curved elastic piece includes a first elastic portion bending outward and a first abutting portion abutting against a panel. One end of the first elastic portion is connected to the mounting portion and the other end of the first elastic portion is connected to a middle part of the first abutting portion. The anti-falling structure is disposed on a side of the mounting portion. The elastic piece structure uses the T-shaped curved elastic piece and the anti-falling structure and is fixed without screws, alleviating shaking between a product and the panel and ensuring a firm attachment between the product and the panel.
A swivelling lever arrangement (3) for securing a housing arrangement (1) has at least of a first and a second housing part (11,12). The swivelling lever arrangement (3) has at least one swivelling lever (4) and a guiding pin (2). The swivelling lever (4) has a receptacle (8). The swivelling lever (4) and the guiding pin (2) are attachable on the housing parts (11,12) such that, when the swivelling lever (4) swivels from a release position into a locking position when the housing parts (11,12) are substantially brought together, the guiding pin (2) is receivable in the receptacle (8). The receptacle (8) has at least one cam (74) designed such that, when the swivelling lever (4) swivels, the guiding pin (2) is guided into a depth (84) of the receptacle (8) via the cam (74) such that part of the head portion (41) is deflected by the cam (74).
A high voltage RF connector for coaxial-to-stripline transition is capable of withstanding high voltages and providing impedance matching at RF frequencies. The high voltage RF connector comprises a bulkhead connector adapted to couple a coaxial cable connector. As the bulkhead connector matingly engages the coaxial cable connector, a first air gap forms therebetween, having an impedance determined, at least in part, by a first air gap distance between a first bulkhead connector dielectric insert and a coaxial cable connector dielectric insert. A second air gap also forms between first and second bulkhead connector dielectric inserts, both located within the bulkhead connector. The second air gap has approximately the same air gap distance and shape as the first air gap.
A connector part of a subsea connector adapted to be mated with a second part of the subsea connector by application of a mating force. The connector part has at least a first contact configured for engagement with a respective second contact of the second connector part for establishing a connection. The connector part further includes a flushing mechanism having a chamber filled with a medium and one or more fluid passages providing a flow connection from the chamber to an area adjacent to the first contact. During mating of the first connector part with the second connector part, the flushing mechanism is actuated by the mating force and medium is expelled from the chamber and is directed towards at least one of the first contact or the second contact so as to flush the first contact or the second contact, respectively, during mating.
An electrical plug connector includes a first terminal module and a second terminal module disposed inside a metallic shell. The first terminal module includes a first insulated member and first plug terminals, a first combining portion, and a first conductive strip assembled on the first insulated member. The second terminal module includes a second insulated member and second plug terminals, a second combining portion, and a second conductive strip assembled on the second insulated member. The first terminal module and the second terminal module are formed by different plastic injection molds, and therefore the assembly of the first plug terminals, the second plug terminals, the first combining portion, and the second combining portion on the first insulated member and the second insulated member becomes easy. No additional Mylar film is utilized because no terminal groove appears on the outer surface of the first insulated member and the second insulated member.
An integrated circuit (IC) chip socket that can include a non-conductive housing and moveable pogo pins positioned within the non-conductive housing. The moveable pogo pins can include active pogo pins, each active pogo pin being positioned to a corresponding lead of an IC chip insertable into the IC chip socket. Moveable pogo pins can also include an inactive pogo pin positioned to avoid contacting each lead of the IC chip insertable into the IC chip socket.
An electrical connector includes a body, multiple terminals and a shell. The body includes a mating cavity defined by a top plate, a bottom plate and two side plates. The top plate and the bottom plate are respectively provided with multiple accommodating grooves, which include a wider first accommodating groove and a narrower second accommodating groove. Each terminal has an elastic portion accommodated in a corresponding accommodating groove. A first clearance is provided between the elastic portion and a side of the first accommodating groove close to the corresponding side plate. A second clearance is provided between the elastic portion and a side of the second accommodating groove close to the first accommodating groove. The first clearance is greater than the second clearance The shell has a top wall and two side walls. A mating port being defined by the front ends thereof is larger than the mating cavity.
A connection device for conductors has at least one double conductor connection for connecting two conductors. The conductor connections are formed as direct plug connections each having a metal clamping cage formed of a highly conductive material such as sheet metal. A clamping spring is mounted on each clamping cage. Each clamping cage serves as a spring support for a clamping spring and as a contact element for each conductor.
A method for contacting a wire (1), in particular an aluminum wire, with a connecting body (4), in particular with a plug of a coil body (5), comprising the following steps: connecting the wire (1) materially to the connecting body (4) at at least one point (2, 3); after connecting, enclosing a connecting region including the at least at one point (2, 3) by a shrink tube (6) with an inner glue (7), the shrink tube (6) encompassing the connecting body (4).
An antenna coil housed in a tubular case has a holder made from resin, which is fitted on a magnetic-material core. This holder has a core holding part, which holds the magnetic-material core, and a lead wire holding part, which holds lead wires. The lead wire holding part has first holding parts 22a, which hold the lead wires in the X direction, near the ends, and second holding parts 22b, which hold the ends of the lead wires in the Y direction, the ends of the coil being connected to conductors of the lead wires, which are led out via the second holding parts 22b.
An antenna device includes a first antenna, a second antenna, a main short portion and a grounding portion. The first antenna and the second antenna are disposed in a PCB to radiate signals. The main short portion is disposed between the first antenna and the second antenna. The main short portion is further electrically coupled to the grounding portion. The main short portion adjusts current between the first antenna and the second antenna. Thus, the main short portion reduces interference between the first antenna and the second antenna. The first antenna includes a first feeding portion, a first short portion and a first coupling portion. A first end of the first feeding portion is suspended in the air. The first coupling portion is disposed in a first storage space. The first coupling portion is electrically insulated from the first short portion and the grounding portion.
An antenna assembly includes: (a) a ground plane, having a plateau, (b) a roof panel overlying the ground plane around the plateau, (c) a metal foil overlying said plateau and (d) an antenna including a base juxtaposed to the plateau. The antenna assembly is characterized by a through roof panel connection so as to provide a more aesthetically pleasing appearance.
The disclosure relates to a pivot axle arrangement for providing the two structural elements are pivotally movable in relation to each other. The pivot axle arrangement comprises a first and a second axle spindle for holding an outer axle, a first and a second bearing element and the outer axle. The outer axle is formed as a hollow cylinder. An inner axle is concentrically arranged in a longitudinal direction inside of the outer axle such that the inner axle extends between said first and second axle spindle. The ends of the inner axle are fastened to the first and second axle spindles by a first and second fastening means such that the first and second axle spindles are interconnected via said inner axle.
One embodiment disclosed in the present disclosure may provide an antenna device that includes: a metal member that forms at least a part of an external housing for the electronic device; a printed circuit board (PCB) coupled to a feed connector of the metal member, such that the metal member is configured to operate as an antenna radiator for the PCB; and the metal member further including at least two grounding connectors that are coupled to ground through the PCB, wherein the feed connector and the two grounding connectors are located at different positions on the metal member, and may provide an electronic device that includes the same. Accordingly, it is possible to easily design an antenna that operates in a desired frequency band, to reduce the cost, to make the exterior of the device appealing due to the advantage of design, and to maximize the efficient use of space for the design of a multiband antenna.
An electronic device including an antenna is provided. The electronic device includes a first antenna radiator that resonates in a first band, a second antenna radiator that resonates in second and third bands higher than the first band, a third antenna radiator that resonates in the second and third bands, a communication circuit, a first feeding part electrically connecting the communication circuit and the first antenna radiator, a second feeding part electrically connecting the communication circuit and the second antenna radiator, and a third feeding part electrically connecting the communication circuit and the third antenna radiator. The communication circuit receives a signal in the second band while transmitting and receiving a signal in the second band by using the second antenna radiator and receives a signal in the third band while transmitting and receiving a signal in the third band using the third antenna radiator.
A high-frequency conductor system has a high-frequency housing which comprises a housing base, a housing cover which is at a distance from the housing base, and a housing wall which runs circumferentially between the housing base and the housing cover, as a result of which an accommodation space is formed. At least one cable-bound RF bushing is arranged within the accommodation space. The cable-bound RF bushing is electrically isolated from the high-frequency housing. A capacitive coupling element is arranged on at least one part of the circumference of the cable-bound RF bushing and is electrically connected to said cable-bound RF bushing. The capacitive coupling element has two end sides which are oriented transverse or perpendicular to the propagation direction of the cable-bound RF bushing. A first coupling web is electrically connected to the high-frequency housing and is arranged at a distance from the end side in order to generate a capacitive coupling.
A battery that can inhibit temperature rising when generating heat due to a short circuit etc., while inhibiting degradation of the battery output performance, includes a plurality of unit batteries stacked together; and an endothermic layer arranged between the unit batteries adjacent in a stacking direction, the layer including an endothermic material, wherein each unit battery includes: a pair of current collectors; and at least one electrode body, wherein: the pair of current collectors are arranged to both ends of the unit battery in the stacking direction respectively, the electrode body includes a first pole active material layer, a second pole active material layer which is different from the first pole active material layer, and a solid electrolyte layer; the first and second pole active material layer are arranged between the pair of current collectors; and the current collectors have contact with the first or second pole active material layer.
Light is transmitted through or from a separator of a battery cell or scattered within a battery cell and received by one or more light detectors. The light that is normally transmitted through the separator is scattered, absorbed, wavelength-shifted or otherwise distorted by an impending fault in the vicinity of or within the separator. The change in light due to the impending fault is measured by a detector and a signal from the detector is processed to identify the impending fault so that a warning can be generated indicative of the impending fault.
It is an object of the present invention to provide an electrochemical device having an electrolytic solution having high current density, as well as high safety, where dissolution and deposition of magnesium progress repeatedly and stably. Furthermore, the present invention relates to an electrolytic solution for an electrochemical device, comprising (1) a supporting electrolyte comprising a magnesium salt, and (2) at least one or more kinds of the compound represented by following general formula (I) (wherein n represents an integer of 0 to 6, and n pieces of R1 and n pieces of R2 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a halogenoalkyl group having 1 to 6 carbon atoms. A1 and A2 each independently represent —C(═O)—R3, —O—R5, —N(R4)—R3, —S—R3, —C(═O)—OR3, —O—C(═O)—R3, —C(═O)—N(R4)—R3, —N(R4)—C(═O)—R3, —SO2—R3, —N(R4)—SO2—R3, —O—B(OR5)2, —O—P(═O)(OR5)2, —CN, a monocyclic heterocyclic group, a group derived from cyclic acetal, a group derived from a cyclic carbonate ester, a group derived from a cyclic carboxylate ester).
Method of making solid-state electrolyte with composition formula Li7-xLa3Zr2-xBixO12. The method includes making a polymerized complex of the metal-ions of the composition formula, and making an agglomerate therefrom to be calcined and sintered to produce the solid-state electrolyte. A solid-state electrolyte with the composition formula Li7-xLa3Zr2-xBixO12 with superior ionic conductivity by choice of the value of x and processing conditions. A battery employing a solid-state electrolyte of superior ionic conductivity with the composition formula Li7-xLa3Zr2-xBixO12.
An air supply device using a cooling water heater of a fuel cell vehicle can effectively reduce cold starting time of the fuel cell vehicle and effectively remove moisture in a stack in cold shut down (CSD) of the fuel cell vehicle. In the air supply device, a bypass flow path is formed to be branched from a first air supply line connected between an air blower for supplying air to a fuel cell stack and a humidifier for humidifying the air supplied to the stack. The bypass flow path allows air exhausted from the air blower to pass through a cooling water heater by bypassing the humidifier and then to be supplied to the stack.
A method of making carbon nanotubes doped with iron, nitrogen and sulfur for an oxygen reduction reaction catalyst includes the steps of mixing an iron containing oxidizing agent with a sulfur-containing dye to form a fibrous fluctuate of reactive templates and using these for in-situ polymerization of an azo compound to form polymer-dye nanotubes, adding an alkali to precipitate magnetite, and subjecting the nanotubes to pyrolysis, acid leaching, and heat treatment.
Provided is a method for forming noble metal nanoparticles on a support. In particular, the method includes heating precursors of the noble metal nanoparticles in a spiral glass tube reactor to reduce the precursors to form the noble metal nanoparticles on the support.
A positive electrode for non-aqueous electrolyte secondary battery suppresses a decrease in discharge capacity under a high output condition while minimizing an increase in battery temperature in an overcharged state of the battery. The positive electrode includes: a positive electrode current collector; and a positive electrode active material layer that is formed on a surface of the positive electrode current collector, contains a positive electrode active material and a conductive aid, and has a BET specific surface area of from 1 to 3 m2/g, in which the conductive aid contains a first conductive aid and a second conductive aid having a larger average particle diameter than the first conductive aid. The content of the first conductive aid is greater than the content of the second conductive aid in the positive electrode active material layer.
According to one embodiment, there is provided an active material including particles of a composite oxide having an orthorhombic crystal structure and represented by the general formula Li2+wNa2−xM1yTi6−zM2zO14−δ. The particles of the composite oxide have an average crystallite size of 50 nm to 90 nm and an average primary particle size of 0.1 μm to 0.6 μm. M1 is at least one selected from the group consisting of Cs and K. M2 is at least one selected from the group consisting of Zr, Sn, V, Nb, Ta, Mo, W, Fe, Y, Co, Mn, and Al. w falls within 0≤w≤4, x falls within 0
A nickel lithium ion battery positive electrode material having a concentration gradient, and a preparation method therefor. The material is a core-shell material having a concentration gradient, the core material is a material having a high content of nickel, and the shell material is a ternary material having a low content of nickel. The method comprises: synthesizing a material precursor having a high content of nickel by means of co-precipitation, co-precipitating a ternary material solution having a low content of nickel outside the material precursor having a high content of nickel, aging, washing, and drying to form a composite precursor in which the low nickel material coats the high nickel material, adding a lithium source, grinding, mixing, calcining, and cooling to prepare a high nickel lithium ion battery positive electrode material. The obtained material has regular morphology, uniform coating, narrow particle size distribution range, gradient distribution of the concentration of the nickel element, high content of the nickel element in the core, and low content of the nickel element in the shell; the nickel element in the core guarantees the specific capacity of the material, and the shell coating material maintains the stability of the structure of the material, so as to improve the safety of the material in the charge and discharge process, and improve the cycle and rate performance of the material.
In one example, a system for a flow cell for a flow battery, comprising: a first flow field; and a polymeric frame, comprising: a top face; a bottom face, opposite the top face; a first side; a second side, opposite the first side; a first electrolyte inlet located on the top face and the first side of the polymeric frame; a first electrolyte outlet located on the top face and the second side of the polymeric frame; a first electrolyte inlet flow path located within the polymeric frame and coupled to the first electrolyte inlet; and a first electrolyte outlet flow path located within the polymeric frame and coupled to the first electrolyte outlet. In this way, shunt currents may be minimized by increasing the length and/or reducing the cross-sectional area of the electrolyte inlet and electrolyte outlet flow paths.
A battery system comprises a plurality of substantially planar layers extending over transverse areas. The plurality of layers comprises at least one cathode layer, at least one anode layer, and at least one separator layer therebetween.
A gas release valve has a valve body that is made from rubber or resin and closes a communication passage providing communication between an outside and an inside of a battery case. In an inner communication passage, which is positioned on an inner side of the battery case with respect to a valve body in the communication passage, a moisture absorber is arranged in a state where gas in the battery case is able to pass inside the inner communication passage.
A battery housing for a traction motor battery of a vehicle is disclosed that includes a plurality of elongated impact absorbing members attached to the walls of the enclosure. The impact absorbing members may be integrally formed with the walls of the enclosure. The impact absorbing members include an arcuate wall that is designed to be deformed in the event of an impact to absorb impact forces and protect the battery. The impact absorbing members may be oriented to extend either in a horizontal orientation or vertical orientation. The impact absorbing members may be retained by T-shaped guide on the outer surface of the walls of the enclosure or may be integrally formed in one piece on the outer surface of each of the walls of the enclosure.
The present disclosure is directed to a battery module having an outer housing configured to receive a plurality of electrochemical cells, in which the outer housing has a wall including an inner surface facing a cavity formed by the outer housing, an outer surface opposite to the inner surface, and an opening extending through the wall. The battery module also includes a connector barrel configured to be disposed in the opening of the wall, in which the connector barrel has a first open end, a second open end, and a body forming a hollow interior between the first open end and the second open end, in which the connector barrel has a flange disposed on the body and extending outwardly from the body, and in which the flange has a plurality of ridges configured to abut the wall.
Disclosed is an organic light emitting display device and a head-mounted display including the same to reduce or prevent non-emissive areas from being seen in a lattice form. The organic light emitting display device includes a plurality of anode electrodes on a lower substrate, a bank dividing the plurality of anode electrodes and covering an edge of each of the plurality of anode electrodes, an organic light emitting layer on the plurality of anode electrodes, a second electrode on the organic light emitting layer, and a scattering layer overlapping the bank.
The present application discloses a display panel having a display unit and an encapsulating structure for encapsulating the display unit. The encapsulating structure includes a growth layer on the display unit; and a graphene layer on a side of the growth layer distal to the display unit.
A device structure providing contact to conductive layers via a deep trench structure is disclosed. The device includes a first dielectric layer including a first opening. A first conductive layer is deposited over the first dielectric layer and the first opening. A second dielectric layer is deposited on the first conductive layer. The second dielectric layer includes a second opening. A second conductive layer is deposited over the second dielectric layer and the first and second openings. A semiconductor layer is deposited on the second dielectric layer such that the semiconductor layer is not continuous on at least part of the walls of the first or second openings. A top electrode layer is deposited on the semiconductor layer. The top electrode layer is in contact with the second conductive layer on at least part of the walls of the first or second openings.
A display device includes an organic electroluminescence layer including a plurality of emission layers respectively emitting light of a plurality of colors, and a reflective layer configured to reflect the light emitted from the emission layers. A shortest optical path length between the emission layers and the reflective layer is longer than at least three times of a wavelength of blue light.
An additive for a light-emitting layer contains a compound represented by formula (1): where X is P, C, or S; A is a cyclic hydrocarbon group that may have H, a direct bond, a chain hydrocarbon group, or a heteroatom; R is H or an alkyl group, and a plurality of R may link together to form a ring, and if said ring is formed, at least one R is an alkyl group; m is 0 or 1; r is 1 when X is a phosphorous atom or a carbon atom and 2 when X is a sulfur atom; n is a number represented by 3-m when X is a phosphorous atom, and a number represented by 2-m if X is a carbon atom or a sulfur atom; and p is 1 when m is 0, at least 1 when m is 1, and is a substitutable number in A.
A step of forming openings in a mask substrate includes step A of forming openings of “a” number of continual columns included in a first region (R1) including at least the (n/2)th column or the ((n+1)/2)th column; step B of forming openings of “b” number of continual columns included in a second region (R2) adjacent to the first region (R1) in a −x direction with a first gap region (RS1) being sandwiched between the first and second regions, the first gap region including “sa” number of continual columns; and step C of forming openings of “c” number of continual columns included in a third region (R3) adjacent to the first region (R1) in an x direction with a second gap region (RS2) being sandwiched between the first and third regions, the second gap region including “sb” number of continual columns. The steps B and C are performed after the step A.
A spin-orbit torque type magnetoresistance effect element including a magnetoresistance effect element having a first ferromagnetic metal layer with a fixed magnetization direction, a second ferromagnetic metal layer with a varying magnetization direction, and a non-magnetic layer sandwiched between the first ferromagnetic metal layer and the second ferromagnetic metal layer; and spin-orbit torque wiring that extends in a first direction intersecting with a stacking direction of the magnetoresistance effect element and that is joined to the second ferromagnetic metal layer; wherein the magnetization of the second ferromagnetic metal layer is oriented in the stacking direction of the magnetoresistance effect element; and the second ferromagnetic metal layer has shape anisotropy, such that a length along the first direction is greater than a length along a second direction orthogonal to the first direction and to the stacking direction.
One illustrative integrated circuit (IC) product disclosed herein includes an MRAM cell, the MRAM cell having an outer perimeter, wherein the MRAM cell comprises a bottom electrode, a top electrode and an MTJ (Magnetic Tunnel Junction) element positioned above the bottom electrode and below the top electrode. In this example, the IC product also includes an insulating material positioned around the outer perimeter of the MRAM cell and a conductive sidewall spacer comprised of a metal-containing shielding material positioned around the outer perimeter of the MRAM cell, wherein the insulating material is positioned between the conductive sidewall spacer and the MRAM cell.
A piezoelectric actuator includes a piezoelectric element, a connection member of a shaft or weight connected to an element end surface of the piezoelectric element, the other one of the shaft and weight connected to a first end surface constituting an end surface opposing to the element end surface of the piezoelectric element, a wiring portion, and a resin portion. The piezoelectric element forms external electrodes on surfaces thereof, alternately laminates internal electrode layers with piezoelectric layers therebetween, and provides part of the external electrodes on the element end surface. The wiring portion has conductive portions corresponding to the external electrodes. The resin portion fixes the piezoelectric element, the connection member, and the wiring portion so that the element end surface opposes to the connection member with the wiring portion therebetween and that the conductive portions are electrically connected to the external electrodes.
A thermoelectric device includes a thermoelectrode characterized by a band gap less than kBT, where kB is the Boltzmann constant and T is a temperature of the thermoelectrode. The device also includes a magnetic field source, operably coupled to the thermoelectrode, to apply a magnetic field B on the thermoelectrode along a first direction. The device also includes a voltage source, operably coupled to the thermoelectrode, to apply an electric field E on the thermoelectrode along a second direction substantially perpendicular to the first direction so as to generate a heat flow along the second direction.
A light emitting device includes a light emitting element, a sealing member, and a first film. The light emitting element has a light emitting surface from which a light is emitted. The sealing member is provided on the light emitting surface of the light emitting element to cover the light emitting surface and having a light output surface via which the light is output from the sealing member. The light output surface being curved to have a concave shape. The sealing member includes a light-transmissive material containing a fluorescent material to convert a wavelength of the light emitted from the light emitting element. The first film is disposed on a part of the light output surface of the sealing member to partially reflect the light emitted from the light emitting element.
Light emitter packages, systems, and methods having improved performance are disclosed. In one aspect, a light emitter package can include a submount that can include an anode and a cathode. A light emitter chip can be disposed over the submount such that the light emitter chip is mounted over at least a portion of the cathode and wirebonded to at least a portion of the anode.
A light-emitting device including at least one light-emitting unit, a wavelength conversion adhesive layer, and a reflective protecting element is provided. The light-emitting unit has an upper surface and a lower surface opposite to each other. The light-emitting unit includes two electrode pads, and the two electrode pads are located on the lower surface. The wavelength conversion adhesive layer is disposed on the upper surface. The wavelength conversion adhesive layer includes a low-concentration fluorescent layer and a high-concentration fluorescent layer. The high-concentration fluorescent layer is located between the low-concentration fluorescent layer and the light-emitting unit. The width of the high-concentration fluorescent layer is WH. The width of the low-concentration fluorescent layer is WL. The width of the light-emitting unit is WE. The light-emitting device further satisfies the following inequalities: WE
A method of combining a first phosphor material and a second phosphor material and devices made therefrom. The method includes providing a first phosphor material, combining the first phosphor material with a host matrix to create a first phosphor mixture, curing the first phosphor mixture at one or more predetermined temperatures, and depositing the cured first phosphor mixture onto a substrate having a second phosphor material. The first phosphor material includes red emission phosphor particles and the second phosphor material includes yellow emission phosphor particles and the host matrix includes a silsesquioxane host material, silsesquioxane-silicate host material, a sol gel host material, or an alkali/silicate water glass host material.
Provided is a method for manufacturing a solar cell element that can increase the film thickness for collector electrodes formed in a screen printing process and reduce the resistance value of the same as well as contribute to improvements in conversion efficiency. When a collector electrode for a solar cell element is formed by screen printing of a conductive paste, that screen-printing process is repeated a plurality of times. At this time, the squeegee speed during the second or later screen printing is faster than the squeegee speed during the first screen printing. The second and later screen printing is superimposed on the collector electrode printed the first time; therefore, the faster the squeegee speed is, the better the plate release is for the paste and foundation. The amount of paste applied increases, and the film for the collector electrode that is formed becomes thicker.
A photovoltaic cell comprising a transparent front-plane, an opaque back-plane and an encapsulant resin wherein said back-plane comprises a polyester film comprising a base layer (B) comprising a crystallizable polyester and a heat-sealable layer (A) comprising an amorphous copolyester wherein: (i) said amorphous copolyester is derived from an aliphatic diol and a cycloaliphatic diol and at least one aromatic dicarboxylic acid (ii) said polyester film is disposed in the photovoltaic cell such that layer (A) is in contact with the encapsulant resin.
An energy harvesting device includes prefabricated thin film energy absorption sheets that are each tuned to absorb electromagnetic energy of a corresponding wavelength. The energy harvesting device can include a prefabricated thin film converter sheet to convert the electromagnetic energy into electrical power. The energy harvesting device can include a prefabricated thin film battery sheet to store the electrical power. Each thin film energy absorption sheet can be fabricated using a roll-to-roll process. The energy harvesting device can be fabricated using a roll-to-sheet process from rolls of the thin film energy absorption sheets.
The photodetector includes a photon absorbing region formed by a first semiconductor material having a first bandgap energy value. It also includes a blocking region formed by at least second and third semiconductor materials configured to prevent the majority charge carriers from passing between the photon absorbing region and a contact region, the second semiconductor material presenting a second bandgap energy value higher than the first bandgap energy value to form a quantum well with the third semiconductor material. The blocking region is doped.
A composition for solar cell electrodes includes silver powder, a glass frit, and an organic vehicle. The glass frit includes a first glass frit and a second glass frit. The first glass frit includes tellurium (Te) and silver (Ag) in a molar ratio (Te:Ag) of about 75:1 to about 1:25. The second glass frit includes a lead-tellurium-oxide (Pb—Te—O)-based glass frit or a bismuth-tellurium-oxide (Bi—Te—O)-based glass frit and is free from silver (Ag).
A semiconductor device structure includes a region of semiconductor material having an active region and a termination region. An active structure is disposed in the active region and a termination structure is disposed in the termination region. In one embodiment, the termination structure includes a termination trench and a conductive structure within the termination trench and electrically isolated from the region of semiconductor material by a dielectric structure. A dielectric layer is disposed to overlap the termination trench to provide the termination structure as a floating structure. A Schottky contact region is disposed within the active region. A conductive layer is electrically connected to the Schottky contact region and the first conductive layer extends onto a surface of the dielectric layer and laterally overlaps at least a portion of the termination trench.
The present disclosure relates to a TFT including a gate on a substrate; a gate insulation layer on the substrate and the gate, and a surface of the gate insulation layer being applied with a flattening process; an oxygen-rich layer on the gate insulation layer; an active layer on the oxygen-rich layer; a source and a drain on the active layer; and a passivation layer on the active layer, the source, and the drain. In addition, the present disclosure also relates to a manufacturing method of the TFTs and the array substrate having the TFTs. By applying the flattening process to the surface of the gate insulation layer and by forming the oxygen-rich layer on the gate insulation layer, the surface of the gate insulation layer is smooth so as to eliminate the oxygen vacancy defects on the surface of the gate insulation layer. Thus, the surface state of the gate insulation layer is stable.
A front surface electrode common to a plurality of unit cells is provided substantially all over an active region of a semiconductor element. A plurality of electrode pads on the front surface electrode are closer to the outer peripheral portion side than the central portion of the active region. Different wires are joined to substantially the center of each electrode pad. The active region is divided into two or more segments so that the segments are aligned along the path of current flowing through the front surface electrode, and unit cells different in conduction ability are disposed respectively in each segment. Unit cells lowest in conduction ability are in the first segment farthest from junctions of the wires and electrode pads, and the unit cells are disposed so that the farther apart from the junctions of the wires and electrode pads, the lower in conduction ability the unit cells are.
A semiconductor device includes an n-type silicon carbide epitaxial layer on a front surface of an n+-type silicon carbide substrate. A first p+-type base region is provided in the n-type silicon carbide epitaxial layer and a breakdown voltage structure region is provided in an outer periphery of an active region through which a main current flows. A distance between the first p+-type base region and a front surface of the n+-type silicon carbide substrate is smaller than a distance between the breakdown voltage structure region and the front surface of the n+-type silicon carbide substrate.
According to one embodiment, an IGBT has a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, a third semiconductor layer of the second conductivity type, a fourth semiconductor layer of the first conductivity type, and a fifth semiconductor layer of the second conductivity type, between a first electrode and a second electrode, on the first electrode in order. A third electrode is provided on the third semiconductor layer, the fourth semiconductor layer, and the fifth semiconductor layer via a gate insulating film, and is insulated from the first electrode and the second electrode. A fourth electrode is provided between the third electrode and the second semiconductor layer, and is insulated from the third electrode and the second semiconductor layer.
A semiconductor device can include a substrate with a first source/drain and a second source/drain in the substrate. A first ohmic contact pattern can be in an uppermost surface of the first source/drain, where the first ohmic contact pattern includes a first semiconductor alloyed with a first metal. A second ohmic contact pattern can be in an uppermost surface of the second source/drain, where the second ohmic contact pattern includes a second semiconductor that is different than the first semiconductor and is alloyed with a second metal that is different than the first metal.
A semiconductor film, a sheet like object, and a semiconductor device are provided that have inhibited semiconductor properties, particularly leakage current, and excellent withstand voltage and heat dissipation. A crystalline semiconductor film or a sheet like object includes a corundum structured oxide semiconductor as a major component, wherein the film has a film thickness of 1 μm or more. Particularly, the semiconductor film or the object includes a semiconductor component of oxide of one or more selected from gallium, indium, and aluminum as a major component. A semiconductor device has a semiconductor structure including the semiconductor film or the object.
Provided is a silicon carbide semiconductor device that is further reduced in resistance. Silicon carbide semiconductor device includes silicon carbide semiconductor layer disposed on a first main surface of substrate, electrode layer containing polysilicon disposed on the silicon carbide semiconductor layer with first insulating layer interposed between the electrode layer and the silicon carbide semiconductor layer, second insulating layer that covers the silicon carbide semiconductor layer and the electrode layer, first silicide electrode that is located in first opening part formed in the first insulating layer and the second insulating layer and forms ohmic contact with a part of the silicon carbide semiconductor layer, and second silicide electrode that is located in second opening part formed in the second insulating layer and is in contact with a part of the electrode layer.
Provided is a FinFET including a substrate, at least one fin and at least one gate. A portion of the at least one fin is embedded in the substrate. The at least one fin includes, from bottom to top, a seed layer, a stress relaxation layer and a channel layer. The at least one gate is across the at least one fin. A method of forming a FinFET is further provided.
According to some embodiments, an integrated circuit device is disclosed. The integrated circuit device include at least one inductor having at least one turn, a magnetic coupling ring positioned adjacent to the at least one inductor, the magnetic coupling ring comprising at least two magnetic coupling turns, the at least two magnetic coupling turns are disposed adjacent to the at least one turn to enable magnetic coupling between the at least two magnetic coupling turns and the at least one turn The integrated circuit device also includes a power electrode and a ground electrode, wherein the power electrode and the ground electrode are coupled to the at least one inductor and the magnetic coupling ring to provide a first current in the at least one inductor having a direction opposite to a second current in the magnetic coupling ring to cancel at least a portion of a magnetic field generated by the at least one inductor.
An organic light emitting display device includes a substrate, a pixel structure, and a touch sensor electrode. The substrate includes a sub-pixel region and a transparent region. The pixel structure is disposed in the sub-pixel region on the substrate. The touch sensor electrode is disposed in the transparent region on the substrate.
A multicolor light-emitting element that utilizes fluorescence and phosphorescence and is advantageous for practical application is provided. The light-emitting element has a stacked-layer structure of a first light-emitting layer containing a host material and a fluorescent substance and a second light-emitting layer containing two kinds of organic compounds and a substance that can convert triplet excitation energy into luminescence. Note that light emitted from the first light-emitting layer has an emission peak on the shorter wavelength side than light emitted from the second light-emitting layer.
The present invention mainly discloses a high-efficiency OLED device, comprising: an anode substrate, a hole transport layer (HTL), at least one emission layer (EML), an electron transport layer (ELT), and a cathode layer. In this high-efficiency OLED, LUMO level of the HTL, LUMO level of the EML and LUMO level of the ETL together form a step-like LUMO level, and HOMO level of the HTL, HOMO level of the EML and HOMO level of the ETL also constitute one step-like HOMO level. On the other hand, the electron mobility of the ETL is greater than the EML's electron mobility by at least 2 orders in this high-efficiency OLED. Moreover, a variety of experimental data have proved that, a specific OLED would certainly exhibits outstanding luminance performance as long as the specific OLED is made based on the above-mentioned physical characteristics limitations for the ETL, the EML and the HTL.
A switching device, according to one embodiment, includes: a cylindrical pillar gate contact, an annular cylindrical channel which encircles a portion of the cylindrical pillar gate contact, an annular cylindrical oxide layer which encircles a portion of the annular cylindrical channel, and a source contact tab which encircles a portion of the annular cylindrical channel toward a first end of the annular cylindrical channel. Other systems are also described in additional embodiments herein which provide various different switching devices having improved components including improved annular cylindrical channel structures, improved source contacts, and/or improved cylindrical pillar gate contacts. These improved systems and components thereof may be implemented in vertical annular transistor structures in comparison to conventional surface transistor structures.
Integrated circuit devices may include a substrate including a flash memory region and a variable resistance memory region, a flash memory cell transistor including a cell gate electrode that overlaps the flash memory region of the substrate, a variable resistance element that overlaps the variable resistance memory region of the substrate, and a select transistor including a select source/drain region that is disposed in the variable resistance memory region of the substrate. The select source/drain region may be electrically connected to the variable resistance element. The substrate may include an upper surface facing the cell gate electrode and the variable resistance element, and the upper surface of the substrate may continuously extend from the flash memory region to the variable resistance memory region.
The present invention is directed to a magnetic structure including a first seed layer, which is made of a first transition metal, formed on top of a second seed layer comprising cobalt, iron, and boron; and a magnetic fixed layer structure formed on top of the first seed layer and having a first invariable magnetization direction substantially perpendicular to a layer plane thereof. The magnetic fixed layer structure includes layers of a first magnetic material interleaved with layers of a second transition metal. The first transition metal may be chromium or iridium. The second transition metal may be nickel, platinum, palladium, or iridium. The second seed layer which comprises cobalt, iron, and boron, may have a noncrystalline structure. Moreover, the second seed layer may be non-magnetic or superparamagnetic. The magnetic structure may further includes a third seed layer, which may comprise tantalum, formed adjacent to the second seed layer opposite the first seed layer.
Methods of fabricating devices including arrays of integrated Magnetic Tunnel Junctions (MTJs) and corresponding selectors in an array of cells. The array of cells can include a plurality of source lines disposed in columns, set of selectors coupled to respective source lines, MJT structures coupled to respective selectors and a plurality of bit lines disposed in rows and coupled to respective sets of MTJ structures. The array of cells can also include buffers coupled between respective selectors and respective MTJ structures. In addition, multiple arrays can be fabricated on top of each other to implement vertical three-dimensional (3D) MTJ devices.
A stack-type image sensor include a first substrate comprising a photoelectric conversion element and a storage transistor connecting the photoelectric conversion element to a charge storage element; and a second substrate comprising a transfer transistor connecting the charge storage element to a floating diffusion, wherein the first substrate and the second substrate are stacked. The charge storage element comprises: a first electrode and a second electrode positioned adjacent to the first electrode and having a sidewall facing a sidewall of the first electrode, wherein the first electrodes and the second electrodes comprise at least one bonding pad formed in the first or second substrate; and a dielectric layer inserted between the sidewall of the first electrode and the sidewall of the second electrode, which face each other.
A semiconductor device (1) is manufactured which includes a SiC epitaxial layer (28), a plurality of transistor cells (18) that are formed in the SiC epitaxial layer (28) and that are subjected to ON/OFF control by a predetermined control voltage, a gate electrode (19) that faces a channel region (32) of the transistor cells (18) in which a channel is formed when the semiconductor device (1) is in an ON state, a gate metal (44) that is exposed at the topmost surface for electrical connection with the outside and that is electrically connected to the gate electrode (19) while being physically separated from the gate electrode (19), and a built-in resistor (21) that is made of polysilicon and that is disposed below the gate metal (44) so as to electrically connect the gate metal (44) and the gate electron (19) together.
Provided herein is a semiconductor device and a method of manufacturing the same. The semiconductor device has improved erase characteristics by using a select gate enclosing a portion a first semiconductor region overlapping a second semiconductor region. The first semiconductor region and the second semiconductor region are formed of different semiconductor materials.
A method for manufacturing a semiconductor memory device including following steps is provided. A substrate having a first region, a second region, and a third region is provided. A first stack structure is formed on the first region. A second stack structure is formed on the second region. A third stack structure is formed on the third region. A first mask layer is formed on the substrate to cover the third stack structure. A first ion implantation process is performed, so that a second floating gate and a second control gate in the second stack structure are changed to a first conductive type. A second mask layer formed on the substrate to cover the first and second stack structures. A second ion implantation process is performed, so that a third floating gate and a third control gate in the third stack structure are changed as a second conductive type.
An integrated circuitry construction comprises a substrate comprising conductive nodes of integrated circuitry. A conductive line structure is above the conductive nodes. Elevationally-extending conductive vias are spaced longitudinally along the conductive line structure. The conductive vias individually directly electrically couple the conductive line structure to individual of the conductive nodes. The conductive line structure comprises conductive material directly electrically coupled to the conductive vias and extending between immediately-longitudinally-adjacent of the conductive vias. An upper insulative material is directly below the conductive material between the immediately-longitudinally-adjacent conductive vias. Doped or undoped semiconductor material directly is below the upper insulative material between the immediately-longitudinally-adjacent conductive vias. A lower insulative material is directly below the semiconductor material between the immediately-longitudinally-adjacent conductive vias. Other aspects, including method, are disclosed.
Systems, methods, and apparatus for an improved protection from charge injection into layers of a device using resistive structures are described. Such resistive structures, named s-contacts, can be made using simpler fabrication methods and less fabrication steps. In a case of metal-oxide-semiconductor (MOS) field effect transistors (FETs), s-contacts can be made with direct connection, or resistive connection, to all regions of the transistors, including the source region, the drain region and the gate.
A method for reducing parasitic capacitance of a semiconductor structure is provided. The method includes forming a fin structure over a substrate, forming a first source/drain region between the fin structure and the substrate, forming first spacers adjacent the fin structure, forming second spacers adjacent the first source/drain region and recessing the first source/drain region in exposed areas. The method further includes forming a shallow trench isolation (STI) region within the exposed areas of the recessed first source/drain region, depositing a bottom spacer over the STI region, forming a metal gate stack over the bottom spacer, depositing a top spacer over the metal gate stack, cutting the metal gate stack, forming a second source/drain region over the fin structure, and forming contacts such the STI region extends a length between the metal gate stack and the first source/drain region.
A method of manufacturing a semiconductor die includes: forming a power HEMT (high-electron-mobility transistor) in a III-nitride semiconductor substrate, the power HEMT having a gate, a source and a drain; monolithically integrating a first gate driver HEMT with the power HEMT in the III-nitride semiconductor substrate, the first gate driver HEMT having a gate, a source and a drain and logically forming part of a driver; and electrically connecting the first gate driver HEMT to the gate of the power HEMT so that the first gate driver HEMT is operable to turn the power HEMT off or on responsive to an externally-generated control signal received from the driver or other device.
When an ESD element is operated, for the purpose of suppressing heat generation and causing uniform current to flow through all channels of all transistors included in the ESD element, various substrate potentials existing in the transistors and the channels of a multi finger type ESD element are electrically connected via a low resistance substrate, and further, are set to a potential that is different from a Vss potential. In this manner, the current is uniformized and heat generation is suppressed through low voltage operation to improve an ESD tolerance.
A system and method for creating layout for non-planar cells with redundancy in one or more of output contacts and power contacts are described. In various implementations, cell layout is created for a first cell with non-planar devices. An available local path in the first cell is identified for redundant output signal routing, which includes a free available metal zero layer track. Redundant metal zero layer is placed in an available metal zero track of the available local path. Redundant contacts and redundant metal one layer are placed in a free track in the available local path to connect an original output contact to a redundant output contact. An available external path is identified between the first cell and a second cell for redundant power or ground routing. One or more metal zero extension layers and/or metal one extension layers are placed in the identified external path.
A package structure includes a first redistribution layer, a second redistribution layer, a die, a plurality of conductive pillars and a die-stacked structure. The first redistribution layer has a first surface and a second surface opposite to the first surface. The second redistribution layer is disposed above the first surface. The die is disposed between the first redistribution layer and the second redistribution layer and has an active surface and a rear surface opposite to the active surface. The active surface is adhered to the first surface, and the die is electrically connected to the first redistribution layer. The conductive pillars are disposed and electrically connected between the first redistribution layer and the second redistribution layer. The die-stacked structure is bonded on the second redistribution layer.
Systems and methods for improving heat distribution and heat removal efficiency in PoP semiconductor packages are provided. A PoP semiconductor package includes a first semiconductor package that is physically, communicably, and conductively coupled to a stacked second semiconductor package. A gap forms between the upper surface of the first semiconductor package and the lower surface of the second semiconductor package. on an organic substrate. A curable fluid material, such as a molding compound, may be flowed both in the interstitial spaces between the PoP semiconductor packages and into the gap between the upper surface of the first semiconductor package and the lower surface of the second semiconductor package.
According to one embodiment, M (M represents an integer of 2 or larger) semiconductor chips and through electrodes for N (N represents an integer of 2 or larger) channels are provided. The M semiconductor chips are stacked in sequence. The through electrodes are embedded in the semiconductor chips to connect electrically the semiconductor chips in the direction of stacking. The connection destination of the through electrodes are exchanged between one or more upper and lower layers of the semiconductor chips.
A fan-out semiconductor package includes: a core member having a first through-hole and including first and second wiring layer disposed on different levels; a first semiconductor chip disposed in the first through-hole; a second semiconductor chip disposed on the first semiconductor chip in the first through-hole so that a second inactive surface faces a first inactive surface; conductive wires disposed on the core member and a second active surface and electrically connecting second connection pads and the second wiring layer to each other; an encapsulant covering at least portions of the core member, the first semiconductor chip, the second semiconductor chip, and the conductive wires and filling at least portions of the first through-hole; and a connection member disposed on the core member and a first active surface and electrically connecting first connection pads and the first wiring layer to each other.
The invention relates to a method for integrating at least one interconnection for the manufacture of an integrated circuit, including a step of depositing at least one insulating body onto a substrate including a horizontal surface, said insulating body comprising a first wall extending from the horizontal surface of the substrate to a high point of said insulating body and a step of depositing a one-piece electrical structure which is made of an electrically conductive material and extends on the horizontal surface of the substrate and the first wall of the insulating body, the first wall being vertically angled by more than 10 μm and having a rising slope extending from the horizontal surface of the substrate to the high point of said insulating body.
An electroless nickel, electroless palladium, electroless tin stack and associated methods are shown. An example method to form a solder bump may include forming a layer of a second material over a first material at a base of a trench in a solder resist layer. The first material includes nickel and the second material includes palladium. The method further includes depositing a third material that includes tin on the second material using an electroless deposition process, and forming a solder bump out of the third material using a reflow and deflux process.
Apparatuses and methods for providing inductance are disclosed. In one embodiment, a method for providing an inductor includes forming an electrical circuit on a substrate, forming a seal ring around the perimeter of the electrical circuit, providing a break in at least one layer of the seal ring, and electrically connecting the seal ring such that the seal ring operates as an inductor.
The present disclosure relates to semiconductor structures and, more particularly, to arc resistant crackstop structures and methods of manufacture. The structure includes: a crackstop structure comprising dual rails surrounding an active area of an integrated circuit; and a through-BOx electrical contact electrically connecting each of the dual rails to an underlying substrate.
A flexible multilayer construction (100) for mounting a light emitting semiconductor device (200) (LESD), includes a flexible dielectric substrate (110) having an LESD mounting region (120), first and second electrically conductive pads (130, 140) disposed in the LESD mounting region for electrically connecting to corresponding first and second electrically conductive terminals of an LESD (200) received in the LESD mounting region, and a first fiducial alignment mark (150) for an accurate placement of an LESD in the LESD mounting region. The first fiducial alignment mark is disposed within the LESD mounting region.
A carrier substrate comprises a core layer, a first metal layer disposed on the core layer, a release layer disposed on the first metal layer, and a second metal layer disposed on the release layer. At least one layer among the first metal layer, the release layer, and the second metal layer is disposed in a plurality of unit pattern portions having an area smaller than an area of the core layer. In addition, a method of manufacturing a semiconductor package using the carrier substrate is provided.
Described herein are integrated circuit structures having a package substrate with microstrip transmission lines as the top metallization layer, and a ground plane external to the package substrate that is electrically connected to a ground plane internal to the package substrate, as well as related devices and methods. In one aspect of the present disclosure, an integrated circuit structure may include a package substrate having an internal ground plane and a microstrip signal layer as the top metallization layer, and an external ground plane on the surface of the package substrate that is electrically connected to the internal ground plane in the package substrate. In another aspect of the present disclosure, an integrated circuit structure may further include changes to microstrip transmission line geometry to match impedance values of areas covered by the external ground plane with impedance values of areas not covered by the external ground plane.
An air-cooling heat dissipation device is provided for removing heat from an electronic component. The air-cooling heat dissipation device includes a supporting substrate, an air pump and a heat sink. The supporting substrate includes a top surface, a bottom surface, an introduction opening and a thermal conduction plate. The thermal conduction plate is located over the top surface of the supporting substrate and aligned with the introduction opening. The electronic component is disposed on the thermal conduction plate. The air pump is fixed on the bottom surface of the supporting substrate and aligned with the introduction opening. The heat sink is attached on the electronic component. When the air pump is enabled, an ambient air is introduced into the introduction opening to remove the heat from the thermal conduction plate.
A chip package assembly, a package substrate and methods for fabricating the same are disclosed herein. In one example, a chip package assembly includes a package substrate, an IC die and a stiffener. The package substrate includes a first dam projecting from a top surface of the package substrate. The IC die and the stiffener are mounted to the top surface of the package substrate. The stiffener includes a bottom surface that is disposed adjacent to the first dam. At least one surface mounted component is mounted to a region of the package substrate defined between the stiffener and the IC die. An adhesive coupling the stiffener to the package substrate is in contact with the first dam.
The implementations described herein generally relate to steps for the dynamic, real-time control of the process spacing between a substrate support and a gas distribution medium during a deposition process. Multiple dimensional degrees of freedom are utilized to change the angle and spacing of a substrate plane with respect to the gas distributing medium at any time during the deposition process. As such, the substrate and/or substrate support may be leveled, tilted, swiveled, wobbled, and/or moved during the deposition process to achieve improved film uniformity. Furthermore, the independent tuning of each layer may be had due to continuous variations in the leveling of the substrate plane with respect to the showerhead to average effective deposition on the substrate, thus improving overall stack deposition performance.
A method of manufacturing a semiconductor device is provided as follows. A fin and an isolation surrounding a lower portion of the fin are formed on a substrate. A plurality of sacrificial gate electrodes is formed on the fin and the isolation. A plurality of recessed upper surfaces of the fin is formed from an upper surface of the fin. An upper surface of the isolation is protected until the plurality of recessed upper surfaces of the fin is formed from the upper surface of the fin. A plurality of source/drains is formed on the plurality of recessed upper surfaces of the fin.
The present disclosure relates to a method for manufacturing a CMOS structure. A first gate stack is formed on a semiconductor substrate in a first region. A second gate stack is formed on the semiconductor substrate in a second region. A dopant of a first type is implanted with the first gate stack and the second gate stack as a hard mask to form a lightly-doped drain region of the first type. A dopant of a second type is implanted by using a first mask and with the second gate stack as a hard mask to form a lightly-doped drain region of the second type. The first mask blocks the first region and exposes the second region. When the lightly-doped drain region of the second type is formed, the dopant of the second type over dopes a predetermined region of the lightly-doped drain region of the first type.
The present disclosure provides methods for forming a conductive fill material (e.g., a conductive feature) by a physical vapor deposition (PVD) process. In one embodiment, a method of forming a conductive fill material on a substrate includes maintaining a first substrate temperature at a first range for a first period of time while forming a pre-layer of a conductive fill material on a substrate, providing a thermal energy to the substrate to maintain the substrate at a second substrate temperature at a second range for a second period of time, wherein the second substrate temperature is higher than the first substrate temperature, and continuously providing the thermal energy to the substrate to maintain the substrate a third substrate temperature at a third range for a third period of time to form a bulk layer of the conductive fill material on the substrate.
Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
Stress compensated systems and methods of compensating for electrical and mechanical stress are discussed. One example system can include a first circuit and a global stress compensation component. The first circuit can be configured to generate a first signal and can comprise at least one local stress compensation component (e.g., employing dynamic element matching, chopping, etc.). The global stress compensation component can comprise one or more stress sensors configured to sense one or more stress components associated with the system. The global stress compensation component can be configured to receive the first signal and to compensate for stress effects on the first signal.
The present invention relates to a substrate processing apparatus for processing a substrate, such as a wafer, while supplying a cleaning liquid (e.g. pure water and a liquid chemical) to the substrate, and also relates to a pipe cleaning method for the substrate processing apparatus. The substrate processing apparatus includes: a first cleaning lane including first cleaning units (52), (54) each for cleaning a substrate while supplying pure water to the substrate; a second cleaning lane including second cleaning units (60), (62) each for cleaning a substrate while supplying pure water to the substrate; a first pure-water supply pipe (120) for supplying the pure water to the first cleaning lane; and a second pure-water supply pipe (180) for supplying the pure water to the second cleaning lane.
Disclosed herein is a manufacturing method of a semiconductor device that includes forming first and second layers over an underlying martial such that the first layer is between the underlying material and the second layer, forming a third layer over the second layer, forming first and second core portions apart from each other over the third layer, forming a gap portion between the first and the second core portions; and removing the second and the third layers by using the first and the second core portions and the gap portion as a mask to expose a part of the first layer.
Disclosed and claimed herein is a composition for forming a spin-on hard-mask, having a fullerene derivative and a crosslinking agent. Further disclosed is a process for forming a hard-mask.
A semiconductor device including a substrate, a semiconductor layer, and a buffer structure is provided. The semiconductor layer is located on the substrate. The buffer structure is located between the substrate and the semiconductor layer. The buffer structure includes a plurality of first layers and a plurality of second layers. The first layers and the second layers are alternately stacked with a same pitch or different pitches.
A method of fabricating a semiconductor structure includes providing an engineered substrate including a polycrystalline substrate, a barrier layer encapsulating the polycrystalline substrate, and a bonding layer coupled to the barrier layer. The method further includes forming a first silicon layer coupled to the bonding layer, forming a dielectric layer coupled to the first silicon layer, forming a second silicon layer coupled to the dielectric layer, removing a portion of the second silicon layer and a corresponding portion of the dielectric layer to expose a portion of the first silicon layer, forming a gallium nitride (GaN) layer coupled to the exposed portion of the first silicon layer, forming a gallium nitride (GaN) based device coupled to the GaN layer, and forming a silicon-based device coupled to a remaining portion of the second silicon layer.
A system for expressing an ion path in a time-of-flight (TOF) mass spectrometer. The present invention uses two successive curved sectors, with the second one reversed, to form S-shaped configuration such that an output ion beam is parallel to an input ion beam, such that the ions makes two identical but opposed turns, and such that the geometry of the entire system folds into a very compact volume. Geometry of a TOF mass spectrometer system in accordance with embodiments of the present invention further includes straight drift regions positioned before and after the S-shaped configuration and, optionally, a short straight region positioned between the two curved sectors with total length equal to about the length of the central arc of both curved sectors.
A columnar rod reference member made of a material whose coefficient of thermal expansion is different from a flight tube is placed in contact with the tube. One end of the tube and o the reference member are fixed to each other with a fixture part. A distance measurement sensor measures the difference in length between the tube and the reference member whose lengths fluctuate due to a change in temperature. A displacement of the difference in length, as expressed by a proportion, is larger than that of the length of the flight tube. The difference in length is far smaller than the length of the flight tube. This improves detection of the displacement due to thermal expansion with a strain gauge or sensor. The m/z values in mass spectrum data are corrected based on the measured values of the displacement, whereby a highly accurate mass discrepancy correction is achieved.
The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
Provided herein are high energy ion beam generator systems and methods that provide low cost, high performance, robust, consistent, uniform, low gas consumption and high current/high-moderate voltage generation of neutrons and protons. Such systems and methods find use for the commercial-scale generation of neutrons and protons for a wide variety of research, medical, security, and industrial processes.
Provided is a measurement device including: an irradiation optical system which emits a primary charged quantum beam to a sample for scanning; a detector which detects secondary charged particles generated from the sample; and a signal processing unit which processes an output signal from the secondary charged particle detector which has detected the secondary charged particles, in which the signal processing unit includes a measurement unit which measures widths of a first pattern group calibrated with a well-known first dimension and a second pattern group calibrated with a well-known second dimension, and an operation unit which defines a relationship between the well-known dimensions of the first and second pattern groups and length measurement values of the first and second pattern groups as a function. Accordingly, it is possible to control device performance with high accuracy, by controlling a device state so that the measured value described above is within an acceptable range by comparing to a predetermined value provided in advance.
A charged particle beam device includes: a charged particle source; an acceleration electric power source connected to the charged particle source for accelerating a charged particle beam emitted by the acceleration electric power source; and an objective lens for focusing the charged particle beam onto a sample, the objective lens including: a central magnetic pole having a central axis coinciding with an ideal optical axis of the charged particle beam; an upper magnetic pole; a cylindrical side-surface magnetic pole; and a disk-shaped lower magnetic pole, the central magnetic pole having an upper portion on a side of the sample and a column-shaped lower portion, the upper magnetic pole having a circular opening at a center thereof and being in a shape of a disk that is tapered to a center thereof and that is thinner at a position closer to a center of gravity of the central magnetic pole.
Disclosed is a field emission apparatus. The apparatus comprises a cathode electrode and an anode electrode spaced apart from each other, an emitter on the cathode electrode, a gate electrode between the cathode and anode electrodes and including at least one gate aperture overlapping the emitter, and an electron transmissive sheet on the gate electrode and including a plurality of fine openings overlapping the gate aperture.
A multilayer electronic component includes first, second, and third ceramic layers, first and second inner electrodes, and a via-electrode. The first, second and third ceramic layers are sequentially stacked on each other. The first inner electrode is sandwiched between the first and second ceramic layers. The second inner electrode is sandwiched between the second and third ceramic layers. The via-electrode electrically connects the first and second inner electrodes. A projection is integrally provided with the via-electrode. The projection projects from the via-electrode towards an outer peripheral direction and is inserted into the second ceramic layer in a layered arrangement.
A manufacturing method of a rare-earth magnet includes: manufacturing a sintered body having by performing pressing on a magnetic powder for a rare-earth magnet; and manufacturing a rare-earth magnet by putting the sintered body in a plastic working mold and by performing hot plastic working on the sintered body while pressing the sintered body to give anisotropy to the sintered body. The sintered body has a cuboid shape and includes at least one recessed side face that has a recessed portion curved inward. The plastic working mold includes a lower die, a side die forming a rectangular frame of four side faces, and an upper die slidable in the side die. The hot plastic working is hot upsetting.
A reactor includes a core body having an outer peripheral iron core, at least three iron cores contacting or coupled to an internal surface of the outer peripheral iron core, and coils wound on the iron cores. The reactor has a terminal base including terminals connected to the coils and connected to cables through current-carrying portions, and an electrical shock protection cover for covering the terminal base. The electrical shock protection cover includes a main portion for covering the current-carrying portions, and cable covering portions extending from the main portion to cable drawing directions so as to cover a part of each cable. The terminal base includes a main portion for supporting the current-carrying portions, and cable receiving portions in which passages are formed to pass the cables therethrough between the cable receiving portion and the cable covering portion.
A guarded coaxial cable assembly provides at least one bundled electrical cable with first and second concentrically aligned conductors, the bundle encapsulated in a flexible jacket that is abrasion resistant and wherein with respect to a jacket cross-section a height of the jacket is smaller than a width of the jacket.
A shielded electrical cable includes one or more conductor sets extending along a length of the cable and being spaced apart from each other along a width of the cable. Each conductor set has one or more conductors having a size no greater than 24 AWG and each conductor set has an insertion loss of less than about −20 dB/meter over a frequency range of 0 to 20 GHz. First and second shielding films are disposed on opposite sides of the cable, the first and second films including cover portions and pinched portions arranged such that, in transverse cross section, the cover portions of the first and second films in combination substantially surround each conductor set, and the pinched portions of the first and second films in combination form pinched portions of the cable on each side of each conductor.
Fuel capsules usable in inertial confinement fusion (ICF) reactors have shells made from materials having a diamond (sp3) lattice structure, including diamond materials in synthetic crystalline, polycrystalline (ordered or disordered), nanocrystalline and amorphous forms. The interior of the shell is filled with a fusion fuel mixture, including any combination of deuterium and/or tritium and/or helium-3 and/or other fusible isotopes.
Time-varying hyperglycemic stresses are derived from actual ICU patients and applied to non-critically ill virtual patients, using any model of normal glucose-insulin physiology that fulfills certain requirements, in order to model and simulate stress hyperglycemia. Other aspects provide: 1) a methodology to perform sensitivity analyses of the parameters of ICU insulin infusion therapy protocols and to improve the protocols; and 2) a training system for clinicians about the course and management of stress hyperglycemia in the ICU or other facility.
Various embodiments provide participants in a medical workflow with an integrated way to interact with a variety of medical information systems. Medical information can be collected from different medical information systems and/or data sources and presented to a user in one or more customized interfaces. Users can interact with the interface(s) and perform tasks associated with a medical workflow.
Methods and computer-based systems for facilitating assessment of clinical infertility are provided. The methods and systems can be implemented to, for example, facilitate assessment of a subject for an in vitro fertilization treatment cycle, including determining probability of a live birth event. The methods and systems can be implemented to, for example, facilitate a determination of success implantation of embryos, selection of an optimal number of embryos to transfer, and determination of success in subsequent in vitro fertilization treatment cycles following an unsuccessful treatment cycle.
Provided herein are a memory device and a method of operating the memory device. The memory device comprises a plurality of memory cells stacked along a pillar vertical to a substrate, a peripheral circuit configured to program and verifying memory cells coupled to a selected word line, among the memory cells, and a control logic configured to control the peripheral circuit so that a pass voltage applied to unselected word lines is adjusted depending on a location of the selected word line when the memory cells are verified.
A storage device is provided. The storage device includes a first connector, a second connector, and a memory circuit. The first connector is selectively electrically connected to a first electronic device. The second connector is selectively electrically connected to a second electronic device. The memory circuit is disposed between the first connector and the second connector. When the first connector is electrically connected to a first electronic device and the second connector is electrically connected to a second electronic device, the second connector is switched to a charge mode from a device mode, so that the first electronic device charges the second electronic device through the storage device, the second electronic device does not provide power to the storage device through the storage device, and the first electronic device accesses data in the storage device through the first connector.
In a memory system, variable resistance circuits, such as transistor circuits, in the word line and bit line decoders are set during bias line set times and/or prior to turn-on times of read operations to increased resistance levels. The variable resistance circuits are kept at the increased resistance levels during an initial turn-on time period during which a selected memory cell may conducts a current spike. The increased resistance levels of the variable resistance circuit may operate to reduce or limit the width of the current spike. In response to the initial turn-on time period ending, the variable resistance circuits are set back to low resistance levels to facilitate subsequent sense results detection events and program operations.
A semiconductor device may include a plurality of memory banks and an output buffer that couples to the plurality of memory banks. The output buffer may produce a data voltage signal representative of data to be read from at least one of the plurality of memory banks. The semiconductor device may also include a driver circuit having a pulse generator and a pull-down switch that couples the output buffer to ground, such that the pull-down switch provides the data voltage signal to the output buffer. The semiconductor device may also include a test mode circuit that determines whether the data voltage signal is acceptable and sends an enable signal to the pulse generator in response to the data voltage signal not being acceptable. The enable signal causes the pulse generator to effectively operate with variations in processing, temperature, and voltage properties associated with testing.
Methods of operating a ferroelectric memory cell. The method includes applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell having a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. Another of the positive bias voltage and the negative bias voltage is applied to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Related ferroelectric memory cells include a ferroelectric material exhibiting asymmetric switching properties.
Methods, systems, and devices for operating a ferroelectric memory cell or cells are described. Offsets in the threshold voltage of switching components (e.g., transistors) connected to digit lines may be compensated by using various operating techniques or additional circuit components, or both. For example, a switching component connected to a digit line may also be connected to an offset capacitor selected to compensate for a threshold voltage offset. The offset capacitor may be discharged in conjunction with a read operation, resulting in a threshold voltage applied to the switching component. This may enable all or substantially all of the stored charge of the ferroelectric memory cell to be extracted and transferred to a sense capacitor through the transistor. A sense amplifier may compare the voltage of the sense capacitor to a reference voltage in order to determine the stored logic state of the memory cell.
Write assist circuitry facilitates increased voltage applied to a memory device such as a memory cell or bitcell in changing a logical state of the memory device during a write operation. The write assist circuitry includes a second capacitive line or “metal cap” in addition to a first capacitive line coupled to one of a pair of bitlines to which voltage may be selectively applied. The capacitive lines provide increased write assistance to the memory device. The second capacitive line structurally lies in a second orientation and is formed in an integrated circuit second metal layer relative to the first capacitive line in some embodiments. The additional capacitive line provides negative bitline assistance by selectively driving its corresponding bitlines to be negative during a write operation.
A disc cassette includes a curved portion configured to hold multiple discs. The disc cassette further includes a bottom side including track connectors configured to position the disc cassette relative to one or more track portions that hold the disc cassette in place. The disc cassette is slideable along the one or more track portions.
An information recording medium according to the present disclosure is an information recording medium of a write-once-read-many type and records or reproduces information when irradiated with laser light. The information recording medium includes: a substrate; a plurality of information layers at least one information layer of which includes a recording film that is a W—O-based recording film comprising at least tungsten (W) and oxygen (O); and a dielectric film A in contact with the W—O-based recording film, the dielectric film A comprising at least 30 mol % tin oxide.
The magnetic tape device includes a magnetic tape; and a servo head, in which the servo head is a TMR head, the magnetic tape includes a servo pattern in the magnetic layer, a center line average surface roughness Ra measured regarding a surface of the magnetic layer is equal to or smaller than 2.0 nm, a logarithmic decrement acquired by a pendulum viscoelasticity test performed regarding the surface of the magnetic layer is equal to or smaller than 0.050, and a ratio (Sdc/Sac) of an average area Sdc of a magnetic cluster of the magnetic tape in a DC demagnetization state and an average area Sac of a magnetic cluster thereof in an AC demagnetization state measured with a magnetic force microscope is 0.80 to 1.30.
A magnetic tape includes a non-magnetic support; a magnetic layer including ferromagnetic powder and a binding agent on one surface side of the non-magnetic support; and a back coating layer including non-magnetic powder and a binding agent on the other surface side of the non-magnetic support. The thickness of the back coating layer is less than or equal to 0.30 μm. The logarithmic decrement acquired by a pendulum viscoelasticity test performed regarding the surface of the back coating layer is less than or equal to 0.060. Further, the contact angle with respect to 1-bromonaphthalene measured regarding the surface of the back coating layer is 15.0° to 30.0°.
A magnetic write head for heat assisted magnetic recording having a novel heat sink structure. The write head includes a magnetic write pole and a thermal transducer located adjacent to a leading edge of the magnetic write pole. A heat sink structure, constructed of a non-magnetic, thermally conductive material such as Au, Ag or Cu partially surrounds the magnetic write pole. The heat sink structure can be formed to contact first and second sides of the magnetic write pole, and can be recessed from the media facing surface of the write head. The space between the heat sink structure and the media facing surface can be filled with a physically hard, non-corrosive metal.
Embodiments of the present disclosure provide a method and a device for cancelling an echo, and a computer readable storage medium. The device includes a loudspeaker configured to play an acoustic signal corresponding to an analog audio signal. The device further includes a microphone configured to convert a mixed acoustic signal received into a mixed audio signal. The mixed acoustic signal includes an echo of the acoustic signal played and an acoustic signal from a user. The device further includes an analog-to-digital converter configured to convert the analog audio signal into a digital signal as an echo reference signal. The device further includes an echo canceller, configured to cancel an echo component from the mixed audio signal using the echo reference signal to obtain a user audio signal corresponding to the acoustic signal from the user.
A method for decoding an encoded audio bitstream in an audio processing system is disclosed. The method includes extracting from the encoded audio bitstream a first waveform-coded signal comprising spectral coefficients corresponding to frequencies up to a first cross-over frequency for a time frame and performing parametric decoding at a second cross-over frequency for the time frame to generate a reconstructed signal. The second cross-over frequency is above the first cross-over frequency and the parametric decoding uses reconstruction parameters derived from the encoded audio bitstream to generate the reconstructed signal. The method also includes extracting from the encoded audio bitstream a second waveform-coded signal comprising spectral coefficients corresponding to a subset of frequencies above the first cross-over frequency for the time frame and interleaving the second waveform-coded signal with the reconstructed signal to produce an interleaved signal for the time frame.
A method and device are provided for determining an optimized scale factor to be applied to an excitation signal or a filter during a process for frequency band extension of an audio frequency signal. The band extension process includes decoding or extracting, in a first frequency band, an excitation signal and parameters of the first frequency band including coefficients of a linear prediction filter, generating an excitation signal extending over at least one second frequency band, filtering using a linear prediction filter for the second frequency band. The determination method includes determining an additional linear prediction filter, of a lower order than that of the linear prediction filter of the first frequency band, the coefficients of the additional filter being obtained from the parameters decoded or extracted from the first frequency and calculating the optimized scale factor as a function of at least the coefficients of the additional filter.
A robot apparatus including an input unit to receive a voice command from a user, a determination unit to determine whether a voice command is repeated a predetermined number of times, and a control unit to register a shortcut command to shorten a voice command if it is determined a voice command is repeated a predetermined number of times. A shortcut command to shorten a voice command of a user is generated, and thus user convenience is enhanced.
Systems and methods are described include a robot and/or an associated computing system that can use various cues about an environment of the robot to apply a bias to increase the accuracy of speech transcription. In some implementations, audio data corresponding to a spoken instruction to a robot is received. Candidate transcriptions of the audio data are obtained. A respective action of the robot corresponding to each of the candidate transcriptions of the audio data is determined. One or more scores indicating characteristics of a potential outcome of performing the respective action corresponding to the candidate transcription of the audio data are determined for each of the candidate transcriptions of the audio data. A particular candidate transcription is selected from among the candidate transcriptions based at least on the one or more scores. The action determined for the particular candidate transcription is performed.
In one example, a method includes receiving audio data generated by one or more microphones of a computing device, the audio data representing a spoken utterance; identifying, based on the audio data, a user that provided the spoken utterance; identifying, based on the audio data, an automation action associated with one or more automation devices, the automation action corresponding to the spoken utterance; determining whether the identified user is authorized to cause performance of the identified automation action; and responsive to determining that the identified user is authorized to cause performance of the identified automation action, causing the one or more automation devices to perform the identified automation action.
A voice assistant of a device is activated not by a key word being spoken but by recognizing speech and determining whether context of the speech indicates that audible voice assistance is appropriate.
A voice-controlled device may receive a voice command uttered by a user, where the voice command may request that the voice-controlled device perform an operation. The voice-controlled device and/or one or more remote computing resources may process an audio signal associated with the voice command to determine text corresponding to the voice command. The resulting user utterance may be associated with a unique identifier, which may be provided to a third party and/or third party application that is to provide information responsive to the user request. The information provided by the third party/third party application may be output to the user based at least partly on the unique identifier, without disclosing user data associated with the user.
A method for using a loudspeaker array that is housed in a loudspeaker cabinet to present audio content to a listener in a room includes receiving (1) an audio channel that includes audio content and (2) acoustical characteristics of the room. The method also produces (1) a first beamformer input signal from the audio channel and (2) a second beamformer input signal and a third beamformer input signal by decorrelating the audio channel and adjusting the audio channel in accordance with the acoustical characteristics of the room. The second and third beamformer input signals are different de-correlated versions of the audio channel. The method also generates driver signals from the first, second, and third beamformer input signals to drive the loudspeaker array to produce a main beam, a first ambient beam, and a second ambient beam, respectively. Other embodiments are also described and claimed.
According to one embodiment, a rotating blade noise reduction device for reducing noise from a flight vehicle including rotating blades, the device includes loudspeakers, one or more reference microphones, an estimator, and a processor. The loudspeakers are arranged coaxially in a circumferential form for each of the rotating blades. The reference microphones acquire noise generated from the rotating blades and control sounds generated from the loudspeakers. The estimator estimates angular frequencies of the rotating blades. The processor generates control signals so as to reduce sound pressures at the reference microphones, delays the control signals by time delays corresponding to the loudspeakers dependent on installation angles between the loudspeakers arranged coaxially in a circumferential form from a circle center, the angular frequencies estimated, and a number of the loudspeakers, and inputs the control signals to the loudspeakers.
Provided is an information processing device including: a holding section configured to hold a card that stores personal information; and a main body that is provided with the holding section and connectable to a strap section including a sound collection unit and an acoustic output unit, in which the main body encloses a sound signal processing unit configured to process a sound acquired at least by the sound collection unit and a processing unit configured to execute predetermined processing on a basis of the personal information stored in the card held by the holding section.
A display method is applied in a first electronic device and a second electronic device, wherein, the first electronic device includes a first display unit having a plurality of edges, and the second electronic device includes a second display unit also having a plurality of edges. The method includes the first electronic device and the second electronic device are tiled and placed in alignment, with a first edge as a first tiling shaft; a predetermined display content is displayed on the first display unit and the second display unit after tiling; when the first electronic device and/or the second electronic device is/are changed in position and re-tiled, a second edge is re-determined as a second tiling shaft; and according to the second tiling shaft, a third display content is displayed on the first display unit, and a fourth display content is displayed on the second display unit.
According to various examples, a first resolution of original display data and a second resolution of a text display may be obtained. In response to a determination that the second resolution is smaller than the first resolution, the original display data may be searched for a relocation area and a bland area. The relocation area may include valid pixels not capable of being displayed on the text display. The blank area may not include valid pixels and may be capable of being displayed on the text display. The blank area may be used to accommodate the relocation area within the text display to generate reconstructed display data, and the reconstructed display data may be outputted to the text display.
Various embodiments are generally directed to techniques to partition a display interface such that pixel data associated with display data having indications of an image to be displayed may be transmitted to multiple timing controller and driver (TCON-DR) sets over the display interface without necessitating each TCON-DR set receive all the pixel data. In some examples, the display interface may be partitioned such that each TCON-DR set receives only the pixel data for which the respective TCON-DR set corresponds to.
An electronic display includes a display side and an ambient light sensor configured to measure received light received through the display side. The electronic display also includes multiple pixels located between the display side and the ambient light sensor. The multiple pixels are configured to emit display light through the display side.
Systems and methods for interpolating overdrive values using a lookup table to compensate for potential display artifacts. Interpolating includes applying a first interpolation type to a first portion of the lookup table when a point to be interpolated is in the first portion of the lookup table. However, interpolating includes applying a second interpolation type to a second portion of the lookup table when the point to be interpolated is in the second portion of the lookup table. The interpolated values are then used to drive pixels of a display panel.
An electronic device includes a housing, a display device exposed through a first part of the housing, a recess formed in a second part of the housing, a receptacle formed in the recess, a plurality of conductive contacts disposed inside the receptacle and including a first contact, a first circuit that supplies and/or receives a current of a first level or larger to and/or from the first contact when an external connector is inserted into the receptacle, a first switching device that electrically connects the first circuit with the first contact or to interrupt a connection between the first circuit and the first contact, a second circuit that detects existence of a foreign object contacting the first contact while the external connector is inserted into the receptacle and a control circuit that controls the first switching device based at least in part on information regarding the detected existence of the foreign object.
Provided are a shift register and a driving method thereof, a gate on array circuit and a display apparatus. The shift register includes a pre-charging module, an output module, a reset module and a reset control module. The pre-charging module is configured to charge a first node in a pre-charging period. The output module is configured to pull up a voltage at the first node and output a driving signal through the output signal terminal in an output period. The reset control module is configured to pull up a voltage at the second node by the driving signal outputted through the output signal terminal in the output period and output the voltage at the second node pulled up in the output period to the reset module as a reset signal in a reset period.
The present disclosure provides a liquid crystal display panel and a device, which comprises a data line, a scanning line, a first common line, a second common line, a main-pixel portion, and a sub-pixel portion. The first common line is for supplying a common voltage, the second common is for making a voltage of the sub-pixel portion equal to a fixed value and a voltage of the main-pixel portion is different from the voltage of the sub-pixel portion when the liquid crystal display panel is aligned.
A method of driving an image display apparatus which includes an image display panel having a plurality of pixels arrayed in a two-dimensional matrix and each configured from a first subpixel for displaying a first primary color, a second subpixel for displaying a second primary color, a third subpixel for displaying a third primary color and a fourth subpixel for displaying a fourth color, and a signal processing section. The signal processing section is capable of calculating a first subpixel output signal, a second subpixel output signal, a third subpixel output signal, and a fourth subpixel output signal. The method includes a step of calculating a maximum value (Vmax(S)) of brightness, a saturation (S) and brightness (V(S)), and determining the expansion coefficient (α0).
An organic light-emitting display includes: a display panel including first and second pixels, each having an organic light-emitting diode; and a data driver including a first operational amplifier having a non-inverting terminal coupled to a reference voltage terminal and an inverting terminal coupled to the first pixel, and a second operational amplifier having a non-inverting terminal coupled to the reference voltage terminal and an inverting terminal coupled to the second pixel. The first pixel includes a sensing transistor, a first driving transistor, and a first switch transistor. The second pixel includes a second driving transistor and a second switch transistor.
A display device includes: a display panel including a display area, and a peripheral area disposed in the vicinity of the display area; a scan driver including a plurality of stages integrated on the peripheral area; a plurality of gate lines connected to the plurality of stages, respectively; and a plurality of pixel rows in the display area and connected with the plurality of gate lines, respectively. The plurality of stages and the plurality of pixel rows are each arranged in a first direction in a line, the peripheral area includes a fan-out region between the plurality of stages and the plurality of pixel rows, and at least one of the plurality of gate lines in the fan-out region is inclined with respect to the first direction, and a second direction perpendicular to the first direction.
Disclosed is a method of controlling a display of an electronic device. The method may include: determining a current situation of the electronic device by using at least one piece of state information on the electronic device and surrounding information on the electronic device by the electronic device; and turning on or off at least some areas of the display according to the determined current situation by the electronic device.
An array of display tiles and a load levelling mechanism is described that can be used with the array of display tiles including at least one truss, the at least one truss having at least one first and one second suspension point, from which display tiles can be suspended, further including first and second actuators adapted to modify the vertical position of the at least one first or the at least one second suspension point in a vertical direction, in function of a force applied to the at least one first suspension point and a force applied to the at least one second suspension point.
Devices, systems, and methods appropriate for use in medical training that include materials that better mimic natural human tissue are disclosed. In one aspect, multi-layer tissue simulations are provided. In another aspect, male genitalia models are provided. In another aspect, abdominal surgical wall inserts are provided. Systems and methods associated with these devices are also provided.
An image capturing apparatus is disclosed herein. More specifically, image capturing apparatus disclosed herein will be used to help a golfer properly select a golf club utilizing a high speed camera attached to a gantry apparatus capable of adjusting its own position relative to the golfer in order to capture data of a golf swing in an iron type golf club.
Present embodiments include systems and methods for stick welding applications. In certain embodiments, simulation stick welding electrode holders may include stick electrode retraction assemblies configured to mechanically retract a simulation stick electrode toward the stick electrode retraction assembly to simulate consumption of the simulation stick electrode during a simulated stick welding process. In addition, in certain embodiments, stick welding electrode holders may include various input and output elements that enable, for example, control inputs to be input via the stick welding electrode holders, and operational statuses to be output via the stick welding electrode holders. Furthermore, in certain embodiments, a welding training system interface may be used to facilitate communication and cooperation of various stick welding electrode holders with a welding training system.
Techniques described herein relate to generating new assessment items and updating existing assessment items. Input data may be received corresponding to the addition, removal, or modification of assessment components within assessment items, and may cause immediate generation and validation of corresponding markup language data blocks, thereby allowing for interactive construction and automated encoding of assessment items. Additional techniques described herein relate to determining compatible scoring types for assessment items and generating and embedding markup language data blocks corresponding to assessment item scoring data.
Instructional content is visually presented within a graphical user interface overlay on a display for an application window also presented on the display. Interactive events between a user and the application are dynamically detected. Responsive to the interactive events, state-specific substantive instructions are determined given a current state of the application as determined from the interactive events. The instructional content is dynamically modified to continuously present the state-specific substantive instructions that correspond with the detected interactive events. Presentation characteristics of a graphical user interface overlay are dynamically modified based on the interactive events to make the graphical user interface overlay unobtrusive to user-application interactions while ensuring the graphical user interface overlay is presented in a visually proximate position to a user's current interactive focus as determined from the interactive events, wherein unobtrusiveness of the graphical user interface overlay ensures that user inputs directed at the application are not interfered with.
A medical training system is disclosed comprising a medical simulation management module, a student record database having a plurality of records relating to training of students, wherein the student record database is connectable to the medical simulation management module, at least one medical training module executable on a training device and comprising scenarios for the training of the students; and a data entry device for entry of student training data to the student record database, the student training data being indicative of performance of the students on using the at least one medical training module.
Methods and systems for generating flight plans for aerial vehicles based at least in part on communication performance are described. First information about a set of access points may be accessed. Second information about a flight path for an aerial vehicle to move from a first point to a second point may be accessed. A set of directions for the aerial vehicle to move between the first point and the second point may be generated. The set of directions may be generated based at least in part on a communication criterion and the second information about the flight path. The flight path may be updated based at least in part on the set of directions.
A parking management system and methods of operation are disclosed. In one variation, a computer-implemented method comprises receiving positional data concerning a listing location from a listing client device; establishing a radius boundary based on the positional data; filtering one or more databases using the radius boundary to determine an amount of parking spaces listed and the amount of parking spaces reserved within a preset time period; calculating a location-specific transaction rate using the amount of parking spaces listed, the amount of parking spaces reserved, and the preset time period; determining a recommended listing price based on the location-specific transaction rate; and transmitting the recommended listing price to the listing client device.
A system enhances safety of a dependent person, if a caregiver inadvertently leaves the person unattended in a parked vehicle, by sending an escalating alarm sequence to the caregiver and/or other responsive parties. The system learns, via monitoring, a series of patterns associated with movements of a set of related mobile devices. The system continues to monitor, on an ongoing basis, the devices, and continually compares the current status of each one with its expected status based on the learned patterns. If the system detects a deviation between the current and expected status with respect to one or more of the devices, it computes an alarm level and a false positive score. If the combination of the alarm level and the false positive score is above a threshold value, the system initiates the alarm sequence. Note: a child should never be left unattended in a parked vehicle.
A sensor pad is adapted to be positioned under a mattress of a patient's bed as part of a monitoring system that provides a signal to a caregiver when the patient rises from the bed can be used for multiple patients. The under-mattress sensor pads can be used for a long period of time as the under-mattress sensor pads includes a relatively stiff material.
An activity monitor comprising one or more acoustic transducers (100) and a computation component (104) that is arranged to identify events from acoustic signals received by the acoustic transducers (100).
A digital electronic system used for receiving an audio alarm from a smoke detector, a carbon monoxide detector and like detectors. The system amplifies and converts the alarm to a digital encoded radio frequency signal for shutting off power to a kitchen appliance. The system includes a microphone and an amplifier connected to a comparator circuit. This circuit provides for outputting a logic 0 or logic 1 and outputs logic 1, in the form of the digital radio frequency signal, if an audio alarm is received. The comparator circuit is connected to a transmitter and encoder circuit, which receives the frequency signal and transmits it to a radio frequency receiver and decoder circuit. This circuit then decodes the signal and disconnects the power to the appliance.
Systems and methods for determining and verifying a presence of an object or an intruder within a secured area are provided. Such systems and methods tan include a microprocessor unit sampling data from a smart microwave sensor module to detect the presence of the object or the intruder, using the data to calculate a velocity of the object or intruder, using the data to calculate a distance between the smart microwave sensor module and the object or the intruder, determining whether the velocity is within a predefined range, and using the distance to determine whether the object or the intruder is within a designated protection territory. Such systems and methods also may include recording trigger positions of the object or the intruder when the velocity is within the predefined range and the distance indicates the object or the intruder is within the designated protection territory.
The door switch (1) includes an actuator (20) and a sensor (10). When a door is closed, a front surface (S1) of the sensor (10) and an opposite surface of the actuator (20) are in contact with each other, and separated when the door is open. The sensor (10) includes a light source part (150) for emitting detection light according to a reception state of a detection signal outputted from the actuator, a collector (122) for collecting the detection light, a diffuse light guide part (123) formed to be connected to the collector and for diffusing and emitting the detection light collected by the collector, and a back surface display part (121) formed on a back surface (B1) side of the sensor to be in contact with the diffuse light guide part and having a main surface (125) for emitting the detection light emitted from the diffuse light guide part.
A modular system for financial services and transactions includes an enclosure with at least one wall defining an interior space. A spine is disposed within the interior space and houses at least one component. At least one sub-system is disposed in the interior space of the enclosure and connected to the at least one component housed in the spine. The at least one sub-system is operable to interact with a financial customer.
A lottery vending machine customization system, method and device includes at least one local client lottery vending machine and a central server, wherein the vending machine has or is in communication with a payment collection apparatus, a ticket internal entry apparatus and a display. The central server is coupled to the local client lottery vending machine over a network, and can be adapted to issue one or more ticket alignment schemes for display on the vending machine display. The central server can also receive status parameter data from the vending machine or the ticket internal entry apparatus, and can issue one or more revised alignment schemes to the vending machine for display.
Methods and systems are provided herewith for creating and managing wagers on possible states within a live event, such as possible outcomes of subparts of a sporting event or other possible occurrences within the event. An initial state and multiple possible future states of a performance parameter of the event are determined based on state information of the event. A betting market may be created by determining probabilities and odds for the possible future states. Bets may be made on the possible future states via a touch-sensitive display. A payout may be made to a winner who selects a possible future state that actually occurs.
Methods are provided for enabling audience members at a live or substantially live performance to interact with performers and participate in the performance.
A gaming system and method including providing a community or group bonus event to a plurality of players at a plurality of gaming devices. For each of the players determined as eligible to participate in a triggered group bonus event, the gaming system determines that player's relative probability of winning a group bonus event award in the triggered bonus event. In one such embodiment, each player's relative probability of winning the group bonus event award is based on that player's wagering history, such as any amounts wagered by that player, the frequency of placing such wagers and/or frequency of not placing any wagers.
A game system provides a music game that is played simultaneously by a plurality of users. Moreover, this music game includes a plurality of demands for touch operation using objects. A game machine of the game system acquires allocation data including information about responsibility relations which are set between the objects and the users, so that the objects are shared by the users. And, on the basis of this allocation data, the game machine provides a responsibility region game screen which displays the objects so that, via a region of responsibility for displaying the objects assigned as responsibilities so that they are easy to see and another region for displaying the objects not assigned as responsibilities, the objects assigned as responsibilities for which responsibility relations are established and the objects not assigned as responsibilities can be easily distinguished.
The invention relates to a valuable object (1) comprising a gold base body (2) surrounded by a protective layer (3). The protective layer (3) comprises at least one readable security code for identification and verification purposes. The invention also relates to a system and method for identifying and verifying a valuable object (1), having at least one readable security code (6) being assigned thereto. The security code (6) of the valuable object (1) is stored in a secure database (4) for identifying and verifying a valuable object (1).
An electronic unit for a vehicle communication interface, and a vehicle communication interface of that kind, are described. The electronic unit includes a switch matrix having at least one low-leakage-current switch that is designed to interrupt both communication devices simultaneously.
A parking status system overlays upon images of a street, a lot, or a garage with representations of parked vehicles the status of any parking space shown in the image. A user retrieves the merged image with the vehicles parking in select spaces through a wireless communications network from the parking management computer system. The user then verifies payment status of multiple parking spaces simultaneously as the user patrols a beat on foot or in a vehicle. The present invention operates upon existing web browsers. The present invention allows a user to select any view within 360 degrees of the user's position in different sizes and while in motion. The present invention refreshes the status of parking spaces and subscriber vehicles at a regular interval. The invention transforms parking space, payment, and subscriber data into parking space status shown in real time to a user.
A method includes generating first virtual space data for defining a first virtual space. The first virtual space includes a first avatar associated with a first user terminal; and a first virtual room including the first avatar and a first virtual screen. The method includes detecting a movement of a head mounted device (HMD) included in the first user terminal. The method includes identifying a visual field in accordance with the detected movement of the HMD. The method includes displaying, on the HMD, a visual-field image corresponding to the visual field. The method includes receiving, from a second user terminal, a visiting request signal requesting that a second avatar associated with the second user terminal visit the first virtual room. The method includes updating the first virtual space data by updating a size of the first virtual screen based on a number of avatars arranged in the first virtual room.
The invention concerns a device (1) for editing a virtual 3-D model (2) of teeth (2.1, 2.2, 2.3, 2.4) positioned in a dental arch (9, 11) by means of a virtual tool (21, 22, 23, 24, 25, 26, 27, 28, 50). The tool (21, 22, 23, 24, 25, 26, 27, 28, 50) can be used on a first tooth (2.1, 2.3) of the 3-D model (2), whereby the corresponding application is carried out on a second mirrored tooth (2.2, 2.4), contralateral to the first tooth with respect to a plane of symmetry (12), that is, on the tooth on the other side of the plane of symmetry (12), which is positioned as a mirror image of the first tooth (2.1, 2.3) with respect to the plane of symmetry (12).
A method for using a virtual reality (VR) headset to view a two-dimensional (2D) technical drawing of a physical object of a real-world, real-world environment in three dimensions (3D), the method comprising: using LiDAR to produce a 3D point cloud of the real-world environment; scaling and aligning the 2D technical drawing to match the size and orientation of the physical object as depicted in the 3D point cloud; overlaying the 2D technical drawing (including all labels and dimensions) over the physical object as depicted in the 3D point cloud; and visually comparing the 3D point cloud representation of the physical object to the 2D technical drawing by simultaneously displaying the 3D point cloud of the real-world environment and the overlaid 2D technical drawing to a user with the VR headset.
Systems, devices, and methods that display visual symbols are described. A visual symbol has a color and a linewidth. Multiple instances of the symbol are concurrently and progressively drawn, one on top of the other, in the display area of a display device. Each respective instance has a respective intermediate color. The respective intermediate colors combine to produce the color of the symbol where the respective instances overlap in the display area. Each respective instance also has a respective linewidth and the respective linewidths converge to the linewidth of the symbol as each instance is progressively drawn. A backwards progression through the same sequence is employed to regressively undraw a symbol from the display area of the display device. Computer program products comprising processor-executable instructions for performing the methods are also described.
A vehicle control device can include a sensing unit including a camera; a display unit; and a controller configured to receive a preset destination, receive an image captured by the camera, identify the preset destination from the image, and display, on the display unit, a graphic object superimposed on the preset destination.
A medical image (24) with contrast of one imaging modality is emulated from images with other contrast characteristics. A plurality of input images (20) of a region of interest with the other contrast characteristics is received. A transform (22) which was generated by machine learning is applied to the corresponding plurality of input images (20) to generate a scalar value (38) or a vector value (38′) representing the corresponding voxel (36′) of the medical image (24) to be evaluated.
Described herein are apparatus, systems and methods for shadow assisted object recognition and tracking. The methods performed by the apparatus and system include identifying a blob within a video image, the video image having at least one object and at least one shadow of the at least one object, the at least one shadow of the at least one object cast by at least one light source. Identifying the blob includes identifying an object projection corresponding to the at least one object and a shadow projection corresponding to the at least one shadow. A location of an object portion of the at least one object is determined based on the shadow projection.
The present invention provides a method for fast, robust and efficient BA pipeline (SfM) for wide area motion imagery (WAMI). The invention can, without applying direct outliers filtering (e.g. RANSAC) or re-estimation of the camera parameters (e.g. essential matrix estimation) efficiently refine noisy camera parameters in very short amounts of time. The method is highly robust owing to its adaptivity with the persistency factor of each track. The present invention highly suitable for sequential aerial imagery, particularly for WAMI, where camera parameters are available from onboard sensors.
An image registration device includes: an image acquisition unit that acquires a plurality of images; a divided region setting unit that sets divided regions by dividing each registration processing target of the plurality of images; a pixel value conversion method determination unit that determines, for each set of divided regions set at the same position of the respective registration processing targets, a pixel value conversion method for each divided region based on a pixel value of each divided region of the set; a pixel value conversion unit that performs pixel value conversion within each divided region of the set of divided regions using the determined pixel value conversion method for each divided region; and a registration processing unit that performs registration processing on the plurality of images subjected to pixel value conversion.
A video processing apparatus is directed to appropriately associating a plurality of objects in an image. A target detection unit detects a position of a region of a tracking target included in a video image. A specific object detection unit detects a position of a specific object included in the video image. The specific object has a predetermined feature. An association unit associates the region of the tracking target with the specific object based on a relative position between the position of the region of the tracking target detected by the target detection unit and the position of the specific object detected by the specific object detection unit.
Systems and methods for determining bacterial load in targets and tracking changes in bacterial load of targets over time are disclosed. An autofluorescence detection and collection device includes a light source configured to directly illuminate at least a portion of a target and an area around the target with excitation light causing at least one biomarker in the illuminated target to fluoresce. Bacterial autofluorescence data regarding the illuminated portion of the target and the area around the target is collected and analyzed to determine bacterial load of the illuminated portion of the target and area around the target. The autofluorescence data may be analyzed using pixel intensity. Changes in bacterial load of the target over time may be tracked. The target may be a wound in tissue.
The embodiments relate to a method, an apparatus, and a computer program for evaluating an x-ray image of a breast produced during a mammography. In order to simplify the evaluation of such an x-ray image in respect of the breast density, a method is proposed to automatically determine the masking risk caused by the mammographically dense tissue and to use this for categorizing, describing, and/or representing the breast density.
Methods and systems for generating a simulated anatomical photograph based on a medical image generated by an imaging modality. One method includes receiving, with an electronic processor, the medical image, anatomically segmenting the medical image, with the electronic processor, to determine a plurality of anatomical structures represented in the medical image, and determining, with the electronic processor, how each of the plurality of anatomical structures is photographically depicted by accessing at least one knowledge base. The method also includes generating, with the electronic processor, the simulated anatomical photograph based on the plurality of anatomical structures and how each of the plurality of anatomical structures is photographically depicted, wherein the pixels of the simulated anatomical photograph represent a simulated cross-sectional anatomical photograph of the plurality of anatomical structures, and displaying, with the electronic processor via a display device, the simulated anatomical photograph within a user interface.
Techniques are disclosed for estimating patient radiation exposure during computerized tomography (CT) scans. More specifically, embodiments of the invention provide efficient approaches for generating a suitable patient model used to make such an estimate, to approaches for estimating patient dose by interpolating the results of multiple simulations, and to approaches for a service provider to host a dose estimation service made available to multiple CT scan providers.
A method of suppressing clutter in video imagery includes receiving video imagery from a focal plane array, and decomposing the video imagery into independently-moving coordinate transformations corresponding to clutter patterns that are subimages of the video imagery. The method also includes removing the subimages from an image of the video imagery to produce a clutter-suppressed version of the image, and rendering the clutter-suppressed version of the image. Removing the subimages from the image includes generating respective zeroth-order corrections for the subimages, and subtracting the respective zeroth-order corrections from the image. And removing the subimages includes recursively generating respective first-order corrections for the subimages from the respective zeroth-order corrections, and subtracting the respective first-order corrections from the image. The respective zeroth-order corrections are generated and subtracted from the image before the respective first-order corrections are generated and subtracted from the image.
An optimizing method, a system, and a smart device to display circular patterns smoothly are provided by the present disclosure. It gets coordinate values of all points on the circular pattern. It calculates respective transparency compensation values of two adjacent points with respect to a corresponding one of the points to any coordinate in an X-axis direction and a Y-axis direction of the circular pattern using a maximum limit of the transparency as a benchmark, and then calculates a transparency compensation value of the corresponding one of the points using the transparency compensation values of the two adjacent points. Finally, it redraws all points of the circular pattern based on the calculated transparency compensation value and the RGB parameters of the corresponding one of the points.
The present invention provides an image processing method, an image processing device, and an image processing program which require low computing costs and with which it is possible to minimize noise amplification and halo generation caused by HDR. An image processing device according to one embodiment of the present invention has: a multi-resolution image generation means for generating a multi-resolution image; a correction amount calculation means for calculating a brightness correction amount on the basis of a lowest-resolution image of the multi-resolution image, a differential image between adjacent resolutions of the multi-resolution image, and edge information calculated at each resolution of the multi-resolution image; and a noise suppression means for calculating, on the basis of the lowest-resolution image, the differential image between adjacent resolutions, the edge information, and the brightness correction amount, an image after brightness correction in which a noise component is suppressed.
An imperative service system includes at least one server computer that is adapted to communicate with resident electronic devices and property owner systems over Internet. The imperative service system receives an imperative service licensing request with input data entered via an imperative service licensing web page, and generates an individualized property web address for a property or a set of properties. The individualized property web address indicates a protocol, a property location and a domain. The imperative service system sends the individualized property web address to the requesting computer, determines a list of imperative services for the property, receives a request for an imperative service distribution web page including web page links to the list of imperative services over Internet, generates the imperative service distribution web page, and sends the imperative service distribution web page to the requesting computer. The imperative service system can be a cloud sever system.
Apparatus, systems, methods, and related computer program products for managing demand-response programs and events. The systems disclosed include an energy management system in operation with an intelligent, network-connected thermostat located at a structure. The thermostat controls an HVAC system to cool the structure using a demand response event implementation profile over the demand response event period. The thermostat can also receive a requested change to the setpoint temperatures defined by the demand response event implementation profile and access a determination of an impact on energy shifting that would result if the requested change is incorporated into the demand response event implementation profile. This determination can be communicated to the energy consumer.
A method and system for handling data field tasks, the system comprising a database containing records and data fields associated with real estate ownership expense insurance policies that reimburses for increases in property ownership expenses including increases in maintenance fees and assessments from non-covered losses, an underwriting server communicatively coupled to one or more client devices and data sources over a communications network, the underwriting server comprising a processor that configures processes to the data sources and generates data source connections to receive information from the data sources, and a scheduler that allocates threads within the processes to at least one of the data fields associated with premium for coverage, expenses, and reimbursement of the real estate ownership expense insurance policies, and assigns the threads to tasks for performing operations on the at least one of the data fields based on the information from the data sources.
Systems and methods for managing a health plan are described. In one embodiment, a method for managing a health plan includes presenting options for a health plan and an incentive program of the health plan, presenting options for configuring a health plan and an incentive program of the health plan, and receiving a selection of an incentive program. In other aspects, the method further comprises receiving a selection of a health plan and an incentive program, storing information about the selected health plan and incentive program, storing information regarding participation in the incentive program, and requesting a reward for a member for completion of the incentive program. In other aspects, the method may further include determining eligibility for an incentive program and a reward of the incentive program.
Provided are an information processing apparatus, an information processing method, an information processing program, and a recording medium storing thereon the information processing program, which can prevent a transaction disadvantageous to a user or registration of disadvantageous transaction objects. The information processing apparatus extracts a transaction object, which is identical to or related to a transaction object to be selected by a user and with which a condition more advantageous than the corresponding transaction object is associated, from a storing means that stores information on transaction objects referred to in the past time by the user, and presents the extracted transaction object to the user.
Embodiments of the invention provide methods and apparatus for recommending items from a catalog of items to a user by parsing the catalog of items into a plurality of catalog clusters of related items and recommending catalog items to the user from catalog clusters to which items previously preferred by the user belong.
Described is a system and method for propagating and synchronizing the presentation of user specific information across multiple output devices. In some implementations, a location of a user is determined and user specific information is provided to a plurality of output device controllers configured to control output devices at the determined location. Control instructions are also provided instructing the output device controllers to store, render, present and/or remove the user specific information.
A system for receiving, at a server with one or more processors, a request for a respective product page from a first client system. The system then sends the respective product page to the first client system for display, wherein the respective product page includes a send SMS message link. The system receives, from the first client system, a first SMS message, wherein the first SMS message is generated by user selection of the send SMS message link. The system transmits the first SMS message to a second client system associated with a seller of the respective product.
Embodiments of the present invention provide systems, methods, and computer storage media directed at adaptive representation of a control/volume relationship. In embodiments, a method may include receiving, from a control system, a request for control/volume relationship information of a target event for a tactic group. In response, a representation of a control/volume curve can be generated. The representation of the control/volume curve can include a number of control segments. In embodiments, the control segments included within the representation of the control/volume curve are determined based, at least in part, on one or more configuration parameters. The resulting representation of the control/volume curve can then be transmitted to a control system. Other embodiments may be described and/or claimed herein.
The present invention provides a novel approach for consumer-driven interaction with sequencing data or genomic information. Sequencing data access, for users with a variety of access and permissions, may be mediated by a central hub. The hub may also facilitate access to the sequencing data for third party software applications. The hub may also provide data analysis or may have access to analyzed data to use such data in providing a user interface for a genome owner or for non-owner secondary users of the system.
Techniques for providing information to a user of a mobile device based on an online or web-identity of the user and a geolocation of the mobile device are described herein. The user may be notified when a nearby merchant has a good or service for sale that matches a good or service in a list, such as a wish list, associated with the web-identity of the user. The users may also be provided access to a coupon within an electronic document when a mobile device storing the electronic document is located at a particular merchant. This convergence of geographical location of the user, as determined by the geolocation of his or her mobile device, with his or her web-identity can bring the online and off-line worlds closer together to provide relevant information for the user and improved marketing opportunities for merchants.
An aspect of providing user-configurable settings for web-based advertising includes creating, via a computer processor, a data structure at a client browser. The data structure is created from user-inputted subjects of interest. An aspect also includes sending, during a session between the client browser and a server from a domain, information about an availability of the data structure; and receiving an advertisement from the server based on the subjects of interest in the data structure.
An advertisement distribution program is configured to cause a computer 4 of an information processing device 3 to function as a first transmission control means which, when the number of advertisement points is equal to or higher than a predetermined number, transmits the link data of the shopping site to a user terminal along with the advertisement data of the shopping site, while when the number of advertisement points is lower than the predetermined number, transmits only the advertisement data of the shopping site to the user terminal 5, and a second transmission control means which, when the number of advertisement points turns from being equal to or higher than a predetermined number to being lower than the predetermined number, selects a specific purchaser from all purchasers at the shopping site, and transmits benefit information to the user terminal 5 operated by the selected purchaser.
Methods, systems, and apparatus, including computer program products, for processing events related to presented content. In one aspect, a method includes determining a time window count of a number of advertising events associated with an advertisement during at least one time window before a conversion event; and determining a credit that represents a strength of an association between the advertisement and the conversion event, wherein determining a credit includes selecting a weighting model for the at least one time window count.
Methods and apparatus for implementing forward looking optimizing promotions by administering, in large numbers and iteratively, test promotions formulated using highly granular test variables on segmented subpopulations, whereby the test promotions are automatically generated. The responses from individuals in the subpopulations are received and analyzed. The analysis result is employed to subsequently formulate a general public promotion.
A communication portal coupled with a processing system and a host having a first resource. The processing system has a second resource addressable by a terminal using a predetermined communication protocol. The communication portal receives a first communication from a terminal identifying the first resource. In response, the communication portal identifies the second resource, stores a data record associating the first resource and the second resource, and provides a response to the first communication to identify the second resource. The terminal then uses the communication protocol adapted for the second resource as a way to request an operation on the first resource. The portal communicates with the processing system to identify a request for an operation on the second resource and in response, communicates with the host to perform a second operation on the first resource based on the stored data record associating the first resource and the second resource.
Techniques associated with determining a quantity of an item to inventory may be described. In particular, statistical data about variables associated with the item may be accessed. The statistical data may be generated based on historical realizations of the variables. The quantity may be computed based on this data. For example, a plurality of regrets corresponding to inventorying a plurality of quantities of the item may be generated based on the statistical data. The quantity may be determined from the plurality of quantities as one corresponding to an acceptable regret from the plurality of regrets.
A system receives data relating to a ticket from a customer of a business organization. The system processes the data using an ensemble machine learning artificial intelligence processor. The ensemble machine learning artificial intelligence processor includes a natural text language processor for analyzing text exchanged between the customer and an agent of the business organization. The ensemble machine artificial intelligence processor also includes a plurality of multivariate machine learning processors for analyzing a handling of the ticket by the business organization. The system generates results from the analysis of the natural language text processor and the analyses of the plurality of multivariate machine learning processors, and provides the results to a meta-learner processor. The meta-learner processor is operable to generate a likelihood percentage of an escalation of the ticket based on prior escalation predictions of the natural language text processor and prior predictions of the multivariate machine learning processors. The system displays the likelihood percentage of an escalation of the ticket on a computer display device.
The present invention relates to a link system and link method of an upper shopping mall and an independent shopping mall of API (application programming interface) link method, in particular, to a technology that builds and manages an independent shopping mall having an independent domain address and an user interface besides the upper shopping mall which is registered together with the other sellers. According to the present invention, provided is a link system of an upper shopping mall having a plurality of sellers and an independent shopping mall operated independently by one person among the sellers, of API link method, which comprises a shopping mall database that stores a goods information, a member information, and a payment and delivery information; an independent shopping mall web server receives a goods inquiry or a purchase request from a user to output a factor for extracting data of the shopping mall database, and receives a necessary data from the shopping mall database; and an API server receives a factor from the independent shopping mall web server to analyze, and accesses to the shopping mall database so as to request that the necessary data should be sent to the independent shopping mall web server.
The present disclosure relates to making payments with a mobile device. In one example process, the mobile device receives and stores information for one or more payment accounts on the mobile device. The mobile device is used to make payments using the payment accounts. In some examples, authorization to proceed with a payment is performed before each purchase made by the user. The authorization process can include receiving a verification of the user, such as a fingerprint scan or passcode. In some examples, a payment account is selected from among available payment accounts. In some examples, an indication is displayed of a digital item associated with a purchased item. In some examples, a payment transaction is initiated with participants of an ongoing communication. In some examples, an application of a retailer is invoked based on the availability of the application. In some examples, a purchase recommendation is provided.
Processing cardless payment transactions is described. In an example, a server system can receive a message from a mobile device of a user that includes a code identifying a merchant and can verify the identities of the merchant and the user based at least in part on account data stored in association with the server system. The server system can provide, to a merchant computer of the merchant, user information associated with the user account and can receive from the merchant computer, a request to authorize the cardless payment transaction. The server system can obtain authorization for the cardless payment transaction using account information associated with the merchant account and/or the user account, and can provide, to the merchant computer, notification of the authorization of the cardless payment transaction.
A system includes a transaction handler configured to communicate with a first issuer processor to maintain a balance of a stored value account, store an offer in association with the stored value account and a consumer account that is under control of a second issuer processor, detect in the consumer account a transaction satisfying requirements of the offer, apply at least a portion of the balance of the stored value account to the transaction, determine a reduced transaction amount for the transaction after applying at least the portion of the balance of the stored value account to the transaction, and communicate with the second issuer processor for an authorization response for the transaction of the reduced transaction amount in the consumer account.
Examples described herein relate to systems, apparatuses, and methods for using tokens between two entities comprising a client device and a server, including receiving, by the server, a token from the client device, wherein the token is unique to a transaction, deriving, by the server, a server-derived token from the original data based on a transaction count, wherein the transaction count corresponds to a number of times that the original data is involved in transactions, comparing, by the server, the received token with the server-derived token, and responsive to determining that the received token and the server-derived token are same, sending, by the server, a verification message.
Embodiments are directed to performing a transaction using a third party mobile wallet, performing a transaction using a third party point of sale (POS) system and to making a purchase from a third party mobile wallet provided by a third party mobile wallet provider. In one scenario, a cloud-based transaction platform is provided, which receives communication from an agent terminal over a communication channel connected to the cloud-based transaction platform. The agent communication indicates that a customer desires to perform a mobile wallet transaction using their third party mobile wallet. The cloud-based transaction platform sends the agent communication to a third party mobile wallet platform, receives communication from the third party mobile wallet platform confirming processing of the transaction, and sends communication to the agent terminal over a communication channel connected to the cloud-based transaction platform, where the communication indicates confirmation of the processing of the transaction.
The present disclosure relates to a transaction processing method and apparatus. The method comprises: reading a tag via a user device t obtain a provide identifier associated with a provider for a transaction; generating via the user device a user request containing the provider identifier and a user identifier associated with a user for the transaction; and transmitting the user request to a transaction server, wherein a provider request containing transaction information and the provider identifier has been sent to the transaction server and stored therein.
A payment service system may operate to handle physical currency management for one or more merchants. The payment service system may determine counts of denominations of currency to be stored at the merchant and counts at which additional currency items should be obtained or deposit of currency items should be made. The payment service may further determine suggested price changes, permanent or temporary, that may alter currency item usage. The payment service system may assign a courier to pickup a currency storage compartment of a merchant. The payment service may then receive a notification related to the arrival of the courier at the location of the currency storage compartment and transfer funds to an account of the merchant. After transferring the funds, the payment service system may then request the merchant device to allow pickup of the currency storage compartment by the courier.
Merchant hosted checkout as described herein allows merchants to process mobile payments via a customized user payment interface (“checkout interface”). The merchant hosted checkout provides dynamic user interface (UI) instructions and user input requirements based on the country and mobile network (carrier) associated with each transaction.
An email payment gateway having electronic commerce (e-commerce) system may send advertisement emails to customers that are registered with the e-commerce system. The advertisement emails may include mailto hyperlinks. Each mailto hyperlink may be associated with a product that is being offered for sale, and each mailto hyperlink describes an email message that may be generated when that hyperlink is selected. When a mailto hyperlink is selected, the generated email message may include one or more parameters related to the product associated with the hyperlink, such as an identifier of the product. The generated email message may then be transmitted to the e-commerce system. The e-commerce system may receive the message and, based on the parameters in the received message, execute a transaction to purchase the identified product on behalf of the customer.
Apparatus and methods 10 are disclosed that provide mainline standard ATMs 12 with enhanced functionality, enabling users 16 to conduct not only conventional transactions such as deposits and/or withdrawals from checking and/or banking accounts, but more sophisticated and complicated transactions that previously have typically required an in-person interaction with a human teller or logging into the user's account via a mobile phone, personal computer, or similar device. A terminal handler 40 coordinates enrollment and verification through a database 42, and routes transactions from the ATM to the appropriate corresponding financial institution.
A method can include receiving, at a first financial institution from a mobile device of a consumer, a first request to pay a merchant for a payment amount from a first account of the consumer maintained by the first financial institution. The method also can include determining, at the first financial institution, second information including an account identifier of a second account of the merchant maintained by a second financial institution, at least partially based on the merchant identifier and third information obtained from a first system. The method additionally can include authorizing, at the first financial institution, a payment from the first account to the second account. The method further can include sending, from the first financial institution to the first system, payment information regarding a deposit to be made in the second account from the first account. Other embodiments are provided.
A system providing trademark search results includes: a controller; a display controlled by the controller; and a memory coupled to the controller, wherein the memory is configured to store program instructions executable by the controller; wherein in response to executing the program instructions, the controller is configured to: receive a data set of trademark search results including a searched mark, a plurality of reference, and at least one proximity score between each reference and the searched mark; and provide through the display an interactive visual representation of the search results including a displayed relationship between the searched mark and at least two of the plurality of references, wherein the displayed relationship between the searched mark and the at least two of the plurality of references is a visual representation of the proximity score between the searched mark and each of the at least two of the plurality of references.
A system and method for selecting an deployment of goods for shipping purposes is presented. An affinity network representing the deployment of goods is created. A first and second set of goods in the affinity network are created, the first set of goods representing an initial set of goods to be placed in a first location and the second set of goods representing a set of goods that are constrained to be placed in a second location. An objective function is iteratively operated to determine an optimum deployment of goods between the first location and second location. Other embodiments are disclosed.
Embodiments of the present disclosure include systems, methods, and devices for tracking a shipment using a wireless tracker. In such embodiments, the wireless tracker determines a location of the wireless tracker device and regulates battery usage of wireless tracker based on the location. In addition, the wireless tracker is configured to determine a current location of the wireless tracker device at one or more intervals such that the one or more intervals are based on a delivery route of the shipment. Moreover, the wireless tracker is configured to receive and verify one or more codes to for a chain of custody of the shipment. Also, the wireless tracker is configured to determine a trigger event based on the location of the wireless tracker device and/or sensor information as well as send a notification to a computer server based on the trigger event.
A method selects, customizes, and sends gifts automatically to recipients based on sender preferences, gift data, and recipient data that are pre-entered. Examples of gifts that can be sent include greeting cards, postcards, floral arrangements, and candy. The method allows for a user/sender to enter preferences. Matching gifts are selected, customized, and then are sent. Senders no longer have to travel to gift-card stores to buy gift-cards. In addition, senders do not need to remember dates and send gifts with sufficient lead time. The system sends the gift on time and chooses gifts that match the sender's/user's tastes and preferences.
A method of monitoring customer service interactions includes the acquisition of video data. The video data is analyzed to track a location of a customer and to track a location of an agent. An interaction between the customer and the agent is identified based upon an intersection of the respective tracked locations of the customer and the agent and a dwell time of the customer and agent at the intersection.
Techniques are described for facilitating performance of tasks involving human review of media data (e.g., images, audio clips, video clips, etc.), such as to identify one or more targets of interest. The media data review may be performed for various reasons, such as to assist in locating one or more target objects in a large geographical area (e.g., one or more missing people or vehicles) based on human review of large quantities of images that each correspond to a small subset of the geographical area. When one or more of the reviewed media data pieces are identified as being relevant, information about those identified media data pieces may be used in various ways. Furthermore, in at least some situations, the media data review may be part of a charitable effort that uses human volunteers to review the media data without monetary payment or other compensation.
Negating effects of continuous introduction of risk in scoring the health of a process control system includes automatically and periodically assessing a risk for each of the process control systems, calibrating the center of a health score scale to the average risk assessments, and scoring the health of each process control system within the health score scale according to a nonlinear scale applied to the risk assessment. Introduction of a risk factor to a process control system increases the risk assessment, and elimination of a risk factor decreases the risk assessment. The same risk factor introduced to each of the of process control systems does not affect the health score of any process control system, and elimination of a risk factor has more of an effect on the health score towards the center of the health score scale than towards upper and lower limits of the health score scale.
A platform provides recommendations for points of interest in a venue to venue attendees. Different points of interest are recommended in different amounts in order to prevent congestion in the venue in the form of extremely long queues or extremely large crowds. To achieve this, the platform divides a large group of venue attendees into multiple sub-groups, with each sub-group being recommended a different point of interest, and the size of each sub-group based on a difference between an optimal queue or crowd size and an actual queue or crowd size of a queue or crowd associated with that point of interest.
Technology for training a predictive model is described. A processing device collects digital interview data including features identified from candidate interviews. A model training tool selects a data set of the digital interview data. The data set includes a predicted performance outcome and an actual performance outcome for each of a plurality of candidates. The model training tool determines an error metric for each of the plurality of candidates. The error metric includes a relationship between the predicted performance outcome and the actual performance outcome for each candidate. The model training tool determines a number of candidates whose digital interview data includes a feature corresponding to a protected class. The model training tool normalizes an effect of each candidate on the error metric based on the corresponding protected class and applies the normalized error metric to reduce bias in the predictive model with respect to the protected class.
A machine provides a system and interface to allow domain experts and other users to develop, deploy, and iterate on analytical models. The system facilitates building, deploying, and/or training analytical models, by, e.g., exposing analytical model configuration parameters to a user while abstracting model building and model deployment activities. The system can also determine resource loads or execution times for various analytical models and can schedule model execution accordingly. The system also provides a dynamically reconfigurable user interface for controlling the system.
System and methods for relational time-series learning are provided. Unlike traditional time series forecasting techniques, which assume either complete time series independence or complete dependence, the disclosed system and method allow time series forecasting that can be performed on multivariate time series represented as vertices in graphs with arbitrary structures and predicting a future classification for data items represented by one of nodes in the graph. The system and methods also utilize non-relational, relational, temporal data for classification, and allow using fast and parallel classification techniques with linear speedups. The system and methods are well-suited for processing data in a streaming or online setting and naturally handle training data with skewed or unbalanced class labels.
The invention concerns the field of human auto-immune and/or inflammatory diseases, and more specifically the use of arsenic compounds for the preparation of drugs intended for the treatment and/or prevention of skin injuries associated with auto-immune and/or inflammatory diseases in a human subject. The invention concerns an arsenic compound As2O5 for use in the treatment and/or prevention of skin injuries associated with auto-immune and/or inflammatory diseases in a human subject, a pharmaceutical composition comprising an arsenic compound As2O5, preferably for the treatment and/or prevention of skin injuries associated with auto-immune diseases in a human subject, and products containing an arsenic compound As2O5 and an arsenic compound As2O3 as a combination product for simultaneous, separated or time-spread use in the treatment and/or prevention of skin injuries associated with auto-immune diseases in a human subject.
A system for estimating data in large datasets for an equipment system is provided. The system includes a data estimation and forecasting (DEF) computing device. The DEF computing device arranges a dataset in a primary matrix and parses rows of the primary matrix and generates a sample matrix by selecting primary matrix rows having non-null values for each variable. The DEF computing device adds to the sample matrix rows that include non-null values for each variable except one. The DEF computing device generates normalized values for this augmented matrix, applies several techniques including probabilistic principal component analysis (PPCA) and Markov processes, and scales the augmented matrix to normalized values. The DEF computing device generates non-null values for the variable, scales the augmented matrix back to the sample matrix, and generates a forecast for the equipment system, directing a user to update logistics processes for the equipment system.
A method comprising using at least one hardware processor for receiving a topic under consideration (TUC); providing the TUC as input to a claim function, wherein the claim function is configured to mine at least one content resource, and applying the claim function to the at least one content resource, to extract claims with respect to the TUC; and providing the TUC as input to a classification function, and applying the classification function to one or more claims of the extracted claims, to output corresponding one or more classification tags, wherein each classification tag is associated with its corresponding claim.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for content recommendation using neural networks. One of the methods includes receiving context information for an action recommendation; processing the context information using a neural network that comprises one or more Bayesian neural network layers to generate, for each of the actions, one or more parameters of a distribution over possible action scores for the action and selecting an action from plurality of possible actions using the parameters of the distributions over the possible action scores for the action.
A method for configuring a neural network is provided. The method includes: selecting a neural network including a plurality of layers, each of the layers including a plurality of neurons for processing an input and providing an output; and, incorporating at least one switch configured to randomly select and disable at least a portion of the neurons in each layer. Another method in the computer program product is disclosed.
The present invention concerns a RFID transponder, such as a card, comprising a first chip electrically connected to a first antenna and a second chip electrically connected to a second antenna. The first antenna comprises a secondary antenna which is inductively to the second antenna.
Implementations of the present disclosure include a financial services card including a card substrate, and multiple rows of braille-encoded characters formed on the card substrate, at least a portion of the braille-encoded characters encoding an account number that is associated with the financial services card being distributed between a first row and a second row of the multiple rows, and additional information associated with the financial services card being braille-encoded in a third row.
According to an embodiment, a recognition device includes a candidate detection unit, a recognition unit, a matching unit, and a prohibition processing unit. The candidate detection unit detects, from an input image, character candidates each being a set of pixels estimated to include a character. The recognition unit recognizes each of the character candidates and generates one or more recognition candidates each being a character of a candidate as a recognition result. The matching unit matches each of the one or more recognition candidates with a knowledge dictionary in which a recognition target character string is modeled, and generates matching results obtained by matching a character string estimated to be included in the input image with the knowledge dictionary. The prohibition processing unit deletes, from the matching results, a matching result obtained by matching a character string including a prohibition target character string with the knowledge dictionary.
A method for identifying blurred areas in digital images of stained tissue involves artificially blurring a learning tile and then training a pixel classifier to correctly classify each pixel as belonging either to the learning tile or to a blurred copy. A learning tile is first selected from a digital image of stained tissue. The learning tile is copied and blurred by applying a filter to each pixel. The pixel classifier is trained to correctly classify each pixel as belonging either to the learning tile or to the blurred, copied learning tile. The pixel classifier then classifies each pixel of the entire digital image as most likely resembling either the learning tile or the blurred learning tile. The digital image is segmented into blurred and unblurred areas based on the pixel classification. The blurred areas and the unblurred areas of the digital image are identified on a graphical user interface.
Some implementations can include a computer-implemented method and/or system for automatic suggestion to share images. The method can include identifying a plurality of images associated with a user and detecting one or more entities in the plurality of images. The method can also include constructing an aggregate feature vector for the plurality of images based on the one or more entities in the plurality of images and determining that the aggregate feature vector matches a first cluster. The method can further include, in response to determining that the aggregate feature vector matches the first cluster, providing a suggestion to the user for an image composition based on the plurality of images.
In some embodiments, a computer-readable medium stores executable code, which, when executed by a processor, causes the processor to: capture an image of a finder pattern using a camera; locate a predetermined point within the finder pattern; use the predetermined point to identify multiple boundary points on a perimeter associated with the finder pattern; identify fitted boundary lines based on the multiple boundary points; and locate feature points using the fitted boundary lines.
The system includes a 3D biometric image sensor and processing module operable to generate a 3D surface map of a biometric object, wherein the 3D surface map includes a plurality of 3D coordinates. The system performs one or more anti-spoofing techniques to determine a fake biometric.
Models are generated from objects identified in video. Each model is evaluated based on knowledge of the objects determined from video analysis, and preferred models are identified based on the evaluations. In some examples, each model could be evaluated by tracking a movement of each object in the video by using each model to track the object from which it was generated, evaluating an ability of each model to identify the objects in the video that are similar to the object from which it was generated, and determining an amount of false identifications made by each model of different objects in different video that does not include the object from which it was generated.
A user recognition method that uses an iris is provided. The user recognition method includes generating a first mask for blocking a non-iris object area of an iris image, generating a converted iris image, in which the non-iris object area is blocked according to the first mask, generating a second mask for additionally blocking an inconsistent area, in which quantization results of the converted iris image are inconsistent, by adaptively transforming the first mask according to features of the converted iris image, obtaining an iris code by quantizing pixels included in the iris image, obtaining a converted iris code, in which portions corresponding to the non-iris object area and the inconsistent area are blocked, by applying the second mask to the iris code, and recognizing a user by matching a reference iris code, stored by the user in advance, to the converted iris code.
An image recognition method for an image recognition apparatus includes detecting, setting, acquiring, selecting, and specifying. At least one part of an identification target is selected from an identification target image. An inquiry region is set based on the detected part. A feature amount of the set inquiry region is acquired. At least one instance image corresponding to the identification target image is selected based on the acquired feature amount. A specific region of the identification target from the identification target image is specified based on the selected instance image.
For the purpose of counting the number of cells within a culture container readily and accurately, a cell analysis device includes a cell-image acquiring unit that acquires an image of cells within a culture container in which the cells are cultured, a usability determining unit that determines whether or not the image acquired by the cell-image acquiring unit is usable, a number-of-cells counting unit that counts the number of cells within the image determined as being usable by the usability determining unit, and a number-of-cells calculating unit that calculates the number of cells within the culture container based on the number of cells counted by the number-of-cells counting unit.
A security device includes a biometric sensor which senses biometric information of a user, a pressure sensor which senses a contact surface caused by the user and to obtain force distribution information of the contact surface, and a user authenticator which performs user authentication with reference to the biometric information and the force distribution information.
A glass sensor substrate including metallizable through vias and related process is provided. The glass substrate has a first major surface, a second major surface and an average thickness of greater than 0.3 mm. A plurality of etch paths are created through the glass substrate by directing a laser at the substrate in a predetermined pattern. A plurality of through vias through the glass substrate are etched along the etch paths using a hydroxide based etching material. The hydroxide based etching material highly preferentially etches the substrate along the etch path. Each of the plurality of through vias is long compared to their diameter for example such that a ratio of the thickness of the glass substrate to a maximum diameter of each of the through vias is greater than 8 to 1.
Techniques are described for facilitating and/or optimizing a transaction, such as a purchase transaction, through the use of scanned data. In some implementations, a user may use a portable computing device to scan a vehicle tag (e.g., vehicle identification number) that is affixed to a vehicle and determine vehicle information. The user may also scan a user tag such as a driver's license to determine user data that identifies the user. The vehicle data and/or user data may be communicated to transaction service(s), which generate transaction data that may be specific to the particular user that provided the vehicle data and/or user data. The transaction data may include information regarding a price of the vehicle, terms of a loan that the user may take out to finance the purchase of the vehicle, information regarding an insurance policy for insuring the vehicle, and so forth.
According to a first aspect of the present disclosure, a mobile device for facilitating a transaction is provided, comprising: a secure element configured to contain transaction-related data; an ultra-wideband radio unit operatively coupled to the secure element and configured to carry out ultra-wideband radio communication with an external reader; wherein the ultra-wideband radio unit is configured to operate as an interface between the secure element and said external reader. According to a second aspect of the present disclosure, a reader for facilitating a transaction is provided, comprising: an ultra-wideband communication and tracking unit configured to communicate with at least one external mobile device having an ultra-wideband radio unit and to track said mobile device; a processing unit operatively coupled to the ultra-wideband communication and tracking unit, said processing unit being configured to process at least one transaction. According to a third aspect of the present disclosure, a corresponding method for facilitating a transaction using a reader is conceived. According to a fourth aspect of the present disclosure, a corresponding computer program is provided.
A third party system generates a group of users and a function that identifies users in the group as well as additional users not in the group when applied to user identifying information. The third party system transmits the function to an online system, which applies the function to user identifying information associated with various users of the online system. Applying the function to the user identifying information generates a set of users including users in the group and one or more additional users who are not in the group. The online system transmits information associated with users in the set and information identifying users in the set to the third party system, which determines obtained information associated with users of the group. In some embodiments, the information identifying users in the set is obfuscated user identifying information associated with the users in the set by the online system.
A method includes preparing a representation of data associated with a plurality of software modules, the representation comprising similarity-based hashing of signatures constructed from a first subset of features of the plurality of software modules. The method also includes performing a similarity-based query utilizing the similarity-based hashing of signatures to identify one or more of the plurality of software modules as candidate software modules matching a received seed software module. The method further includes computing distances between the candidate software modules and the seed software module utilizing a second subset of features of the plurality of software modules, classifying one or more of the candidate software modules as a designated type based on the computed distances, generating a notification comprising a list of the classified candidate software modules, and controlling access by one or more client devices associated with an enterprise to the candidate software modules in the list.
Systems and methods are described which integrate file properties that in conventional systems has been considered weaker evidence of malware and analyzes the information to produce reliable results. Properties such as file paths, file names, source domains, IP protocol ASNs, section checksums, digital signatures that are not always present and not always reliable can be integrated into the classification process using a graph. A 1-neighborhood of object values in the graph may be created and analyzed to suggest a malware family label based on files having similar properties.
In an embodiment, a processor for Return Oriented Programming (ROP) detection includes at least one execution unit; a plurality of event counters, each event counter associated with a unique type of a plurality of types of control transfer events; and a ROP detection unit. The ROP detection unit may be to: adjust a first event counter in response to detection of a first type of control transfer events; in response to a determination that the first event counter exceeds a first threshold, access a first configuration register associated with the first event counter to read configuration data; identify a set of ROP heuristic checks based on the configuration data read from the first configuration register; and perform each ROP heuristic check of the identified set of ROP heuristic checks. Other embodiments are described and claimed.
A method for backing up data includes: receiving, by a driver in a host controller of a data storage device, an indication of a threatening event identifying one or more data files in the data storage device; delaying, by the driver, the threatening event; and backing up, by the driver, the one or more data files in the data storage device, prior to allowing the threatening event.
Interaction characteristics of a user interacting with a virtual reality (VR) terminal are obtained through preset sensing hardware in response to a request for execution of a target task requiring user identity verification. The obtained interaction characteristics of the user are compared with preset interaction characteristics of an authorized user of the VR terminal to verify identity of the user. The target task is executed and the user is authenticated as an identity-verified user of the VR terminal based on a successful user identity verification.
Systems and methods for managing provisioning of keys prior to a key rotation are provided. A license server generates a license that is associated with a renewal time. The renewal time is a time that is prior to a key rotation time, and triggers a receiver device to send a renewal request prior to the key rotation time. The renewal time may be a randomized time prior to the key rotation time that differs for different receiver devices. The license is transmitted to the receiver device. The license server then receives a renewal request from the receiver device that is triggered at the renewal time. The license server generates a next license that comprises a next key, whereby the next key is a decryption key for decrypting the encrypted signal after the key rotation time. The next license is transmitted to the receiver device prior to the key rotation time.
Systems and methods for providing feed privacy settings in-context with an activity that will be affected by the feed privacy setting. An example method comprising: receiving an indication of an occurrence of an activity in a content sharing platform, the occurrence of the activity corresponding to a feed item of a first feed item type; requesting user input via a user interface that simultaneously presents the feed item of the first feed item type and a privacy setting selection for the first feed item type, wherein the user input pertains to the privacy setting selection; receiving the privacy setting selection for the first feed item type while the user interface presents the feed item; and in response to receiving the privacy setting selection, updating a privacy setting for multiple feed items comprising the feed item and a subsequent feed item of the first feed item type.
A software licensing Application Programming Interface (API) that allows software products to use the license management functionality of a common service. A license specifies rights in a software product. The software product calls a consume method on the API in order to consume a right. If the right exists, the service binds the right to the license in which the right is found. The software product enforces the terms of the license by granting, or denying, access to some or all features depending on whether a valid instance of the right is found. Arbitrary data can be associated with a right. The API includes a method to retrieve data from a right that has been previously bound by the consume method.
An apparatus and method for generating a prescription form is disclosed. The method includes displaying a first menu containing a plurality of therapy menu items. The method also includes displaying a second menu containing at least one qualifier menu item. The method further includes displaying a third menu containing at least one drug menu item. The method includes, upon selection of a therapy menu item, a qualifier menu item, and a drug menu item, selecting a protocol including one or more patient specific pump parameters corresponding to the therapy menu item, the qualifier menu item, and the drug menu item. The method also includes displaying a prescription form including at least one of the one or more patient specific pump parameters.
Embodiments related to a system and method managing the implementation, execution, data collection, data analysis and status reporting of a structured collection procedure running on a portable, hand-held collection device are disclosed. The collection device performing the structured collection procedure has program instructions that when executed by a processor cause the processor to initiate automatically a schedule of events of the structured collection procedure upon one or more entry criteria being met at some unknown time, store in memory patient data collected in accordance to the schedule of events, end automatically the structured collection procedure upon one or more exit criteria being met at some unknown time. Status reporting can be provided throughout the execution of the collection procedure.
Interlaced bi-sensor super-resolution enhancement techniques and a resultant scalable pixel array suitable for a mega-pixel design are disclosed. The method includes interlacing a first array of pixels of a first size with a second array of pixels of a second size. The interlacing of the first array of pixels with the second array of pixels avoids crossing two or more photosensitive areas of the first array of pixels and the second array of pixels.
A method for designing a narrowband acoustic wave microwave filter including: generating a modeled filter circuit design having circuit elements including an acoustic resonant element defined by an electrical circuit model that includes a parallel static branch, a parallel motional branch, and one or both of a parallel Bragg Band branch that models an upper Bragg Band discontinuity and a parallel bulk mode function that models an acoustic bulk mode loss; and generating a final circuit design. Generating the final circuit design includes optimizing the modeled filter circuit design to generate an optimized filter circuit design; comparing a frequency response of the optimized filter circuit design to requirements; selecting the optimized filter circuit design for construction into the actual acoustic microwave filter based on the comparison; and transforming the optimized filter circuit design to a design description file for input to a construction process.
Simulating a circuit design can include detecting, using a processor, an assignment for a signal of a circuit design during a delta cycle of a simulation of the circuit design and comparing, using the processor, a range of the assignment for the signal with a range of an existing event for the signal for the delta cycle. In response to determining that the range of the assignment for the signal and the range of the existing event meet a condition, the existing event is updated, using the processor, resulting in a merged event. The merged event is scheduled for execution for the delta cycle using the processor.
A method and a system for providing a virtual semiconductor product replicating a real semiconductor product are provided. The method for providing the virtual semiconductor product according to an exemplary embodiment of the present disclosure includes: obtaining data which is used for manufacturing a real semiconductor; virtually producing a semiconductor product using the obtained manufacturing data; and providing the virtually produced virtual semiconductor product. Accordingly, the virtual semiconductor product replicating the real semiconductor product is provided in real time with real processing steps, such that time and expense required to measure and examine a semiconductor product can be minimized and a delay in producing semiconductor products is not caused.
The disclosed technology for accurate translation of elements in a web application includes systems and methods that provide a sanitization and exception-generation tool set configurable to present tags in a preliminary localization kit to a localization expert; and run a tag name convention enforcement tool against the preliminary localization kit, which parses extracted tags and locates key name strings and translatable text, then applies key naming rules that require presence of keywords from a list of valid keywords and that require key uniqueness. The tool set creates bug report stubs from a tag exception and accepts additional comments from the expert to include in a completed bug report, regarding the key name that triggered the exception; is configurable to generate sanitization correction files using the received key names and edited translatable text for processing by a developer; and includes a verification-in-context tool that supports debugging of a language pack.
Identifier dependent operation processing of packet based data communication is provided. A natural language processor component can parse an input audio signal to identify a request and a trigger keyword. A content selector component can select, based on the request or trigger keyword, a content item. A link generation component can determine whether the client computing device has an account or a record in a database associated with the service provider device. In the absence of the record or account, the link generation device generates and sends a virtual identifier to the service provider device with instructions to generate an account in the database using the virtual identifier. Once the account is created, the service provider device can communicate with the client computing device.
Technologies are provided for protecting nonintrusive content of a web page presented on a user device. A web page is received on a user device including instructions to monitor the web page for changes to the web page, and instructions to restore and freeze content of the web page when a modification has been detected. A content filter filters content on the web page. The filtering is detected on the user device, and the web page is restored with the original content of the web page and the content is frozen on the web page, preventing further modification of the web page.
Examples disclosed herein relate, among other things, to determining a trend correlation. In one aspect, a method is disclosed. The method may include, for example, receiving a first data set associated with a first parameter of an electronic device and a second data set associated with a second parameter of the electronic device. The method may also include generating a first trend set based on the first data set, and generating a second trend set based on the second data set. The method may further include detecting, based on the first trend set and the second trend set, a trend correlation between the first parameter of the electronic device and the second parameter of the electronic device, and providing for display correlation information describing the trend correlation.
A food safety management tool that utilizes a mathematical model based on differential equations that is generalized for describing the continuous growth-death kinetics of microbial populations in foodstuffs. The method is used to provide a way to control target microorganisms when designing product formulations of minimally processed foodstuffs or when processing foods with high pressures, temperatures, or other lethal agents to achieve effective pasteurization, disinfection, or sterilization of foodstuffs, and includes the use of model parameters to predict food formulations to inhibit the growth of microorganisms and the processing times needed to reduce microbial hazards to levels that ensure consumer safety.
A website acceleration method and system based on a content delivery network. The method includes: detecting a resource structure of a website and acquiring a domain name and resource of the website; monitoring operation data of the website, acquiring a user individual IP distribution of an accessed website, analyzing and acquiring a region to which the user individual IP belongs, a network operator type and resource accessed by the user individual IP; connecting an accelerated domain name provided by each CDN acceleration service provider, and establishing a comparison task of comparing each CDN acceleration service provider to the acceleration effect of the website according to the operation data of the website; acquiring the optimal accelerated domain name of the website in each region, each network operator and different types of resource according to test result of the comparison task of the acceleration effect; and selecting the optimal CDN acceleration service provider corresponding to each resource according to the optimal accelerated domain name. The present invention enables a website to select a CDN acceleration service according to the website's own practical situation, achieving an optimal acceleration effect in each national region, and reasonably controlling usage costs.
A digital magazine identifies content items for recommendation to a user by determining the address information of one or more content items. The address information of a content item identifies a source from which the content item was received and additional information describing the content item. Representations of content items are generated from the address information for each content item. Additionally, representations of content items previously presented to the user are generated from the address information for the previously presented content items. A measure of similarity between a representation of a content item and a representation of a previously presented content item is determined and used to select content items to present to the user.
Internet search engines sometimes provide Internet search results referencing webpages that do not contain all search term elements submitted by a user. The user may then click on such Internet search results where the referenced webpages do not contain an important search term element. The present invention is directed to annotating Internet search results to indicate missing search term elements. This facilitates the user to avoid clicking on an Internet search result where the user's search term elements are not present on the referenced webpage, and thereby prevents wasting the user's time. Furthermore, frequently, search term elements are missing on a webpage referenced by an Internet search result but are found on a descendant webpage thereof. Accordingly, the present invention is further directed to annotating an Internet search result consistent with the presence or absence of search term elements on both a referenced webpage and one or more descendant webpages.
In one embodiment, an operating system on a computer device interfaces with a graph database that has data nodes interconnected by relationship edges. The operating system generates database instructions that specify a database operation for a target node in the graph database and a node traversal list through the graph database to reach the target node. By then transmitting the database instruction to the graph database, the graph database (e.g., a database management operating system) traverses the specified node traversal list through the graph database to the target node, and performs the database operation on the target node.
Techniques and technologies for providing images for search queries are described. In at least some embodiments, a system includes a scraping query component, a search component, and a search results analysis component. The scraping query component provides a scrape query based on textual information associated with an entity of interest. The search component conducts an electronic search via one or more networks to obtain search results based at least partially on the scrape query, the search results including at least a search result image and image metadata associated with the search result image. The search results analysis component determines a similarity between at least part of the image metadata associated with the search result image and at least part of the textual information associated with the entity of interest, and determines whether to store, provide, or discard the search result image based at least partially on the determined similarity.
A system and a method for locating populations of content-specific data portions. The method includes determining a current population of data portions to be searched based on at least one prioritization criterion; accessing the current population of data portions; examining at least one data portion of the current population of data portions and extracting content-specific data; comparing the content-specific data to at least one suspect criterion; determining whether the current population meets at least one population criterion by analyzing the content-specific data; determining at least one next population of data portions to be searched based on proximity to the current population; and determining the at least one next population of data portions to be searched based on the at least one prioritization criterion.
When multiple backup database instances most recently experienced an update is determined. If a most recently updated backup database instance was updated within a defined time period of one or more other backup database instances, a source instance for cloning is selected as the backup database instance that satisfies at least one of a physical or logical proximity criteria relative to a designated database instance. If a difference in update times is greater than the defined time period, e.g., for the two most recent backup database instances, the source instance for cloning is selected to be the most recently updated backup database instance. Cloning to a target instance is performed using the selected backup database instance as a source instance as long as preparatory operations all pass. If not, the source databases are used for the cloning while still being accessible to clients.
Example embodiments described herein pertain to a geographic information system (GIS), configured to obtain geospatial data representing a geographic area, assign a projection and coordinate system to the geospatial data, apply a transformation to the geospatial data, and generate a tile cache based on the transformed geospatial data, the tile cache including the determined projection and coordinate system.