US08531578B2
Provided are a wide angle optical system having better optical performance, low in cost, and compact in size, an imaging lens device having the wide angle optical system, a monitor camera, and a digital apparatus. The wide angle optical system (1) has, in order from the object side to the image side, a first lens (11) having a negative optical power, a second lens (12) having a negative optical power, a third lens (13) having a positive optical power, an aperture (15), and a fourth lens (14) having a positive optical power. The wide angle optical system satisfies the conditional expression of 3
US08531574B2
A display device includes a liquid crystal layer between transparent first and second substrates. A transparent first segment electrode is formed on the first substrate so that a predetermined area becomes a positive pattern with respect to a predetermined display information, and a transparent second segment electrode is formed on the first substrate so that a predetermined area becomes a negative pattern with respect to the display information. The first and second segment electrodes are formed as a same first layer. A transparent common electrode is formed on the second substrate facing the first and second segment electrodes. A transparent auxiliary electrode is formed as a second layer on the first substrate along a gap between the first and second segment electrodes. The auxiliary electrode is connected to the second segment electrode via a contact hole in an insulating film interposed between the first and second layers.
US08531565B2
An image sensor includes a semiconductor substrate, a guard ring structure in the substrate, and at least one pixel surrounded by the guard ring structure. The guard ring structure is implanted in the substrate by high-energy implantation.
US08531553B2
A method is provided for controlling a digital photographing apparatus in which a captured image is stored in a non-volatile memory card, the method including: determining whether the non-volatile memory card is available; and if the non-volatile memory card is not available, transmitting the captured image that is temporarily stored in a volatile memory in response to a request to transmit the captured image. An associated apparatus and storage media for implementing the method are also provided.
US08531551B2
A system and method for image sharing is disclosed. The method of the present invention discloses: receiving a set of images and a transmit images command in response to the transmit images command; selecting a subset of the images in response to the transmit images command; formatting the subset of images in response to the transmit images command; and transmitting the formatted images to a recipient in response to the transmit images command. The system of the present invention discloses means for performing the method.
US08531547B2
An image processing apparatus and method in which auto-selecting of an object to be prioritized from among a plurality of detected objects is capable more appropriately. A characteristic detecting unit detects a previously set characteristic portion of an object from an image signal constituting a moving image. A control unit sets a priority to each characteristic portion when a plurality of the characteristic portions are detected by the characteristic detecting unit and also sets a high priority to a characteristic portion being detected for a long period of time.
US08531528B2
An image sensor capable of realizing night-photographing and functions of a proximity sensor and an illuminance sensor. The image sensor includes a light source for emitting light toward a subject; a light source control section for controlling current applied to the light source; an illuminance sensor section for sensing an illuminance of surrounding environment; and a sensor section having an image sensor unit for sensing an image signal.
US08531527B2
An acoustic-wave sensor (10) is constructed by a membrane (11) adapted to be displaced by an acoustic wave, a first waveguide (16a) for transmitting light therein, an optical coupling part (15) to which the light transmitted through the first waveguide (16a) is adapted to be optically coupled, and a second waveguide (16b) through which the light coupled from the optical coupling part (15) transmits. When the membrane (11) is displaced by its reception of the acoustic wave, at least one of an optical coupling coefficient between the first waveguide (16a) and the optical resonator (15) and an optical coupling coefficient between the second waveguide (16b) and the optical resonator (15) is changed to output a corresponding optical signal.
US08531525B2
A method for operating a surveillance system includes performing a first portion of an automated visual surveillance tour of a predetermined control area by inducing movement of at least one visual surveillance camera at a first camera tour speed. The method also includes recording at least one first video image frame of the predetermined control area. The method further includes recording at least one second video image frame of the predetermined control area. The method also includes automatically determining whether a region of interest exists within the predetermined control area. The method further includes performing a second portion of the automated visual surveillance tour by shifting the induced movement of the at least one visual surveillance camera to a second camera tour speed. The method also includes automatically dwelling on the region of interest.
US08531514B2
A terminal has a visual axis by using which a user points to a target object. An information generating server acquires an internal image or an external image of the target object pointed by a user, and generates a display image which is displayed on the terminal.
US08531507B2
A device and method for enhancement of a viewer's visual perception in a real physical (three spatial dimension) scene and/or a single two-dimensional image, which includes enhancement of a viewer's depth perception and perception of clarity in the real physical scene and/or the two-dimensional image, by alteration of a viewer's eye dominance with direction of greater attention to the viewer's non-dominant eye for contribution to the binocular view.
US08531505B2
A server sends to a client a message instructing movement of a display apparatus so that cameras comprising a view for creating a three-dimensional model can shoot a screen of a display apparatus. After movement is complete, the server causes an imaging parameter computation pattern image to be displayed on the screen of the display apparatus and instructs the client to cause the displayed pattern image to be shot by cameras. The server acquires images shot by the cameras from the client and seeks imaging parameters of the cameras on the basis of the pattern image included in the acquired images.
US08531500B2
A communication terminal, a display image control method using the communication terminal, a program and a medium are provided in order to display an opposite party's picture on a display part while executing a videophone communication even if it cannot keep sufficient communication quality.The communication terminal includes a videophone function, a voice communication function and the display part which displays a motion picture or a still picture. The communication terminal displays a picture acquired from an opposite party's communication terminal on a display part as a motion picture while executing the videophone communication. Further, it displays a picture acquired from the opposite party's communication terminal on the display part as a still picture after the videophone communication is switched to the voice communication when the videophone communication could not keep sufficient communication quality.
US08531496B2
An image forming apparatus has a speed range showing image forming capability per unit time that is determined in advance, and is settable to either a model set at a relatively low-speed range or a model set at a relatively high-speed range. Then, the arrangement of the laser elements is differentiated between a low-speed machine and a high-speed machine each other. Even when timing of writing for the high-speed machine is applied to the arrangement of the laser elements for the low-speed machine to write in an image, the image is not able to be written successfully, and resulting in an image which is displaced vertically.
US08531491B2
The present invention discloses a current-matching circuit including a hierarchical tree structure having two or more levels, each of which includes multiple matching devices, wherein each matching device at a preceding level corresponds to a predetermined number of matching devices at a next level. Respective matching devices at a last level control currents in respective current channels; the channels of the same group are matched with one another in current.
US08531488B2
A hard disk drive stores hierarchical image data, a speed map holding, for each tile image, an index of the processing time required to render a tile image having a predetermined image size obtained by partitioning the image, and scenario data which defines viewpoint shifting. In a control unit of an information processing apparatus having a function of displaying an image, an input information acquisition unit acquires information with respect to the user's input operation via an input device. A loading unit loads necessary data for image displaying from the hard disk drive. A shifting condition adjustment unit adjusts the viewpoint shifting speed based upon the speed map. A frame coordinate determination unit sequentially determines frame coordinates of a display area. A decoding unit decodes compressed image data. A display image processing unit renders a display image.
US08531473B2
A method for photogrammetric texture mapping using casual images is provided. The method may include the following steps: estimating, for each vertex of at least a portion of a three dimensional (3D) mesh representing a model, projection parameters associated with a virtual camera that is unique for each vertex; mapping pixels from a two dimensional (2D) image to the vertices, such that each mapping of a pixel is based on the estimated respective virtual camera parameters; and texturing the portion of the mesh with corresponding mapped pixels wherein vertices on the textured portion are selected such that they are visible from a specified viewpoint associated with the 3D mesh.
US08531471B2
Embodiments of the invention provide a programming model for CPU-GPU platforms. In particular, embodiments of the invention provide a uniform programming model for both integrated and discrete devices. The model also works uniformly for multiple GPU cards and hybrid GPU systems (discrete and integrated). This allows software vendors to write a single application stack and target it to all the different platforms. Additionally, embodiments of the invention provide a shared memory model between the CPU and GPU. Instead of sharing the entire virtual address space, only a part of the virtual address space needs to be shared. This allows efficient implementation in both discrete and integrated settings.
US08531468B1
An apparatus for use in image processing is set forth that comprises a pixel processor, context memory, and a context memory controller. The pixel processor is adapted to execute a pixel processing operation on a target pixel using a context of the target pixel. The context memory is adapted to store context values associated with the target pixel. The context memory controller may be adapted to control communication of context values between the pixel processor and the context memory. Further, the context memory controller may be responsive to a context initialization signal or the like provided by the pixel processor to initialize the content of the context memory to a known state, even before the pixel processor has completed its image processing operations and/or immediately after completion of its image processing operations. In one embodiment, the pixel processor executes a JBIG coding operation on the target pixel.
US08531465B2
At least certain embodiments of the present disclosure include a method for animating a display region, windows, or views displayed on a display of a device. The method includes starting at least two animations. The method further includes determining the progress of each animation. The method further includes completing each animation based on a single timer.
US08531463B2
One embodiment of the invention provides a computer-implemented method for discrete element modelling of a plurality of discrete elements corresponding to particles and physical geometry elements. The modelling performs a simulation through time of physical interactions of the particles with each other and with the physical geometry elements in a three-dimensional space. The method comprises providing a virtual geometry object comprising a user-defined shape. The virtual geometry object does not undergo physical interaction with the particles or physical geometry elements during the simulation. The method further comprises receiving user-defined parameters for determining the position, orientation and any movement of the virtual geometry object with respect to the three-dimensional space. The method further comprises locating the virtual geometry object in the three-dimensional space during the simulation in accordance with the user-defined parameters and identifying the particles, physical geometry elements and/or physical interactions having a particular relationship with respect to the virtual geometry object. The identified elements can then be analysed by the user, for example to determine the number of particles located at a given time within a specific region of the simulation space (as defined by the virtual geometry object).
US08531451B2
The rendering of sequential data-driven scenes. Each data-driven scene is constructed using a plurality of view components, each receiving data into its input parameters, and using construction logic to formulate a rendering of corresponding visual item(s). When a transition even is detected, the data-driven scene changes from one scene to the next. For instance, the transition might occur by changing any one or more of the following: changing the data that is applied to the view components, 2) changing the set of view components, 3) changing the dimension set, or 4) changing one or more geometries used to construct the scene. Thus, data-driven scenes may be presented sequentially.
US08531445B2
A device for controlling the gate drive voltage in the liquid crystal display is provided in the invention. The device for controlling the gate drive voltage in the liquid crystal display according to the invention includes a turn-on voltage output terminal and a turn-off voltage output terminal for outputting a turn-on voltage and a turn-off voltage to a gate drive circuit, respectively, and a control circuit. The control circuit is coupled with the turn-on voltage output terminal and exerts an influence on the turn-on voltage so that the turn-on voltage has a ripple similar to that of the turn-off voltage.
US08531435B2
An optical touch-sensitive device is able to determine the locations of multiple simultaneous touch events. The optical touch-sensitive device includes multiple emitters and detectors. Each emitter produces optical beams which are received by the detectors. The optical beams preferably are multiplexed in a manner so that many optical beams can be received by a detector simultaneously. Touch events disturb the optical beams. To determine whether a candidate touch point is an actual touch event, multiple beams that would be affected are considered together.
US08531430B2
A touch screen touch screen display includes a bottom conductor layer coupled to a top conductor layer. The bottom conductor layer extends beyond the top conductor layer adjacent the top conductor layer, exposing a region of the bottom conductor layer. One or more manually actuatable components (e.g., buttons) are coupled to the region of the bottom conductor layer. The bottom conductor layer may include a substrate (such as a polycarbonate layer) and a polymer layer (such as polyethylene terephthalate) formed on the substrate.
US08531429B2
The disclosed capacitive sensing device has first conductive lines, second conductive lines and electrical conductors. The first conductive lines are electrically isolated from each other, the second conductive lines are electrically isolated from each other and electrically isolated from and stacked with the first conductive lines to form numerous intersecting points, and the electrical conductors are electrically isolated from each other and correspondingly crossing the first and the second conductive lines and being around the intersecting points. Herein, the electrical conductors are electrically isolated from the first and second conductive lines. When an electrical signal is driven to a first conductive line, the first conductive line is capacitively coupled to the second conductive lines which intersecting mutually, and the electrical conductors crossing the first conductive line are respectively capacitively coupled to the first conductive line and the mutually intersecting second conductive lines to provide a higher compound capacitance.
US08531424B1
A system is provided for controlling, real-time logging, and archiving complex commercial transactions such as the purchase and financing of an automobile. An electronic contract disclosure unit or ECDU includes a digitizing display for imaging documents involved in the transaction and a digitizer for manual interaction with images on the display. A computer controls the transaction, and may for instance, control the order of presentation of documents to a vehicle purchaser, receive the purchaser's signature on the displayed documents when required, offer choices of various packages that can be accepted or declined by the purchaser, and insures that the entire transaction is carried out properly. The ECDU logs the transaction for future review and preferably records video and audio. Fingerprint readers allow participants to select between options by pressing their thumb or finger on the readers.
US08531422B2
An intrinsically safe touch screen system includes a touch screen, a current limiting barrier coupled to the touch screen, a touch screen controller, and a voltage limiting barrier. The controller is coupled to the current limiting barrier, the voltage limiting barrier, and the touch screen, in a configuration such that signals transmitted to and from the touch screen will be within a level that ensures intrinsic safety of the touch screen.
US08531408B2
Aspects of the present disclosure relate to single-domain electrode configurations that may be implemented in the unit pixels of a LCD device, such as a fringe field switching (FFS) LCD, to provide a “pseudo-multi-domain” effect, wherein the benefits of both conventional single-domain and multi-domain pixel configuration devices are retained. In accordance with aspects of the present technique, single-domain unit pixels are angled or tilted in differing directions with respect to a vertical axis of the LCD panel (e.g., y-axis) to provide an alternating and/or periodic arrangement of different-angled pixel electrodes along each scanning line, data line, or a combination of both scanning and data lines. In this manner, the transmittance rates of conventional single-domain LCD panels may be retained while providing for improved viewing angle and color shift properties typical of conventional multi-domain LCD panels.
US08531399B2
[Object] To provide a control apparatus, an input apparatus, a control system, a control method, and a handheld apparatus that are capable of preventing a deviation between a display position of a pointer and a relative position of the input apparatus when the input apparatus is moved out of a screen from an end portion of the screen, and with which a user can obtain an intuitional operational feeling.[Solving Means] Not only on a real screen (95) but also on a virtual screen (105) set around the real screen (95), coordinates of a virtual pointer (2′) are generated and stored. Accordingly, by moving an input apparatus (1) only by an amount that the input apparatus has moved outside the real screen (95), in an opposite direction, for example, a user can resume a movement of a pointer (2) that has reached a boundary line of the real screen (95), on the real screen (95). As a result, since coordinate values of the pointer are generated in a pseudo absolute coordinate system without being bound by a small screen, the user can operate the input apparatus (1) intuitionally without stress.
US08531389B2
An electrophoretic display panel and a method for driving an electrophoretic display panel in which the drive pulse, i.e. the grey scale pulse, to bring an element from a preceding optical state to an optical state is split in more than one sub-pulses. A more gradual introduction of the grey scale is thereby achieved reducing the suddenness of the transition form one image to another. Preferably application of the grey scale potential differences is preceded by application of reset pulses in which case the preceding optical state is an extreme optical state.
US08531386B1
A computing device is disclosed. The computing device includes a light source configured to output light. The computing device also includes a light sensor configured to measure the level of light surrounding the computing device. The computing device further includes a control mechanism operatively coupled to the light source and light sensor and configured to adjust the level of output light based on the measured level of light surrounding the computing device.
US08531378B2
A liquid crystal display comprises a back light emitting monochromatic light, a liquid crystal display element comprising, a pair of opposing substrates, a nematic liquid crystal layer placed between the pair of opposing substrates, an electrode pattern formed on a nematic liquid crystal layer side of each substrate, a pair of polarizers placed outside the pair of substrates, and a controller which controls light emission of the back light and a voltage applied to the liquid crystal display element, wherein the controller restrain change in retardation of the liquid crystal display element by lowering non-selection voltage applied to the liquid crystal display element when environmental temperature increases and increasing non-selection voltage applied to the liquid crystal display element when environmental temperature decreases.
US08531377B2
A liquid crystal display device used in miniaturized portable equipment includes a distribution circuit to cope with a high-definition multi-grayscale display. A distribution circuit distributes an output of a drive circuit to a plurality of video signal lines within one scanning period, the distribution circuit being divided into a plurality of distribution circuits, and control signals being supplied to each distribution circuit from both end portions of each distribution circuit. When an output part of the drive circuit is configured such that a high withstand-voltage output amplifier and a low withstand-voltage output amplifier are alternately connected with the distribution circuit, a master function and a slave function are imparted to the drive circuit so as to allow the drive circuit to cope with odd-numbered outputs.
US08531371B2
A liquid crystal display includes a liquid crystal layer disposed between first and second substrates. A gate line transmits gate signals; a first data line transmits data voltages; a first voltage line alternately transmits a first voltage and a second voltage that is than greater than the first voltage; a first switching element is connected to the gate line and the first data line; a second switching element is connected to the gate line and the first voltage line; a first pixel electrode is connected to the first switching element; and a second pixel electrode is connected to the second switching element. The first pixel electrode and the second pixel electrode form a liquid crystal capacitor along with the liquid crystal layer, and at least one of the first voltage and the second voltage is variable.
US08531361B2
An OLED display includes a data line, a gate line crossing the data line receiving a scan pulse, a high potential (HP) driving voltage (DV) source, a low potential (LP) DV source, a light emitting element (LEE) emitting light from current flowing between the HP DV source and the LP DV source, a drive element (DE) connected between the HP DV source and the LEE controlling a current flowing in the LEE from voltage between a gate electrode (GE) and a source electrode (SE) of the DE, and a driving current stabilization circuit applying a voltage to the GE of the DE turning on the DE and sinking a reference current through the DE, setting a source voltage of the DE at a sensing voltage and modifying voltage between the GE and SE of the DE to scale a current to be applied to the LEE from the reference current.
US08531345B2
An antenna device includes a first antenna element resonating at a frequency in a first frequency band, a first matching circuit attaining matching between a first radio frequency circuit and the first antenna element, a second antenna element resonating at a frequency in a second frequency band, a second matching circuit attaining matching between a second radio frequency circuit and the second antenna element, a first band-pass circuit connected with the second antenna element and the second matching circuit to selectively conduct a signal in the second frequency band and a second band-pass circuit connected with the second antenna element and grounded to selectively conduct a signal in the first frequency band, wherein the second antenna element is utilized as a parasitic element for the first antenna element.
US08531343B1
An electromagnetic environment simulation method. Embodiments of the invention provide for nanosecond or better time resolution and milliradian angular resolution simulation of the dynamic electromagnetic environment of a wireless system under test.
US08531341B2
Portable electronic devices are provided with wireless circuitry that includes antennas and antenna isolation elements. The antennas may include antennas that have multiple arms and that are configured to handle communications in multiple frequency bands. The antennas may also include one or more antennas that are configured to handle communications in a single frequency band. The antennas may be coupled to different radio-frequency transceivers. For example, there may be first, second, and third antennas and first and second transceivers. The first and third antennas may be coupled to the first transceiver and the second antenna may be coupled to the second transceiver. The antenna isolation elements may be interposed between the antennas and may serve to reduce radio-frequency interference between the antennas. There may be a first antenna isolation element between the first and second antennas and a second antenna isolation element between the second and third antennas.
US08531340B2
A multi-band antenna module is disposed in a housing of an electronic device. The housing has a grounding plane disposed therein and includes a metal frame part having two ends electrically connected to opposite side edges of the grounding plane. The multi-band antenna module includes a conductor, a substrate, a grounding section, and a first radiator section. The conductor is to be coupled across the metal frame part and the grounding plane so as to cooperate with the grounding plane and a portion of the metal frame part to form a closed loop thereamong, in which the substrate is disposed. The first radiator section and the grounding section are disposed on the substrate, with the grounding section to be coupled electrically to the grounding plane. A portion of the first radiator section is disposed to cooperate with the closed loop to resonate in a first frequency band. Another portion of the first radiator section is disposed to cooperate with the grounding section to resonate in a second frequency band.
US08531339B2
An electronic device is provided, including a main body, a battery detachably received in the main body, a stopper disposed in a predetermined position to restrict the battery in the main body, an antenna disposed on the stopper, and a cover connected with the stopper and movable relative to the stopper between a first position and a second position. When the cover is in the first position, the cover is engaged with the main body and restricts the stopper in the predetermined position. When the cover is moved from the first position along a first direction to the second position, the cover is disengaged from the main body, and the stopper is releasable from the predetermined position along a second direction.
US08531338B2
A wireless communication device includes a main body, a cover, a base board, an elastic member, and an antenna module. The cover is attached to the main body. The base board includes a feeding point and a grounding point. The elastic member is connected to one of the feeding point and the grounding point. The antenna module includes a first antenna and a second antenna connected to the other feeding point and the grounding point of the base board. The base board, the elastic and the antenna module are mounted in the cover. The elastic member selectively causes the first antenna or the second antenna to contact to the one of the feeding points and the grounding point of the base board when in an open or closed state.
US08531325B2
A delta-sigma analog-to-digital converter (ADC) is disclosed. In one embodiment, the delta-sigma ADC includes a dual mode resonator and a plurality of switches. The delta-sigma ADC is configured to operate in a real modulation mode or a complex modulation mode based on settings of the plurality of switches.
US08531324B2
Systems and methods are provided for converting analog data to digital data that can include performing N successive analog subtractions from an initial data charge Qin. The analog subtractions are performed using an amplifier coupled to a discharge capacitor and a divider circuit coupled to an input of the amplifier. The divider circuit includes a first capacitor, a second capacitor, and a switch to alternately divide a remaining charge Q by 2N between the first and second capacitors until the remaining charge Qin at the amplifier is below a threshold value. A compensating circuit compensates for fluctuations in the charge held by the first and second capacitors due to operation of the switch.
US08531319B2
A method of distinguishing input signals detected by a mobile terminal is provided. The method comprises detecting at least a first and a second input signal, wherein a first vibration signal is associated with the first input signal and a second vibration signal is associated with the second input signal; and outputting a combined vibration signal corresponding to at least the first and second input signals. The first and second input signals may be proximity signals, touch signals, or a combination thereof. The combined vibration signal may be outputted according to a characteristic of at least the first and second input signals.
US08531318B2
Disclosed is a feature for a vehicle that enables taking precautionary actions in response to conditions on the road network around or ahead of the vehicle, in particular, an intersection located at the bottom of a hill. A database that represents the road network is used to determine locations where an intersection of roads is located at the bottom of a hill and then, precautionary action data is added to the database to indicate such locations. A precautionary action system installed in a vehicle uses this database, or a database derived therefrom, in combination with a positioning system to take a precautionary action as the vehicle approaches such a location.
US08531303B2
Method for inspecting, in real time, the quality of water of a drinking water delivery network comprising, on the one hand, on connections for consumers, consumption meters (9a) fitted with remote-reading devices, and, on the other hand, on-line analysers (10a) distributed at supervision points on the network in order to measure at least one parameter of water quality. The meters (9a) are fitted with remote-reading devices and the consumption data of the various meters (9a), and the measurements of the analysers (10a) are transmitted to a programmed computing unit (A) with a kinetic model of decrease of the quality parameter in question; the computing unit (A) permanently updates the hydraulic model according to the consumption data received from the meters (9a, 9b etc.); the computing unit (A) establishes expected estimated values of the concentration in the water of the parameter in question at the various supervision points of the network, and a prewarning system (w) makes a comparison between the estimated values of the quality parameter and the values measured at various points of the network, a warning being triggered when the difference between the measured value and the expected estimated value exceeds a predetermined threshold.
US08531301B2
A warning device includes a sensing unit, a comparing unit, a controlling unit and a warning unit. The sensing unit sense whether a part of the body of a person is sticking out of the window and generates a sensing signal. The comparing unit detects if the sensing signal is at least a predetermined value. If it is determined that the sensing signal is at least the predetermined value, a part of the body of the person is sticking out of the window and the comparing unit generates a warning signal. The warning unit is used for generating the alarm, and is capable of alternating between an alarm state and standby state. The controlling unit responds to the warning signal to detect whether the warning unit is in the alarm state, and disables the warning unit to start generating the alarm when the warning unit is in the standby state.
US08531296B2
A theft prevention system for protecting portable electronic devices is disclosed. An acceleration sensor detects the acceleration of a portable electronic device, and a controller analyzes this acceleration to determine whether a theft condition is present. If so, an alarm can be initiated. The theft prevention system can include a filter for attenuating irrelevant acceleration frequencies and isolating those representative of theft, and comparison hardware/software for determining whether the detected acceleration matches a known acceleration profile characteristic of theft. Various parameters of the theft prevention system can also be set by a user through mechanisms such as a graphical user interface.
US08531292B2
A design and manufacturing methods for reusable, stackable shipping containers made from composite materials is described. The composite material is embedded with optical fibers, data and electrical paths, and various types of components. These embedded devices are capable of detecting intrusions through the container walls, securely storing and processing information, and securely communicating information to other containers and to remote devices.
US08531291B2
A system includes one or more sensors mounted on a mobile patient; a wireless transceiver to communicate with a remote station; and a processor coupled to the sensor and the wireless transceiver to request assistance if the processor detects a fall by the mobile patient.
US08531284B2
An apparatus comprising a charging pin in a recharging inlet of an electric powered vehicle (EPV) recharging inlet, a ground pin in the recharging inlet and substantially parallel to the charging pin, a safety pin in the recharging inlet and substantially parallel to the charging pin and the ground pin, an electric power source coupled to the safety pin, and a control circuit coupled to the electric power source and the safety pin, wherein the length of the safety pin extended in the recharging inlet is substantially shorter than the length of the ground pin and longer than the length of the charging pin.
US08531282B1
A vehicle bumper guard and monitoring assembly is provided for protecting the bumper area of a vehicle, monitoring the surrounding area, and providing an alert upon detection of contact with the bumper guard. The assembly includes a sheet having opposed ends. The sheet is configured for conforming to a bumper of a vehicle. A plurality of hooks is coupled to and extends from the sheet. Each hook is configured for securing to the vehicle whereby the sheet is positioned over the bumper of the vehicle. A plurality of sensors is coupled to the sheet. Each sensor is configured to detect contact or imminent contact between an object and the bumper of the vehicle. A transmitter is operationally coupled to the sensors to transmit an alert signal when contact is detected between the object and the bumper of the vehicle.
US08531276B2
A state-based remote control system for providing efficient and simple operation of a plurality of electronic devices as a coordinated system based upon an overall task. The state-based remote control system includes a housing, a keypad in communication with an electronic system contained within the housing, and a communication device in communication with the electronic system for communicating with external electronic devices. The electronic system monitors the buttons selected by a user to determine the state of all external electronic devices that are to be controlled. When the user selects a task (e.g. watch television), the electronic system automatically determines the actions required to achieve the desired task based upon the current state of the external electronic devices. After the task has been fulfilled, the electronic system updates the data to reflect the modified state of the external electronic devices.
US08531274B2
A method for establishing a wireless communication connection between an automation component and a mobile operating terminal is provided. The automation component reads out a first request from a tag, wherein the operating terminal has stored the first request on the tag using a read/write device, the operating terminal requesting information from the automation component by the first request via wireless communication connections provided by the automation component. The automation component stores the information via the wireless communication connection on the tag and then reads out a second request from the tag, wherein the operating terminal has stored the second request on the tag, the establishment of a first communication connection being requested in the second request. Further, a first communication module of the automation component intended for the first communication connection is activated, the operating terminal then establishing the first communication connection to the automation component.
US08531273B2
Systems and methods are provided for monitoring a plurality of RFID tags. A system includes a plurality of serially connected transmitters along a transmit path, where each of the serially connected transmitters are configured to relay a received transmitter selection signal when the transmitter selection signal identifies a selected transmitter as being further along the transmit path than the serially connected transmitter and transmit an identification impulse using a transmit antenna when the transmitter selection signal identifies the serially connected transmitter as being the selected transmitter. A system further includes a control unit responsive to a plurality of transmit paths, the control unit being configured to send the transmitter selection signal along a selected transmit path, where the transmitter selection signal identifies one of the plurality of serially connected transmitters along the selected transmit path as the selected transmitter for transmitting the identification impulse.
US08531271B2
An RFID system that is capable of increasing the probability of a spare channel being detected and reducing the influence of interference between reader/writers comprises: a reader/writer which has a reader/writer main body section and an antenna capable of polarization switching, and which sends a continuous carrier wave; and a tag which uses tag information to modulate the continuous carrier wave and sends back a response signal to the reader/writer. The reader/writer main body section judges the level of a received interference signal and determines a channel and polarization direction for which the level of the interference signal is equal to or less than a threshold value, and receives a response signal from the tag on the determined channel and in the polarization direction.
US08531267B2
A method for visual indication of the function of wireless receivers where a wireless signal is transmitted to a group of receivers, and where each receiver intermittently flashes a visual indicator when a wireless signal is received, whereby the intermittence and flashing of the visual indicators of the receivers are synchronized.
US08531264B2
The present invention relates to a current sensing resistor made by an electrically conductive metal plate, and the current sensing resistor comprising: a middle portion; a first portion with a first slot located at one side of the middle portion; and a second portion with a second slot located at the other side of the middle portion opposite to the first portion; wherein each of the first and second portions is divided into a current terminal and a sensing terminal by the first and second slots respectively, and the current terminals of the first and second portions have a length greater than that of the sensing terminals of the first and second portions; characterized in that the middle portion has a middle slot and the length of the middle slot can be used for controlling the stability of resistance for the current sensing resistor.
US08531261B2
Method for improving the symmetry of the differential output signals of an integrated transformer of the symmetric-asymmetric type comprising an inductive primary circuit and an inductive secondary circuit, characterized in that the capacitive coupling between the primary and secondary circuits is reduced.
US08531253B2
In an ultra-wideband (UWB) band-pass filter, an equivalent circuit of a band-pass filter for direct frequency conversion is configured to have a series LC resonator and a parallel LC resonator, the parallel LC resonator is implemented as a short stub and an open stub, and the series LC resonator is implemented by modeling an inductor and a capacitor as a distributed constant circuit. The series LC resonator is implemented to have a 3D structure for effective designing of the band-pass filter by a new method of implementing a series resonator circuit. In the UWB band-pass filter, a low-pass filter for improving band-stop characteristics is additionally connected.
US08531252B2
A small antenna duplexer that includes antenna terminal, first filter electrically connected to this antenna terminal and passing a first frequency band, second filter electrically connected to antenna terminal and passing a second frequency band, and third filter electrically connected to antenna terminal and passing a third frequency band. First filter and third filter are used for one band, and second filter and third filter are used for another band.
US08531251B2
New methods for generating through-zero pulse-width modulation are disclosed. In one approach, a periodic reference signal varies over time over at least one portion of the period. A pulse-width control signal varies linearly with time over at least one portion of the reference signal. The reference signal is compared with the pulse-width control value to produce a first pulse waveform. The value of a function of the control value is subtracted from the first pulse waveform to produce through-zero pulse-width modulation. In another approach, the difference in value between two ramp or sawtooth periodic waveforms is computed to produce a pulse waveform with a time-varying DC offset that varies linearly in time. The time-varying offset-term is retained with the pulse waveform, producing through-zero pulse-width modulation.
US08531244B2
A high frequency signal processing device is capable of carrying out high-accuracy modulation by a PLL circuit. A digital loop is configured in addition to an analog loop having, for example, a phase frequency detector, a charge pump circuit, and a loop filter. A digital calibration circuit is provided which searches for the optimal code set to a capacitor bank upon frequency modulation. Upon the search for the optimal code, a calibration controller first sets a division ratio based on a center frequency to a divider and determines the value of a voltage control signal using the analog loop. Then, the loop filter holds the value of the voltage control signal therein, and a division ratio corresponding to a “center frequency+modulated portion” is set to the divider, thereby operating the digital loop. The optimal code is obtained by a convergent value of the digital loop.
US08531243B2
The present invention includes: a temperature compensation circuit for generating a digital signal corresponding to a temperature of a transistor and outputting a compensation bias current obtained by adding a control current to a reference bias current or by subtracting the control signal from the reference bias current using the generated digital signal; a characteristics compensation circuit for detecting a characteristics error of a mirror transistor connected to the transistor in parallel and for outputting a compensation signal to compensate the characteristics error; and a bias compensation circuit for compensating a bias power applied to the transistor using the compensation bias current and the compensation signal to output the compensated bias power. The present invention is capable of improving the performance of the transistor.
US08531241B1
A method is provided for process, voltage, temperature (PVT) stable transfer function calibration in a differential amplifier. The gain resistors of a differential amplifier are initially selected to achieve a flat amplitude transfer function in the first frequency band. After calibration, the degeneration capacitor is connected and tuned until a peaked amplitude transfer function is measured, which is resistant to variations in PVT. As an alternative, the degeneration capacitor is not disconnected during initial calibration. Then, the gain resistors and the degeneration capacitor values are selectively adjusted until the first peaked amplitude transfer function is obtained. The peaked amplitude transfer function remains even more stable to variations in PVT than the flat amplitude calibration method.
US08531235B1
A current reference circuit configured to generate a reference current with a programmable temperature slope is disclosed. The current reference circuit includes a resistor. The current reference circuit includes a bandgap voltage circuit configured to generate a bandgap voltage and coupled to the resistor. The current reference circuit includes a bias voltage circuit configured to generate a variable-polarity bias voltage and coupled to the bandgap voltage circuit. The bandgap voltage circuit is configured to add the variable-polarity bias voltage to the bandgap voltage to generate the reference current through the resistor.
US08531228B2
Level-shifting devices and methods allow signals to be passed between input/output (I/O) ports. One such device comprises a first output driver that drives a first I/O port in response to a first control signal. A second output driver drives a second I/O port in response to a second control signal. A first comparator circuit, responsive to a first reference voltage and a voltage at the first I/O port, generates the second control signal. A limiter circuit limits driving of the second I/O port, by the second driver, to a limiting voltage that responsive to a the second I/O port over a first range of signaling voltages, and constrained to a set value over a second range. A voltage reference generating circuit generates a second reference voltage. A second comparator circuit generates the first control signal in response to the second reference voltage and the second I/O port.
US08531211B2
A semiconductor device includes a first signal delay block configured to delay a first edge of an input signal with varying delay amounts, maintain a second edge of the input signal, and output at least one first driving signal, a second signal delay block configured to delay the second edge of the input signal with the varying delay amounts, maintain the first edge of the input signal, and output at least one second driving signal, and an output pad driving block configured to drive a data output pad with a first voltage in response to the first driving signal and drive the data output pad with a second voltage in response to the second driving signal.
US08531207B2
A lookup table includes a single via layer having 2N via insertion portions corresponding to 2N input patterns provided from N input terminals; and a via inserted into at least one of the via insertion portions, the via connecting the input terminal and an output terminal.
US08531205B1
One embodiment relates to a programmable output buffer which includes first and second programmable variable-impedance single-ended driver circuits and first and second termination circuits. The first termination circuit is coupled to a first output pin which is driven by the first programmable variable-impedance single-ended driver circuit, and the second termination circuit is coupled to a second output pin which is driven by the second programmable variable-impedance single-ended driver circuit. The first and second termination circuits are programmable to either provide parallel termination for a differential signal or drive single-ended signals with the parallel termination turned off. Other embodiments and features are also disclosed.
US08531181B2
A magnetic linear sensor arrangement for detecting the position of a component that can be moved along a predefined movement path includes a device disposed along the movement path for generating a magnetic field whose polarity changes along the movement path of the component, and at least one galvanomagnetic detector with at least two measurement fields, which is arranged within the effective region of the magnetic field. The detector can be moved relative to the magnetic field along the movement path of the component. The galvanomagnetic detector is a Hall sensor which is designed to measure the magnetic field spatially or in at least two directions within a plane. The Hall sensor is provided with at least two measurement fields which are rotationally offset and perpendicular to each other in a corresponding plane.
US08531180B2
A device coupled with a magnetometer and an angular rate sensor can determine a heading of the device using magnetometer data. When the device receives a notification that the magnetometer data may be inaccurate, the device can determine the heading of the device using angular rate data. When the device determines that the magnetometer data are accurate, the device can resume determining the heading of the device using the magnetometer data.
US08531178B2
In an ultrasound probe (2) and a method for manufacturing the ultrasound probe (2) of the invention, an organic piezoelectric element (21) has a sheet-like form, and is directly or indirectly laminated on a part or the entirety of a plurality of inorganic piezoelectric elements (22). Accordingly, the ultrasound probe (2) can be manufactured with a less number of steps. An ultrasound diagnostic apparatus of the invention includes the ultrasound probe (2). Accordingly, the cost of the ultrasound diagnostic apparatus can be reduced.
US08531177B2
A timing detection device includes a draw back amount acquiring unit and a detecting unit. The draw back amount acquiring unit is configured to acquire a draw back amount of a received signal with respect to a peak value of the signal. The detecting unit is configured to detect the timing at which the draw back amount acquired by the draw back amount acquiring unit has exceeded a constant value as the timing at which a value of the signal is switched.
US08531161B2
An energy consumption output device for outputting the still remaining usability of an electrical consumer which may be connected to an energy storage. The energy consumption output device has the following features: a unit for providing a residual capacity of the electrical energy storage; a power consumption ascertainment unit which is configured to ascertain a power consumption rate in an instantaneous operating mode of the electrical consumer; and an output unit which is configured to determine information concerning the maximum usability for a user of the energy consumption output device with regard to the instantaneous operating mode, using the provided residual capacity and the ascertained power consumption rate, and to output this information.
US08531159B2
A battery management control system includes: a battery, including: a battery cell; a battery cell monitor, detecting information on the battery cell; and a manager, controlling input/output of electric power to/from the battery cell based on the information; and a controller. One of the manager and the controller includes a first map specifying a first upper limit of the electric power and a second map specifying a second limit lower than the first limit. The controller calculates a first electric power value based on the first map and requests the first electric power value. When the manager controls the input/output of the electric power to/from the battery cell based on the first electric power value, and the information satisfies a deterioration determination condition, the manager determines that the battery cell is deteriorated, and the controller calculates a second electric power value based on the second map.
US08531158B2
A method for monitoring a lithium-ion battery cell includes monitoring a battery cell voltage and a corresponding state of charge of the battery cell during an electric power event which may include either an electric power charge event or an electric power discharge event. A measured potential-derivative is determined by differentiating the battery cell voltage in relation to the corresponding state of charge of the battery during the electric power event. The measured potential-derivative is compared with a preferred anode potential-derivative of an anode charge curve (for electric power discharge events) or an anode discharge curve (for electric power charge events), and with a preferred cathode potential-derivative of a cathode charge curve (for electric power charge events) or a cathode discharge charge curve (for electric power discharge events). A first state of health parameter of the battery cell corresponding to the comparison of the measured potential-derivative with the preferred anode potential-derivative of the anode curve is determined. And, a second state of health parameter of the battery cell corresponding to the comparison of the measured potential-derivative with the preferred cathode potential-derivative of the cathode curve is determined.
US08531147B2
An electric machine including a housing, a stator mounted within the housing, a rotor rotatably mounted within the housing relative to the stator, and a vibration sensor arranged within the housing. The vibration sensor includes a sensing member configured and disposed to detect vibrations of the electric machine.
US08531144B2
A synchronous-machine starting device includes an induction voltage operating unit calculating an induction voltage induced to an armature of a synchronous machine based on an estimated phase representing a position of a rotor, an estimated rotational speed of a rotor, an AC voltage signal, and an AC current signal, and outputting an induction voltage signal representing the calculated induction voltage, a selection unit selecting and outputting one of the induction voltage signal received from the induction voltage operating unit and the AC voltage signal received from the AC voltage detection unit, and a feedback operating unit outputting a speed signal representing the calculated estimated rotational speed based on calculated phase error to the induction voltage operating unit, and outputting a position signal representing the calculated estimated phase to the electric power conversion control unit and the induction voltage operating unit.
US08531134B2
In embodiments of the present invention, a method and system is provided for designing improved intelligent, LED-based lighting systems. The LED based lighting systems may include fixtures with one or more of rotatable LED light bars, integrated sensors, onboard intelligence to receive signals from the LED light bars and control the LED light bars, and a mesh network connectivity to other fixtures.
US08531133B2
An example controller for a switched mode power supply includes a comparator, a drive logic, and an on-time extension block. The comparator has an output indicating whether the current through a switch of the power supply exceeds a zero-crossing current threshold. The drive logic is to generate a drive logic output signal in response to the current sense signal and in response to a feedback signal, where the drive logic output signal is representative of an on-time of the switch to regulate the output of the power supply. The on-time extension block is coupled to control switching of a switch and to extend the on-time until the output of the comparator indicates that the current sense signal reaches the zero-crossing current threshold or until the on-time of the switch reaches a zero-crossing time threshold.
US08531130B2
An application for a logo with an adjustable internal lighting includes an illuminated logo, a sensor and a circuit that controls the illuminated logo. The brightness and/or color of the illuminated logo are controlled by the circuit based upon ambient light and optionally, a user preference, operating mode and/or time-of-day. The sensor detects ambient light and signals the circuit to increase or decrease the brightness of the illuminated logo.
US08531128B2
An electrical circuit is disclosed. The electrical circuit comprises a plurality of color strings coupled in series, where each color string has at least one lamp, preferably a light emitting diode. The color strings may be of dissimilar length and may contain light emitting diodes of different colors. In one embodiment, a switch coupled in parallel with one of the color strings is configured to shunt power away from the color string to a power supply. In another embodiment, a switch coupled in parallel with one of the color strings is configured to shunt power away from the color string to one or more other color strings. In several embodiments, passive storage elements are utilized to store shunted power. In another embodiment, a current injector is configured to inject or remove current from a node adjacent to a color string. In several embodiments the invention is implemented as a light emitting diode driver integrated circuit or chip. Methods are disclosed for producing a desired light output utilizing color strings that may be of dissimilar length and that may contain light emitting diodes of different colors.
US08531127B2
The present invention consists of a power supply and LED circuit arrangement for powering LED arrays such that single or multiple LED failures will have minimal affect on the utility of the LED array. The power supply consists of an analog or microcontroller-based feedback module with single/multiple feedback signals in series with a synchronous buck-boost converter followed by an optional filter and a LED array. The assembly utilizes the feedback signal, to modulate various parameters of the LED array, such as the output intensity, LED junction temperature, and chromaticity. The power supply can drive different circuit arrangements of LEDs including series, parallel, and combinations thereof. Typical feedback signals include LED current, temperature, and ambient luminance and contrast.
US08531117B2
The present disclosure discloses a lighting apparatus using a PN junction light-emitting element, the apparatus comprising: a power transmitting substrate; PN junction light-emitting elements mounted on the power transmitting substrate; circuit elements mounted on the power transmitting substrate and controlling power provided to the PN junction light-emitting elements; and a top cover covering the circuit elements and forward reflecting light emitted by the PN junction light-emitting elements.
US08531116B2
A light source driving apparatus for implementing general purpose driving of a high-current light emitting diode (LED) and a low-current LED, and a method for driving the same are disclosed. The apparatus for driving the light source includes a plurality of light emitting diode (LED) strings, and a light emitting diode (LED) driving circuit for driving the LED strings, and having a plurality of channels commonly connected to the same LED string.
US08531112B2
An LED driving circuit for driving an LED module is provided. The LED module is coupled to an inductor and a flywheel unit to provide a continuous current conduction of the inductor. A terminal of a converting switch is coupled to the LED module, and another terminal thereof is coupled to ground through a current detection unit that generates a current feedback signal to a controller, so as to stabilize a current flowing through the LED module. The LED driving circuit also includes a protecting circuit, which detects a potential of one end of the LED module to generate a detection signal and makes/has the converting switch to be turned off responsive to the detection signal. If the converting switch is turned off, driving of the LED module is stopped.
US08531110B2
A lamp having a light emitting diode, a Peltier device, a heat sink, a translucent thermally conductive window, and an optical fluid. The Peltier device is in thermal communication with the light emitting diode and converts a waste thermal energy discharged by the light emitting diode into an electrical energy. Conductors transfer the electrical energy from the Peltier device to a boost circuit which converts a level of a voltage associated with the electrical energy output from the Peltier device to a higher, more useful value. The heat sink transfers a second thermal energy from the Peltier device. The optical fluid is located between the translucent, thermally conductive window and the light emitting diode. The optical fluid has an angle of diffraction having an intermediate value relative to an angle of diffraction associated with the light emitting diode and an angle of diffraction associated with the translucent, thermally conductive window.
US08531106B2
In a high-pressure discharge lamp including a ceramic discharge vessel, a secure connection between a hybrid antenna as starting aid and a leadthrough of the discharge vessel is provided by virtue of the fact that a means between leadthrough and extension limits the ohmic resistance between leadthrough and hybrid antenna preferably to at most 100Ω.
US08531102B2
A display includes: a display region including a plurality of pixels, a plurality of first liquid-repellent regions, and a plurality of first lyophilic regions, each of the plurality of first liquid-repellent regions being provided in a part or a whole of a portion between the plurality of pixels, and each of the plurality of first lyophilic regions being provided between the plurality of first liquid-repellent regions next to each other; and a peripheral region in a part or a whole of which a second lyophilic region is formed.
US08531101B2
An organic electroluminescent (OEL) lighting element disposed on a substrate includes a first electrode, a second electrode, an OEL layer, an auxiliary electrode, a patterned scattering layer, and a patterned dielectric layer. The second electrode is opposite to the first electrode having a first refraction index. The OEL layer is disposed between the first electrode and the second electrode. The auxiliary electrode is disposed between the first electrode and the second electrode, electrically connected to the first electrode, and separated from the OEL layer by a gap. The patterned scattering layer is disposed between the first electrode and the auxiliary electrode, covers the auxiliary electrode, and has a second refraction index greater than or substantially equal to the first refraction index. The patterned dielectric layer is disposed between the auxiliary electrode and the second electrode, covers the auxiliary electrode, and is disposed between the auxiliary electrode and the OEL layer.
US08531100B2
This invention relates to deuterated compounds that are useful in electroluminescent applications. It also relates to electronic devices in which the active layer includes such a deuterated compound.
US08531099B2
An organic light emitting diode (OLED) display includes a substrate, an organic light emitting element including a first electrode, an organic emission layer, and a second electrode on the substrate, a driving thin film transistor turning on/off first power supplied to the first electrode and including a first active layer including zinc oxide (ZnO), a photo sensor disposed between the substrate and the organic emission layer and including a second active layer sensing light emitted from the organic emission layer, and a controller controlling at least one of the first power and a second power supplied to the second electrode according to the intensity of the light sensed by the photo sensor.
US08531086B2
A vibration actuator 10 comprises an elastic body 12 that generates vibration waves in accordance with driving of an element 13, and a relative movement member that is in pressure contact with the body 12 and is relatively moved with respect to the body 12 by the vibration waves. A plurality of groove 30s are formed at the relative movement member side of the body 12, and depths of the groove 30s in a direction orthogonal to a relative movement direction of the relative movement member vary along the relative movement direction of the relative movement member.
US08531084B2
According to one embodiment, an ultrasonic motor unit includes a piezoelectric element, a holder member, a pressing member, a pressing auxiliary member, a driven member, an ultrasonic motor accommodation member, a power extraction member. The piezoelectric element has a rectangular cross-sectional shape. The holder member holds the piezoelectric element so as to cover an outer surface of a portion of the piezoelectric element. The pressing member applies a predetermined pressing force to the piezoelectric element. The pressing auxiliary member transfers a pressing force generated by the pressing member to the holder member. The driven member is in contact with one end face of the piezoelectric element. The power extraction member is coupled to the ultrasonic motor accommodation member to form a joint portion. The ultrasonic motor unit is formed by connecting a plurality of sections each formed by coupling the ultrasonic motor accommodation member to the power extraction member.
US08531080B2
A rotor for a synchronous machine has a rotor axis which defines a rotor shaft. The rotor has a winding support which is arranged on the rotor shaft such that they rotate together, in such a way that it surrounds the rotor shaft in a center section with respect to the rotor axis. The winding support is fitted with a superconducting rotor winding. The rotor has a sleeve which at least radially surrounds the winding support and the rotor winding with respect to the rotor axis. The sleeve is formed integrally from a metal alloy, which is non-magnetic, has an electrical conductivity of at least 60% of the electrical conductivity of copper at 20° C., has a mechanical tensile strength of at least 250 N/mm2 at 200° C. and has a 0.2% proof stress of at least 200 N/mm2 at 200° C.
US08531074B2
An electric machine, in particular an electrically excited claw pole generator for a motor vehicle, is provided, having a stator winding, the phase terminals of which may be connected in the manner of a pentagram to a rectifier system. The stator winding has a five-phase design, phase terminals situated in adjacent slots being interconnected at least once. All of the phase terminals may be interconnected are situated in adjacent slots.
US08531073B2
A fan including an impeller structure, a rotor structure and a stator structure is disclosed. The impeller structure includes a hub and a plurality of blades disposed around the outer periphery of the hub. The rotor structure includes a shaft and a magnetic element. The shaft is disposed through the magnetic element and connected to the hub. The magnetic element includes at least one terminal surface in the axial direction, and at least one receptacle is formed on the terminal surface. The stator structure is disposed around the outer periphery of the magnetic element. The heat dissipation system and the fan thereof can improve the reliability of the motor at high rotating speed effectively and prolong the lifetime of the shaft.
US08531069B2
An electric generator, comprising a stator and a rotor, the stator having a stator winding (multiple phase windings), which is electrically connected to a rectifier, the recitifier having positive and negative diodes connected by way of a bridge circuit, the positive diodes being connected to a positive cooling body and the negative diodes being connected to a negative cooling body (plugged in or welded), and the rectifier being covered by a protective cap (47) having cooling air openings, characterized in that the protective cap has at least one opening, which is disposed axially above the negative diode and the negative cooling body.
US08531068B2
A direct current motor includes an armature coil having at least three phase coils, a commutator having multiple commutator segments connected to the armature coil, a pair of brushes in slidable contact with the commutator to supply power to the phase coils through the commutator, a rotation shaft, and a ring varistor coaxially fixed to the rotation shaft and having a ring-shaped varistor body and multiple electrodes that are circumferentially arranged on a surface of the varistor body. Each commutator segment is connected to a corresponding electrode of the ring varistor. The electrodes of the ring varistor are paired to form electrode pairs. Each electrode pair includes any two of the electrodes. A capacitance of one electrode pair is different from a capacitance of another electrode pair.
US08531060B2
A portable electronic device is provided. The portable electronic device includes a system end and an adapter. The system end provides a trigger signal. The adapter converts an input AC voltage into an output DC voltage and provides the output DC voltage to the system end. When the adapter is connected to the system end, the trigger signal turns on the adapter. When the adapter is disconnected from the system end, the adapter detects an absence of the trigger signal and turns off automatically.
US08531057B1
A power management technique for a power bus includes a method and apparatus employing a Faraday electrical energy sink for a power bus. In general, the technique powers a power bus from a fuel cell plant when the actual voltage of the power bus is less than or equal to a nominal voltage for the power bus and sinks power from the power bus into the fuel cell plant when the actual voltage exceeds the nominal voltage.
US08531055B2
A distributed power system including multiple DC power sources and multiple power modules. The power modules include inputs coupled respectively to the DC power sources and outputs coupled in series to form a serial string. An inverter is coupled to the serial string. The inverter converts power input from the serial string to output power. A signaling mechanism between the inverter and the power module is adapted for controlling operation of the power modules.
US08531047B2
An energy converter is disclosed which is provided for converting mechanical energy into electrical energy. Also disclosed is a counter, which includes its operating energy and also the counting information or the counting pulses from the energy converter named above. A method is also disclosed for converting mechanical energy into electrical energy. Also disclosed is a method for operating the counter with the electrical energy obtained according to the method. Also disclosed is a system made from at least one or more of the counters named above.
US08531043B2
An integrated circuit package system includes: providing a substrate; mounting a first package above the substrate, the first package having a mold cavity exposing an exposed portion on a first integrated circuit from a first package encapsulation; mounting a second package above the first package and attached to the exposed portion of the first integrated circuit; mounting a structure above the second package and connected to the substrate around the first package; and encapsulating the first package and the second package with an outer encapsulation having a completely planar top or a planar top co-planar to a top surface of the structure.
US08531038B2
A method of closely interconnecting integrated circuits contained within a semiconductor wafer to electrical circuits surrounding the semiconductor wafer. Electrical interconnects are held to a minimum in length by making efficient use of polyimide or polymer as an inter-metal dielectric thus enabling the integration of very small integrated circuits within a larger circuit environment at a minimum cost in electrical circuit performance.
US08531036B2
A semiconductor structure is provided and includes a dielectric layer disposed over a substrate. A first non-conductive barrier layer is formed over the dielectric layer. At least one opening is formed through the first non-conductive barrier layer and within the dielectric layer. A second non-conductive barrier layer is formed over the first non-conductive barrier layer and within the opening. At least a portion of the second non-conductive barrier layer is removed, thereby at least partially exposing a top surface of the first non-conductive barrier layer and a bottom surface of the opening, with the second non-conductive barrier layer remaining on sidewalls of the opening. A seed layer and conductive layer is disposed in the opening.
US08531025B2
A semiconductor module structure and a method of forming the semiconductor module structure are disclosed. The structure incorporates a die mounted on a substrate and covered by a lid. A thermal compound is disposed within a thermal gap between the die and the lid. A barrier around the periphery of the die extends between the lid and the substrate, contains the thermal compound, and flexes in response to expansion and contraction of both the substrate and the lid during cycling of the semiconductor module. More particularly, either the barrier is formed of a flexible material or has a flexible connection to the substrate and/or to the lid. The barrier effectively contains the thermal compound between the die and the lid and, thereby, provides acceptable and controlled coverage of the thermal compound over the die for heat removal.
US08531011B2
A protective structure is produced by providing a semiconductor substrate having doping of a first conductivity type. A semiconductor layer having doping of a second conductivity type is applied at a surface of the semiconductor substrate. A buried layer with doping of a second conductivity type is formed in a first region of the semiconductor layer, producing a layer at the junction between the semiconductor layer and semiconductor substrate. A first dopant zone having doping of a first conductivity type is formed in the first region of the semiconductor layer above the buried layer. A second dopant zone having doping of a second conductivity type is formed in a second region of the semiconductor layer. An electrical insulation is formed between the first and second regions of the semiconductor layer. A common connection device is formed for the first and second dopant zones.
US08530998B2
Methods and apparatus for producing a semiconductor on insulator structure include: subjecting an implantation surface of a donor single crystal semiconductor wafer to an ion implantation process to create an exfoliation layer of the donor semiconductor wafer; bonding the implantation surface of the exfoliation layer to a glass substrate using electrolysis, wherein a liquidus viscosity of the glass substrate is about 100,000 Poise or greater.
US08530994B2
Certain embodiments provide a method for producing a solid-state imaging device including the steps of forming an interconnection layer, forming a passivation film, forming a resist layer, forming a plurality of protruding portions and an opening, and forming an electrode pad. In the step of forming the interconnection layer, the interconnection layer is formed on the surface of the semiconductor substrate having a photodiode. In the step of forming the resist layer, the resist layer is formed on the passivation film such that the resist layer has a plurality of first openings above the photodiode and has a second opening above the interconnection of the interconnection layer. In the step of forming the plurality of protruding portions and the opening, the plurality of protruding portions and the opening are formed by etching the passivation film via the resist layer.
US08530984B2
A method and structure for uncovering captive devices in a bonded wafer assembly comprising a top wafer and a bottom wafer. One embodiment method includes forming a plurality of cuts in the top wafer and removing a segment of the top wafer defined by the plurality of cuts. The bottom wafer remains unsingulated after the removal of the segment.
US08530979B2
Provided is a semiconductor package which includes: a semiconductor substrate; a functional element that is disposed on one surface of the semiconductor substrate; a protection substrate that is disposed in an opposite side of that surface of the semiconductor substrate with a predetermined gap from a surface of the semiconductor substrate; and a junction member that is disposed to surround the functional element and bonds the semiconductor substrate and the protection substrate together, wherein the functional element has a shape different from a shape of a plane surrounded by the junction member in that surface of the semiconductor substrate, or is disposed in a region deviated from a central region of the plane surrounded by the junction member in that surface of the semiconductor substrate.
US08530972B2
A method is provided for making a semiconductor device, which comprises (a) providing a semiconductor structure comprising a top gate (228) and a bottom gate (240); (b) creating first (251), second and third (252) openings in the semiconductor structure, wherein the first opening exposes a portion of the bottom gate; (c) filling the first, second and third openings with a conductive material, thereby forming source (258) and drain (260) regions in the second and third openings and a conductive region (253) in the first opening; and (d) forming an electrical contact (278) to the conductive region.
US08530965B2
A semiconductor device comprising a substrate in which a first region and a second region are defined, a gate line which extends in a first direction and traverses the first region and the second region, a source region including a portion formed in the first region, a first part of a body region which is formed under the portion of the source region in the first region and has a first width, a first well which is formed under the first part of the body region in the first region and has a second width greater than the first width, a second part of the body region which is formed in the second region and has a third width, and a second well which is formed under the second part of the body region in the second region and has a fourth width smaller than the third width.
US08530963B2
A power transistor includes a plurality of transistor cells. Each transistor cell has a first electrode coupled to a first electrode interconnection region overlying a first major surface, a control electrode coupled to a control electrode interconnection region overlying the first major surface, and a second electrode coupled to a second electrode interconnection region overlying a second major surface. Each transistor cell has an approximately constant doping concentration in the channel region. A dielectric platform is used as an edge termination of an epitaxial layer to maintain substantially planar equipotential lines therein. The power transistor finds particular utility in radio frequency applications operating at a frequency greater than 500 megahertz and dissipating more than 5 watts of power. The semiconductor die and package are designed so that the power transistor can efficiently operate under such severe conditions.
US08530961B2
A method for manufacturing compatible vertical double diffused metal oxide semiconductor (VDMOS) transistor and lateral double diffused metal oxide semiconductor (LDMOS) transistor includes: providing a substrate having an LDMOS transistor region and a VDMOS transistor region; forming an N-buried region in the substrate; forming an epitaxial layer on the N-buried layer region; forming isolation regions in the LDMOS transistor region and the VDMOS transistor region; forming a drift region in the LDMOS transistor region; forming gates in the LDMOS transistor region and the VDMOS transistor region; forming PBODY regions in the LDMOS transistor region and the VDMOS transistor region; forming an N-type GRADE region in the LDMOS transistor region; forming an NSINK region in the VDMOS transistor region, where the NSINK region is in contact with the N-buried layer region; forming sources and drains in the LDMOS transistor region and the VDMOS transistor region; and forming a P+ region in the LDMOS transistor region, where the P+ region is in contact with the source.
US08530958B2
A semiconductor device having a non-volatile memory is disclosed, whose disturb defect can be diminished or prevented. A memory cell of the non-volatile memory has a memory gate electrode formed over a main surface of a semiconductor substrate through an insulating film for charge storage. A first side wall is formed on a side face of the memory gate electrode, and at a side face of the first side wall, a second side wall is formed. On an upper surface of an n+-type semiconductor region for source in the memory cell there is formed a silicide layer whose end portion on the memory gate electrode MG side is defined by the second side wall.
US08530957B2
According to one embodiment, a nonvolatile semiconductor memory device is provided in which memory strings, which are formed by providing a plurality of transistors having gate electrode films on sides of columnar semiconductor films in a height direction of the columnar semiconductor films via charge storage layers, are substantially perpendicularly arranged in a matrix shape on a substrate. A coupling section made of a semiconductor material that connects lower portions of the columnar semiconductor films forming a pair of the memory strings adjacent to each other in a predetermined direction is provided. Each of the columnar semiconductor films is formed of a generally single-crystal-like germanium film or silicon germanium film.
US08530956B2
A non-volatile memory device including a memory string including a plurality of memory cells coupled in series. The non-volatile memory device includes the memory string including a first semiconductor layer and a second conductive layer with a memory gate insulation layer therebetween, a first selection transistor comprising a second semiconductor layer coupled with one end of the first semiconductor layer, a second selection transistor comprising a third semiconductor layer coupled with the other end of the first semiconductor layer, and a fourth semiconductor layer contacting the first semiconductor layer in a region where the second conductive layer is not disposed.
US08530949B2
An antifuse whose internal written information cannot be analyzed even by utilizing methods to determine whether there is a charge-up in the electrodes. The antifuse includes a gate insulation film, a gate electrode, and a first diffusion layer. A second diffusion layer is isolated from the first diffusion layer by way of a device isolator film, and is the same conduction type as the first diffusion layer. The gate wiring is formed as one integrated piece with the gate electrode, and extends over the device isolator film. A common contact couples the gate wiring to the second diffusion layer. The gate electrode is comprised of semiconductor material such as polysilicon that is doped with impurities of the same conduction type as the first diffusion layer. The second diffusion layer is coupled only to the common contact.
US08530948B2
In an embodiment of the present invention is provided a varactor comprising a substrate, a plurality of bottom electrodes positioned on a surface of the substrate separated to form a gap therein, a tunable dielectric material positioned on the surface of the substrate and within the gap, the tunable dielectric at least partially overlaying the plurality of electrodes, and a top electrode in contact with the tunable dielectric.
US08530943B2
The semiconductor device includes: a substrate 2 and a drift layer 3a, which are made of a wide-bandgap semiconductor; a p-type well 4a and a first n-type doped region 5, which are defined in the drift layer; a source electrode 5, which is electrically connected to the first n-type doped region 5; a second n-type doped region 30 arranged between its own well 4a and an adjacent unit cell's well 4a; a gate insulating film 7b, which covers at least partially the first and second n-type doped regions and the well 4a; a gate electrode 8 arranged on the gate insulating film; and a third n-type doped region 31, which is arranged adjacent to the second n-type doped region so as to cover one of the vertices of the unit cell and which has a dopant concentration that is higher than the drift layer and lower than the second n-type doped region.
US08530937B2
A compound semiconductor device includes a group-III nitride semiconductor layer; an insulation film located on the group-III nitride semiconductor layer; a drain electrode located in a position which is a first distance away from an upper surface of the group-III nitride semiconductor layer; a source electrode located in a position which is the first distance away from the upper surface of the group-III nitride semiconductor layer; a gate electrode located between the drain electrode and the source electrode; and a field plate electrode located between the drain electrode and the gate electrode at a position which is a second distance away from the upper surface of the group-III nitride semiconductor layer, the second distance is shorter than the first distance.
US08530922B2
Disclosed is an organic EL device which comprises: a pixel electrode that is arranged on a substrate; a hole injection layer that is arranged on the pixel electrode and has a photocatalytic function; an organic functional layer that is formed on the hole injection layer by a coating method; a bank made of a fluorine-containing resin and defines the region where the organic functional layer is arranged; and a counter electrode that is arranged so as to cover the bank and the organic functional layer. Due to the photocatalytic function of the hole injection layer, the bank residuals can be removed by low-energy ultraviolet light that has a longer wavelength (300-400 nm) than conventional high-energy ultraviolet light that has a short wavelength (254 nm or 172 nm).
US08530921B2
A monolithic LED chip is disclosed comprising a plurality of junctions or sub-LEDs (“sub-LEDs”) mounted on a submount. The sub-LEDs are serially interconnected such that the voltage necessary to drive the sub-LEDs is dependent on the number of serially interconnected sub-LEDs and the junction voltage of the sub-LEDs. Methods for fabricating a monolithic LED chip are also disclosed with one method comprising providing a single junction LED on a submount and separating the single junction LED into a plurality of sub-LEDs. The sub-LEDs are then serially interconnected such that the voltage necessary to drive the sub-LEDs is dependent on the number of the serially interconnected sub-LEDs and the junction voltage of the sub-LEDs.
US08530919B2
Disclosed is a semiconductor light emitting device. The semiconductor light emitting device includes a first conductive semiconductor layer, an active layer under the first conductive semiconductor layer, a second conductive semiconductor layer under the active layer, a second electrode layer under the second conductive semiconductor layer; and an insulating layer on an outer peripheral surface of at least two layers of the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer.
US08530914B2
SiO2 layers are used as adhesion layers in the case of optoelectronic components. Durable adhesions can be produced with silicone rubbers. These materials normally have only an insufficient adhesive strength on materials as frequently used for optoelectronic components, such as LED modules. This then leads in further consequence to a clear reduction of the operating life of the manufactured components. These restrictions are avoided effectively by the use of the adhesion layers, endurance upon operation in damp surroundings and upon temperature change loading is substantially improved.
US08530909B2
Various embodiments of solid state lighting (“SSL”) assemblies with high voltage SSL dies and methods of manufacturing are described herein. In one embodiment, an array assembly of SSL dies includes a first terminal and a second terminal configured to receive an input voltage (Vo). The array assembly also includes a plurality of SSL dies coupled between the first terminal and the second terminal, at least some of which are high voltage SSL dies coupled in parallel.
US08530906B2
A light emitting device comprising a first common electrode (11; 21), a structured conducting layer (12; 22), forming a set of electrode pads (14; 24a, 24b) electrically isolated from each other, a dielectric layer (13; 23), interposed between the first common electrode layer (11; 21) and the structured conducting layer (12; 22), a second common electrode (15; 30), and a plurality of light emitting elements (16; 20a, 20b), each light emitting element being electrically connected between one of the electrode pads (14; 24a, 24b) and the second common electrode (15; 30), so as to be connected in series with a capacitor (18; 31) comprising one of the electrode pads (14; 24a, 24b), the dielectric layer (13; 23), and the first common electrode (11; 21). When an alternating voltage is applied between the first and second common electrodes, the light emitting elements will be powered through a capacitive coupling, also providing current limitation. During operation of the light emitting device, a shorts circuit failure in one light emitting element will affect only light emitting elements connected to the same capacitor. Further, the short circuit current will be limited by this capacitor.
US08530900B2
Preparing a substrate; forming a plurality of gate electrodes above the substrate; forming a gate insulating layer above the gate electrodes; forming an amorphous silicon layer above the gate insulating layer; forming crystalline silicon layer regions by irradiating the amorphous silicon layer in regions above the gate electrodes with a laser beam having a wavelength from 473 nm to 561 nm so as to crystallize the amorphous silicon layer in the regions above the gate electrodes, and forming an amorphous silicon layer region in a region other than the regions above the gate electrodes; and forming source electrodes and drain electrodes above the crystalline silicon layer regions are included, and a thickness of the gate insulating layer and a thickness of the amorphous silicon layer satisfy predetermined expressions.
US08530897B2
A display device including an inverter circuit and a switch is provided. The inverter circuit includes a first thin film transistor and a second thin film transistor which have the same conductivity type. The first thin film transistor and the second thin film transistor each include: a gate insulating layer in contact with a gate electrode; a microcrystalline semiconductor layer in contact with the gate insulating layer; a mixed layer in contact with the microcrystalline semiconductor layer; a layer which includes an amorphous semiconductor and is in contact with the mixed layer; and a wiring. A conical or pyramidal microcrystalline semiconductor region and an amorphous semiconductor region filling a space except the conical or pyramidal microcrystalline semiconductor region are included in the mixed layer.
US08530886B2
A semiconductor structure which includes a substrate; a graphene layer on the substrate; a source electrode and a drain electrode on the graphene layer, the source electrode and drain electrode being spaced apart by a predetermined dimension; a nitride layer on the graphene layer between the source electrode and drain electrode; and a gate electrode on the nitride layer, wherein the nitride layer is a gate dielectric for the gate electrode.
US08530881B2
An optical device which can operate as a single photon emitter 1, comprising a three dimensional optical cavity 7 which spatially confines a photon to the order of the photon wavelength in all three dimensions. The cavity 7 is configured to define preferred emission direction for photons entering the cavity. A photon can be supplied to the cavity using a quantum dot 5. Strong coupling can occur between the cavity 7 and the quantum dot 5 which causes the formation of two hybridised modes. Switching on an off the coupling by irradiating the device with radiation having an energy equal to that of one of the hybridised modes allows the device to act as an optical switch.
US08530880B2
A reconfigurable multilayer circuit (400) includes a complimentary metal-oxide-semiconductor (CMOS) layer (210) having control circuitry, logic gates (515), and at least two crossbar arrays (205, 420) which overlie the CMOS layer (210). The at least two crossbar arrays (205, 420) are configured by the control circuitry and form reconfigurable interconnections between the logic gates (515) within the CMOS layer (210).
US08530878B2
Some embodiments include methods of forming memory cells utilizing various arrangements of conductive lines, electrodes and programmable material; with the programmable material containing high k dielectric material directly against multivalent metal oxide. Some embodiments include arrays of memory cells, with the memory cells including programmable material containing high k dielectric material directly against multivalent metal oxide.
US08530872B2
In an optical position detecting device, a position detecting section detects the position of a target object on the basis of a result obtained by receiving detection light, which is emitted from a light source section and reflected by the target object, using a light detection section. As seen from an emitting direction of the detection light, the light detection section is located inside a region surrounded by a closed circuit passing through a plurality of the light source sections or inside a region pinched by the plurality of light source sections. The plurality of light source sections has a first light-emitting element, and a second light-emitting element located closer to the light detection section side than the first light-emitting element. The light source driving section alternately turns on the first light-emitting element and the second light-emitting element.
US08530867B1
Contamination may be removed from a field emitter unit during operation of the emitter unit in an environment at a pressure that lies within a range between 10−6 torr and 10−8 torr. At regular predetermined intervals an electron beam from an emitter tip may be deflected away from a path through a beam defining aperture and onto an electron collector. An electron beam current to the electron collector may be determined and the emitter unit may be flash heated if the current to the electron collector is below a threshold. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
US08530860B2
An optical is provided with reduced sensitivity to radiation, more particularly gamma radiation. The optical sensor is suitable for determining at least one parameter in a medium and includes a matrix containing a fluorescent dye. The matrix is supported by a transparent support. On the side facing the medium, the matrix has a layer soluble in the medium, which layer provides protection against radiation or damaging radiation products. The optical sensor is suitable for implementation in containers and laboratory products, such as disposable bioreactors for example, which are sterilized using gamma radiation.
US08530855B2
A method is described for producing a micro-gripper, which comprises a base body and a gripping body connected integrally to the base body, which projects beyond the base body and provides a receptacle slot on a free end area in such a way that a micrometer-scale or sub-micrometer-scale object may be clamped in the receptacle slot for gripping and holding, as well as a micro-gripper according to the species.
US08530854B1
Various technologies described herein pertain to a micro gas-puff based source of neutrons, x-rays, and/or energetic particles. The micro gas-puff based source can generate plasma, which can emit neutrons, x-rays, and the like. The micro gas-puff based source includes a diode, which further includes an anode and a cathode. Further, a chamber is between the anode and the cathode. Moreover, a MEMS gas supply can inject a puff of gas between the anode and the cathode within the chamber, where the MEMS gas supply shapes the puff of gas to form a quasispherical density profile of gas created in various of geometries. Further, a pulsed power supply applies a voltage across the anode and the cathode to cause compression of the puff of gas to form the plasma.
US08530847B2
According to one embodiment, a scintillation article includes a detector housing having a window cavity and a window disposed within the window cavity. The window cavity defining a window opening at an external surface of the housing that has a greater width than a width of the window, and wherein a surface of the window is directly bonded to an interior surface of the detector housing at a bond joint comprising a diffusion bond region.
US08530830B2
A method of analyzing milk components having the steps of collecting a milk sample, ionizing the milk sample, and using an ion mobility spectrometer to detect predetermined components within the ionized milk sample, wherein the ion mobility spectrometer is positioned within a milking system from which the milk sample is taken.
US08530823B2
A tool setting or tool analysis device for a machine tool comprises a light source for producing a light beam. A light receiver receives the light beam and produces a signal indicative of the amount of light received. This is analyzed by a main analysis circuit to generate a trigger signal to a machine controller when the beam is at least partially occluded. To provide fail-safe operation should the main circuit not recognize the tool, a back-up trigger signal is produced after a delay by a delay circuit. In one preferred form, the back-up trigger signal may oscillate, providing repeated edges which can ensure fail-safe operation even if the machine controller suffers from a blind window and therefore misses the initial trigger signal.
US08530809B2
A control actuation system for an air-breathing rocket motor propelled guided missile positions the drive motors and input gears in an inlet fairing extending aft of the air inlet towards the tail of the missile. The output gears are positioned coincident with and mechanically coupled to their respective tail fins spaced around the circumference of the missile. At least one of the tail fins is offset in a circumferential direction of the missile from its corresponding input gear and the inlet fairing. At least one ring gear is positioned around the exhaust tube to rotate in the circumferential direction of the missile. The ring gear comprises input and output teeth that engage the input and output gears, respectively, to actuate the tail fin.
US08530802B2
A ceramic heater includes a heating resistor including a first conducting portion and a second conducting portion which face each other and a ceramic base in which the heating resistor is embedded. The first conducting portion includes a first burr which extends from the first conducting portion and is located between the first conducting portion and the second conducting portion. The second conducting portion includes a second burr which extends from the second conducting portion and is located between the second conducting portion and the first conducting portion. At least a part of the first and second burrs is spaced apart from the line linking a starting point of the first burr and a starting point of the second burr in a cross-section perpendicular to a conduction direction of the first and second conducting portions.
US08530800B2
A heater control device includes a temperature detector that detects a temperature of a heated object heated by a heater; an alternating-current power supply for applying an alternating current voltage to the heater; a turn-on ratio decision unit that determines a turn-on ratio of the heater based on the temperature and a target temperature; a turn-on pattern decision unit that determines a partial turn-on pattern, as the turn-on pattern of the heater, which is a pattern of a turn-on ratio higher than the determined turn-on ratio in terms of a control-period, and to which a partial turn-on instead of a full turn-on is allocated on a half-wavelength basis of the alternating current voltage within the control period based on the turn-on ratio of the heater; and a turn-on controller that controls turn-on of the heater based on the determined turn-on pattern.
US08530788B2
In the present invention, each laser light emitted from a plurality of lasers is divided, and laser light including at least one laser light that is emitted from a different laser and that has different energy distribution is synthesized with another such laser light, or laser light including at least one laser light that has different energy distribution is synthesized with another such laser light through a convex lens that is set at an angle to the direction each laser light travels, to form laser light having excellent uniformity in energy distribution.
US08530786B2
Methods for ultrashort pulse laser processing of optically transparent materials. A method for scribing transparent materials uses ultrashort laser pulses to create multiple scribe features with a single pass of the laser beam across the material, with at least one of the scribe features being formed below the surface of the material. This enables clean breaking of transparent materials at a higher speed than conventional techniques. Slightly modifying the ultrashort pulse laser processing conditions produces sub-surface marks. When properly arranged, these marks are clearly visible with side-illumination and not clearly visible without side-illumination. In addition, a method for welding transparent materials uses ultrashort laser pulses to create a bond through localized heating. The ultrashort pulse duration causes nonlinear absorption of the laser radiation, and the high repetition rate of the laser causes pulse-to-pulse accumulation of heat within the materials. The laser is focused near the interface of the materials, generating a high energy fluence at the region to be welded. This minimizes damage to the rest of the material and enables fine weld lines.
US08530779B2
A metal strip 10 is bent to form a ring and end parts 12 and 14 are connected to each other. An electron beam 26 may be defocused and emitted to a welded section 20 along a crosswise direction of the metal strip 10. Next, a focal point 28 of the electron beam 26 may be focused onto a weld-melted portion 25 to execute electron beam welding. Subsequently, the electron beam 26 may be defocused emitted to the welded section 20 along the crosswise direction of the metal strip 10, and the welded section 20 may be further cooled. The average of the dendrite secondary arm spacing of the weld-melted portion may fall within a range of 7 to 30 μm.
US08530776B2
Thus a lifter table de-stacker 1 is provided comprising a lifter table 3 with a stack 10 holding device 4 above the lifter table. The holding unit positions the stack by motorized guiding elements 14 and 15. A de-stacking unit and in particular a suction unit is provided which can be adjusted in its position above the stack 10 by a motor as well. The lifter table de-stacker with the motorized adjustability of the guiding elements and the de-stacker provides for a very fast adaptation to different sheet metal blank sizes. Such a lifter table de-stacker is preferably provided for feeding sheet metal blanks into a rounding apparatus which is feeding rounded blank container bodies into a resistance seam welding machine for container bodies.
US08530773B2
When electric discharging occurs inside a gas insulated apparatus in which sulfur hexafluoride is filled, hydrogen-fluoride gas is generated, which abrades a part formed of glass fiber reinforced plastics included in the apparatus. Previously, resin for preventing the abrasion has been coated on the surface of the part; however, a problem has occurred that the coating film peels off. Organic fiber woven cloth woven using organic fiber such as aramid fiber or the like having hydrogen fluoride resistance and mechanical toughness is wrapped around the surface of glass fiber reinforced plastics, and thermosetting resin is wettably impregnated into weave patterns of the organic fiber woven cloth and then heat cured; thereby, an abrasion-preventing protection layer that does not peel off is formed.
US08530771B2
A surface mount process, a surface mount system, and a feeding apparatus thereof are provided. The surface mount system includes a feeding apparatus and a surface mount apparatus. The feeding apparatus includes a vibrating tray feeder module, a vibrating linear feeder module, and a component recycling module. The vibrating tray feeder module has a circular vibrating conveyer belt with a vibrating tray output end. The vibrating linear feeder module has a linear vibrating conveyer belt connected to the vibrating tray output end and has a linear vibrating output end opposite the vibrating tray feeder module. The component recycling module is disposed under the vibrating tray feeder module to recycle the rejected components. The surface mount apparatus has a component receiving unit corresponding to the linear vibrating output end of the vibrating linear feeder module.
US08530749B2
Provided is an ultra-thin copper foil to which a carrier foil is attached, including: a carrier foil, a peeling layer, and an ultra-thin copper foil, wherein the peeling layer includes a first metal A having peelability, a second metal B and a third metal C facilitating coating of the first metal, wherein the amount (a) of the first metal A is in a range of about 30 to about 89% by total weight of the peeling layer, the amount (b) of the second metal B is in a range of about 10 to about 60% by total weight of the peeling layer, and the amount (c) of the third metal C is in a range of about 1 to about 20% by total weight of the peeling layer.
US08530747B2
Disclosed herein is a method of manufacturing a multilayered flexible circuit board. The method of manufacturing a multilayered flexible circuit board may include integrally forming a first flexible printed circuit board and a second flexible printed circuit board divided in a symmetrical shape with respect to a reference line on the same plane to provide an original plate; attaching the first flexible printed circuit board to the second flexible printed circuit board by folding the original plate with respect to the reference line; and electrically connecting the first flexible printed circuit board to the second flexible printed circuit board.
US08530746B2
Multilayer polyimide-fluoropolymer insulation structures exhibiting excellent heat seal strength and superior internal adhesion strength comprise a base layer of polyimide having first and second major surfaces and a first fluoropolymer layer. The first fluoropolymer layer may be on the first major surface of the polyimide layer. Alternatively, it may be separated from the first major surface of the polyimide layer by an intervening layer. The first fluoropolymer layer comprises from about 70 to about 98% by weight of fluoroethylene propylene polymer (‘FEP’) and from about 30 to about 2% by weight of polytetrafluoroethylene polymer (‘PTFE’) or poly(tetrafluoroethylene-co-perfluoro[alkyl vinyl ether]) (‘PFA’) based on the total weight of the first fluoropolymer layer. Structures having fluoropolymer layers on both surfaces of the polyimide layer are also provided. Protected wire or cable using the composite, and methods are also described.
US08530727B2
The invention relates to the soybean variety designated D6897751. Provided by the invention are the seeds, plants and derivatives of the soybean variety D6897751. Also provided by the invention are tissue cultures of the soybean variety D6897751 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety D6897751 with itself or another soybean variety and plants produced by such methods.
US08530725B2
A lettuce cultivar, designated Reliant, is disclosed. The invention relates to the seeds of lettuce cultivar Reliant, to the plants of lettuce cultivar Reliant and to methods for producing a lettuce plant by crossing the cultivar Reliant with itself or another lettuce cultivar. The invention further relates to methods for producing a lettuce plant containing in its genetic material one or more transgenes and to the transgenic lettuce plants and plant parts produced by those methods. This invention also relates to lettuce cultivars or breeding cultivars and plant parts derived from lettuce cultivar Reliant, to methods for producing other lettuce cultivars, lines or plant parts derived from lettuce cultivar Reliant and to the lettuce plants, varieties, and their parts derived from the use of those methods. The invention further relates to hybrid lettuce seeds, plants, and plant parts produced by crossing cultivar Reliant with another lettuce cultivar.
US08530720B2
The inventive disclosure contained herein is generally directed to a class of medical bandages that in many embodiments are effective in the treatment of various types of tissue burns, whether be burns due to thermal burns, sun exposure, or rashes. Such products can include a plurality of specialized bandages and wraps that incorporate an extremely thin layer of thermally conductive metal (often aluminum) at the base of a substrate adapted to be in direct contact with a burn wound, while manufacturing the top side of the aluminum substrate to have a heat-dissipation-enhancing topography to help cool burns faster by enhancing thermal-convection properties. The bandage can also feature a thermochromic indicator for users to realize the thermal-cooling status of a burn to which a bandage has been applied.
US08530713B2
The present invention relates to a process for nonoxidative dehydroaromatization of aliphatic hydrocarbons by converting a reactant stream comprising aliphatic hydrocarbons in the presence of a catalyst which comprises at least one metallosilicate as a support, at least one element selected from the group of Mo, W and Re as an active component and at least one further transition metal which is not a noble metal as a dopant, wherein the catalyst is regenerated regularly with hydrogen under nonoxidative conditions. The further transition metal used is preferably Fe, Ni, Cu and Co.
US08530711B2
The object is to provide a process for producing highly pure 2,3,3,3-tetrafluoropropene, whereby formation of 3,3,3-trifluoropropene is suppressed.A process for producing 2,3,3,3-tetrafluoropropene, which comprises reacting a raw material compound composed of 1,1-dichloro-2,3,3,3-tetrafluoropropene and/or 1-chloro-2,3,3,3-tetrafluoropropene, and hydrogen in a gas phase in a reactor having a catalyst layer packed with a catalyst-supporting carrier, while maintaining the maximum temperature of the catalyst layer to be at most 130° C., to obtain formed gas containing 2,3,3,3-tetrafluoropropene, and then, contacting the formed gas discharged from the reactor, with alkali at a temperature of at most 100° C.
US08530703B2
The present disclosure relates to facilities, systems, methods and/or catalysts for use in chemical production. In particular, the disclosure provides innovations relating to dehydration of multihydric compounds such as glycerol to form acrolein. Some of these innovations include continuous reaction systems as well as system parameters that allow for long term production.
US08530697B2
The subject of the present invention is a method for the reactive vaporization of aqueous solutions of glycerol in a fluidized bed containing a reactive solid. The method of the invention makes it possible to simultaneously vaporize an aqueous solution of glycerol, to remove the impurities that are present in this solution or that are generated during the evaporation, and to carry out the dehydration reaction of the glycerol to acrolein and/or the oxydehydration reaction of the glycerol to acrylic acid.
US08530693B1
A method for making liquid cyanate esters and liquid cyanate esters. Embodiments of the invention address the problems with solid cyanate esters by creating new cyanate ester structures that are liquid at room temperature. These liquid cyanate esters may be useful for the typical composite fabrication methods including, but not limited to, infusion molding, prepeg consolidation, resin and vacuum transfer molding.
US08530692B2
A compound has a following general formula (1). R0 represents an (n+1)-valent linear or branched aliphatic hydrocarbon group having 1 to 10 carbon atoms, or the like. R1 represents a hydrogen atom, a methyl group, or a trifluoromethyl group. R2 represents a single bond or the like. R3 represent a linear or branched alkyl group having 1 to 4 carbon atoms or the like. X represents a linear or branched fluoroalkylene group having 1 to 10 carbon atoms, and n is an integer from 1 to 5.
US08530687B2
Embodiments of the present disclosure provide for acyclic diaminocarbenes (ADCs) catalysts such as those shown in FIG. 1.1 and in the Examples, methods of making catalysts, methods of using catalysts, and the like. Catalyst of the present disclosure can be useful in various catalytic transformations. Embodiments of the catalyst can be used in hydroamination, cycloisomerization, allylic rearrangement reactions, alkyne hydration reactions, Meyer-Schuster rearrangement reactions, and the like.
US08530673B2
A tetrathiafulvalene derivative expressed by General Formula (I): General Formula (I) in General Formula (I), X represents an atom selected from a carbon atom, a sulfur atom, and a nitrogen atom, and Xs may be the same or different; provided that when X is the carbon atom or the nitrogen atom, R1 to R8 each represent one of a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, and a substituted or unsubstituted thioalkoxy group, and may be the same or different; and Y1 and Y2 each represent one of structures expressed by General Formulas (II) and (III), and may be the same or different: General Formula (II) General Formula (III).
US08530668B2
An optically active 4-phenylthiazole derivative having a thrombopoietin receptor agonist activity and a pharmaceutical composition containing the present compound as an active ingredient are created, and a platelet production regulating agent which can be orally administered is provided.Disclosed is a pharmaceutical composition containing, as an active ingredient, an optically active compound represented by the formula: wherein, R1 is a halogen atom or C1-C3 alkyloxy; R2 is C1-C8 alkyl; R3 is C1-C8 alkyl; R4 and R5 are each independently a fluorine atom or chlorine atom; R6 is C1-C3 alkyl or C1-C3 alkyloxy; * indicates that a carbon atom marked with an asterisk is an asymmetric carbon, a pharmaceutically acceptable salt thereof, or a solvate thereof.
US08530665B2
The present invention provides crystalline (R)-(E)-2-(4-(2-(5-(1-(3,5 -dichloropyridin-4-yl)ethoxy)-1H-indazol-3-yl)vinyl)-1H-pyrazol-1-yl)ethanol useful in the treatment of cancer.
US08530664B2
Subject of the invention is a dehydrogenation catalyst for dehydrogenating methylpiperidine to methylpyridine. Subject of the invention are also methods for preparing the catalysts obtained thereby and methods, in which the catalysts are used.
US08530660B2
The present invention relates to carboxamide-substituted dyes, the production and use of such dyes as labeling groups in analytics.
US08530658B2
Disclosed is a carbazole derivative and a light-emitting element, a light-emitting device, and an electronic device using thereof. The carbazole derivative possesses an oxadiazole moiety or a quinoxaline moiety as a heteroaromatic ring having an electron-transporting property and a carbazole moiety having a hole-transporting property. The ability of the carbazole derivative to transport both electrons and holes and its large excitation energy larger than a triplet excitation energy of a phosphorescent compound allow the formation of a phosphorescent light-emitting element having well-controlled carrier balance, which contributes to the formation of light-emitting devices and electronic devices that are capable of being driven at a low voltage, have a long lifetime, and consume low power. The detailed structure of the carbazole derivative is defined in the specification.
US08530655B2
This invention concerns the use of compounds of formula the N-oxides, the pharmaceutically acceptable addition salts, quaternary amines and the stereochemically isomeric forms thereof, wherein -a1=a2-a3=a4- forms a phenyl, pyridinyl, pyrimidinyl, pyridazinyl or pyrazinyl with the attached vinyl group; n is 0 to 4; and where possible 5; R1 is hydrogen, aryl, formyl, C1-6alkylcarbonyl, C1-6alkyl, C1-6alkyloxycarbonyl, substituted C1-6alkyl, or substituted C1-6alkyloxyC1-6alkylcarbonyl; each R2 independently is hydroxy, halo, optionally substituted C1-6alkyl, C2-6alkenyl or C2-6alkynyl, C3-7cycloalkyl, C1-6alkyloxy, C1-6alkyloxycarbonyl, carboxyl, cyano, nitro, amino, mono- or di(C1-6alkylamino, polyhalomethyl, polyhalomethyloxy, polyhalomethylthio, —S(═O)pR6, —NH—S(═O)pR6, —C(═O)R6, —NHC(═O)H, —C(═O)NHNH2, —NHC(═O)R6, —C(═NH)R6 or a 5-membered heterocyclic ring; p is 1 or 2; L is optionally substituted C1-10alkyl, C2-10alkenyl, C2-10alkynyl or C3-7cycloalkyl; or L is —X—R3 wherein R3 is optionally substituted phenyl, pyridinyl, pyrimidinyl, pyrazinyl or pyridazinyl; X is —NR1—, —NH—NH—, —N═N—, —O—, —C(═O)—, —CHOH—, —S—, —S(═O)— or —S(═O)2—; Q is hydrogen, C1-6alkyl, halo, polyhalo-C1-6alkyl or an optionally substituted amino group; Y represents hydroxy, halo, C3-7cycloalkyl, optionally substituted C1-6alkyl, C2-6alkenyl or C2-6alkynyl, C1-6alkyloxy, C1-6alkyloxycarbonyl, carboxyl, cyano, nitro, amino, mono- or di(C1-6alkyl)amino, polyhalomethyl, polyhalomethyloxy, polyhalomethylthio, —S(═O)pR6, —NH—S(═O)pR6, —C(═O)R6, —NHC(═O)H, —C(═O)NHNH2, —NHC(═O)R6, —C(═NH)R6 or aryl; aryl is optionally substituted phenyl; Het is an optionally substituted heterocyclic radical; for the manufacture of a medicine for the treatment of subjects suffering from HIV (Human Immunodeficiency Virus) infection.
US08530649B2
A polymer complex having two or more kinds of channel groups through which specific compounds ranging from gaseous small molecules to large molecules such as proteins and other biomolecules can be selectively incorporated and/or released and/or transported is provided. The polymer complex includes an aromatic compound ligand, a central metal ion, and an uncoordinating aromatic compound. In the polymer complex, the uncoordinating aromatic compound is intercalated between aromatic compound ligands in a three-dimensional coordination network. Each of two or more kinds of channel groups contains channels identical with one another and having inherent affinity for guest components. The uncoordinating aromatic compound has a specific substituent A at a specific position on the aromatic ring thereof, and the uncoordinating aromatic compound is arranged regularly such that the substituent A is directed to the inside of a specific channel group B out of the two or more kinds of channel groups.
US08530639B2
A method for isolating a nucleic acid from a biological sample includes applying particulate matter to promote co-aggregation and co-precipitation of insoluble aggregate by directly adding to the biological sample, adding to the biological sample in admixture with a cell lysis buffer, adding to the biological sample treated with a cell lysis buffer, adding to cell lysates in admixture with a buffer for forming denatured protein aggregate; or adding to cell lysates comprising the formed denatured protein aggregate. The particulate matter is selected from the group consisting of a material formed from an element of Ag, Fe, Ti, Al, Sn, Si, Cu, Mo, Ni, W or Zn, an oxide, a carbide, a nitride, a boride and a silicide thereof, and a mixture thereof, a polymer selected from PMMA (Poly Methyl MethAcrylate), polyethylene or polyurethane; and a mixture thereof. The insoluble aggregate comprises denatured protein aggregate and cell debris.
US08530638B2
The disclosure features a collection that comprises a plurality of polymers, typically nucleic acid molecules in a compact form. The molecules include all possible sequences or at least a certain percentage of all possible sequences, of a particular length.
US08530633B2
Intramolecular biosensors are disclosed, including PBP-based biosensors, comprising a ligand binding domain fused to donor and fluorescent moieties that permit detection and measurement of Fluorescence Resonance Energy Transfer upon binding ligand. At least one of the donor and fluorescent moieties may be internally fused to the biosensor such that both ends of the internally fused fluorophore are fixed. In addition, methods of improving the sensitivity of terminally fused biosensors are provided. The biosensors of the invention are useful for the detection and quantification of ligands in vivo and in culture.
US08530629B2
The present invention provides novel, rationally designed lowered affinity antibodies for use in various in vivo and in vitro applications. The antibodies of the present invention have variable domains that have been designed to reduce or eliminate the antigen binding activity of the parental antibody without altering the overall 3 dimensional antibody structure. Using the antibodies of the present invention in various assays allows researchers to distinguish effects that result from specific antigen-antibody interactions from other, non-specific antibody effects.
US08530610B2
The invention relates to a process for preparing a polymer polyol, comprising mixing in a reactor vessel, a base polyol, one or more ethylenically unsaturated monomers, a polymerization initiator, optionally a macromer, and optionally a chain transfer agent, and polymerizing the mixture thus obtained at a temperature of 50 to 200° C., wherein after discharging the reactor vessel content, the interior surface of the reactor vessel walls and/or any internals present in the reactor vessel are blasted with round media.
US08530606B2
The invention relates to a process for preparing a diaryl carbonate from a dialkyl carbonate and an aryl alcohol using a series of reactive distillation columns.
US08530605B2
The invention provides a production process of a poly(arylene sulfide), comprising a polymerization step of subjecting at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and a dihalo-aromatic compound to a polymerization reaction in an organic amide solvent; a reaction step of adding a hydroxyl group-containing organic compound containing no bonded halogen atom in a proportion of 0.001 to 20 mol per 100 mol of the charged sulfur source into the polymerization reaction system containing the organic amide solvent and a formed polymer after the polymerization step to cause the formed polymer to react with the hydroxyl group-containing organic compound; and a collecting step of collecting a polymer from the polymerization reaction system after the reaction step, and the poly(arylene sulfide).
US08530603B2
An object of the present invention is to provide a golf ball that has excellent abrasion resistance and spin performance without sacrificing the processability of the cover, in a golf ball having a cover for which a crosslinkable thermoplastic polyurethane is used as a resin component. The present invention provides a golf ball comprising: a core; and a cover covering the core, wherein the cover is formed from a cover composition containing a thermoplastic polyurethane that has, as a constituting component, a chain extender having an unsaturated carbon-carbon bond.
US08530599B2
A method of preparing hydrophobic silica particles includes the step of reacting together in a single step a mixture of silane ether monomers and organically modified silane ether monomers with a hydrolyzing agent. The method also includes producing hydrophobic silica microparticles and nanoparticles that can include dyes and/or magnetizable components. The silica nanoparticles can be used in the detection, visualization and/or analysis of latent fingerprints.
US08530598B2
A resist composition for immersion exposure including: a base component (A) which exhibits changed solubility in an alkali developing solution under the action of acid; an acid-generator component (B) which generates acid upon exposure; and a fluorine-containing resin component (F); dissolved in an organic solvent (S), the fluorine-containing resin component (F) including a structural unit (f1) containing a fluorine atom, a structural unit (f2) containing a hydrophilic group-containing aliphatic hydrocarbon group, and a structural unit (f3) derived from an acrylate ester containing a tertiary alkyl group-containing group or an alkoxyalkyl group.
US08530587B2
Disclosed is a vulcanizable rubber composition for use in an air spring, which has excellent low-temperature behavior, and a vulcanized rubber formed product for air springs, which is obtained by vulcanization of the rubber composition. Also disclosed is a vulcanizable rubber composition for use in an air spring, comprising: an epihalohydrin-based copolymer comprising 50 to 70 mol % of a constituent unit derived from ethylene oxide and/or propylene oxide, 20 to 50 mol % of a constituent unit derived from epihalohydrin, and 0 to 15 mol % of a constituent unit derived from allyl glycidyl ether; a vulcanizing agent; a plasticizer; and an acid acceptor, and a rubber formed product for air springs, which is obtained by vulcanization of the composition.
US08530574B2
The present invention provides aqueous finely divided polymer dispersions which at low temperatures are film-forming, exhibit good blocking resistance in a formulation, even at elevated temperatures, and display a low foam tendency, processes for preparing them, and their use as binders for coating substrates.
US08530566B2
An embodiment of the invention provides an electrically insulating and thermally conductive composition including 5-80 parts by weight of a resin, 20-95 parts by weight of an electrically insulating and thermally conductive powder, and 0.0001-2 parts by weight of a graphene. Another embodiment of the invention also provides an electronic device including the electrically insulating and thermally conductive composition.
US08530562B2
Elastomeric isoprene rubber compositions contain an effective amount of a coupling system (A) as an inorganic filler/elastomer coupling agent, and (B) at least one natural or synthetic rubber elastomer, (C) an inorganic filler as reinforcing filler, (D) other conventional constituents or additives comprising (a) vulcanization agent(s), the coupling system (A) being a particular mixture of the following combination of constituents (A1) and (A2): (A1) is at least one coupling agent selected from among the following functionalized organosilicon compounds of formula (I):[(G0)3SiO1/2]m[(G0)2SiO2/2]n[G0SiO3/2]o[SiO4/2]p[(G2)a(G1)a′(Z—CO—N═N—CO-A)SiO(3-a-a′)/2]g and (A2) is at least one coating agent for the reinforcing filler including one compound with the single function Y in the structure thereof which is capable of bonding physically and chemically to the inorganic filler and resulting in an increase in dispersion of the charge within the rubber matrix and a reduction in viscosity of the composition.
US08530559B2
Provided is a composite including copper nanoparticles or copper(I) oxide nanoparticles and a thioether-containing organic compound represented by X(OCH2CHR1)nOCH2CH(OH)CH2SZ [X represents an alkyl group; R1 represents a hydrogen atom or a methyl group; n represents an integer of 2 to 100; R1 is independent between repeating units and may be the same or different; and Z represents an alkyl group, an allyl group, an aryl group, an arylalkyl group, —R2—OH, —R2—NHR3, or —R2—(COR4)m (where R2 represents a saturated hydrocarbon group; R3 represents a hydrogen atom, an acyl group, an alkoxycarbonyl group, or a benzyloxycarbonyl group; R4 represents a hydroxy group, an alkyl group, or an alkoxy group; and m represents 1 to 3)]. Provided is a method for producing a composite of an organic compound and copper nanoparticles or a composite of an organic compound and copper(I) oxide nanoparticles, the method including reducing a copper compound in the presence of a thioether-containing organic compound represented by the general formula (1) above.
US08530558B2
Plasticizers comprising monoesters and/or diesters of poly(trimethylene ether) glycol are provided. The plasticizers can be used in plasticizing a variety of base polymers.
US08530553B2
A binder composition for spray used for interior materials is disclosed to provide glass wool or rock wool with an adhesive force by simultaneously spraying two solutions onto the glass wool or rock wool so that the glass wool or rock wool is adhered to steel or concrete to enhance effects of heat insulation and sound insulation. The binder composition contains a first solution of 200 to 400 parts by weight consisting of polyvinyl alcohol, preservative, antifoaming agent and purified water, and a second solution of 100 parts by weight consisting of boric acid, basic compound, glycerin and purified water.
US08530545B2
A copolymer comprises the reaction product of (a) (meth)acrylate functionalized nanoparticles, (b) vinyl monomer, and (c) mercapto-functional silicone. The (meth)acrylate functionalize nanoparticles are selected from the group consisting of silica nanoparticles, zirconia nanoparticles, titania nanoparticles, and combinations thereof.
US08530543B2
There are provided an ink composition including a coloring material, a hydrophilic organic solvent, polymer particles that have a minimum filming temperature (MFTdisp) of 60° C. or more when dispersed in water and that have a MFT 40° C. or more lower than the MFTdisp when mixed with water and 25 mass % of the hydrophilic organic solvent based on a solid content of the polymer, and water; an ink set including the ink composition and a treating liquid capable of forming an aggregate upon contact with the ink composition; and an ink-jet recording method using the ink composition or the ink set.
US08530537B2
Disclosed are a black photosensitive resin composition that includes (A) an organic binder resin, (B) a reactive unsaturated compound, (C) a photopolymerization initiator, (D) a black pigment including carbon black and a silver-tin-containing alloy, and (E) a solvent, and a light blocking layer using the same.
US08530534B2
The present invention provides trimerization catalyst compositions having a sterically hindered carboxylate salt and methods to produce a polyisocyanurate/-polyurethane foam using such trimerization catalyst compositions.
US08530533B2
The present invention relates to a rigid polyurethane foam comprising reinforcing materials which can be obtained by mixing (a) isocyanates which have a viscosity at 25° C. of less than 500 mPas with (b) compounds having groups which are reactive toward isocyanates, (c) blowing agents comprising water, (d) catalysts and, if appropriate, (e) further additives to form a reaction mixture and applying the reaction mixture to a reinforcing material, wherein the compounds (b) having groups which are reactive toward isocyanates comprise a polyetherol (b1) having a functionality of 4 or more and a viscosity at 25° C. of 10 000 mPas or less and a polyetherol (b2) having a functionality of 3 or less and a viscosity at 25° C. of 500 mPas or less. The present invention further relates to a process for producing such rigid polyurethane foams and the use of the rigid polyurethane foams for the insulation of liquefied natural gas tanks.
US08530528B2
Improved reaction efficiencies are achieved by the incorporation of enhanced hydrothermally stable catalyst supports in various water-forming hydrogenation reactions or reactions having water-containing feeds. Examples of water-forming hydrogenation reactions that may incorporate the enhanced hydrothermally stable catalyst supports include alcohol synthesis reactions, dehydration reactions, hydrodeoxygenation reactions, methanation reactions, catalytic combustion reaction, hydrocondensation reactions, and sulfur dioxide hydrogenation reactions. Advantages of the methods disclosed herein include an improved resistance of the catalyst support to water poisoning and a consequent lower rate of catalyst attrition and deactivation due to hydrothermal instability. Accordingly, higher efficiencies and yields may be achieved by extension of the enhanced catalyst supports to one or more of the aforementioned reactions.
US08530525B2
A method and composition for protecting and/or treating neuroinjury are disclosed. In one aspect, the present application discloses a method for protecting and/or treating a subject from organophosphate-induced neuronal injury. The method comprises administering to a subject an effective amount of 4R cembranoid, 4S cembranoid or a cembranoid analogue. In another aspect, the application discloses neuroprotective pharmaceutical compositions for protecting and/or treating a subject from organophosphate-induced neuronal injury. A kit for protecting and treating a subject from organophosphate-induced neurodamage is also disclosed.
US08530516B2
Cycling of ApoE4 isoform is promoted in a person in need thereof by contacting the person with an effective amount of a pharmaceutically-acceptable modulator of intracellular ApoE4 transport vesicle pH.
US08530509B2
Methods of using di, tri, and tetracyclic acylhydrazide derivatives and analogs, as well as pharmaceutical compositions containing the same, for the treatment or prophylaxis of viral infections and diseases associated therewith, particularly those viral infections and associated diseases caused by the orthopoxvirus.
US08530502B2
The present invention discloses methods of application employing B51B6 vitamins in molecular transport creams or gels to deliver B6 in a high dose to bring about therapeutic ways in human or mammal tissues to reverse a disease process or injury to bring about normal function of the affected tissues. Examples of disease changes to normal include, but are not limited to strokes, cellulitis, facial acne, precancerous lesions, nerve injury like paresthesia, periorbital hematoma, pentathol general anesthesia recovery, headaches, improved sight, hypothyroidism, dental pain, dental gingivitis, insect bites, delayed hypersensitivity states, phlebitis of veins and synergism of steroid activity.
US08530496B2
The present invention is bis-acridine or bis-quinoline intercalators having a modified bis(4-aminophenyl)ether tether to improve activity, selectivity, solubility and bioavailability of the antitumor compound.
US08530494B2
The present invention is directed to Buprenorphine Analog compounds of the Formula I, Formula II or Formula III shown below, wherein R1, R2, R8, R3, R3a, R3b, X, Z and Y are as defined herein. Compounds of the Invention are useful for treating pain and other conditions modulated by activity of opioid and ORL1 receptors.
US08530485B2
The present invention provides heteroaryl substituted pyrrolo[2,3-b]pyridines and heteroaryl substituted pyrrolo[2,3-b]pyrimidines that modulate the activity of Janus kinases and are useful in the treatment of diseases related to activity of Janus kinases including, for example, immune-related diseases, skin disorders, myeloid proliferative disorders, cancer, and other diseases.
US08530482B2
The invention provides novel halogenated pyrazolo[1,5-a]pyrimidines of formula (I) wherein R, R1, X and Y have different meanings, and pharmaceutically acceptable salts thereof. Compounds of formula (I) are useful for treating or preventing anxiety, epilepsy and sleep disorders including insomnia, and for inducing sedation-hypnosis, anesthesia, sleep and muscle relaxation. The invention also provides synthetic procedures for preparing said compounds and certain intermediates, as well as intermediates themselves.
US08530480B2
The present invention provides novel substituted pyrimidinyl-amines that are useful as inhibitors of protein kinases, especially c-Jun N-terminal kinases (JNK) and pharmaceutical compositions thereof and methods of using the same for treating conditions responsive to the inhibition of the JNK pathway.
US08530479B2
The present invention is concerned with deuterium-enriched isobutyl and cyclohexylmethyl sulfonamides of formula I and II, and pharmaceutically acceptable salts and methods of use thereof for the treatment of general anxiety disorders, major depressive disorders, attention deficit disorders, attention deficit hyperactivity disorder, Alzheimer's disease, frontotemporal dementia, cognitive impairment associated with age-related dementia, schizophrenia, migraine, sleep disorders, neurodegenerative diseases and obesity.
US08530474B2
The present invention is concerned with novel substituted 6-(1-piperazinyl)-pyridazines of Formula (I) wherein R1, R2, R3 and X have the meaning defined in the claims, having 5-HT6-antagonistic properties. The invention further relates to processes for preparing such novel compounds, pharmaceutical compositions comprising said novel compound as an active ingredient as well as the use of said compounds as a medicine.
US08530473B2
The invention relates to a compound of the general formula (I), as defined herein which is useful in modulating the activity of 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) and are useful for treating pathologies in which such modulation is beneficial, as in the case of metabolic syndrome or of noninsulin-dependent type 2 diabetes. The invention also relates to pharmaceutical preparations containing such a compound, processes for preparing and intermediates useful in the preparation of a such a compound.
US08530467B2
This invention generally relates to substituted benzoimidazole compounds, particularly methyl 2-((2-(2,6-difluoro-4-(methylcarbamoyl)phenyl)-5-methyl-1H-benzo[d]imidazol-1-yl)methyl)morpholine-4-carboxylate and salts thereof. This invention also relates to pharmaceutical compositions and kits comprising such a compound, uses of such a compound (including, for example, treatment methods and medicament preparations), processes for making such a compound, and intermediates used in such processes.
US08530460B2
Azetidine derivatives of which the following is exemplary and their use in the treatment of obesity, diabetes or dyslipidemia.
US08530457B2
Treatment of lymphangioleiomyomatosis with the MEK1/2 inhibitor CI-1040 delayed the development of primary tumors and blocked the estrogen-induced lung metastases in treated animals. Such treatment also reduced the number of circulating ELT3 cells and decreased their lung colonization after intravenous injection.
US08530456B2
The present invention relates to macrocyclic small molecule inhibitors of the Sonic Hedgehog signaling pathway, syntheses thereof, and intermediates thereto. Such small molecule modulators of the Sonic Hedgehog signaling pathway are useful in the treatment of proliferative diseases (e.g., basal cell carcinoma, Gorlin syndrome, medulloblastoma, or pancreatic cancer), pulmonary diseases (e.g., interstitial pnuemonitis or interstitial pulmonary fibrosis), and developmental disorders (e.g., phocomelia or cyclopia). Novel non-natural macrocycles are provided that inhibit Sonic Hedgehog induced-protein transcription.
US08530453B2
The present invention relates generally to pharmaceutical agents, and in particular, to metalloprotease inhibitor compounds. More particularly, the present invention provides a new class of dual acting MMP-2 and MMP-9 inhibiting compounds that exhibit increased potency, metabolic stability and/or reduced toxicity in relation to currently known MMP-2 and MMP-9 inhibitors for the treatment of pain and other diseases. Additionally, the present invention relates to methods for treating pain, addiction and/or withdrawal symptoms in a patient comprising administering to the patient a pain-reducing effective amount of a present compound.
US08530451B2
An ectoparasiticidal composition is provided that comprises a mixture of a carrier and an active with an emulsifying agent. The carrier comprises non-volatile low viscosity siloxane and the active comprises a non-volatile high viscosity siloxane. The low viscosity siloxane and the high viscosity siloxane both have a closed cup flash point of at least 100° C. Preferably, both the low viscosity siloxane and the high viscosity siloxane comprise a dimeticone or a dimeticonol or a mixture of same, the the low viscosity siloxane having a viscosity in the range of 5 to 1000 centistokes inclusive and the high viscosity siloxane having a viscosity of at least 1000 centistokes.
US08530450B2
Disclosed are acid polysaccharides characterized by the concomitant presence of alcohol groups esterified with butyric and formic acids.
US08530441B2
A viral or non-viral vector particle having a modified viral surface protein wherein the viral surface protein is modified to include a targeting polypeptide including a binding region which binds to an extracellular matrix component. Such vector particles are useful in delivering genes encoding therapeutic agents to cells located at the site of an exposed extracellular matrix component.
US08530430B2
Peptide vaccines against cancer are described herein. In particular, epitope peptides derived from the TTK gene that elicit CTLs are provided. Antigen-presenting cells and isolated CTLs that target such peptides, as well as methods for inducing the antigen-presenting cell, or CTL are also provided. The present invention further provides pharmaceutical compositions containing as active ingredients peptides derived from TTK or polynucleotides encoding the peptides. Furthermore, the present invention provides methods for the treatment and/or prophylaxis (i.e., prevention) of cancers (tumors), and/or the prevention of postoperative recurrence thereof, as well as methods for inducing CTLs, methods for inducing anti-tumor immunity, using the peptides derived from TTK, polynucleotides encoding the peptides, or antigen-presenting cells presenting the peptides, or the pharmaceutical compositions of the present invention.
US08530425B2
Botulinum toxin, among other presynaptic neurotoxins is used for the treatment and prevention of migraine and other headaches associated with vascular disorders. Presynaptic neurotoxins are delivered focally, targeting the sphenopalatine ganglion. Exemplary delivery is carried out by way of injection.
US08530424B2
A system and method to improve sensory functions in the hand or foot by dermal topical application of a local anaesthetic substance to adjacent skin areas, using a tailored application device or kit specially designed to fit the size and anatomical shape of the body part which is to be anesthetized. The concept is to block sensory input from the anesthetized skin area hereby inducing a functional reorganization in sensory brain cortex resulting in enhanced sensory functions in body parts adjacent to the anesthetized area with focus on the hand and sole of the foot.
US08530421B2
The present invention relates to a polypeptide derived from a highly conserved region (HCR) I-III of an extracellular region of a CD99 and CD99 family such as CD99L2 and PBDX(or XG), which are a kind of transmembrane protein, or a fused protein thereof. The polypeptide or the fused protein thereof has an activating function of inhibiting the extravasation of white blood cells, or inhibiting the growth and/or metastasis of cancer cells. The present invention also provides a polynucleotide coding the polypeptide, a vector including same, and a transformant transformed by the vector. In addition, the present invention provides a pharmaceutical composition including the polypeptide or the fused protein thereof for preventing or treating inflammatory diseases. Further, the present invention provides a is pharmaceutical composition including the polypeptide or the fused protein thereof inhibiting the growth and/or metastasis of cancer cells, i.e., a pharmaceutical composition for preventing or treating cancer.
US08530419B2
A method for synchronizing ovulation in sows and gilts by a single injection of hormones is disclosed. A hormone, gonadotropin releasing hormone (GnRH), luteinizing hormone (LH), follicle stimulating hormone (FSH), human chorionic gonadotropin (hCG), analogues, derivatives, agonists or combinations thereof is administered to an open sow post weaning at a specific time to stimulate ovulation of mature responsive follicles. The sow is then bred, without heat detection, at a specific subsequent timed interval after injection with hormone, with one or two artificial or natural breedings. In gilts, the hormone is injected at a timed interval from onset of estrus or at a specific timed interval following Prostaglandin F2a for those gilts which have been held in a state of pseudopregnancy.
US08530407B2
An antioxidant compound is disclosed, along with pharmaceutical compositions and methods of treatment which utilize said compound. The compound is characterized by a peptide including at least three amino acid residues of which at least two are cysteine residues, and a first hydrophobic or non-charged moiety being attached to an amino terminal of the peptide via a first bond and a second hydrophobic or non-charged moiety being attached to a carboxy terminal of the peptide via a second bond, as described herein. Cleavage of the peptide by an intracellular peptidase results in generation of a plurality of antioxidant species, each including one of the cysteine residues, thereby providing for a plurality of different antioxidant species acting in synergy in exerting antioxidation.
US08530399B2
An aqueous conditioning shampoo composition comprising an anionic cleansing surfactant and a gel network comprising: (i) a fatty material selected from C12-C22 fatty alcohol, C12-C22 fatty acid, C12-C22 fatty amide or mixtures thereof and (ii) hydrophobic particulates having a melting point of greater than that of the fatty material.
US08530398B2
The aqueous hair cleansing agent of the present invention contains components (A), (B), (C), and (D) below: (A) a sulfate type anionic surfactant represented by the general formula (1) below R1O(CH2CH2O)nSO3M (1); (B) a polyoxypropylene alkyl ether type nonionic surfactant represented by the general formula (2) below R2O(CH2CH(CH3)O)mH (2); (C) a monoalkyl glyceryl ether or monoalkenyl glyceryl ether type nonionic surfactant having an alkyl group or alkenyl group having 4 to 12 carbon atoms; and (D) an alkylhydroxysulfobetaine type amphoteric surfactant represented by the general formula (3) below the mass ratio of components (B) and (D) being (B)/(D) =3/2 to 1/4.
US08530396B2
The invention provides a grease composition for constant velocity joint containing the components (a) to (g) below and a constant velocity joint containing said composition. (a) a diurea thickening agent having the following formula (1): R1NH—CO—NH—C6H4-p-CH2—C6H4-p-NH—CO—NHR2 (1) wherein R1 and R2 may be the same or different and represent C8-C20 alkyl groups, (b) an ester synthetic oil, (c) a mineral oil and/or a synthetic hydrocarbon oil, (d) a molybdenum dialkyldithiocarbamate, (e) molybdenum disulfide, (f) a polytetrafluoroethylene, and (g) a zinc dithiophosphate compound. The grease composition of the invention reduces variations in rotational resistance of the constant velocity joint at a low temperature.
US08530394B2
An new class of oil-soluble, sulfur scavengers or converts are disclosed where the scavengers include substantially monomeric aldehyde-amine adducts from the reaction of at least one sterically hindered primary or secondary amine and a molar excess of at least one aldehyde. Methods are also disclosed for reducing, reducing below a given level or eliminating noxious sulfur species from fluids using the inventive scavengers and for making the inventive scavengers.
US08530379B2
To provide a thermosensitive recording material, containing a base, a thermosensitive recording layer disposed on the base and containing a leuco dye and a color developer, an intermediate layer disposed on the thermosensitive recording layer, and a protective layer disposed on the intermediate layer, wherein the intermediate layer contains a resin, and an aziridine compound.
US08530378B2
The present disclosure provides a microwaveable information destruction apparatus for rendering unreadable indicia printed on a label. In various embodiments the apparatus comprises an attachable information destruction strip structured and operable to be adhered to a substrate having disposed thereon a thermally responsive label with indicia printed thereon and/or the thermally responsive label. The information destruction is attachable such that the information destruction strip is in a thermally conductive relationship with the thermally responsive label. The information destruction strip is sized to cover at least the indicia printed on the thermally responsive label. Additionally, the information destruction strip comprises a microwave activated material operable to generate heat when exposed to microwave energy. The generated heat is of sufficient intensity to heat the thermally responsive label to a temperature sufficient to cause the thermally responsive label to react and render the indicia unreadable.
US08530374B2
It is intended to highly efficiently produce a high-density brush shaped carbon nanostructure useful in the production of CNT assembly, such as rope-shaped CNTs, and provide a catalyst body for production of brush-shaped carbon nanostructure that enables the production. The catalyst body for production of brush-shaped carbon nanostructure is one comprising a substrate (32), an aggregation suppressive layer (34) superimposed on a surface thereof and a catalyst layer superimposed on the aggregation suppressive layer (34). The catalyst layer is a catalyst particle layer (44) consisting of metallic catalyst particles (42) composed mainly of a catalytic metal. The metallic catalyst particles (42) have an average particle diameter, D, satisfying the relationship 0.5 nm≦D≦80 nm, and individual particles of the metallic catalyst particles (42) have a diameter, d, falling within the range of the above average particle diameter (D). Further, there are disclosed a process for producing the catalyst body, a brush-shaped carbon nanostructure and a process for producing the same.
US08530369B2
A catalyst composition is provided that includes a catalytic metal secured to a substrate, and the substrate is mesoporous and has pores that are templated. A catalyst composition includes a catalytic metal secured to a mesoporous substrate. The mesoporous substrate is a reaction product of a reactive solution, a solvent, a modifier, and a templating agent. A method includes reacting a reactive solution and a templating agent to form a gel; and calcining the gel to form a substrate having a mesoporous template that is capable to support a catalyst composition.
US08530368B2
The disclosed invention relates to a blended hydrous kaolin clay product comprising a platy coarse kaolin clay and a fine, hydrous kaolin clay. The blended kaolin clay product is suitable for use as a raw material component in the formation of cordierite products.
US08530367B2
The present invention relates to agglomerated zeolitic adsorbents based on zeolite X with an Si/Al ratio such that 1.15
US08530361B2
A method for depositing a silicon containing film on a substrate using an organoaminosilane is described herein. The organoaminosilanes are represented by the formulas: wherein R is selected from a C1-C10 linear, branched, or cyclic, saturated or unsaturated alkyl group with or without substituents; a C5-C10 aromatic group with or without substituents, a C3-C10 heterocyclic group with or without substituents, or a silyl group in formula C with or without substituents, R1 is selected from a C3-C10 linear, branched, cyclic, saturated or unsaturated alkyl group with or without substituents; a C6-C10 aromatic group with or without substituents, a C3-C10 heterocyclic group with or without substituents, a hydrogen atom, a silyl group with substituents and wherein R and R1 in formula A can be combined into a cyclic group and R2 representing a single bond, (CH2)n chain, a ring, C3-C10 branched alkyl, SiR2, or SiH2.
US08530358B2
The present invention discloses a manufacturing method of vertical cavity surface emitting laser. The method includes following steps: providing a substrate; forming an epitaxial layer stack including an aluminum-rich layer; forming an ion-doping mask including a ring-shaped opening; doping ions in the epitaxial layer stack through the ring-shaped opening and forming a ring-shaped ion-doped region over the aluminum-rich layer; forming an etching mask on the ion-doping mask for covering the ring-shaped opening of the ion-doping mask; etching the epitaxial layer stack through the etching mask and ion-doping mask for forming an island platform; oxidizing the aluminum-rich layer for forming a ring-shaped oxidized region. In addition, the present invention also discloses a vertical cavity surface emitting laser manufactured by the above mentioned method.
US08530342B2
A method of growing an epitaxial film and transferring it to an assembly substrate is disclosed. The film growth and transfer are made using an epitaxy lateral overgrowth technique. The formed epitaxial film on an assembly substrate can be further processed to form devices such as solar cell, light emitting diode, and other devices and assembled into higher integration of desired applications.
US08530339B2
The present disclosure is related to a method for the deposition of a continuous layer of germanium on a substrate by chemical vapor deposition. According to the disclosure, a mixture of a non-reactive carrier gas and a higher order germanium precursor gas, i.e. of higher order than germane (GeH4), is applied. In an example embodiment, the deposition is done under application of a deposition temperature between 275° C. and 500° C., with the partial pressure of the precursor gas within the mixture being at least 20 mTorr for temperatures between 275° C. and 285° C., and at least 10 mTorr for temperatures between 285° and 500° C.
US08530338B2
A structure consisting of vertically aligned wire arrays on a Si substrate and a method for producing such wire arrays. The wire arrays are fabricated and positioned on a substrate with an orientation and density particularly adapted for conversion of received light to energy. A patterned oxide layer is used to provide for wire arrays that exhibit narrow diameter and length distribution and provide for controlled wire position.
US08530333B2
An object is to provide a semiconductor device which solves a problem that can occur when a substrate having an insulating surface is used. The semiconductor device includes a base substrate having an insulating surface; a conductive layer over the insulating surface; an insulating layer over the conductive layer; a semiconductor layer having a channel formation region, a first impurity region, a second impurity region, and a third impurity region provided between the channel formation region and the second impurity region over the insulating layer; a gate insulating layer configured to cover the semiconductor layer; a gate electrode over the gate insulating layer; a first electrode electrically connected to the first impurity region; and a second electrode electrically connected to the second impurity region. The conductive layer is held at a given potential.
US08530329B2
A method of fabricating a semiconductor device includes forming a first trench and a second trench in a semiconductor substrate, forming a first insulator to completely fill the first trench, the first insulator covering a bottom surface and lower sidewalls of the second trench and exposing upper sidewalls of the second trench, and forming a second insulator on the first insulator in the second trench.
US08530325B2
An alignment layer is formed by forming an alignment solution on a base substrate, baking the alignment solution to form an alignment layer, and irradiating light having a wavelength of about 280 nanometers to about 340 nanometers to the alignment layer, thereby aligning the alignment layer. A liquid crystal display is manufactured using the method of forming the alignment layer.
US08530323B2
A method for fabricating a capacitor is provided. The method for fabricating a capacitor includes forming a dielectric layer over a lower electrode on a substrate, forming an upper electrode over the dielectric layer, forming a hard mask over the upper electrode, etching the hard mask to form a hard mask pattern, etching the upper electrode to make the dielectric layer remain on the lower electrode in a predetermined thickness, forming an isolation layer along an upper surface of the remaining dielectric layer and the hard mask pattern, leaving the isolation layer having a shape of a spacer on one sidewall of the hard mask pattern, the upper electrode, and the dielectric layer, and etching the lower electrode to be isolated.
US08530321B2
A variable resistance element comprises, when M is a transition metal element, O is oxygen, and x and y are positive numbers satisfying y>x; a lower electrode; a first oxide layer formed on the lower electrode and comprising MOx when a content ratio of O with respect to M is x; a second oxide layer formed on the first oxide layer and comprising MOy when a content ratio of O with respect to M is y; an upper electrode formed on the second oxide layer; a protective layer formed on the upper electrode and comprising an electrically conductive material having a composition different from a composition of the upper electrode; an interlayer insulating layer formed to cover the protective layer; and an upper contact plug formed inside an upper contact hole penetrating the interlayer insulating layer.
US08530319B2
An apparatus and a method of manufacturing an e-fuse includes a substrate, a patterned gate insulator on the substrate, and a patterned gate conductor on the patterned gate insulator. The patterned gate conductor has sidewalls and a top. A silicide contacts the sidewalls of the patterned gate conductor, the top of the patterned gate conductor, and a region of the substrate adjacent the patterned gate insulator and the patterned gate conductor.
US08530318B2
In some aspects, a method of fabricating a memory cell is provided that includes: (1) fabricating a first conductor above a substrate; (2) selectively fabricating a carbon nano-tube (“CNT”) material above the first conductor by: (a) fabricating a CNT seeding layer on the first conductor, wherein the CNT seeding layer comprises silicon-germanium (“Si/Ge”), (b) planarizing a surface of the deposited CNT seeding layer, and (c) selectively fabricating CNT material on the CNT seeding layer; (3) fabricating a diode above the CNT material; and (4) fabricating a second conductor above the diode. Numerous other aspects are provided.
US08530316B2
A method for fabricating a semiconductor device, the method including growing a first semiconductor structure comprising a first semiconductor material on a surface of a substrate, wherein growing the first semiconductor structure includes forming a semiconductor particle comprising the first semiconductor material on a second semiconductor structure of the semiconductor device. The method further includes forming a protection layer of a second semiconductor material on the first semiconductor structure, wherein forming the protection layer includes forming the protection layer on the semiconductor particle. The method further includes removing a portion of the protection layer, wherein removing the portion of the protection layer includes fully removing the protection layer on the semiconductor particle and the semiconductor particle.
US08530314B2
A method of at least one embodiment of the present invention of manufacturing a solid-state memory is a method of manufacturing a solid-state memory, the solid-state memory including a recording film whose electric characteristics are varied by phase transformation, the method including: forming the recording film by forming a laminate of two or more layers so that a superlattice structure is provided, each of the layers having a parent phase which shows solid-to-solid phase-transformation, the recording film being formed at a temperature not lower than a temperature highest among crystallization temperatures of the parent phases. It is thus possible to manufacture a solid-state memory which requires lower current for recording and erasing data and has a greater rewriting cycle number.
US08530306B2
A slit recess channel gate is further provided. The slit recess channel gate includes a substrate, a gate dielectric layer, a first conductive layer and a second conductive layer. The substrate has a first trench. The gate dielectric layer is disposed on a surface of the first trench and the first conductive layer is embedded in the first trench. The second conductive layer is disposed on the first conductive layer and aligned with the first conductive layer above the main surface, wherein a bottom surface area of the second conductive layer is substantially smaller than a top surface area of the second conductive layer. The present invention also provides a method of forming the slit recess channel gate.
US08530303B2
A method of fabricating a semiconductor includes providing a substrate having a first region and a second region defined therein, forming a first gate and a first source and drain region in the first region and forming a second gate and a second source and drain region in the second region, forming an epitaxial layer in the second source and drain region, forming a first metal silicide layer in the first source and drain region, forming an interlayer dielectric layer on the first region and the second region, forming a plurality of contact holes exposing the first metal silicide layer and the epitaxial layer while penetrating the interlayer dielectric layer, forming a second metal silicide layer in the exposed epitaxial layer, and forming a plurality of contacts contacting the first and second metal silicide layers by filling the plurality of contact holes.
US08530295B2
Floating body cell structures including an array of floating body cells disposed on a back gate and source regions and drain regions of the floating body cells spaced apart from the back gate. The floating body cells may each include a volume of semiconductive material having a channel region extending between pillars, which may be separated by a void, such as a U-shaped trench. The floating body cells of the array may be electrically coupled to another gate, which may be disposed on sidewalls of the volume of semiconductive material or within the void therein. Methods of forming the floating body cell devices are also disclosed.
US08530288B2
Some embodiments include DRAM having transistor gates extending partially over SOI, and methods of forming such DRAM. Unit cells of the DRAM may be within active region pedestals, and in some embodiments the unit cells may comprise capacitors having storage nodes in direct contact with sidewalls of the active region pedestals. Some embodiments include 0C1T memory having transistor gates entirely over SOI, and methods of forming such 0C1T memory.
US08530286B2
A structure and method of fabrication thereof relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced σVT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. The semiconductor structure includes an analog device and a digital device each having an epitaxial channel layer where a single gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the digital device and one of a double and triple gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the analog device.
US08530282B2
The present invention include a semiconductor device and a method therefor, the method includes disposing a sheet-shaped resin at a side opposite to the chip mounting portion mounting semiconductor chips to be mounted on the chip mounting portion, and forming a resin sealing portion between the sheet-shaped resin and the chip mounting portion, to seal the semiconductor chips. According to an aspect of the present invention, it is possible to provide a semiconductor device and a fabrication method therefor, by which it is possible to reduce the size of the package and to prevent the generation of an unfilled portion in a resin sealing portion or a filler-removed portion or to prevent the exposure of wire from the resin sealing portion.
US08530272B2
A method which has a step of growing a thermostable-state ZnO-based single crystal on a ZnO single crystal substrate at a growth temperature that is equal to or greater than 600° C. and less than 900° C. by using a metalorganic compound containing no oxygen and water vapor based on an MOCVD method.
US08530269B2
A method of forming a polymer device including the steps (i) of depositing on a substrate a solution containing a polymer or oligomer and a crosslinking moiety, to form a layer, and, (ii) curing the layer formed in step (i) under conditions to form an insoluble crosslinked polymer, wherein the crosslinking moiety is present in step (i) in an amount in the range of from 0.05 mol % to 5 mol % based on the total number of moles or repeat units of the polymer or oligomer and the crosslinking moiety in the solution.
US08530265B2
Fabrication methods for a flexible device for retina prosthesis are described. Layered structures including an array of pixel units may be formed over a substrate. Each pixel unit may comprise a processing circuitry, a micro electrode and a photo sensor. A first set of biocompatible layers may be formed over the layered structures. The substrate may be thinned down to a controlled thickness of the substrate to allow bending of the substrate to the curvature of a retina. A second set of biocompatible layers may be formed over the thinned substrate. The second set of biocompatible layers may be in contact with the first set of biocompatible layers to form a biocompatible seal wrapping around the device to allow long-term contact of the device with retina tissues. Micro electrodes of the pixel units may be exposed through the openings of these biocompatible layers.
US08530262B2
Methods and devices are provided for improved photovoltaic devices. Non-vacuum deposition of transparent conductive electrodes in a roll-to-roll manufacturing environment is disclosed. In one embodiment, a method is provided for forming a photovoltaic device. The method comprises processing a precursor layer in one or more steps to form a photovoltaic absorber layer; depositing a smoothing layer to fill gaps and depression in the absorber layer to reduce a roughness of the absorber layer; adding an insulating layer over the smooth layer; and forming a web-like layer of conductive material over the insulating layer. By way of nonlimiting example, the web-like layer of conductive material comprises a plurality of carbon nanotubes. In some embodiments, the absorber layer is a group IB-IIIA-VIA absorber layer.
US08530261B2
A method for producing a component having at least one diaphragm formed in the upper surface of the component, which diaphragm spans a cavity, and having at least one access opening to the cavity from the back side of the component, at least one first diaphragm layer and the cavity being produced in a monolithic semiconductor substrate from the upper surface of the component, and the access opening being produced in a temporally limited etching step from the back side of the substrate. The access opening is placed in a region in which the substrate material comes up to the first diaphragm layer. The etching process for producing the access opening includes at least one anisotropic etching step and at least one isotropic etching step, in the anisotropic etching step, an etching channel from the back side of the substrate being produced, which terminates beneath the first diaphragm layer in the vicinity of the cavity, and at least the end region of this etching channel being expanded in the isotropic etching step until the etching channel is connected to the cavity.
US08530254B2
A method of manufacturing an organic electroluminescence device includes forming a first organic electroluminescence layer at least on a first lower electrode, forming a first protective layer on the first organic electroluminescence layer, processing the first organic electroluminescence layer and the first protective layer, forming a second organic electroluminescence layer at least on a second lower electrode, forming a second protective layer on the second organic electroluminescence layer, and processing the second organic electroluminescence layer and the second protective layer. The second organic electroluminescence layer and the second protective layer, which have been processed by the processing the second organic electroluminescence layer and the second protective layer, cover an end portion of the first organic electroluminescence layer and an end portion of the first protective layer, which have been processed by the processing the first organic electroluminescence layer and the first protective layer.
US08530250B2
Provided is a simple and low-cost method for manufacturing, in a short time, many light emitting devices wherein adhesiveness between a leadframe and a thermosetting resin composition is high. The method for manufacturing the light emitting device having a resin package (20) wherein the optical reflectivity at a wavelength of 350-800 nm after thermal curing is 70% or more and a resin section (25) and a lead (22) are formed on substantially a same surface on an outer surface (20b) has: a step of sandwiching a leadframe (21) provided with a notched section (21a) by an upper molding die (61) and a lower molding die (62); a step of transfer-molding a thermosetting resin (23) containing a light-reflecting substance (26), in a molding die (60) sandwiched by the upper molding die (61) and the lower molding die (62) and forming a resin-molded body (24) on the leadframe (21); and a step of cutting the resin-molded body (24) and the leadframe (21) along the notched section (21a).
US08530241B2
The present technology provides an illustrative hydrofluorocarbon (HFC) elimination device. An HFC sensing device is configured to detect an ambient, gaseous HFC composition. The HFC elimination device further includes a component comprising a surface that includes glass, and a heating element that is configured to heat the glass to a temperature to decompose the ambient, gaseous HFC composition in response to detection of the ambient, gaseous HFC composition by the HFC sensing device.
US08530231B2
A vacuum blood collection tube (100) comprises a bottomed tube (101) composed of a low temperature resistant material that is less susceptible to low temperature fracture when cryopreserved at ultra-low temperature, a stopper (102) having a needle piercing portion (113) composed of a rubber material that can be pierced with a blood collection needle (110), and a cryopreservation cap (103) composed of the low temperature resistant material. Before blood collection, the stopper (102) is attached to the bottomed tube (101) to maintain the reduced pressure state inside the bottomed tube (101). Thus, blood collection by a vacuum blood collection method is possible. After blood collection, the cryopreservation cap (103) is attached to the bottomed tube (101), so that the liquid tight state of the bottomed tube (101) is maintained, and cryopreservation at ultra-low temperature as it is possible. Thus, the collected blood sample can be cryopreserved at ultra-low temperature as it is, without being transferred to another blood storage container, so that effort and burden on an operator can be significantly reduced.
US08530198B2
The invention generally relates to methods for detecting a target nucleic acid and a target protein in a single assay.
US08530195B2
Dimeric and trimeric nucleic acid dyes, and associated systems and methods are provided. Such a dye may form a hairpin-like structure that enables it to stain nucleic acids via a release-on-demand mechanism, for example. Such a dye may have low background fluorescence in the absence of nucleic acids and high fluorescence in the presence of nucleic acids, upon binding therewith, for example. A dye provided herein may be useful in a variety of applications, such as in DNA quantitation in real-time PCR, for example.
US08530193B2
This present disclosure relates to methods for improved production of proteins from a cell culture, particularly to culture components and conditions that can preferentially increase the expression of proteins produced from genes under the control of xylanase gene promoter sequences. The improved methods can be used for the production of enzyme compositions with enhanced xylanase and hemicellulolytic activity.
US08530192B2
The invention concerns a method for large-scale production of a polypeptide in eukaryote cells contained in a serum-free culture liquid, said method comprising (i) a propagation phase for said cells, where the cells are propagated in a first cell culture liquid, and (ii) a production phase for said cells, where the cells are present in a second cell culture medium liquid, wherein each of the cell culture liquids comprise a plant protein hydrolysate, and wherein the ratio between the concentration of the plant protein hydrolysate (C1) in the first cell culture liquid and the concentration of the plant protein hydrolysate (C2) in the second cell culture liquid is at least 1.5:1 (C1:C2).
US08530184B2
The disclosed invention relates to a method for monitoring a sterilization process. The method includes (A) exposing an article to be sterilized and a biological indicator to a sterilization medium during a sterilization process, the biological indicator comprising a cell with a plasma membrane; and (B) incubating the cell and measuring the membrane potential of the cell to detect change in the membrane potential.
US08530181B2
The present invention provides a method of screening for compounds which affect the cleavage of EphA7 by γ-secretase. The method includes the following steps: (i) contacting a first biological composition containing γ-secretase or a biologically active fragment thereof with a second biological composition containing EphA7 in the presence and absence of a candidate compound; (ii) measuring the cleavage of the EphA7 in the presence and absence of the candidate compound; (iii) selecting those candidate compounds which affect the cleavage of the EphA7 by γ-secretase; and (iv) identifying the candidate compounds selected in step (iii) as compounds which affect the cleavage of EphA7 by γ-secretase.
US08530178B2
An enzyme detection method includes forming a caged substrate; releasing an uncaged substrate by cleaving a caging molecule from the caged substrate; and emitting a light emission from a Bioluminescence Resonance Energy Transfer luminescent nanocrystal conjugate reacting with the uncaged substrate.
US08530177B2
The invention relates to an immunoassay method and kit for the indirect detection of chloral hydrate. The invention is underpinned by a novel immunogen that produces an antibody that is specific for the chloral hydrate metabolite trichloroethanol glucuronide. Detection and quantification of trichloroethanol glucuronide has important applications in clinical toxicology, drug facilitated crime, water testing and solvent exposure.
US08530157B2
Certain embodiments described in this disclosure relate to a method of sample analysis. In certain cases, the method comprises: a) contacting a genomic sample comprising double-stranded genomic DNA with a first restriction endonuclease that recognizes a nucleotide sequence that comprises a SNP site in the double stranded genomic DNA, wherein: i. the restriction endonuclease cleaves the genomic DNA at the sequence regardless of the allele of the SNP present at the SNP site; and ii. cleavage of the sequence by the restriction enzyme creates a 5′ overhang that comprises the SNP site; b) contacting the digested genomic sample with a extension enzyme and a first labeled nucleotide that is used by the extension enzyme to fill in the overhang only if the overhang comprises a first allele of the SNP.
US08530150B2
A method of detecting a risk of a pregnant female mammal developing pre-eclampsia or a complication linked thereto, or of a fetus of the pregnant female mammal developing a fetal or neonatal deficiency linked to maternal pre-eclampsia, comprises detecting the level of a VEGFxxxb in a sample from the pregnant female mammal at less than about 24 weeks of gestation and comparing the detected level with a reference level. A reduced level in the sample from the pregnant female mammal is indicative of a risk of the pregnant female mammal developing pre-eclampsia or a complication linked thereto or of the fetus developing the fetal or neonatal deficiency linked to maternal pre-eclampsia.
US08530144B2
A method is provided for fabricating source/drain electrodes of a thin film transistor. The method generally provides a substrate having a first gate electrode and a second gate electrode adjacent and electrically connected. The method further provides coating a photoresist layer on the metal layer, and performing an exposure process on the photoresist layer by a photomask. The method further performs a development process on the exposed photoresist layer to form a photoresist pattern layer with different thicknesses on the metal layer, and then etches the metal layer using the photoresist pattern layer as an etch mask, to form a pair of first source/drain electrodes on the first gate electrode and a pair of second source/drain electrodes on the second gate electrode.
US08530143B2
A silicate-free alkaline aqueous developer composition has a pH of at least 12 and comprises a metal cation M2+ selected from barium, calcium, strontium, and zinc cations, and a chelating agent that has a complex formation constant (log K) for the metal cation of at least 3.5 and less than or equal to 4.5, and a log K for aluminum ion that is 7 or less. This developer composition can be used to process positive-working lithographic printing plate precursors to provide lithographic printing plates.