US09787281B2
A resonator element includes a substrate having a first region performing thickness shear vibration, a second region located in a periphery of the first region and having a smaller thickness than the first region, a fixed end, and a free end opposite to the fixed end in the first region in a plan view. Excitation electrodes are disposed on a front and a rear of the first region and have regions overlapping each other in the plan view. A center of the first region and a center of the regions overlapping each other are located between a center of the substrate and the free end in the plan view. When Cs is a distance between the center of the regions overlapping each other and the center of the substrate in the plan view, a relation of 105 μm
US09787265B2
An apparatus of correcting an offset for a differential amplifier which compensates a direct current (DC) offset voltage in a differential analog signal amplifier using a resistive feedback structure to minimize a deviation and a method thereof are provided. The apparatus includes a differential amplifier that is configured to amplify a common DC voltage input via a first resistor and a second resistor with a predetermined amplification factor to output the amplified voltage. A controller is configured to compare voltages output from both output terminals of the differential amplifier to determine whether to generate an offset. In addition, the offset is corrected using a switching unit coupled in parallel to an input terminal of the differential amplifier in response to detecting a generated offset. The controller is also configured to adjust an asymmetric property of the input terminal of the differential amplifier to correct the generated offset.
US09787256B1
An amplifier circuit having an improved inter-stage matching network and improved performance. In one embodiment, an RF signal source having an output impedance ZSOURCE is approximately impedance matched through an inductive tuning circuit to a power amplifier having an input impedance ZPA. The inductive tuning circuit includes a tunable capacitor element C1 and inductive elements L1, L2, which may be fabricated as stacked conductor coils. Since the capacitance of C1 is tunable, impedance matching is available over a broad range of RF frequencies. Also provided are DC isolation between the RF signal source and the power amplifier, coupling of a voltage source to the output of the RF signal source through L1, and coupling of a bias voltage to the input of the power amplifier through L2.
US09787254B2
Embodiments include packaged semiconductor devices and methods of manufacturing packaged semiconductor devices. A semiconductor die includes a conductive feature coupled to a bottom surface of the die. The conductive feature only partially covers the bottom die surface to define a conductor-less region that spans a portion of the bottom die surface. The die is encapsulated by attaching the encapsulant material to the bottom die surface (e.g., including over the conductor-less region). The encapsulant material includes an opening that exposes the conductive feature. After encapsulating the die, a heatsink is positioned within the opening, and a surface of the heatsink is attached to the conductive feature. Because the heatsink is attached after encapsulating the die, the heatsink sidewalls are not directly bonded to the encapsulant material.
US09787252B2
Embodiments of a radio frequency (RF) amplification are disclosed. The RF amplification device includes a first RF amplification circuit, a second RF amplification circuit, and power control circuitry operable in a first power mode and a second power mode. The first RF amplification circuit has a cascode amplifier stage configured to amplify an RF signal. The cascode amplifier stage has an input transistor and a cascode output transistor that are stacked in cascode. The second RF amplification circuit is configured to amplify the RF signal. The power control circuitry is configured to bias the first cascode output transistor so that the first cascode output transistor operates in a saturation region in the first power mode and bias the first cascode output transistor so that the first cascode output transistor operates in a triode region in the second power mode. The second RF amplification circuit is assisted without introducing additional loading.
US09787247B2
A method is provided for using asymmetrically focused photovoltaic conversion in a hybrid parabolic trough solar power system. Light rays received in a plurality of transverse planes are concentrated towards a primary linear focus in an axial plane, orthogonal to the transverse planes. T band wavelengths of light are transmitted to the primary linear focus, while R band wavelengths of light are reflected towards a secondary linear focus in the axial plane. The light received at the primary linear focus is translated into thermal energy. The light received at the secondary linear focus is asymmetrically focused along a plurality of tertiary linear foci, orthogonal to the axial plane. The focused light in each tertiary linear focus is concentrated into a plurality of receiving areas and translated into electrical energy. Asymmetrical optical elements are used having an optical input interfaces elongated along rotatable axes, orthogonal to the axial plane.
US09787245B2
A machine learning apparatus learns conditions associated with power failure on the side of an AC power supply in a motor control apparatus which converts AC power into DC power, outputs the DC power to a DC link, further converts the DC power into AC power for driving a motor, and supplies the AC power to the motor, includes a state observation unit which observes a state variable including at least one of data associated with the value of a power supply voltage on the AC power supply side, data associated with the amount of energy stored in a DC link capacitor provided in the DC link, and data indicating whether a protective operation for the motor control apparatus is successful, and a learning unit which learns conditions associated with power failure on the AC power supply side in accordance with a training data set defined by the state variable.
US09787242B2
Temperature-dependent motor control device, including: a motor controller configured to switch a motor control state among an activated state in which the motor is activated by a first current, an activation stopped state in which activation of the motor is stopped by stopping current supply, and an activation suspended state in which activation of the motor is suspended with a second current smaller than the first current kept supplied; and a temperature estimator configured to calculate an estimated motor temperature value and to perform a first calculation for gradually increasing the estimated value when the motor is in the activated state, a second calculation for gradually decreasing the estimated value when the motor is in the activation stopped state, and a third calculation for gradually decreasing the estimated value at a rate of decrease lower than that in the second calculation when the motor is in the activation suspended state.
US09787233B2
A movable body drive device that controls a drive unit configured to drive a movable body arranged on a game machine has a communication unit that receives a control command for regulating a destination position of the movable body, a storage unit that stores a current position of the movable body, and a control unit that determines, based on a difference between the destination position and the current position or a moving direction in an immediately previous action of the movable body, a moving direction in the next action of the movable body and to control the drive unit such that the movable body is moved along the moving direction in the next action until the movable body reaches the destination position.
US09787231B2
A motor driving device includes a control unit which outputs a pre-driving signal to control a motor based on command information of an input target number of rotations and detection information of a number of rotations of the motor, and a motor driving unit which drives the motor based on the pre-driving signal. The control unit includes a speed control circuit which outputs speed command information based on the command information of the target number of rotations and the detection information, a stop control circuit which when an input of the command information of the target number of rotations is stopped, outputs stop command information after a predetermined time elapses from detection of stop of the motor, and a driving signal generation circuit which generates a control signal based on the stop command information and the speed command information.
US09787229B2
An electronically commutated motor is operated from a DC voltage source (UB), e.g. from a DC link circuit (46). The motor has a permanent-magnet rotor (28) and a stator having a stator winding strand (26) in which, during operation, an alternating voltage is induced by the permanent-magnet rotor (28). It further has an H-bridge circuit (22) having power semiconductors (T1 to T4). At the beginning of a commutation operation, the presently conductive semiconductor switch of a first bridge half (38) is switched off, in order to interrupt energy delivery from the DC voltage source (UB), so that, in the other bridge half (56), a loop current (i*; −i*) flows through the stator winding strand (26), through the semiconductor switch still controlled to be conductive therein, and through a recovery diode (58; 60) associated with the blocked semiconductor switch of that other bridge half. This loop current converts the energy stored in the magnetic circuit of the motor (20) at least partly into driving energy for the permanent-magnet rotor (28), and in that context the stored energy drops to zero. This currentless state of the stator winding strand (26) is detected in a sensorless manner by measuring the voltage (uind) induced by the rotor (28) in the stator winding strand (26).
US09787228B2
An electrical controller for electric rotating machines is provided. A control system for electric rotating machines transmits a controlled quantity of current to or from different windings of the electric rotating machine at any given time. Furthermore, the amplitude of the current is independently variable of the timing and duration of the transmission of the current to or from the windings. This allows increased control of the electric rotating machine and facilitates the operation of the electric motor at high mechanical and/or electrical speeds.
US09787227B1
An apparatus includes a driver circuit and a motor control circuit. The driver receives first and second supply voltages and a control signal, and generates a target voltage on an output terminal according to the control signal. The motor control circuit is configured to generate the control signal and measure a rise time of a current of the driver circuit during a period of time in which the output terminal is at the target voltage. A method includes, during a time interval, providing the first supply voltage on an output of a first driver circuit, generating a target voltage on an output of a second driver circuit, and measuring a rise time of a current flowing between the outputs of the first and second driver circuits. For both the apparatus and method, the target voltage is between and substantially different from the first and second supply voltages.
US09787224B2
A motor control apparatus includes a rectifier which converts AC of a power source to DC, an inverter which converts DC to AC for a motor, a voltage amplitude calculation unit which calculates a power source voltage amplitude value, a power failure recovery detection unit which determines whether or not the AC input side has transitioned to a power failure state or a power recovery state on the basis of the power source voltage amplitude value, a protection operation command unit which outputs a protection operation command when a reference time has elapsed from a time point at which the AC input side transitioned to the power failure state, a time measurement unit which measures an elapsed time from when the AC input side transitioned to the power recovery state, and a condition change unit which changes the power failure reference voltage value and/or the reference time.
US09787223B2
A motor control apparatus controls a start/stop operation of a motor and includes a counting unit that performs a count-up or count-down operation from a predetermined initial value with a lapse of time in response to receiving an operation start instruction for the motor; a signal output unit that outputs a first state signal in response to receiving the operation start instruction, and outputs a second state signal only when a result of the counting by the counting unit falls outside a predetermined range; and a drive unit that outputs an ON signal to the motor in response to receiving the first state signal from the signal output unit, and outputs an OFF signal to the motor in response to receiving the second state signal from the signal output unit.
US09787216B2
A full-wave rectifier is disclosed. In one embodiment the full-wave rectifier includes two input paths configured to receive an alternating input voltage, two output paths configured to provide a direct output voltage, and four switched-mode rectifying paths that are connected between each of the input paths and each of the output paths, wherein the switched mode rectifying paths are configured to connect a first input path to a first output path and a second input path to a second output path during a first half wave of the input voltage, and to connect the first input path to the second output path and the second input path to the first output path during a second half wave of the input voltage, and wherein the switched-mode rectifying paths include cascode circuits.
US09787214B2
Even when an overvoltage suppression circuit is not formed due to failure of an overvoltage suppression switch, overvoltage application to semiconductors and a filter capacitor is prevented. A control unit controls the overvoltage suppression circuit to short-circuit the filter capacitor when the voltage thereacross exceeds a predetermined value. Then when non-operation of the overvoltage suppression circuit is detected, the control unit opens an AC breaker and AC switch, and closes a charging switch. Thereafter, the control unit turns ON the converter element (or converter element) connecting to the filter capacitor terminal (or terminal) and a charging resistor, and turns ON converter element (or converter element) connecting to terminal (or terminal) of filter capacitor and connecting to the terminal of the transformer not connected to charging resistor.
US09787198B1
System controller and method for regulating a power converter. For example, the system controller includes a first controller terminal and a second controller terminal. The system controller is configured to receive, at the first controller terminal, an input signal, generate a drive signal based at least in part on the input signal, and output, at the second controller terminal, the drive signal to a switch to affect a current associated with a secondary winding of the power converter. The system controller is further configured to detect a first duration of a demagnetization period associated with the secondary winding based at least in part on the input signal, determine a second duration of a time period for the drive signal based at least in part on the first duration, and keep the drive signal at a first logic level during the entire time period.
US09787196B2
A control method of frequency jittering with a switching mode power supply, comprising: turning on and off a power switch of the switching mode power supply alternatively; updating a peak current signal of the switching mode power supply at a beginning of an on time of the power switch according to a length of a switching period before the beginning of the on time of the power switch, wherein the peak current signal varies as the length of the switching period changes.
US09787194B2
A primary side regulated isolation voltage converter. The primary side regulated isolation voltage converter comprises a control module and a ripple control circuit. The control module receives the voltage feedback signal and determines whether the isolation voltage converter operates in a light load state. When the isolation voltage converter operates in a light load state, the ripple control circuit senses the ripple of an output voltage signal to generate a ripple signal, and compare the ripple signal with a ripple threshold. When the ripple signal is larger than the ripple threshold, the isolation voltage converter jumps out the light load state.
US09787190B2
In a DC/DC converter that performs zero-voltage switching, capacitors are connected respectively in parallel to first and second MOSFETs that are included in an inverter unit in the primary-side of a transformer, and an inductor is connected to an AC output line. In a range of a current being more than a predetermined value, a control circuit controls the inverter unit using a PWM control with a fixed dead time, and in a light load range where the current is equal to or less than the predetermined value, the control unit changes the control to a PFM control and decreases a frequency so that the dead time becomes longer as the current decreases, to thereby keep a duty ratio without change.
US09787180B2
Methods, devices, systems, and integrated circuits are disclosed for switching on an electrical connection to one or more loads. In one example, a switch device includes a voltage source, a power switch circuit block connected to the voltage source, and a current limitation circuit block connected to the voltage source and the power switch circuit block. The switch device further includes a voltage outlet connected to the power switch circuit block. The switch device further includes a current limit feedback circuit connected to the power switch circuit block and the current limitation circuit block. The current limit feedback circuit is configured to enable the switch device to provide a regulated connection between the power switch circuit block and the voltage outlet, wherein the regulated connection defines a current limitation mode, such that the regulated connection reduces the current in the power switch circuit block if the switch device is in the current limitation mode.
US09787178B2
A current mirror circuit includes: a reference current circuit including a reference transistor and a constant current source coupled between a high potential source and a low potential source; a first proportional current circuit, including a first transistor that forms a first current mirror circuit with the reference transistor, to generate a first current having a first ratio to a reference current of the reference current circuit; a second proportional current circuit, including a second transistor that forms a second current mirror circuit with the reference transistor, to generate a second current having a second ratio to the reference current; a comparison circuit to output a difference between a drain voltage of the first transistor and a drain voltage of the second transistor; and a current adjustment transistor coupled to a drain of the second transistor and including a gate to which an output of the comparison circuit is applied.
US09787174B2
A converter including a converter control for a wind turbine and a chopper, wherein the converter control includes a dynamic limit value which is allowable for a first tolerance time and a static limit value of the converter. Furthermore, an overcurrent module is provided which includes a limit value expander which is designed to increase the static limit value by a portion of the difference from the dynamic limit value as additional current, and a dynamic module which interacts with the limit value expander in such a way that overcurrents between the static limit value which is increased by the additional current and the dynamic limit value are routed in a first stage to the converter and in a second stage at least partially to the chopper, wherein a switch is made to the second stage after a second tolerance time.
US09787157B2
An actuator device includes a motor and a reduction device operatively coupled to the motor and oriented about a central axis, the reduction device configured to modify an input angle of rotation provided by the motor to an output angle of rotation. Further included is a rotary flexure mechanism that includes a rotary flexure operatively coupled to an output portion of the reduction device. The rotary flexure mechanism also includes a plurality of flexure blades coupled to the rotary flexure, each of the flexure blades angularly oriented from the central axis. The rotary flexure mechanism further includes a diaphragm flexure pair operatively coupled to the flexure blades, wherein the diaphragm flexure comprises a rotational and in-plane stiffness greater than an axial stiffness resulting in the rotary flexure mechanism being configured to convert a rotational input to an axial translation.
US09787150B2
A rotor of a brushless motor used in a fuel pump includes a permanent magnet having first and second ends that are configured to have a thickness ratio so that a degree of margin of those ends, which is a difference between an allowable stress and a temperature stress due to expansion and contraction of a rotor core caused by a temperature change is equal to or greater than a preset value. As a result, a cracking of the permanent magnet on the both ends that is caused by repeated expansions and contractions of the rotor core is prevented.
US09787147B2
An interior permanent magnet motor includes a stator having teeth on which a coil is wound, a rotor rotatably provided inside the stator, the rotor including a plurality of rotor sectors, and at least two permanent magnet recesses formed between the rotor sectors. Ferrite permanent magnets are embedded in predetermined ones of the permanent magnet recesses that are formed in an inner portion of the rotor. Rare-earth permanent magnets are embedded in the other ones of the permanent magnet recesses that are formed in an outer portion of the rotor.
US09787145B2
Provided is a power generation device using magnetic force, the power generation device comprising: a plurality of tunnel-type bodies having unilateral open passages and arranged and fixed at the same intervals on a revolutional orbit, wherein the respective tunnel-type bodies are provided with a plurality of permanent magnets between inner magnetic bodies and outer magnetic bodies, and permanent magnets and the outer magnetic bodies are attached to the outer surface of the inner magnetic bodies such that the permanent magnets facing the inner and outer magnetic bodies can have opposite polarities, thereby forming magnetic fields in inner body spaces; and magnetic border membranes having opposite magnetic poles on the inner and outer sides thereof and formed on entrance sides and exit sides of the tunnel-type bodies.
US09787141B2
Described herein are improved configurations for a wireless power transfer. The parameters of components of the wireless energy transfer system are adjusted to control the power delivered to the load at the device. The power output of the source amplifier is controlled to maintain a substantially 50% duty cycle at the rectifier of the device.
US09787126B2
When a hole in a separator is clogged, the cycle characteristics of a battery might be lowered and the internal resistance of a battery might be increased to reduce the output. Thus, a means for suppression of or recovery from degradation due to a clogged separator in a battery such as a lithium-ion secondary battery is provided. When reverse pulse current is supplied multiple times during charge, a separator is prevented from being clogged and a voltage increase (increase in internal resistance) during charge is suppressed, so that charge can be normally performed repeatedly.
US09787120B2
A USB charger, a mobile terminal, and a charging method are provided. The USB charger for charging a mobile terminal, includes a first logic control unit through which bidirectional communication is established between the USB charger and the mobile terminal, wherein the first logic control unit is configured to: send, to the mobile terminal, a first signal which includes a maximum output capability of the USB charger; receive, from the mobile terminal, a second signal which indicates magnitude of a voltage requested by the mobile terminal; and adjust a voltage output from the USB charger to be consistent with the voltage requested by the mobile terminal. Accordingly, the USB charger and the mobile terminal can communicate with each other through a single signal wire. Thus, the voltage output from the USB charger can be intelligently controlled, so as to charge the mobile terminal in a fast, safe, and simply way.
US09787117B2
In one embodiment, a bidirectional battery charger integrated with renewable energy generation includes a primary side AC/DC rectifier coupled to the electrical grid and a first DC bus, a DC/AC inverter coupled to the first DC bus and a primary winding, a secondary side AC/DC rectifier coupled to a secondary winding and a battery, and a boost converter coupled to a renewable energy generator and the first DC bus. The boost converter includes an active switch controlled by a control algorithm that, when renewable power is available, operates the active switch at a duty cycle that allows power to flow from the renewable energy generator to the first DC bus and on to charge the battery (without passing though the primary side AC/DC rectifier) or on to supply the electrical grid (without passing through the DC/AC inverter and secondary side AC/DC rectifier), and, when not available, disables the active switch.
US09787116B2
A charging circuit including a transformer, a storage element, a switch element, a first resistor, and a current detection unit is provided. The transformer includes a primary coil and a secondary coil. The storage element is coupled to the secondary coil. The switch element is coupled to the primary coil. The first resistor is coupled to the primary coil. The current detection unit detects current flowing through the first resistor. When the current reaches a set current, the current detection unit sends a full signal to de-activate the switch unit.
US09787112B2
An inter-protocol charging adapter for equipment to be charged via a bus includes: first connectors corresponding to a first charging protocol that requires the bus to be energized before the equipment closes onto the bus; second connectors corresponding to a second charging protocol that does not energize the bus before the equipment closes onto the bus; and a boost converter coupled to the bus and to at least one of the second connectors, wherein the boost converter uses energy from the second connector to energize the bus before the equipment closes onto the bus.
US09787108B2
A battery management system and a method for enhanced battery management of a battery containing a number of cells. The method and system measures the cell capacity of two or more of said cells, ranks the cells in order of their cell capacity values and calculates a value for a cell specific supporting current for the measured cell, for a given load, based upon the ranked cell capacity values. Calculated cell specific currents are then provided to the cells.
US09787097B2
An electric power supply network includes at least one connection point with an upstream electrical network delivering useful power to at least one input of a first electric power supply network of an electrically powered transport system, such as trolley buses, trams, metro, train, or other transport, the first electrical network presenting peak power fluctuations as a function of variable energy needs depending on traffic associated with the transport system. The first electrical network includes at least one power output capable of distributing energy, in particular recovered from the transport system and from the upstream electrical network, to at least a second electrical network, enabling energy to be supplied to electrical consumption points. At least one supervision unit monitors distribution of energy from the power output whenever at least the peak power required by the first transport system is below the useful power available upstream.
US09787091B2
Systems and methods for controlling a power conversion system are provided. The power conversion system includes a power converter comprising a primary stage coupled to a secondary stage to generate an output direct current (DC) voltage from an input voltage received from an input voltage source. The power conversion system also includes a control circuit coupled to the power converter. The control circuit is configured to implement a self-adjusting set-point control algorithm to generate the output DC voltage without using an input voltage measurement, wherein the output DC voltage follows the input voltage over at least a portion of an input voltage range.
US09787085B2
A hot plug device includes an electronic subsystem and a plurality of main turn on FETs, wherein each main turn on FET includes a gate, a power input for coupling to a power source, and an output for controllably providing power to the electronic subsystem. An auxiliary current path is in parallel with the main turn on FETs and includes a fuse, an impedance element and an auxiliary turn on FET. A turn on controller controls the main turn on FETs and the auxiliary turn on FET. Current is initially through the high impedance auxiliary current path to apply voltage to an output power rail. Subsequently, current is allowed to pass through a plurality of main turn on FETs to the output power rail in response to the output power rail having a voltage exceeding a voltage threshold as a result of using the high impedance auxiliary current path.
US09787084B2
A motor driving device includes: a converter that converts AC power into DC power; a DC link capacitor provided for the DC link; an inverter that converts DC power into AC power for a motor; an initial charging circuit that charges the DC link capacitor; a potential difference determination unit that determines a potential difference between both ends of the initial charging circuit; a direct current detecting unit that detects direct current supplied to the initial charging circuit; an alternating current detecting unit that detects alternating current supplied to a motor; and an abnormality determination unit that determines that abnormal heat generation occurs in the initial charging circuit when the alternating current detecting unit detects alternating current and the direct current detecting unit detects direct current, in a case in which a potential difference occurs between both of the ends of the initial charging circuit.
US09787082B2
An electrical system includes (1) a distributed power source device structured to generate: (i) AC power, and (ii) a signal indicating an amount of current being produced by the distributed power source device, and (2) a circuit breaker having set trip characteristics coupled to distributed power source device, wherein the circuit breaker is structured to receive the signal and adjust the set trip characteristics (e.g., the trip curve) based on at least the signal from the distributed power source device.
US09787080B2
A distribution manager for a power microgrid system includes a main bus, and a circuit breaker coupled to the main bus and to one of a load and an inter-microgrid connection system of the power microgrid system, the circuit breaker being structured to operate based on a set of functional trip settings. The distribution manager is structured and configured to: (i) determine an available source overcurrent that will be fed through the circuit breaker, (ii) determine a number of trip parameter settings based on at least the available source overcurrent, and (iii) set the functional trip settings of the circuit breaker based on the determined number of trip parameter settings.
US09787076B2
A carrier member includes a first section, a second section, and a third section. The first section has a first length. The second section has a second length. The first section, the third section, and the second section connect sequentially and form a U-shaped structure. The first section and the second section have curved sections. The third section has a flat section. When the second section moves relative to the first section, the first section or the second section having the curved section transform into the third section having the flat section and store a resilient recovering force, and the third section having the flat section transforms into the first section or the second section having the curved section for adjusting lengths of the first section and the second section, which prevents a cable disposed on the carrier member from interfering with other mechanism or getting knotted.
US09787074B1
Electric junction box assemblies with an access hood for providing access to an eyelet terminal is provided. The electric junction box assembly includes a junction box configured to store electric components. The junction box includes an eyelet terminal support configured to support an eyelet terminal connection. A top cover is mounted onto the junction box. The top cover includes a first cut-out and a hood mounting structure. A hood is shaped so as to both engage and disengage the hood mounting structure and cover the eyelet terminal opening. In one instance the closing member of the hood is configured to engage the hood mounting structure so as to cover the eyelet terminal connection. In another instance, the hood may be disengaged so as to expose the eyelet terminal connection without having to remove the cover from the junction box.
US09787071B1
A cover for covering at least a portion of electrical power distribution equipment, such as an open end of a conduit riser. The cover has a bottom opening for fitting over the open end of the conduit riser. The cover has an upper opening to allow egress of one or more wires from the open end of the conduit riser. The cover can be configured for fitting over conduit risers of various sizes and/or accommodating different numbers or sizes of wires. The cover can include ventilation openings for permitting egress of heat from the open end of the conduit riser.
US09787069B2
A structure for mounting a retrofit part to a cladding member may be used to prevent the retrofit part from causing a turn or positional displacement. For example, a clamp structure may include a clamp base and a clamp cover continuous to the clamp base by a hinge. The clamp may further include projections such as spike-shaped portions. The spike-shaped portions are formed and placed on both a mount surface of the clamp base and a mount surface of the clamp cover. The spike-shaped portions may prevent the clamp from causing a turn or positional displacement, and may be each protrusively formed substantially into a pyramid shape with a pointed end. The spike-shaped portions are formed to bite into an exterior surface of a cladding member and that resists external force, such as vibrations, when the clamp is mounted.
US09787066B2
A bus-bar system usable for electrical cabinets for distributing electrical power supplied by an electrical supply cable comprising two or more electrically conducting wires. In some embodiments the bus-bar system comprises a predetermined number of bus-bar elements each electrically connectable to at least one of the wires of the electrical supply cable. At least one of the bus-bar elements may be formed by a group of at least two sub-bus-bar elements electrically connectable to each other in parallel. Each group of the sub-bus-bar elements may be electrically connectable to at least one of the wires of the electrical supply cable, where each of said bus-bar and sub-bus-bar elements being located adjacent at least one other bus-bar or sub-bus-bar element associated with either different electrical phase or different electrical current direction to thereby cause magnetic fields emanating from said bus-bar and sub-bus-bar elements to destructively interfere with each other.
US09787064B2
A corona igniter (20) comprises a central electrode (22) surrounded by an insulator (24), which is surrounded by a metal shell (26). A ceramic combustion seal (30) is disposed along the gap (32) between a shell lower end shell (52) and the insulator nose region (48) to provide a hermetic seal therebetween. The ceramic combustion seal (30) is typically a bushing, cylinder, or ring formed of sintered alumina. A glass material or glass/ceramic mixture (60) typically adheres the ceramic combustion seal (30) to the shell (26) and the insulator (24). Alternatively, the ceramic combustion seal (30) is brazed to the shell (26), and the glass material or glass/ceramic mixture (60) adheres the ceramic combustion seal (30) to the insulator (24).
US09787056B2
The present invention discloses a method, an apparatus, an optical component and an optical network system for controlling an operating temperature of an optical component. The method includes: acquiring an external ambient temperature of the optical component; setting a target control temperature of a temperature controller according to the external ambient temperature, where the target control temperature is a function value of the external ambient temperature, and the target control temperature is within a range from an operating temperature lower limit of a laser to an operating temperature upper limit of the laser; and controlling, according to the target control temperature, an operating temperature of the optical component by means of heating or cooling by using the temperature controller.
US09787055B2
A semiconductor strip laser and a semiconductor component are disclosed. In embodiments the laser includes a first semiconductor region of a first conductivity type of a semiconductor body, a second semiconductor region of a second different conductivity type of the semiconductor body, at least one active zone of the semiconductor body configured to generate laser radiation between the first and second semiconductor regions. The laser further includes a strip waveguide formed at least in the second semiconductor region and providing a one-dimensional wave guidance along a waveguide direction of the laser radiation generated in the active zone during operation, a first electric contact on the first semiconductor region, a second electric contact on the second semiconductor region and at least one heat spreader dimensionally stably connected to the semiconductor body at least up to a temperature of 220° C., and having an average thermal conductivity of at least 50 W/m·K.
US09787053B2
A laser diode chip includes a removable substrate, a first semiconductor layer disposed on the removable substrate, an emitting layer disposed on one part of the first semiconductor layer, a second semiconductor layer disposed on the emitting layer and forming a ridge mesa, a current conducting layer disposed on another part of the first semiconductor layer, a patterned insulating layer covering the second semiconductor layer and the current conducting layer and including a first zone and a second zone which respectively expose a part of the current conducting layer and a part of the second semiconductor layer, a first electrode and a second electrode respectively disposed on the first zone and the second zone. A projection of the ridge mesa projected to the removable substrate covers a part of projections of the first electrode and the second electrode projected to the removable substrate.
US09787050B2
A tunable narrow-linewidth single-frequency linear-polarization laser device comprising a heat sink, a pumping source packaged on the heat sink, a first and second collimating lenses, a laser back cavity mirror, a thermal optical tunable filter, a rare-earth-ion heavily-doped multicomponent glass optical fiber, a super-structure polarization-maintaining fiber grating, a polarization-maintaining optical isolator, a polarization-maintaining optical fiber, and a thermoelectric refrigerating machine. The laser device uses a short and straight single-frequency resonant cavity structure, the heavily-doped and high-gain characteristics of the multicomponent glass optical fiber, a frequency selection role and wavelength tuning function of the thermal optical tunable filter and the superstructure polarization-maintaining fiber grating, and combines a precision temperature adjustment technology, and by means of real-time adjustment of distribution of reflection wavelengths and transmission wavelengths, the laser device changes spectrum peak overlapping positions, so as to implement stable output of wide-tuning-range, extra-narrow-linewidth, high-extinction-ratio and high-output-power continuously tunable single-frequency linear-polarization laser.
US09787040B2
The panel (220), the energy-saving switch (230), and the connector (240) may be formed in a separable module type corresponding to each of the power sockets (130). The separable module type increases usability, because it is possible to use the modules only for necessary ones of the plugs (P) in the power sockets (130) and not to insert them into the power sockets (130) without a plug (P) connected.
US09787037B2
An adapter for coupling a coaxial interface to a power conductor and method for interconnection may be provided as a body with a conductor junction dimensioned to couple with the power conductor and a mating surface dimensioned to couple with the coaxial interface. The conductor junction, an outer conductor contacting portion of the mating surface and an inner conductor contacting portion of the mating surface are electrically coupled together by the body.
US09787036B2
A connector includes a switch, a button configured to move a card of the switch, a spring connected to the button, and a connection terminal connected to the switch. When another connector is inserted into the connector, the connection terminal contacts a connection terminal of the other connector, and when the other connector is further inserted, the button is pressed by the other connector to move the card to close the switch to allow electric power to be supplied from the connector to the other connector, and the spring has its locking part engaging with an engaging part of the housing of the connector. When the other connector is pulled off of the connector, the spring has its locking part disengaging from the engaging part to open the switch, with the connection terminals contacting each other, to interrupt the supply of electric power.
US09786996B2
A patch antenna array includes a plurality of patch antenna elements spaced apart from each other and arranged as an array. Each patch antenna element has a substrate, a radiating patch associated with the substrate and a ground plane associated with the substrate. The patch antenna elements are discrete and separate from each other. At least one element frame holds the discrete antenna elements in the array. Each element frame captures and positions at least two patch antenna elements relative to each other.
US09786990B2
An end fed dipole antenna on a circuit board configured to be a multiband, portable radio antenna has, among other features, an integrated diplexer for operating the antenna in multiple frequency bands.
US09786986B2
A reconfigurable holographic antenna and a method of shaping an antenna beam pattern of a reconfigurable holographic antenna is disclosed. A baseline holographic pattern is driven onto a reconfigurable layer of the reconfigurable holographic antenna while a feed wave excites the reconfigurable layer. An antenna pattern metric representative of a baseline antenna pattern is received. The baseline antenna pattern is generated by the reconfigurable holographic antenna while the baseline holographic pattern is driven onto the reconfigurable layer. A modified holographic pattern is generated in response to the antenna pattern metric. The modified holographic pattern is driven onto the reconfigurable layer of the reconfigurable holographic antenna to generate an improved antenna pattern.
US09786977B2
An example circuit board structure includes: a substrate; and vias that are electrically conductive and that pass through the substrate to enable electrical connection through the circuit board structure. The substrate is thinner, and lengths of the vias are shorter, in first areas of the circuit board structure that deliver first speed signals than in second areas of the circuit board structure that deliver second speed signals and power. The first speed signals have a shorter rise time than the second speed signals.
US09786970B2
An air-metal secondary battery module includes one or more metal-air secondary battery units, each of which has a water intake part for taking an aqueous solution therein and a gas outlet port for discharging gas generated during charging; an aqueous solution storage unit which stores the aqueous solution; an aqueous solution supply unit which connects the one or more water intake parts to the aqueous solution storage unit; and a gas discharge unit which is connected to the one or more gas outlet ports to discharge the gas discharged from the gas outlet ports to the outside.
US09786969B2
A vehicle traction battery assembly is provided. The vehicle traction battery assembly may include an array of battery cells, a thermal plate in thermal communication with the array and defining a coolant path, and an electromagnet. The electromagnet may be positioned proximate to the path and configured to selectively output a magnetic field to influence movement of magnetic particles within coolant flowing through the path to control the flowing. The assembly may also include at least one sensor located proximate to the array and configured to output a signal indicative of a temperature of at least one of the battery cells. A controller may be configured to, in response to the signal, direct the electromagnet to adjust the magnetic field.
US09786967B2
A battery pack is provided. The battery pack includes first and second temperature sensors that are disposed in first and second interior spaces, respectively. The first temperature sensor generates a first signal indicative of a first temperature level of the battery cell. The second temperature sensor generates a second signal indicative of a second temperature level of the DC-DC voltage converter. The battery pack further includes a microprocessor that determines a first desired operational speed value of the electric fan based on the first temperature level, and a second desired operational speed value of the electric fan based on the second temperature level. The microprocessor selects the first desired operational speed value if the first desired operational speed value is greater than the second desired operational speed value.
US09786965B2
A power source device comprises: a battery module having a rectangular parallelepiped shape including a battery stacked body having a plurality of battery cells stacked in one direction, a pair of end plates respectively disposed on a first end surface and a second end surface located at two ends of the battery stacked body, and a constraining member coupled to the pair of the end plates. Further, the power source device comprises: a frame having a fastening surface; fastening members for fastening the battery module in such a state that one surface of the battery module adjacent to the first end face and the second end face faces the fastening surface. The constraining member is formed such that a hardness of the constraining member becomes stronger against an external force applied to a stacked direction of the plurality of battery cells as the constraining member goes away from the fastening surface.
US09786961B2
An electric vehicle is provided. The electric vehicle includes an electric battery powering a drive system of the vehicle. The battery has a housing and a plurality of cells within the housing. The cells are spaced apart by interconnectors. The electric vehicle also includes a coolant delivery. The coolant delivery delivers coolant to the interconnectors. An electric battery is also provided.
US09786959B2
The smart battery includes an electronic circuit for managing the supply voltage connected to a battery. The electronic circuit includes a battery end-of-life detector, a management unit, an oscillator stage, a DC-DC converter powered on when the supply voltage of the battery is close or equal to a battery end-of-life threshold, and a data or command communication interface. The data or command communication interface is a 1-wire interface which is connected to a positive supply voltage terminal of the smart battery for transmitting a modulated data or command signal through one of the supply voltage terminals. The modulated signal transmitted by the interface may include battery end-of-life information.
US09786955B1
Electrochemical cells operating with molten electrodes and electrolyte, where the cathode is an alloy of a metal and metalloid, may be assembled in a discharged state by combining first an anodic metal with a cathodic metal to form a binary alloy. This binary alloy is then placed in a cell housing with the metalloid and the electrolyte, all in the solid state. The temperature is raised to, and maintained at, a temperature above the melting point of the highest melting component until components assembled into horizontal layers of electrolyte above a layer of a ternary alloy formed by the combination of the binary alloy and the metalloid. A charge and discharged cycle is then run through the electrochemical cell.
US09786948B2
A thin film lithium-ion battery unit includes a positive current collecting substrate, a positive electrode active material layer on an inner surface of the positive current collecting substrate, a negative current collecting substrate, a negative electrode active material layer on an inner surface of the negative current collecting substrate, a separator between the positive electrode active material layer and the negative electrode active material layer, and electrolyte retained at least in the separator. The positive electrode active material layer, the separator and the negative electrode active material layer constitute a laminated electric core. An outer conductive frame is spaced apart from the positive current collecting substrate and encompasses the positive current collecting substrate.
US09786939B2
In various aspects, systems and methods are provided for operating a molten carbonate fuel cell assembly at increased power density. This can be accomplished in part by performing an effective amount of an endothermic reaction within the fuel cell stack in an integrated manner. This can allow for increased power density while still maintaining a desired temperature differential within the fuel cell assembly.
US09786935B2
A controller (control portion) of a fuel cell system is provided with a flow path switching control device that switches a thermostat valve (flow path switching valve) so that, after a fuel cell has stopped generating electric power, coolant is supplied to a radiator circulation path until the coolant temperature becomes a second temperature threshold value that is lower than a first temperature threshold value.
US09786932B2
A metal-air battery includes first and second cells, each cell including a negative electrode metal layer, a negative electrode electrolytic film, a positive electrode layer configured to use oxygen as an active material, and a gas diffusion layer, wherein the negative electrode metal layer, the negative electrode electrolytic film, the positive electrode layer, and the gas diffusion layer are sequentially disposed, wherein each cell has an open surface through which at least a portion of the gas diffusion layer is in fluid communication with, outside air, wherein the first and second cells contact each other, and wherein a direction of a first open surface of the first cell is different from a direction of a second open surface of the second cell.
US09786928B2
A fuel cell stack includes a membrane electrode assembly and a bipolar plate. The bipolar plate has a corrugated portion defined by an adjacent pair of proximal and distal peak portions and a sidewall segment connecting the peak portions. The sidewall segment and membrane electrode assembly at least partially define a flow channel. The sidewall segment includes a shoulder portion defining a step spaced away from the peak portions.
US09786926B2
An energy storage device, such as a silver oxide battery, can include a silver-containing cathode and an electrolyte having an ionic liquid. An anion of the ionic liquid is selected from the group consisting of: methanesulfonate, methylsulfate, acetate, and fluoroacetate. A cation of the ionic liquid can be selected from the group consisting of: imidazolium, pyridinium, ammonium, piperidinium, pyrrolidinium, sulfonium, and phosphonium. The energy storage device may include a printed or non-printed separator. The printed separator can include a gel including dissolved cellulose powder and the electrolyte. The non-printed separator can include a gel including at least partially dissolved regenerate cellulose and the electrolyte. An energy storage device fabrication process can include applying a plasma treatment to a surface of each of a cathode, anode, separator, and current collectors. The plasma treatment process can improve wettability, adhesion, electron and/or ionic transport across the treated surface.
US09786925B2
A fuel cell comprised of a proton conductive electrolyte film sandwiched between a pair of catalyst layers, wherein the catalyst layer of at least the cathode is comprised of a mixture including a catalyst ingredient, an electrolytic material, and a carbon material, the carbon material is comprised of a catalyst-carrying carbon material carrying the catalyst ingredient and a gas-diffusing carbon material not carrying the catalyst ingredient, and the catalyst-carrying carbon material has an amount of adsorption of water vapor at 25° C. and a relative humidity of 90% of 50 ml/g or more.
US09786921B2
There is provided a secondary battery including a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode, wherein at least one of the positive electrode and the negative electrode contains a granular solid electrolyte and a granular conduction aid both bonded to a surface of a granular electrode active substance.
US09786918B2
A non-aqueous electrolyte secondary battery in which it is possible to increase a capacity retention rate is provided.A non-aqueous electrolyte secondary battery is provided which includes: a positive electrode layer that includes a positive electrode active material and a conductive material; a negative electrode layer; and a non-aqueous electrolytic solution that is arranged between the positive electrode layer and the negative electrode layer, where an upper limit voltage is equal to or more than 4.5 V with respect to the oxidation-reduction potential of lithium, and the surface of the conductive material is coated with a coating layer mainly formed of P, O, C and H.
US09786904B2
A positive electrode for a lithium secondary battery includes a positive activation material mixture that intercalates and de-intercalates lithium ions, wherein a first positive activation material having an average particle diameter D50 of from 12.5 μm to 22 μm and a second positive activation material having an average particle diameter D50 of from 1 μm to 5 μm are mixed with a weight ratio of from 95:5 to 60:40.
US09786900B2
The invention relates to a method for producing a battery (10) filled with a liquid electrolyte (2, 11), wherein the battery (10) comprises a housing (1) having a top side (3) lying at the top in the normal operation of the battery (10) and a bottom side (4) opposite the top side (3), wherein battery electrodes (6) are arranged in the housing (1) and the housing (1) has at least one filling opening (5) for the liquid electrolyte (2, 11), which filling opening is arranged on the top side (3) of the housing (1) or at least above the center of the housing (1), characterized in that liquid electrolyte (2, 11) is fed through the at least one filling opening (5) in such a way that the topmost point (16) of the battery electrodes (6) with respect to the direction of action of gravity is not completely covered with the liquid electrolyte (2, 11) at any time during the process of filling the battery with liquid electrolyte (2, 11). The invention further relates to a filling vessel designed for performing the method, to a machine, and to a battery.
US09786895B2
An energy storage module includes an energy storage cell group containing a plurality of energy storage cells stacked in a stacking direction, and a pair of end plates provided at both ends of the energy storage cell group in the stacking direction. A terminal frame is provided at the end plate in order to electrically connect an electrode terminal of the energy storage cell provided at an end in the stacking direction and an output line. The terminal frame is fixed to the end plate by fixing points.
US09786894B2
A battery pack includes a first battery module having first and second battery frame assemblies and first and second battery cells. The first battery frame assembly has a plastic frame member, a thermally conductive plate, a busbar, and a voltage sensing member. The plastic frame member has a rectangular ring-shaped body. The thermally conductive plate is coupled to rectangular ring-shaped body. The busbar has a first post and a first conductive body coupled to the first post. The first post extends outwardly from the plastic frame member, and the first conductive body extends through the rectangular ring-shaped body. The voltage sensing member has a first sensing post and a first sensing body. The first sensing post extends outwardly from the rectangular ring-shaped body.
US09786891B2
An electrode assembly, comprises one or more first electrodes comprising a cathode; one or more second electrodes comprising an anode; and a separator sheet having a zigzag form interposed therebetween. The separator sheet comprises a first porous polymer substrate; a first coating layer formed on one surface of the first porous polymer substrate and comprising a polymer binder, the first coating layer being faced with the cathode; and a second coating layer formed on the other surface of the first porous polymer substrate and comprising a mixture a polymer binder and inorganic particles, the second coating layer being faced with the anode and having a composition, a thickness and a porosity different from those of the first porous coating layer. A separator has porous coating layers with a different composition, thickness or porosity formed on each surface thereof.
US09786889B2
Provided is an electrode assembly of a secondary battery, including: a first electrode unit and a second electrode unit; a separation membrane interposed between the first electrode unit and the second electrode unit; and a first coating unit having an insulating member which is made of a metal oxide material and is coated along front and rear edge portions of the first electrode unit.
US09786888B2
A separator is provided and includes a functional resin layer containing a resin material and an inorganic oxide filler, having a porous interconnected structure in which many pores are mutually interconnected and having a contact angle against an electrolytic solution of not more than 11 degrees.
US09786883B2
A battery containment mesh includes a plurality of loops and a plurality of joiners that interconnect the loops into a net sized to surround a battery pack including a plurality of battery cells. The loops and the joiners are fabricated of heat resistant materials capable of maintaining physical integrity in an event of combustion of the battery pack such that the battery containment mesh can carry a weight of the battery pack after the event of combustion.
US09786876B2
An apparatus for waterproofing a battery cover in a portable terminal is provided, in which a rear case includes an opening for accommodating a battery, a battery cover covers the rear case, and a waterproofing module is disposed between the rear case and the battery cover. The waterproofing module is disposed along an inner periphery of the opening, thus sealing a water infiltration path between the battery cover and the rear case.
US09786872B2
A flexible secondary battery includes: an electrode assembly including a first electrode layer, a second electrode layer, and a separator between the first electrode layer and the second electrode layer; a gasket having flexibility and surrounding edges of the electrode assembly; a first sealing sheet attached to a first surface of the gasket; and a second sealing sheet attached to a second surface of the gasket facing away from the first surface, wherein an uneven pattern is at a bendable area of the gasket.
US09786864B2
A display panel, a display device and a manufacturing method of the display panel. The display panel includes a display area and a non-display area, the display area includes a plurality of pixel areas, at least one through hole is arranged in at least one of the plurality of pixel areas, and the through hole passes through the display panel along the thickness direction of the display panel.
US09786862B2
An organic light emitting device including a first electrode connected to a thin film transistor formed on a substrate, a second electrode opposite to the first electrode, and an organic laminate formed between the first electrode and the second electrode and including a hole transport layer, a multilayer-light emitting structure, and an electron transport layer. The multilayer-light emitting structure includes at least two light emitting layers emitting light of different colors through recombination of electrons and holes injected through the first and second electrodes, and a charge transport control layer formed of a bipolar material transporting both electrons and holes at boundaries between the at least two light emitting layers and controlling the amount of charges transported between the at least two light emitting layers.
US09786860B2
An object is to provide a light-emitting element which uses a plurality of kinds of light-emitting dopants and has high emission efficiency. In one embodiment of the present invention, a light-emitting device, a light-emitting module, a light-emitting display device, an electronic device, and a lighting device each having reduced power consumption by using the above light-emitting element are provided. Attention is paid to Förster mechanism, which is one of mechanisms of intermolecular energy transfer. Efficient energy transfer by Förster mechanism is achieved by making an emission wavelength of a molecule which donates energy overlap with a local maximum peak on the longest wavelength side of a graph obtained by multiplying an absorption spectrum of a molecule which receives energy by a wavelength raised to the fourth power.
US09786859B2
An organic electroluminescent element including at least three light-emitting units. The at least three light-emitting units include one or more short-wavelength light-emitting units having a weighted average emission wavelength λS of 380 or more and less than 550 nm, and two or more long-wavelength light-emitting units having a weighted average emission wavelength λS of 550 nm or more and 780 nm or less. The two or more long-wavelength light-emitting units are greater in number than the one or more short-wavelength light-emitting units.
US09786854B2
An N-type thin film transistor includes an insulating substrate, a gate electrode, an insulating layer, a first MgO layer, a semiconductor carbon nanotube layer, a second MgO layer, a functional dielectric layer, a source electrode and a drain electrode. The gate electrode is located on a surface of the insulating substrate. The insulating layer is located on the gate electrode. The first MgO layer is located on the insulating layer. The semiconductor carbon nanotube layer is located on the first MgO layer. The source electrode and the drain electrode are electrically connected to the semiconductor carbon nanotube layer, wherein the source electrode and the drain electrode are spaced from each other. The second MgO layer is located on the semiconductor carbon nanotube layer. The functional dielectric layer is located on the second MgO layer.
US09786849B2
An electrically conductive OLED carrier includes a glazing substrate; an electrode arranged in a metal grid made up of strands; an insulating light extraction layer under the metal grid; and a layer partially structured in its thickness, this layer being of given composition and of refractive index n3 of 1.7 to 2.3, and being located on the light extraction layer, which partially structured layer is formed from a region structured with cavities containing the metal grid, and from another region, called the low region, located on the light extraction layer, the separation H between that surface of the structured region called the high surface, and that surface of the metal grid called the upper surface, and therefore that furthest from the substrate, is larger than 100 nm. The strands have along their length a central zone between lateral zones that are flush with the high surface.
US09786846B2
Disclosed is a light-emitting material for organic electroluminescent (EL) devices which is composed of an asymmetric anthracene derivative of a specific structure. Also disclosed are a material for organic EL devices and an organic EL device wherein an organic thin film layer composed of one or more layers including at least a light-emitting layer is interposed between a cathode and an anode. At least one layer composed of the organic thin film layer contains the material for organic EL devices by itself or as a component of a mixture. Consequently, the organic EL device has a high efficiency and a long life. Also disclosed are a light-emitting material for organic EL devices and material for organic devices which enable to realize such an organic EL device.
US09786840B2
An electronic device including a semiconductor memory is provided. The semiconductor memory includes an interlayer dielectric layer disposed over a substrate, and having a recess which exposes a portion of the substrate; a bottom contact partially filling the recess; and a resistance variable element including a bottom layer which fills at least a remaining space of the recess over the bottom contact, and a remaining layer which is disposed over the bottom layer and protrudes out of the interlayer dielectric layer.
US09786836B2
A mechanism is provided for a thermally assisted magnetoresistive random access memory device (TAS-MRAM). A storage layer has an anisotropic axis, in which the storage layer is configured to store a state in off axis positions and on axis positions. The off axis positions are not aligned with the anisotropic axis. A tunnel barrier is disposed on top of the storage layer. A ferromagnetic sense layer is disposed on top of the tunnel barrier.
US09786834B2
The present invention provides electroactive polymer (“EAP”) transducers having improved properties. This improvement is achieved without decreasing film thickness, or by using high dielectric constant and high field, so that this approach does not adversely affect the reliability and physical properties of the resultant dielectric films. Mobile electrically active additives are added to the electrode formulation which significantly improve the performance of electroactive polymer transducers. Such additives do not need to be ionic. These electrically active additives can enable higher performance devices, smaller devices using less active area, lower voltage/power operation, and combinations of these enhancements.
US09786832B2
An energy harvester for converting vibration energy into electrical energy and harvesting the electrical energy includes: a base; a clamping structure which is supported by the base and is spaced apart from the base; an elastic member which is disposed between the base and the clamping structure and allows the clamping structure to be elastically moved relative to the base; and a cantilever structure including a cantilever beam having one side fixed to the clamping structure and the other side which is elastically bendable, and a mass body disposed on the cantilever beam.
US09786831B1
A microactuator for a dual stage actuated suspension for a hard disk drive is constructed as a longitudinal stack of piezoelectric (PZT) elements acting in the d33 mode, expanding or contracting longitudinally when an electric field is applied across them in the longitudinal direction. The microactuator has interlaced electrode fingers that separate and define the individual PZT elements, and apply the electric field. A stiff constraint layer having a high Young's modulus is affixed to the microactuator on the side opposite the suspension to which the microactuator is bonded. The constraint layer may be a layer of substantially inactive PZT material that is formed integrally with the PZT elements but without electrodes in the inactive PZT layer. The presence of the stiff constraint layer increases the effective stroke length of the microactuator.
US09786825B2
Devices, components and methods containing one or more light emitter devices, such as light emitting diodes (LEDs) or LED chips, are disclosed. In one aspect, a light emitter device component can include a ceramic body having a top surface, one or more light emitter devices mounted directly or indirectly on the top surface, and one or more electrical components mounted on the top surface and electrically coupled to the one or more light emitter devices, wherein the one or more electrical components can be spaced from the ceramic body by one or more non-metallic layers. Components disclosed herein can result in improved light extraction and thermal management.
US09786817B2
A semiconductor light emitting device includes a semiconductor stack including a first conductive semiconductor layer including a first surface, a second conductive semiconductor layer including a second surface opposite to the first surface, an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer, and a through hole disposed through the semiconductor stack. The semiconductor light emitting device further includes a contact layer connected to the first conductive semiconductor layer, disposed in the through hole, and disposed through the semiconductor stack, a first electrode layer connected to the contact layer, and a second electrode layer disposed on the second surface, and including a pad forming portion on which the semiconductor stack is not disposed. The semiconductor light emitting device further includes an insulating layer disposed between the first electrode layer and the second electrode layer, and an electrode pad disposed on the pad forming portion.
US09786814B2
The ultraviolet light emitting device includes a substrate; a light emitting structure on the substrate, and including a plurality of compound semiconductors, each including at least a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; a first electrode layer on the first conductive semiconductor layer; and a second electrode layer on the second conductive semiconductor layer. The first electrode layer is spaced apart from a side surface of the active layer, and is provided along a peripheral portion of the active layer. At least one of the first and second electrode layers is a reflective layer.
US09786811B2
The present disclosure is directed to LED components, and systems using such components, having a light emission profile that may be controlled independently of the lens shape by varying the position and/or orientation of LED chips with respect to one or both of an overlying lens and the surface of the component. For example, the optical centers of the LED emitting surface and the lens, which are normally aligned, may be offset from each other to generate a controlled and predictable emission profile. The LED chips may be positioned to provide a peak emission shifted from a perpendicular centerline of the lens base. The use of offset emitters allows for LED components with shifted or tilted emission patterns, without causing output at high angles of the components. This is beneficial as it allows a lighting system to have tilted emission from the LED component and primary optics.
US09786808B2
The present disclosure provides a method of anodizing a surface of a semiconductor device comprising a p-n junction. The method comprises exposing a first surface portion of the semiconductor device to an electrolytic solution that is suitable for anodizing the first surface portion when an electrical current is directed through a region at the first surface portion. Further, the method comprises exposing a portion of the semiconductor device to electromagnetic radiation in a manner such that the electromagnetic radiation induces the electrical current and the first surface portion anodizes.
US09786777B2
A semiconductor device and method of forming the same is described. In an example, a polysilicon layer is deposited on a substrate having at least one polysilicon ring. The substrate is doped using the polysilicon layer as a mask to form doped regions in the substrate. A dielectric layer is deposited over the polysilicon layer and the substrate. The dielectric layer is etched to expose portions of the polysilicon layer. A metal layer is deposited on the dielectric layer. The metal layer, the dielectric layer, and the exposed portions of the polysilicon layer are etched such that at least a portion of each polysilicon ring is removed.
US09786775B2
Disclosure includes a normally-off field-effect semiconductor device and the fabrication method thereof. An antigrowth portion is formed on a template. A first semiconductor layer and a second semiconductor layer on the template form two heterojunctions for creating two-dimensional electron gas regions, while a heterojunction-free area defined by the antigrowth portion separate the heterojunctions. A dielectric layer is on the second semiconductor layer and above the antigrowth portion. Two channel electrodes formed on the second semiconductor layer are electrically coupled to the two-dimensional electron gas regions respectively. A gate electrode on the dielectric layer and above the antigrowth portion is used for control of conduction between the channel electrodes.
US09786764B2
A semiconductor device includes an active fin formed to extend in a first direction, a gate formed on the active fin and extending in a second direction crossing the first direction, a source/drain formed on upper portions of the active fin and disposed at one side of the gate, an interlayer insulation layer covering the gate and the source/drain, a source/drain contact passing through the interlayer insulation layer to be connected to the source/drain and including a first contact region and a second contact region positioned between the source/drain and the first contact region, and a spacer layer formed between the first contact region and the interlayer insulation layer. A width of the second contact region in the first direction is greater than the sum of a width of the first contact region in the first direction and a width of the spacer layer in the first direction.
US09786759B2
A semiconductor device includes a semiconductor substrate having a first area and a second area, and a first gate pattern on the first area and a second gate pattern on the second area. The first gate pattern includes a first gate insulating pattern on the first area, a first gate barrier pattern on the first gate insulating pattern, and a first work function metal pattern on the first gate barrier pattern. The second gate pattern includes a second gate insulating pattern on the second area, a second gate barrier pattern on the second gate insulating pattern, and a second work function metal pattern on the second gate barrier pattern. The first gate barrier pattern includes a metal material different than the second gate barrier pattern.
US09786753B2
A power MOSFET or a power rectifier may be fabricated according to the invention to include a gate trench and a field plate trench. Both trenches can be formed with a two-step etching process as described in detail in the specification. The devices that embody this invention can be fabricated with higher packaging density and better and more tightly distributed device parameters such as the VF, RDSS, and BV.
US09786740B2
A semiconductor device of according to an embodiment of the present disclosure includes a n-type SiC layer; a SiC region provided on the n-type SiC layer and containing H (hydrogen) or D (deuterium) in an amount of 1×1018 cm−3 or more and 1×1022 cm−3 or less; and a metal layer provided on the SiC region.
US09786736B2
A problem associated with n-channel power MOSFETs and the like that the following is caused even by relatively slight fluctuation in various process parameters is solved: source-drain breakdown voltage is reduced by breakdown at an end of a p-type body region in proximity to a portion in the vicinity of an annular intermediate region between an active cell region and a chip peripheral portion, arising from electric field concentration in that area. To solve this problem, the following measure is taken in a power semiconductor device having a superjunction structure in the respective drift regions of a first conductivity type of an active cell region, a chip peripheral region, and an intermediate region located therebetween: the width of at least one of column regions of a second conductivity type comprising the superjunction structure in the intermediate region is made larger than the width of the other regions.
US09786727B2
The present invention provides a display substrate and a manufacturing method thereof, and a flexible display device including the display substrate, which belong to the field of display technology, and can solve the problem of poor reliability of an existing display substrate due to damage to thin film transistors when the display substrate is bent. In the display substrate provided by the present invention, by providing the stress absorbing units made of a resin material in the display substrate, the stress generated during bending of the display substrate is released through the transparent resin material and the thin film transistors on the display substrate are unlikely to be damaged, thereby improving the reliability of the whole display substrate.
US09786722B1
The disclosure provides a double-side OLED display, the double-side OLED display includes a first light-emitting substrate, a second light-emitting substrate and a color film layer, the first light-emitting substrate and the second light-emitting substrate are disposed opposite, the color film layer is disposed between the first light-emitting substrate and the second light-emitting substrate, light from the first light-emitting substrate partially penetrates the color film layer and forms a second display image on a side of the second light-emitting substrate, light from the second light-emitting substrate partially penetrates the color film layer and forms a first display image on a side of the first light-emitting substrate. The disclosure is capable of simplifying the process and reducing the thickness of the product, meanwhile images on two sides do not influence each other during display on both sides, and directions of two images on both sides are identical.
US09786714B2
A solid-state imaging element includes a plurality of pixels which are two-dimensionally arranged and each of which includes a photoelectric conversion element, and a microlens which is provided on one or two or more first pixels out of the plurality of the pixels, in which an optical axis of the microlens extends inside a second pixel which is adjacent to the first pixel.
US09786711B2
An array substrate of an X-ray sensor and a method for manufacturing the same are provided, the method comprising a step of forming a thin-film transistor element and a photodiode sensor element, wherein the step of forming the thin-film transistor element comprises: forming a gate electrode on an base substrate by a mask process; depositing a gate insulating layer on the base substrate on which the gate electrode is formed; the step of forming the photodiode sensor element comprises: forming an ohmic contact layer on the base substrate through the same mask process while forming the gate electrode; forming a semiconductor layer and a transparent electrode through a mask process on the substrate on which the ohmic contact layer is formed; depositing the gate insulating layer on the base substrate on which the semiconductor layer and the transparent electrode are formed while depositing the gate insulating layer on the base substrate on which the gate electrode is formed. A gate pattern and an ohmic contact layer are formed through the same mask process, and a passivation layer substitutes a channel blocking layer to reduce the number of the mask processes and simplify the manufacturing process and improve throughput and yield of the product.
US09786709B1
A portable electronic device and an image capturing module thereof are disclosed. The image capturing module includes a circuit substrate, a structure reinforcing frame, a plurality of image sensing chips, an adhesive body, and a plurality of lens modules. The circuit substrate has a plurality of first passing openings. The structure reinforcing frame is disposed on the circuit substrate, and the structure reinforcing frame has a plurality of second passing openings respectively communicated with the first passing openings. The image sensing chips is electrically connected with the circuit substrate by wire bonding, and the image sensing chips are coplanarly disposed on a datum plane. The adhesive body is connected between each image sensing chip and the structure reinforcing frame. The lens modules are disposed on the circuit substrate, and the lens modules respectively correspond to the image sensing chips.
US09786703B2
Semiconductor devices and methods of fabricating such devices are provided. The devices include source and drain regions on one conductivity type separated by a channel length and a gate structure. The devices also include a channel region of the one conductivity type formed in the device region between the source and drain regions and a screening region of another conductivity type formed below the channel region and between the source and drain regions. In operation, the channel region forms, in response to a bias voltage at the gate structure, a surface depletion region below the gate structure, a buried depletion region at an interface of the channel region and the screening region, and a buried channel region between the surface depletion region and the buried depletion region, where the buried depletion region is substantially located in channel region.
US09786699B2
The present invention provides an UV cleaning device of a glass substrate, comprising a lamp box, an UV lamp positioned above inside the lamp box, a transparent shield positioned under the UV lamp, a humidifier positioned under the transparent shield and a power exhaust device under the transparent shield and opposite to the humidifier; in usage, the glass substrate is conveyed to be inside the lamp box, and UV light generated by the UV lamp irradiates on the glass substrate through the shield to clean the glass substrate and a humidity and an oxygen content inside the lamp box are adjusted with the humidifier to make a surface of the glass substrate adsorb one layer of water molecules. The electrons generated as the UV light cleans can be gradually conducted and led out with water molecules to effectively restrain the accumulation of the electrostatic to reduce the phenomenon of electrostatic damage, and meanwhile, the increase of the oxygen content makes the concentration of the activated oxygen atoms increases along with. Accordingly, the result of cleaning the organic objects with the UV light is promoted.
US09786695B2
The present invention provides a TFT substrate structure, comprising a Switching TFT and a Driving TFT, and the Switching TFT comprises a first active layer, and the Driving TFT comprises a second active layer, and the first active layer and the second active layer are made by the same or different materials and the electrical properties of the Switching TFT and the Driving TFT are different. According to the different functions of the different TFTs, the present invention employs different working structures for the Switching TFT and the Driving TFT to respectively implement deposition and photolithography, and employs different materials for the active layers of the Switching TFT and the Driving TFT to differentiate the electrical properties of different TFTs in the TFT substrate. Accordingly, the accurate control to the OLED with lowest cost can be realized.
US09786694B2
A display device and a method of manufacturing the display device are provided. According to an exemplary embodiment, a display device includes: a substrate; a gate electrode disposed on the substrate; a semiconductor pattern disposed on the gate electrode; data wiring disposed on the semiconductor pattern and having a data line, a source electrode, and a drain electrode; a first barrier layer disposed between the data wiring and the semiconductor pattern; and undercuts disposed on at least one side of each segment of the first barrier layer.
US09786691B2
The present invention provides a TFT substrate structure, comprising a Switching TFT and a Driving TFT, and the Switching TFT comprises a first active layer, and the Driving TFT comprises a second active layer, and the first active layer and the second active layer are made by the same or different materials and the electrical properties of the Switching TFT and the Driving TFT are different. According to the different functions of the different TFTs, the present invention employs different working structures for the Switching TFT and the Driving TFT to respectively implement deposition and photolithography, and employs different materials for the active layers of the Switching TFT and the Driving TFT to differentiate the electrical properties of different TFTs in the TFT substrate. Accordingly, the accurate control to the OLED with lowest cost can be realized.
US09786687B2
[Summary][Problem]A TFT is manufactured using at least five photomasks in a conventional liquid crystal display device, and therefore the manufacturing cost is high.[Solving Means]By performing the formation of the pixel electrode 127, the source region 123 and the drain region 124 by using three photomasks in three photolithography steps, a liquid crystal display device prepared with a pixel TFT portion, having a reverse stagger type n-channel TFT, and a storage capacitor can be realized.
US09786680B2
A semiconductor device includes: a semiconductor substrate, a first portion and a second portion of an upper layer portion of the semiconductor substrate being conductive; an insulating member electrically isolating the first portion from the second portion; a first stacked body provided in a region directly above the second portion, the first stacked body including first insulating films and electrode films stacked alternately; a semiconductor pillar provided inside the first stacked body and extending in a stacking direction; a charge storage film provided between the semiconductor pillar and the electrode films; a second stacked body provided in a region directly above the first portion, the second stacked body including second insulating films and third insulating films stacked alternately; and two first conductive pillars provided inside the second stacked body extending in the stacking direction, lower ends thereof being connected to the first portion.
US09786678B2
According to an embodiment, a nonvolatile semiconductor memory device comprises a plurality of conductive layers stacked in a first direction via an inter-layer insulating layer. In addition, the nonvolatile semiconductor memory device comprises: a semiconductor layer having the first direction as a longer direction; a tunnel insulating layer contacting a side surface of the semiconductor layer; a charge accumulation layer contacting a side surface of the tunnel insulating layer; and a block insulating layer contacting a portion facing the conductive layer, of a side surface of the charge accumulation layer. Moreover, the portion facing the conductive layer, of the charge accumulation layer is thinner compared to a portion facing the inter-layer insulating layer, of the charge accumulation layer.
US09786672B2
A semiconductor device can include a plurality of landing pads arranged according to a layout on a substrate, wherein a cross-sectional shape of each of the landing pads has a diamond shape so that opposing interior angles of the diamond shape are equal to one another and adjacent interior angles of the diamond shape are unequal to one another.
US09786667B2
A method for fabricating floating body memory cells (FBCs), and the resultant FBCs where gates favoring different conductivity type regions are used is described. In one embodiment, a p type back gate with a thicker insulation is used with a thinner insulated n type front gate. Processing, which compensates for misalignment, which allows the different oxide and gate materials to be fabricated is described.
US09786666B2
A silicon fin precursor is formed in an nFET device region and a fin stack comprising alternating material portions, and from bottom to top, of silicon and a silicon germanium alloy is formed in a pFET device region. A thermal anneal is then used to convert the fin stack into a silicon germanium alloy fin precursor. A thermal oxidation process follows that converts the silicon fin precursor into a silicon fin and the silicon germanium alloy fin precursor into a silicon germanium alloy fin. Functional gate structures can be formed straddling over each of the various fins.
US09786665B1
A semiconductor device adopts an isolation scheme to protect low voltage transistors from high voltage operations. The semiconductor device includes a substrate, a buried layer, a transistor well region, a first trench, and a second trench. The substrate has a top surface and a bottom surface. The buried layer is positioned within the substrate, and the transistor well region is positioned above the buried layer. The first trench extends from the top surface to penetrate the buried layer, and the first trench has a first trench depth. The second trench extending from the top surface to penetrate the buried layer. The second trench is interposed between the first trench and the transistor well region. The second trench has a second trench depth that is less than the first trench depth.
US09786664B2
A dual gate CMOS structure including a semiconductor substrate; a first channel structure including a first semiconductor material and a second channel structure including a second semiconductor material on the substrate. The first semiconductor material including SixGe1-x where x=0 to 1 and the second semiconductor material including a group III-V compound material. A first gate stack on the first channel structure includes: a first native oxide layer as an interface control layer, the first native oxide layer comprising an oxide of the first semiconductor material; a first high-k dielectric layer; a first metal gate layer. A second gate stack on the second channel structure includes a second high-k dielectric layer; a second metal gate layer. The interface between the second channel structure and the second high-k dielectric layer is free of any native oxides of the second semiconductor material.
US09786653B1
A self-balanced diode device includes a substrate, a doped well, at least one first conductivity type heavily doped fin and at least two second conductivity type heavily doped fins. The doped well is arranged in the substrate. The first conductivity type heavily doped fin is arranged in the doped well, arranged in a line along a first direction, and protruded up from a surface of the substrate. The second conductivity type heavily doped fins is arranged in the doped well, arranged in a line along a second direction intersecting the first direction, respectively arranged at two opposite sides of the first conductivity type heavily doped fin, and protruded up from the surface of the substrate. Each second conductivity type heavily doped fin and the first conductivity type heavily doped fin are spaced at a fixed interval.
US09786647B1
A semiconductor layout structure includes a substrate comprising a cell edge region and a dummy region abutting thereto, a plurality of dummy contact patterns disposed in the dummy region and arranged along a first direction, and a plurality of dummy gate patterns disposed in the dummy region and arranged along the first direction. The dummy contact patterns and the dummy gate patterns are alternately arranged. Each dummy contact pattern includes an inner dummy contact proximal to the cell edge region and an outer dummy contact distal to the cell edge region, and the inner dummy contact and the outer dummy contact are arranged along a second direction perpendicular to the first direction and spaced apart from each other by a first gap.
US09786643B2
Methods of protecting semiconductor devices may involve forming trenches in streets between stacks of semiconductor dice on regions of a semiconductor wafer. A protective material may be positioned between the die stacks and in the trenches, after which the wafer is thinned from a side opposite the die stacks to expose the protective material in the trenches. Semiconductor devices comprising stacks of dice and corresponding base semiconductor dice comprising wafer regions are separated from one another by cutting through the protective material along the streets and in the trenches. The protective material covers at least sides of each die stack as well as side surfaces of the corresponding base semiconductor die.
US09786626B2
An electronic device includes: a semiconductor body; a front metallization region; a top buffer region, arranged between the front metallization region and the semiconductor body; and a conductive wire, electrically connected to the front metallization region. The top buffer region is at least partially sintered.
US09786620B2
According to various embodiments, a semiconductor device may include: at least one first contact pad on a front side of the semiconductor device; at least one second contact pad on the front side of the semiconductor device; a layer stack disposed at least partially over the at least one first contact pad, wherein the at least one second contact pad is at least partially free of the layer stack; wherein the layer stack includes at least an adhesion layer and a metallization layer; and wherein the metallization layer includes a metal alloy and wherein the adhesion layer is disposed between the metallization layer and the at least one first contact pad for adhering the metal alloy of the metallization layer to the at least one first contact pad.
US09786617B2
A chip package may include a die and a redistribution structure over the die. The redistribution structure may include a die, a redistribution structure over the die, and an under-bump metallurgy (UBM) structure over the redistribution structure. The UBM structure may include a central portion, a peripheral portion physically separated from and surrounding a perimeter of the central portion, and a bridging portion having a first end and a second end opposite the first end. The first end of the bridging portion may be coupled to the central portion of the UBM structure, while the second end of the bridging portion may be coupled to the peripheral portion of the UBM structure.
US09786614B2
Semiconductor devices and methods of forming are provided. A molding compound extends along sidewalls of a first die and a second die. A redistribution layer is formed over the first die, the second die, and the molding compound. The redistribution layer includes a conductor overlying a gap between the first die and the second die. The conductor is routed at a first angle over an edge of the first die. The first angle is measured with respect to a straight line that extends along a shortest between the first die and the second die, and the first angle is greater than 0.
US09786612B2
Wafer-level methods of processing semiconductor devices may involve forming grooves partially through a molding material, the molding material located in streets and at least surrounding stacks of semiconductor dice located on a wafer. Wafer-level methods of preparing semiconductor devices may involve attaching a wafer to a carrier substrate and forming stacks of laterally spaced semiconductor dice on die locations of the wafer. Molding material may be disposed over the die stacks on a surface of the wafer to at least surround the stacks of semiconductor dice with the molding material. Grooves may be formed in the molding material by partially cutting through the molding material between at least some of the stacks of semiconductor dice along streets between the die stacks. The resulting wafer-level assembly may then, when exposed to elevated temperatures during, for example, debonding the wafer from a carrier, exhibit reduced propensity for warping.
US09786611B2
A semiconductor package includes a support substrate; a stress relaxation layer provided on a main surface of the support substrate; a semiconductor device located on the stress relaxation layer; an encapsulation material covering the semiconductor device, the encapsulation material being formed of an insulating material different from that of the stress relaxation layer; a line running through the encapsulation material and electrically connected to the semiconductor device; and an external terminal electrically connected to the line. Where the support substrate has an elastic modulus of A, the stress relaxation layer has an elastic modulus of B, and the encapsulation material has an elastic modulus of C under a same temperature condition, the relationship of A>C>B or C>A>B is obtained.
US09786605B1
In one aspect of the invention, a method to create an advanced through silicon via structure is described. A high aspect ratio through substrate via in a substrate is provided. The through substrate via has vertical sidewalls and a horizontal bottom. A metallic barrier layer is deposited on the sidewalls of the through substrate via. A nitridation process is performed to convert a surface portion of the metallic barrier layer to a nitride surface layer. The nitride surface layer enhances the nucleation of subsequent depositions. A metal is deposited to fill the through substrate via. Another aspect of the invention is a device created by the method.
US09786602B2
A device includes a substrate feature disposed over a substrate. The substrate feature has a first length extending along a first direction and a second length extending along a second direction. The first length is greater than the second length. The device also includes a first material feature disposed over the substrate. The first material feature has a first surface in physical contact with the substrate feature and a second surface opposite to the first surface. The first surface has a third length extending along the first direction and a fourth length extending along the second direction. The third length is greater than the fourth length. The second surface has a fifth length extending along the first direction and a sixth length extending along the second direction. The sixth length is greater than the fifth length.
US09786596B2
A fuse structure is provided above a first portion of a semiconductor material. The fuse structure includes a first end region containing a first portion of a metal structure having a first thickness, a second end region containing a second portion of the metal structure having the first thickness, and a neck region located between the first and second end regions. The neck region contains a third portion of the metal structure having a second thickness that is less than the first thickness, wherein a portion of the neck region is located in a gap positioned between a bottom III-V compound semiconductor material portion and a top III-V compound semiconductor material portion.
US09786592B2
An integrated circuit structure with a back side through silicon via (B/S TSV) therein and a method of forming the same is disclosed. The method includes the steps of: receiving a wafer comprising a substrate having a front side that has a conductor thereon and a back side; forming a back side through silicon via (B/S TSV) from the back side of the substrate to penetrate the substrate; and filling the back side through silicon via (B/S TSV) with a conductive material to form an electrical connection with the conductor. Thus a back side through silicon via penetrates the back side of the substrate and electrically connects to the conductor on the front side of the substrate is formed.
US09786570B2
Methods and apparatus to form films on sensitive substrates while preventing damage to the sensitive substrate are provided herein. In certain embodiments, methods involve forming a bilayer film on a sensitive substrate that both protects the underlying substrate from damage and possesses desired electrical properties. Also provided are methods and apparatus for evaluating and optimizing the films, including methods to evaluate the amount of substrate damage resulting from a particular deposition process and methods to determine the minimum thickness of a protective layer. The methods and apparatus described herein may be used to deposit films on a variety of sensitive materials such as silicon, cobalt, germanium-antimony-tellerium, silicon-germanium, silicon nitride, silicon carbide, tungsten, titanium, tantalum, chromium, nickel, palladium, ruthenium, or silicon oxide.
US09786562B2
A method is described of radiatively cutting a wafer, the method comprising the steps of low power cutting of two trenches followed by high power cutting of a fissure. A single pulsed radiation beam is split into a first pulsed radiation beam for cutting at least one of the trenches and a second pulsed radiation beam for cutting the fissure. When cutting a fissure on the wafer in a cutting direction along a cutting street, the first and second radiation beams are directed simultaneously with the first radiation beam leading and the second radiation beam trailing. For cutting a fissure in the opposite cutting direction, a third pulsed radiation beam for trenching is split from said single pulsed radiation beam.
US09786555B1
Disclosed is a method for reducing contact resistance, including depositing a GST layer on an InGaAs substrate, generating an InGaAs/GST/Ni stacked structure by depositing a Ni layer on the GST layer, and thermally treating the stacked structure to rearrange components of the GST layer and to generate a Ni—InGaAs alloy.
US09786544B2
Some embodiments include apparatus and methods having a base; a memory cell including a body, a source, and a drain; and an insulation material electrically isolating the body, the source, and the drain from the base, where the body is configured to store information. The base and the body include bulk semiconductor material. Additional apparatus and methods are described.
US09786543B2
The invention relates to an isolation structure of a semiconductor device and a method of forming. An exemplary isolation structure for a semiconductor device comprises a substrate comprising a trench; a strained material in the trench, wherein a lattice constant of the strained material is different from a lattice constant of the substrate; an oxide layer of the strained material over the strained material; a high-k dielectric layer over the oxide layer; and a dielectric layer over the high-k dielectric layer filling the trench.
US09786542B2
Embodiments of mechanisms for forming a semiconductor device are provided. The semiconductor device includes a semiconductor substrate having an upper surface. The semiconductor device also includes a recess extending from the upper surface into the semiconductor substrate. The semiconductor device further includes an isolation structure in the recess, and the isolation structure has an upper portion and a lower portion.
US09786541B2
A dicing sheet with a protective film forming layer has a substrate film, an adhesive layer, and a protective film forming layer, and at a minimum, the adhesive layer is formed in an area surrounding the protective film forming layer in a planar view, and the substrate film has the following characteristics (a)-(c): (a) the melting point either exceeds 130° C. or the film has no melting point; (b) the thermal contraction rate under conditions of heating at 130° C. for two hours is from −5 to +5%, and (c) the degree of elongation-to-break in the MD direction and the CD direction is at least 100%, and the stress at 25% is no more than 100 MPa.
US09786527B2
It is an object to reduce a chemical treating width in a peripheral edge part of a substrate while suppressing deterioration in each of uniformity of the chemical treating width and processing efficiency. In order to achieve the object, a substrate processing device for carrying out a chemical treatment for a substrate using a processing liquid having a reaction rate increased with a rise in temperature includes a substrate holding portion, a rotating portion for rotating the substrate held in the substrate holding portion in a substantially horizontal plane, a heating portion for injecting heating steam to a central part of a lower surface of the substrate to entirely heat the substrate, and a peripheral edge processing portion for supplying the processing liquid from above to a peripheral edge part of the substrate heated by the heating portion, thereby carrying out a chemical treatment for the peripheral edge part.
US09786520B2
Some embodiments of the present disclosure provide a method of manufacturing a device. The method includes providing a carrier, the carrier including a top surface, covering a portion of the top surface with a plurality of active dies, disposing a protrudent band over a periphery of the carrier, wherein the protrudent band includes a rim shaped along the contour of the carrier, and forming a molding compound over the carrier to cover the plurality of active dies. A method for determining a width of the protrudent band of a device described herein is also provided.
US09786514B2
A semiconductor package includes a redistribution layer (RDL) interposer having a first side, a second side opposite to the first side, and a vertical sidewall extending between the first side and the second side; at least one semiconductor die mounted on the first side of the RDL interposer; a molding compound disposed on the first side and covering the at least one semiconductor die and the vertical sidewall of the RDL interposer; and a plurality of solder bumps or solder balls mounted on the second side of the RDL interposer.
US09786512B2
Provided is an etching method for simultaneously etching first and second regions of a workpiece. The first region has a multilayered film configured by alternately laminating a silicon oxide film and a silicon nitride film and a second region has a silicon oxide film having a film thickness that is larger than that of the silicon oxide film in the first region. A mask is provided on the workpiece to at least partially expose each of the first and second regions. In the etching method, plasma of a first processing gas containing fluorocarbon gas, hydrofluorocarbon gas, and oxygen gas is generated within a processing container of a plasma processing apparatus. Subsequently, plasma of a second processing gas containing fluorocarbon gas, hydrofluorocarbon gas, oxygen gas, and a halogen-containing gas is generated within the processing container. Subsequently, plasma of a third processing gas containing oxygen gas is generated within the processing container.
US09786498B2
Described is a method for producing a nitride compound semiconductor layer, involving the steps of:—depositing a first seed layer (1) comprising a nitride compound semiconductor material on a substrate (10);—desorbing at least some of the nitride compound semiconductor material in the first seed layer from the substrate (10);—depositing a second seed layer (2) comprising a nitride compound semiconductor material; and—growing the nitride compound semiconductor layer (3) containing a nitride compound semiconductor material onto the second seed layer (2).
US09786497B2
A semiconductor structure is provided by a process in which two aspect ratio trapping processes are employed. The structure includes a semiconductor substrate portion of a first semiconductor material having a first lattice constant. A plurality of first semiconductor-containing pillar structures of a second semiconductor material having a second lattice constant that is greater than the first lattice constant extend upwards from a surface of the semiconductor substrate portion. A plurality of second semiconductor-containing pillar structures of a third semiconductor material having a third lattice constant that is greater than the first lattice constant extend upwards from another surface of the semiconductor substrate portion. A spacer separates each first semiconductor-containing pillar structure from each second semiconductor-containing pillar structure. Each second semiconductor-containing pillar structure has a width that is different from a width of each first semiconductor-containing pillar structure.
US09786493B2
A semiconductor device manufacturing method, including: mounting substrates on a mounting table within a processing chamber along a rotation direction of the table; starting to supply a first-element-containing gas to a first region in the chamber along the rotation direction, while rotating the table and exhausting the processing chamber; starting to supply a second-element-containing gas to a second region in the chamber; starting to generate, by a plasma generating unit in the second region, plasma of the second-element-containing gas in the second region to have a first activity; and forming a thin film containing first and second elements on the substrates by rotating the table to cause the substrates to sequentially pass through the first and second regions in turn so that a first-element-containing layer is formed in the first region and is modified in the second region by generating plasma having a second activity higher than the first activity.
US09786490B2
Disclosed herein is a wafer processing method for processing the back side of a wafer having a plurality of devices formed on the front side so as to be separated by a plurality of crossing division lines. The wafer processing method includes a back grinding step of grinding the back side of the wafer to thereby reduce the thickness of the wafer to a predetermined thickness, a back polishing step of polishing the back side of the wafer after performing the back grinding step, thereby removing grinding strain, and a diamond-like carbon film deposition step of forming a diamond-like carbon film on the back side of the wafer after performing the back polishing step.
US09786488B2
A liquid processing method for liquid-processing a substrate includes setting a substrate on a substrate holding device which rotates the substrate such that the substrate is held in horizontal position, supplying processing liquid to center portion of the substrate such that the center portion positioned center side with respect to peripheral portion of the substrate is liquid-processed, positioning a discharge port of a processing liquid nozzle toward downstream side in rotation direction such that the liquid is discharged to the peripheral portion obliquely to surface of the substrate and along tangential direction of the substrate while the substrate is rotated, and discharging gas from a gas nozzle perpendicularly to the surface of the substrate toward position that is adjacent to liquid landing position of the liquid on the surface of the substrate and is on the center side of the substrate, while the liquid is discharged to the peripheral portion.
US09786486B2
A system and method concurrently processes multiple wafers. A cassette structure includes multiple chucks and a drive spool for supporting and rotating the chucks. Each chuck holds a wafer in position while rotating. The cassette structure is loaded into a process chamber. Each chuck includes a self-locking mechanism that is activated by the centrifugal force generated from the rotation of the chuck. The self-locking mechanism centers and holds a wafer in position with respect to the chuck. A drive motor drives the drive spool, which causes the chucks to rotate. As the chucks are being rotated, a dispensing assembly delivers a processing chemical to the wafers.
US09786480B2
An analytical apparatus for mass spectrometry comprises an electron impact ionizer including an electron emitter and an ionization target zone. The target zone is arranged to be populated with matter to be ionized for analysis. An electron extracting element is aligned with an electron pathway defined between the electron emitter and the ionization target zone. The electron extracting element is configured to accelerate electrons away from the emitter along the electron pathway between the emitter and the extracting element and to decelerate the electrons along the electron pathway between the extracting element and the ionization target zone to enable soft ionization while avoiding the effects of Coulombic repulsion at the electron source.
US09786479B2
An ion guide or mass analyser is disclosed comprising a plurality of electrodes having apertures through which ions are transmitted in use. A pseudo-potential barrier is created at the exit of the ion guide or mass analyser. The amplitude or depth of the pseudo-potential barrier is inversely proportional to the mass to charge ratio of an ion. One or more transient DC voltages are applied to the electrodes of the ion guide or mass analyser in order to urge ions along the length of the ion guides or mass analyser. The amplitude of the transient DC voltage applied to the electrode may be increased with time so that ions are caused to be emitted from the ion guide or mass analyser in reverse order of their mass to charge ratio.
US09786478B2
The invention generally relates to zero volt mass spectrometry probes and systems. In certain embodiments, the invention provides a system including a mass spectrometry probe including a porous material, and a mass spectrometer (bench-top or miniature mass spectrometer). The system operates without an application of voltage to the probe. In certain embodiments, the probe is oriented such that a distal end faces an inlet of the mass spectrometer. In other embodiments, the distal end of the probe is 5 mm or less from an inlet of the mass spectrometer.
US09786477B1
An ion transfer system includes an ion source coupled to an ion inlet; an ion transfer tube assembly including a concentric ion transfer tube with a porous material that is permeable to a gas, the concentric ion transfer tube coupled to the ion inlet and the ion source, where a first gas that includes an ion stream flows through the concentric ion transfer tube; and a concentric gas tube, the concentric ion transfer tube disposed within the concentric gas tube, where a second gas flows between the concentric ion transfer tube and the concentric gas tube; an ion detection device coupled to a capillary tube that is coupled to the concentric ion transfer tube, where the capillary tube transports the ion stream to the ion detection device; and a pump coupled to at least one of the concentric ion transfer tube or the concentric gas tube.
US09786473B2
Provided is a method of processing a wafer, which is performed in a processing container of a plasma processing apparatus. This method is a plasma etching method performed on a porous film formed of SiOCH, and is a method of enabling the suppression of various types of deterioration such as an increase in the dielectric constant of the porous film. The wafer includes the porous film and a mask provided on the porous film. The method includes a process of generating a plasma of a first gas and a plasma of a second gas in the processing container and etching the porous film using the mask. The porous film contains SiOCH, and the first gas contains a fluorocarbon-based gas. The second gas contains GeF4 gas.
US09786464B2
A method and system for beam deflection. The method and system for beam deflection comprises a compact superconducting RF cavity further comprising a waveguide comprising an open ended resonator volume configured to operate as a trapped dipole mode; a plurality of cells configured to provide a high operating gradient; at least two pairs of protrusions configured for lowering surface electric and magnetic fields; and a main power coupler positioned to optimize necessary coupling for an operating mode and damping lower dipole modes simultaneously.
US09786463B2
The conductive paste contains the following dispersed in a binder resin dissolved in a solvent: a plurality of particles comprising aluminum and/or an aluminum-containing alloy; and an oxide-comprising powder. The oxide contains vanadium with a valence no greater than 4 and a glass phase. In the method for manufacturing an electronic component, the conductive paste is applied to a substrate and fired, forming electrode wiring. The electronic component is provided with electrode wiring that has: a plurality of particles comprising aluminum and/or an aluminum-containing alloy; and an oxide affixing the particles to a substrate. The oxide contains vanadium with a valence no greater than 4. A compound layer containing vanadium and aluminum is formed on the surfaces of the particles, and the vanadium in the compound layer includes vanadium with a valence no greater than 4. This results in an electrode wiring with high reliability and water resistance.
US09786458B2
Disclosed herein is a device comprising a pulse trigger switch module configured to generate a first control signal in response to a first input signal value and generate the second control signal in response to a second input signal value. An on pulse generator module provides a first pulse signal having a first predetermined pulse duration in response to the first control signal and an off pulse generator module provides a second pulse signal having a second predetermined pulse duration in response to the second control signal. An on pulse switch module connects a power signal to an output in response to the first pulse signal and an off pulse switch module connects the power signal to the output in response to the second pulse signal.
US09786456B2
An apparatus is for a process machine having a process-status switch and a process-control element. The apparatus includes a sensor input signal conditioning circuit, a logic circuit and a power output circuit. The sensor input signal conditioning circuit is configured to provide a logic-converted status signal representing a process-status signal associated with the process-status switch of the process machine. The logic circuit is configured to provide a latched output signal converted from the logic-converted status signal provided by the sensor input signal conditioning circuit. The latched output signal has any one of a first latched state and a second latched state. The power output circuit is configured to execute any one of maintaining and disconnecting a voltage being applied to the process-control element depending on the state of the latched output signal.
US09786443B2
Provided is a capacitor in which, even in the case of a high maximum charging voltage, decomposition of the electrolyte can be suppressed and charging and discharging can be performed with stability. The capacitor includes a positive electrode containing a positive-electrode active material, a negative electrode containing a negative-electrode active material, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the positive-electrode active material contains a porous carbon material, in a volume-based pore size distribution of the porous carbon material, a cumulative volume of pores having a pore size of 1 nm or less accounts for 85% or more of a total pore volume, the porous carbon material has a crystallite size of 1 to 10 nm, the porous carbon material contains an oxygen-containing functional group, and a content of the oxygen-containing functional group is 3.3 mol % or less.
US09786438B2
An apparatus suitable for use in an air-conditioning system and configured to provide a plurality of selectable capacitance values includes a plurality of capacitive devices and a pressure interrupter cover assembly. Each of the capacitive devices has a first capacitor terminal and a second capacitor terminal. The pressure interrupter cover assembly includes a deformable cover, a set of capacitor cover terminals, a common cover terminal, and a set of insulation structures. The apparatus also includes a conductor configured to electrically connect the second capacitor terminal of at least one of the capacitive devices to the common cover terminal.
US09786436B2
A multilayer ceramic capacitor is configured such that “a” is a distance in a height direction between an effective portion and a first principal surface; “b” is a distance in a length direction between a first end surface and the effective portion in the length direction; “c” is a thickness of the thickest portion of a first base layer provided over the first principal surface; “d” is a distance in the length direction between the thickest portion of the first base layer provided over the first end surface and a portion of the first base layer located over the first principal surface and closest to a second end surface; and “e” is a maximum thickness of a portion of the first base layer provided over the first end surface; and f: the height of the ceramic body, and 2≦(c·d+e·f/2)/(a·b)≦6 is satisfied.
US09786432B2
An external transmitter inductive coil can be provided in, on, or with a belt designed to be placed externally around a part of a body of a patient. An implantable device (such as a VAD or other medical device) that is implanted within the patient's body has associated with a receiver inductive coil that gets implanted within that part of the patient's body along with the device. The externally-located transmitter inductive coil inductively transfers electromagnetic power into that part of the body and thus to the receiver inductive coil. The implanted receiver inductive coil thus wirelessly receives the inductively-transferred electromagnetic power, and operates the implant.
US09786431B2
An electrical power and/or electrical signal transmission system for transmitting electrical power and/or electrical signals from a location on a first side of a metallic wall to a location on a second side of the metallic wall includes a transmitting apparatus having an electrical source and a first transformer. A receiving apparatus has a receiving module for receiving electrical power and/or electrical signals and a second transformer. First and second ends of a primary winding of the second transformer are electrically connected to respective spaced locations on the second, opposite, side of the metallic wall for picking up electrical power and/or electrical signals from the metallic wall. The receiving module is electrically connected to a secondary winding of the second transformer to enable electrical power and/or electrical signals to be transmitted from the electrical source to the receiving module.
US09786427B2
A coil structure of open ventilated type stereoscopic wound-core dry-type transformer, comprising wire disks formed by wound wires and fixing parts. The fixing parts are provided with clamping grooves for fixing the wire disks. The wire disks are fixed and wound around the fixing parts to form the coil structure. The outer layers of the wires are coated with insulating paper with insulating paint. And by insulating paint, wires are adhered mutually and wire disks adhere to fixing parts, which combine into an integral structure. The coil structure does not require another paint impregnation process, so the process is simplified. And by the insulating paint on the insulating paper, wires are adhered mutually and wire disks adhere to fixing parts, so the structure is stable and firm and ensures the electrical equipment meets the requirements of electric performance, mechanical property and insulating property.
US09786419B2
In at least one embodiment, a single sintered magnet is provided having a concentration profile of heavy rare-earth (HRE) elements within a continuously sintered rare-earth (RE) magnet bulk. The concentration profile may include at least one local maximum of HRE element concentration within the bulk such that a coercivity profile of the magnet has at least one local maximum within the bulk. The magnet may be formed by introducing alternating layers of an HRE containing material and a magnetic powder into a mold, pressing the layers into a green compact, and sintering the green compact to form a single, unitary magnet.
US09786417B2
In a multi-core cable in which a plurality of small-diameter cables are gathered and a periphery of these small-diameter cables is covered with a shield layer and a periphery of the shield layer is covered with a sheath, the shield layer is formed by braiding a plurality of twisted wires formed by twisting two or three wires, and a twist pitch of the wires is values from 20 to 50 times (both inclusive) an outside diameter of the twisted wire.
US09786405B2
Structures and methods for forming a patterned graphene layer on a substrate. One such method includes forming at least one patterned structure of a carbide-forming metal or metal-containing alloy on a substrate, applying a layer of graphene on top of the at least one patterned structure of a carbide-forming metal or metal-containing alloy on the substrate, heating the layer of graphene on top of the at least one patterned structure of a carbide-forming metal or metal-containing alloy in an environment to remove graphene regions proximate to the at least one patterned structure of a carbide-forming metal or metal-containing alloy, and removing the at least one patterned structure of a carbide-forming metal or metal-containing alloy to produce a patterned graphene layer on the substrate, wherein the patterned graphene layer on the substrate provides carrier mobility for electronic devices.
US09786403B2
An electrical wire and an electrical wire with a terminal capable of diminishing the adjustment of a crimping height. There is provided an electrical wire 1 including a conductor part 11 that is made of a precipitation strengthened copper alloy having a cross-sectional area of 0.13 sq in the ISO 6722 standard and is compressed, wherein the conductor part 11 has a rate of elongation of 7% or more, and a tensile strength of 500 MPa or more. In addition, the electrical conductivity of the conductor part is 70% IACS or more.
US09786402B2
A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectable to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.
US09786398B2
A nanocomposite solid material includes nanoparticles of a metal coordination polymer with CN ligands comprising Mn+ cations, in which M is a transition metal and n is 2 or 3; and anions [M′(CN)m]x− in which M′ is a transition metal, x is 3 or 4, and m is 6 or 8. The Mn+ cations of the coordination polymer are bound through an organometallic bond to an organic group of an organic graft chemically attached inside the pores of a support made of porous glass. The material can be used in a method for fixing (binding) a mineral pollutant, such as radioactive cesium, contained in a solution by bringing the solution in contact with the nanocomposite solid material.
US09786376B2
A non-volatile semiconductor memory device achieving low power consumption and erasing method thereof is provided. The flash memory of the present invention includes a memory array formed with NAND type strings. The memory array includes a plurality of global blocks, one global block includes a plurality of blocks, and one block includes a plurality of NAND type strings. When the block of the selected global block is erased and the next block is in adjacent relationship, electric charge accumulated in one of P-wells is discharged to another one of the P-wells, and then the next selected block is erased. Thus, the electric charge is shared between the adjacent P-wells to achieve low power consumption.
US09786374B2
A nonvolatile memory device includes a plurality of memory blocks. The nonvolatile memory device includes a controller configured to perform an erase operation by repeating an erase loop, and generates and stores a test result based on a pass erase loop count of the erase operation in response to a result processing command. The erase loop includes applying an erase voltage to a target memory block among the memory blocks in response to an erase command.
US09786361B1
An integrated circuit comprising at least one logic tile including a plurality of multiplexers interconnected into a network configuration, wherein each multiplexer includes a plurality of inputs, an output and a plurality of selection inputs to receive selection signals to determine whether an input of the plurality of inputs is connected to the output. The logic tile further includes (i) at least one inactive multiplexer having an output that is inactive in the network configuration and/or (ii) at least one static multiplexer receiving static selection signals, wherein during operation of the integrated circuit, the selection inputs of the inactive and/or the static multiplexer receive selection signals responsively connect (whether directly or indirectly) two or more inputs of the inactive and/or the static multiplexer to the output of the inactive multiplexer.
US09786358B1
A 6T bitcell for single port SRAM that performs single ended read and single ended write is described. The presently described bitcell gives huge advantage in terms of area, dynamic power, leakage power and performance over the prior art in the industry. The bitcell and architecture does not have either a write bitline pair or a read bitline for each bitcell. It has only one read bitline per mux.
US09786352B2
Disclosed herein is a semiconductor device that includes: a memory cell array including a plurality of memory groups each having a plurality of memory cells, the memory groups being selected by mutually different addresses; a first control circuit periodically executing a refresh operation on the memory groups in response to a first refresh command; and a second control circuit setting a cycle of executing the refresh operation by the first control circuit. The second control circuit sets the cycle to a first cycle until executing the refresh operation to all the memory groups after receiving the first refresh command, and the second control circuit sets the cycle to a second cycle that is longer than the first cycle after executing the refresh operation to all the memory groups.
US09786347B1
Methods, systems, and devices for operating a ferroelectric memory cell or cells are described. A portion of charge of a memory cell may be captured and, for example, stored using a capacitor or intrinsic capacitance of the memory array that includes the memory cell. The memory cell may be recharged (e.g., re-written). The memory cell may then be read, and a voltage of the memory cell may be compared to a voltage resulting from the captured charge. A logic state of the memory cell may be determined based at least in part on the voltage comparison.
US09786338B2
A processor includes N-bit registers and a decode unit to receive a multiple register memory access instruction. The multiple register memory access instruction is to indicate a memory location and a register. The processor includes a memory access unit coupled with the decode unit and with the N-bit registers. The memory access unit is to perform a multiple register memory access operation in response to the multiple register memory access instruction. The operation is to involve N-bit data, in each of the N-bit registers comprising the indicated register. The operation is also to involve different corresponding N-bit portions of an M×N-bit line of memory corresponding to the indicated memory location. A total number of bits of the N-bit data in the N-bit registers to be involved in the multiple register memory access operation is to amount to at least half of the M×N-bits of the line of memory.
US09786334B2
Apparatuses and methods for interconnections for 3D memory are provided. One example apparatus can include a stack of materials including a plurality of pairs of materials, each pair of materials including a conductive line formed over an insulation material. The stack of materials has a stair step structure formed at one edge extending in a first direction. Each stair step includes one of the pairs of materials. A first interconnection is coupled to the conductive line of a stair step, the first interconnection extending in a second direction substantially perpendicular to a first surface of the stair step.
US09786331B1
The present disclosure generally relates to a shielded three-layer patterned ground structure in a PCB. The PCB may be disposed in a hard disk drive. To reduce costs, PCBs are being made with only four total layers separated by dielectric material. Conductive traces in PCBs can have the problem of common mode current flowing through the traces and thus increasing the magnitude of EMI noise. By providing a shielded three-layer patterned ground structure, not only is the cost reduced, but so is the common mode current and the magnitude of EMI noise, all without any negative impact to the differential signal.
US09786328B2
Certain aspects of the present disclosure relate to methods and systems for previewing a recording. In one aspect, the methods and systems are configured to display a video recording/stream in a first viewing window on a display, receive a selection of a time within the video recording/stream at which to preview a portion of the video recording/stream, display a second viewing window on the display, and display the preview of the portion of the video recording/stream that corresponds to the selection within the second viewing window.
US09786327B2
Systems and methods disclosed create one or more digital media presentations based on impact values. In particular, in one or more embodiments, systems and methods generate impact values based on a change in a measure of energy associated with digital audio content over time. For instance, systems and methods generate impact values by calculating a difference in a measure of energy over time in relation to the amount of energy at a particular time period. Based on the generated impact values, systems and methods identify transition points in the digital audio content. Specifically, systems and methods utilize a decaying masking threshold to identify transition points from generated impact values. Moreover, systems and method utilize identified transition points to modify digital visual content displayed in conjunction with the digital audio content.
US09786324B2
Various embodiments for creating media clips are disclosed. In one example, a method is performed by a server for managing the creation and distribution of media clips, where the server associates a content capture device with an event, the content capture device for recording at least a portion of the event, receives a tag notification from a content tagging device via a network interface, generates a media clip creation command to the content capture device via the network interface, sends the media clip creation command to the content capture device, and receives a media clip created by the content capture device in response to receiving the media clip creation command.
US09786321B2
An electronic device comprises a display to output a video, a user interface for controlling a navigation in the video along a time axis, and a processing device. The processing device is configured, when operating in an operating mode in which an object shown in a plurality of frames of the video is selected by a user input, to determine a magnitude of a speed vector of the object, and to apply a time scaling factor which depends on the determined magnitude of the speed vector of the object to the navigation along the time axis.
US09786320B2
A system includes a first sync mark detector circuit operable to apply a first sync mark detection algorithm to search a received media sector and overhead for a second sync mark after a failure to identify a first sync mark. A second sync mark detector circuit operable to apply a second sync mark detection algorithm to search the received media sector and overhead for the second sync mark. An anchor point identification circuit identifies an anchor point in the received media sector. A retry controller circuit causes a re-read of the received media sector and overhead when the first sync mark detector circuit fails to identify the first sync mark, and aligns the received media sector to yield an aligned media sector. A data processing circuit recovers an original user data set from the aligned media sector.
US09786318B2
Data can be encoded in physical medium and represented by shapes having many various physical attributes. In various examples, data points are encoded and represented by the physical shape, color, size, and/or structure of objects. In one embodiment, holes in memory surface substrates represent data. Various attributes of such holes, including depth, profile size, profile shape, and/or angle can represent data.
US09786315B1
A disc device includes a first traverse chassis holding a first optical pickup unit which performs recording/reproduction of information on a first surface of a disc, a second traverse chassis holding a second optical pickup unit which performs recording/reproduction of information on a second surface of the disc, and first and second biasing members which bias the first and second traverse chassis, respectively, in directions of coming closer to each other. The first and second traverse chassis are coupled to each other so as to turn around a turning axis at a rear side of a housing and extending in a width direction of the housing. At least one of the first and the second biasing members is attached while being inclined with respect to each of a conveying direction of the disc, and a thickness and the width directions of the housing.
US09786307B2
A gimbal assembly of a single or dual stage actuator is provided with gold at a tongue/dimple interface where a dimple of a supporting loadbeam contacts a tongue on the gimbal assembly. Using gold at the tongue/dimple interface greatly reduces the amount of wear particles formed during assembly and operation of the microactuator. The tongue may include a gold coating on the tongue at the tongue/dimple interface, or the tongue may have a hole etched in a stainless steel layer at the tongue/dimple interface to expose a gold layer disposed below the stainless steel layer. The tongue portion of the tongue/dimple interface may also be formed from a gold-coated copper pad with a polymer coating over the gold.
US09786298B1
Audio fingerprinting includes obtaining audio samples of a piece of audio, generating frequency representations of the audio samples, identifying increasing and decreasing energy regions in frequency bands of the frequency representations, and generating hashes of features of the piece of audio. Each hash of features corresponds to portions of the identified energy regions appearing in a respective time window. Each feature is defined as a numeric value that encodes information representing: a frequency band of an energy region appearing in the respective time window, whether the energy region appearing in the respective time window is an increasing energy region or whether the energy region appearing in the respective time window is a decreasing energy region, and a placement of the energy region appearing in the respective time window.
US09786297B2
Technologies are generally described for systems, devices and methods effective to identify an individual. In some examples, a microphone may receive sound data such as sound that may be present in a mall. A processor, that may be in communication with the microphone, may determine a name from the sound data. Stated differently, the processor may determine that the name is part of or included in the sound data. The processor may generate a query based on the name and may send the query to a social network database. The processor may receive a response to the query from the social network database and may identify the individual based on the response.
US09786281B1
A user profile for a plurality of users may be built for speech recognition purposes and for acting as an agent of the user. In some embodiments, a speech processing device automatically receives an utterance from a user. The utterance may be analyzed using signal processing to identify data associated with the user. The utterance may also be analyzed using speech recognition to identify additional data associated with the user. The identified data may be stored in a profile of the user. Data in the user profile may be used to select an acoustic model and/or a language model for speech recognition or to take actions on behalf of the user.
US09786277B2
Systems and methods gathering text commands in response to a command context using a first crowdsourced are discussed herein. A command context for a natural language processing system may be identified, where the command context is associated with a command context condition to provide commands to the natural language processing system. One or more command creators associated with one or more command creation devices may be selected. A first application one the one or more command creation devices may be configured to display command creation instructions for each of the one or more command creators to provide text commands that satisfy the command context, and to display a field for capturing a user-generated text entry to satisfy the command creation condition in accordance with the command creation instructions. Systems and methods for reviewing the text commands using second and crowdsourced jobs are also presented herein.
US09786275B2
The present invention relates to a system for suppressing transient interference from a signal. The system includes a modeling system, wherein the modeling system constructs a model of transient interference from a first signal, and a filtering system, wherein the filtering system suppresses transient interference from a second signal by applying the model to the second signal.
US09786271B1
A method for voice pattern coding and catalog matching. The method includes identifying a set of vocal variables for a user, by a voice recognition system, based, at least in part, on a user interaction with the voice recognition system. The method further includes generating a voice model of speech patterns that represent the speaking of a particular language using the identified set of vocal variables, wherein the voice model is adapted to improve recognition of the user's voice by the voice recognition system. The method further includes matching the generated voice model to a catalog of speech patterns, and identifying a voice model code that represents speech patterns in the catalog that match the generated voice model. The method further includes providing the identified voice model code to the user.
US09786257B2
Embodiments of a capo and fretting component are described. In certain embodiments, the fretting component is threaded onto a crossbar configured to overlie the instrument strings when in use and to pivot with respect to the crossbar so as to contact and press the strings against a fret on the instrument neck. The fretting component is offset with respect to the attachment mechanism of the capo, allowing the attachment mechanism to be offset on the neck of the instrument from where it would normally be positioned to achieve a comparable fretting effect.
US09786239B2
The present invention provides a GOA circuit based on P-type thin film transistor, comprising a plurality of GOA unit circuits which are cascade connected, and the GOA unit circuit of every stage comprises a forward-backward scan module (100), an output module (200), a pull-down holding module (300) and a pull-down module (400); the GOA unit circuit of the nth stage and the GOA unit circuit of the n+1th stage adjacent thereto are one cycle; the forward-backward scan module (100) employs the first high frequency clock signal (LCK) and the first backward high frequency clock signal (XLCK) to control the forward-backward scan of the P-type thin film transistor. The GOA circuit based on P-type thin film transistor can ease the deterioration of the thin film transistors in the forward-backward scan module, and reduce the circuit power consumption to decrease the number of the signal lines and realize the narrow frame design. Moreover, it can promote the stability of the GOA circuit and ensure the smooth output of the scan signal (G(n)).
US09786237B2
A liquid crystal display includes: a substrate; a gate line disposed on the substrate; a storage voltage line disposed on the substrate and extending substantially parallel to the gate line; a data line disposed on the substrate; a reference voltage line disposed on the substrate and extending substantially parallel to the data line; first and second subpixel electrodes disposed in a pixel area; a first switching element connected to the gate line, the data line, and the first subpixel electrode; a second switching element connected to the gate line, the data line, and the second subpixel electrode; and a third switching element connected to the second subpixel electrode and the reference voltage line, wherein the storage voltage line and the reference voltage line are not connected to each other.
US09786228B2
A shift register unit and a control method thereof, a gate driving circuit, and a display device. The shift register unit includes a signal input module, connected to a signal input terminal, a first clock signal terminal and a control node; a pull-down module, connected to the control node, a first voltage terminal and a signal output terminal; a first pull-up control module, connected to the control node, the pull-up module and a second voltage terminal; a second pull-up control module, connected to the control node, the pull-up module, the first clock signal terminal, the first voltage terminal and a second clock signal terminal; and a pull-up module, connected to the signal output terminal and the second voltage terminal. The problem that it is difficult to realize a narrow display frame by the bonding process due to size increase of the driving circuit can be solved.
US09786225B2
An organic light emitting diode display with improved aperture ratio includes: a substrate; first and second pixels disposed in a first row of the substrate and third and fourth pixels disposed in a second row adjacent to the first row and respectively disposed in the same columns as the first and second pixels; a scan line and a previous scan line applying a scan signal and a previous scan signal, respectively, to the pixel units; a data line and a driving voltage line applying a data signal and a driving voltage, respectively, to the pixel units; and a common initialization voltage line disposed between the first and second pixels and between the third and fourth pixels, commonly connected to the pixel units, and applying an initialization voltage. One common initialization contact hole connected to all pixels units and one initialization voltage line connected to the common initialization contact hole are surrounded by the pixel units.
US09786224B2
An organic light emitting diode display includes: a substrate; a scan line, a first emission control line, and a second emission control line on the substrate; a data line and a driving voltage line crossing the scan line; a switching transistor connected to the scan line and the data line and including a switching drain electrode; a driving transistor including a driving source electrode connected to the switching drain electrode; an organic light emitting diode electrically connected to a driving drain electrode of the driving transistor; an operation control transistor to transmit a driving voltage to the driving transistor; and a first emission control transistor and second emission control transistor to transmit the driving voltage from the driving transistor to the organic light emitting diode, wherein the first emission control line and the second emission control line partially overlap each other.
US09786217B2
An organic light emitting display device includes a scan driving unit that supplies scan signals to scan lines, a data conversion unit that receives a first data signal for displaying an image and converts the first data signal to create a second data signal; a data driving unit that supplies the first data signal and the second data signal to data lines; a pixel unit including pixels positioned at intersections of the scan lines with the data lines, the pixels emitting light having a luminance corresponding to the first data signal during an image display subperiod and having a luminance corresponding to the second data signal during a compensation subperiod; and an image selection unit that transmits an image corresponding to the first data signal and blocking an image corresponding to the second data signal.
US09786209B2
Methods and systems to provide baseline measurements for aging compensation for a display device are disclosed. An example display system has a plurality of active pixels and a reference pixel. Common input signals are provided to the reference pixel and the plurality of active pixels. The outputs of the reference pixel is measured and compared to the output of the active pixels to determine aging effects. The display system may also be tested applying a first known reference current to a current comparator with a second variable reference current and the output of a device under test such as one of the pixels. The variable reference current is adjusted until the second current and the output of the device under test is equivalent of the first current. The resulting current of the device under test is stored in a look up table for a baseline for aging measurements during the display system operation. The display system may also be tested to determine production flaws by determining anomalies such as short circuits in pixel components such as OLEDs and drive transistors.
US09786208B2
A display control method includes: inputting user's image including a drawing portion made by hand drawing and being a display target image; and performing image control including causing the input user's image to emerge from any one of a left end and a right end of a predetermined display region, on which the user's image is to be displayed, and moving the user's image that has emerged.
US09786200B2
Concepts and technologies are disclosed herein for acoustic representations of environments. A processor can execute an acoustic representation service. The processor can receive a request to provide acoustic representation data to a device. The processor can obtain input data from the device. The input data can include captured data. The processor can analyze the input data to recognize an object represented in or by the input data and a path associated with the object. The processor can generate acoustic representation data representing the object and the path, and provide the acoustic representation data to the device.
US09786199B2
Speech data from the operation of a speech recognition application is recorded over the course of one or more language learning sessions. The operation of the speech recognition application during each language learning sessions corresponds to a user speaking, and the speech recognition application generating text data. The text data may a recognition of what the user spoke. The speech data may comprise the text data, and confidence values that are an indication of an accuracy of the recognition. The speech data from each language learning session may be analyzed to determine an overall performance level of the user.
US09786189B2
A method of controlling an aircraft in the event of pilot incapacity includes detecting, using at least one sensor, the occurrence of an event relating to a pilot's capacity to control the aircraft, determining whether the event justifies a controlled takeover of the aircraft from the pilot, asserting a controlled takeover of the aircraft from the pilot if it has been determined that a controlled takeover is justified, and executing a controlled landing of the aircraft without assistance of the pilot.
US09786187B1
A transportation network is provided that utilizes autonomous vehicles (e.g., unmanned aerial vehicles) for identifying, acquiring, and transporting items between network locations without requiring human interaction. A travel path for an item through the transportation network may include a passing of the item from one autonomous vehicle to another or otherwise utilizing different autonomous vehicles for transporting the item along different path segments (e.g., between different network locations). Different possible travel paths through the transportation network may be evaluated, and a travel path for an item may be selected based on transportation factors such as travel time, cost, safety, etc., which may include consideration of information regarding current conditions (e.g., related to network congestion, inclement weather, etc.). Autonomous vehicles of different sizes, carrying capacities, travel ranges, travel speeds, etc. may be utilized for further improving the flexibility and efficiency of the system for transporting items.
US09786182B2
A method is implemented by computer for the management of a convoy comprising at least two vehicles, each of the at least two vehicles comprising satellite positioning means and vehicle-to-vehicle communication means, the method comprising the determination of the relative positioning of the vehicles, the determination comprising the measurement of the propagation time of a signal between vehicles by the communication means, the clocks associated with the communication means being synchronized via satellite positioning means at a reference clock time. Developments comprise the communication between the vehicles of various data (e.g. measurement uncertainties, signal-to-noise ratios, residual values), the determination of absolute locations, the use of an SBAS-type system, the use of differential GPS, the use of Doppler measurements for the turns or even the exclusion of a failing satellite. A computer program product and associated systems are described.
US09786181B2
Autonomous diesel vehicles and control methods thereof are disclosed. An autonomous vehicle may include a peripheral information collecting unit configured to collect peripheral information necessary for autonomous travelling through an image camera and a laser scanner, a main control unit configured to control the autonomous travelling with reference to the peripheral information collected by the peripheral information collecting unit, a passenger monitoring unit configured to check whether a passenger exists inside the vehicle through a sensor and transmit a result of the check to the main control unit, and an engine control unit configured to control driving of an engine and injection of fuel of an injector according to a control instruction of the main control unit. When the passenger is inside the vehicle, the main control unit performs a pilot injection control, and when the passenger is not inside the vehicle, the main control unit omits the pilot injection control.
US09786179B2
A method for assisting a driver of a vehicle during a lane change, in which for this purpose, an activation signal which represents an activation of a turn signal of the vehicle, which faces a setpoint direction of travel, and a sensor signal which is provided by at least one sensor of the vehicle and which represents a steering movement for steering the vehicle and/or a change in position of the vehicle within a lane are read in. Using the activation signal and the sensor signal, a control signal for controlling a steering system of the vehicle is provided if the steering movement is counter to the setpoint direction of travel and/or the change in position represents a movement of the vehicle in a direction counter to the setpoint direction of travel.
US09786173B2
Systems and techniques are described to enable the dynamic selection of a transit route through the stop zones of a transit line. Techniques are disclosed for receiving a current location of a transit vehicle on a transit line and determining a transit route through one or more of the vehicle's remaining stop zones by choosing an optimized combination of stop options and route segment options for that specific transit vehicle. Techniques may be performed in some cases by accessing a real-time traffic information service to obtain one or more traffic condition factors on a route segment, determining a dynamic route segment option weight, calculating a dynamic cost function with respect to the weights, and determining an optimized set of the route segments with respect to the cost functions.
US09786167B2
A method for validating an information item regarding a wrong-way driver, which indicates an instance of detected wrong-way travel of a vehicle driving the wrong way. The method includes checking plausibility, in which the information item regarding a wrong-way driver is checked for plausibility, using an additional information item, before the information item regarding a wrong-way driver is made available as a warning message for affected road users. In this context, the warning message is suppressed, if the additional information item characterizes the information item regarding a wrong-way driver as irrelevant.
US09786164B2
A detection and response device for a surveillance system detects events, responds to events, or both. The detection and response device may be used with or provided by a variety of surveillance systems, including peer to peer surveillance architectures. The device may utilize one or more defined geospaces. If an event occurs in a geospace a predefined response may then be provided. The predefined response may include automatically targeting one or more cameras to areas relevant to the event and presenting one or more predefined views optimized for viewing the event. If an event does not occur within a geospace, the detection and response device may provide one or more default responses.
US09786159B2
In an embodiment, a method for operating a target media device is described. The method includes receiving a user command by a remote control device for operating a target media device, where a signal to operate the target media device is not stored on the remote control device when the user command is received. Data associated with the user command is transmitted by the remote control device to a second media device and signal information, associated with the signal to operate the target media device, is received by the remote control device from the second media device. The signal to operate the target media device is transmitted by the remote control device to the target media device, where the target media device performs a function based on the signal received from the remote control device.
US09786157B2
The invention relates to a bus system (1) comprising a control unit (2) and at least one bus node (3.1, 3.2, 3.3). The control unit (2) is allocated at least two data communication interfaces (2.1, 2.2) which are respectively designed to transmit and receive data. The at least one bus node (3.1, 3.2, 3.3) comprises a bus coupler having at least two data communication interfaces (3.11, 3.12; 3.21, 3.22; 3.31, 3.32) respectively designed to transmit and receive data. The control unit (2) and the at least one bus node (3.1, 3.2, 3.3) are respectively connected together via their data communication interfaces and corresponding two-point connections (8) to form a ring topology. The bus coupler of the at least one bus node is designed to directly and without delay transmit, and thus forward, data received at one of its at least two communication interfaces via its other data communication interface.
US09786154B1
In system and methods for loss mitigation, accident data associated with a vehicle accident involving a driver may be collected. The accident data may be analyzed, and a likely severity of the vehicle accident may be determined based upon the analysis of the accident data. A communication related to emergency assistance or an emergency assistance recommendation may be generated based upon the determined likely severity of the vehicle accident, and transmitted, via wireless communication, from one or more remote servers to a mobile device associated with the driver. A wireless communication from the driver indicating approval or modification of the emergency assistance or emergency assistance recommendation may be received. A third party may be notified, via a communication sent from the remote server(s), of requested emergency assistance as approved or modified by the driver. An estimated insurance claim may also be generated based upon vehicle accident likely severity.
US09786144B2
An image processing device includes: an entire image display control portion that performs control to display an entire image of a predetermined region in an entire image display window; and a cutout image display control portion that performs control to enlarge a plurality of tracking subjects included in the entire image and display the tracking subjects in a cutout image display window. The cutout image display control portion performs the control in such a manner that one cutout image including the tracking subjects is displayed in the cutout image display window in a case where relative distances among the tracking subjects are equal to or smaller than a predetermined value, and that two cutout images including the respective tracking subjects are displayed in the cutout image display window in a case where the relative distances among the tracking subjects are larger than the predetermined value.
US09786140B2
The invention disclosed here is a display system for managing power and security for a plurality of hand-held electronic devices sold to consumers in a retail location. The display includes features that allow power to be supplied to individual devices and security sensors without continuous hard wiring or multi-conductor retractor cables. The display also allows for individual security alarms to be triggered when a theft occurs. Security alarm conditions are preferably triggered via wireless signals.
US09786139B2
A programmable barrier alarm includes a sensor, such as a magnetic field detector, for sensing a magnetic field produced by the magnet and for producing an electronic signal associated with the magnetic field, a processor, and, a memory for storing an alarm threshold value and processor-executable instructions that, when executed by the processor, cause the sensor to, in a calibration mode of operation, calculate the alarm threshold value based on a first magnetic field sensed by the magnetic field detector when the barrier is in the closed position, and in a normal mode of operation, compare the electronic signal from the magnetic field detector to the alarm threshold value, and generate an alarm signal if the electronic signal falls below the alarm threshold value.
US09786136B2
A dynamic random access memory includes a main body which has a substrate portion and a light-emitting portion and a transmission port, the substrate portion includes a board and a first coating layer, the board has a light-transmittable portion and a first face, the first coating layer is coated on the first face and has an emergent light-transmittable portion corresponding to the light-transmittable portion, and the substrate portion has a memory module. The transmission port is disposed on the substrate portion and electrically connected with the memory module. The electronic device includes the dynamic random access memory and further includes a shell portion. The shell portion is covered on two opposite lateral faces of the dynamic random access memory and at least shields the light-emitting portion, and the shell portion further has a second light-transmittable portion corresponding to the emergent light-transmittable portion.
US09786128B2
A casino game, machine, system, and method for playing and awarding a payout as a function of an outcome of the game are provided. The casino game may be played using one or more computer based gaming machines. The casino game may be played over a network, online and/or using one or more mobile devices. The casino game may be played using a stand-alone gaming machine.
US09786126B2
A skill-based progressive interleaved wagering system is disclosed, including an interactive controller connected to an application controller, and configured to: communicate application telemetry; receive application credit (AC) information and a wager outcome; communicate an indication to purchase a ticket; display ticket information; communicate an indication to use the ticket; provide the secondary application; communicate secondary telemetry; receive and display certificate information; a wager controller connected to the application controller, and constructed to: receive wager request instructions; determine and communicate the wager outcome; and the application controller connecting the interactive controller and the wager controller, connected to a session controller, and constructed to: receive application telemetry and the wager outcome; receive indication to purchase the ticket; communicate ticket purchase; receive ticket; receive indication to use the ticket; communicate ticket consumption; receive the secondary telemetry; determine whether AC should be awarded from a progressive pool of AC; receive the certificate.
US09786114B2
Various prison services are rendered more efficient by providing inmates access to portable electronic devices in a controlled and regulated manner. A dispenser is employed to control and monitor the checking out and return of portable electronic devices and to communicate with such devices during use by inmates to monitor inmate use and ensure the portable electronic devices are only used by inmates as authorized.
US09786107B2
An automation system may include a smart doorman. The system may observe one or more guests to a residence, predict a user profile associated with the guest, and invite an administrator of the automation system to create the suggested profile of the guest. The system may store one or more biometric identifiers with a visitation pattern to determine if the guest requires a profile. In one embodiment, a method for security and/or automation systems may be described. The method may include detecting the presence of one or more guests at an entrance to a residence and comparing the presence of a guest to one or more profile parameters. A guest profile associated with the guest may be predicted based at least in part on the comparing.
US09786092B2
Systems and methods are shown for developing physics-based high resolution biomechanical head and neck deformable models for generating ground-truth deformations that can be used for validating both image registration and adaptive RT frameworks.
US09786091B2
In a computer graphics processing unit (GPU) having a texture unit, when pixel sample locations are based on a non-orthonormal grid in scene space, the texture unit receives texture space gradient values directly, e.g., from a shader unit or generates them from texture coordinates supplied, e.g., by a shader unit, and then applies a transformation to the gradient values configured to adjust the gradient values to those which would arise from the use of a orthonormal screen space grid.
US09786090B2
A system (10) for displaying at least one virtual object includes a secondary screen (20) for displaying the virtual object, a primary screen (30), an optical element for overlaying images displayed on the secondary screen (20) with images displayed on the primary screen (30), and a pointing surface combined with the primary screen (30) for detecting the contact of one or more physical pointing elements. A device (90) for manipulating at least one virtual object includes calculation elements for generating images of the virtual object displayed on the system (10) from information output from the system (10) in accordance with the actions of the operator (100).
US09786083B2
A skin deformation system for use in computer animation is disclosed. The skin deformation system accesses the skeleton structure of a computer generated character, and accesses a user's identification of features of the skeleton structure that may affect a skin deformation. The system also accesses the user's identification of a weighting strategy. Using the identified weighting strategy and identified features of the skeleton structure, the skin deformation system determines the degree to which each feature identified by the user may influence the deformation of a skin of the computer generated character. The skin deformation system may incorporate secondary operations including bulge, slide, scale and twist into the deformation of a skin. Information relating to a deformed skin may be stored by the skin deformation system so that the information may be used to produce a visual image for a viewer.
US09786082B2
In a multi-participant modeled virtual reality environment, avatars are modeled beings that include moveable eyes creating the impression of an apparent gaze direction. Control of eye movement may be performed autonomously using software to select and prioritize targets in a visual field. Sequence and duration of apparent gaze may then be controlled using automatically determined priorities. Optionally, user preferences for object characteristics may be factored into determining priority of apparent gaze. Resulting modeled avatars are rendered on client displays to provide more lifelike and interesting avatar depictions with shifting gaze directions.
US09786070B2
A CT system for security check and a method thereof are provided. The method includes: reading inspection data of an inspected object; inserting at least one three-dimensional (3D) Fictional Threat Image (FTI) into a 3D inspection image of the inspected object, which is obtained from the inspection data; receiving a selection of at least one region in the 3D inspection image including the 3D FTI or at least one region in a two-dimensional (2D) inspection image including a 2D FTI corresponding to the 3D FTI, wherein the 2D inspection image is obtained from the 3D inspection image or is obtained from the inspection data; and providing a feedback of the 3D inspection image including at least one 3D FTI in response to the selection. With the above solution, it is convenient for a user to rapidly mark a suspected object in the CT image, and provides a feedback of whether a FTI is included.
US09786065B2
Techniques for an image-based analysis of a geological thin section include (i) acquiring a plurality of images from a geological thin section of a rock sample from a subterranean zone; (ii) manipulating the plurality of images to derive a composite image; (iii) optimizing the composite image to derive a seed image; (iv) identifying, in the seed image, a particular seed pixel of a plurality of contiguous pixels that comprise an image of a grain of a plurality of grains of the rock sample in the seed image; (v) determining, with a specified algorithm, a shape of the grain based on the seed pixel; (vi) determining, based on the shape of the grain, a size of the grain; and (vii) preparing the determination of the size of the grain for presentation to a user.
US09786055B1
Embodiments of the present invention provide systems, methods, and computer storage media directed to operations to facilitate real-time matting using local color estimation and propagation. In accordance with embodiments described herein, an unknown region is estimated based on a set of received boundary points (a zero-level contour that separates the foreground object from the background) and additional contours based on increasing distances from the zero-level contour. The background and foreground colors for each pixel in the unknown region can be estimated and utilized to propagate the foreground and background colors to the appropriate contours in the unknown region. The estimated background and foreground colors may also be utilized to determine the opacity and true background and foreground colors for each pixel in the unknown region which results in an image matted in real-time.
US09786049B2
Volume data representing a radiation image of an object are subjected to a coarse filtering process to obtain a first classification including support type and non-support type components. An iteration of low threshold filtering steps and successive extraction and classification of connected components is performed and used to rectify the result of the coarse filtering process. A further filtering is based on the location of the connected components in the volume.
US09786043B2
A method of inspecting a unit under test containing brazed dielectric to metal bond, includes providing at least one image of the bond and determining a characteristic of the bond based on at least one of a presence and size of a glassy phase in or adjacent to the bond.
US09786042B2
In one example, the disclosure is directed to a method of determining a length of a wear pin in a brake assembly. The method includes obtaining an input image of a portion of the brake assembly, such as with a camera. The input image includes the wear pin and a reference object, and the reference object has a known dimension. A processor may determine, based on the input image, an image dimension of the reference object. The processor may determine, based on the input image, an image dimension of the wear pin. The processor may further determine, based on the image dimension of the reference object, the image dimension of the wear pin, and the known dimension of the reference object, an estimated measurement of the dimension of the wear pin.
US09786032B2
A graphic character object temporary storage stores parameters of a character and associated default values in a hierarchical data structure and one or more animation object data represented in a hierarchical data structure, the one or more animation object data having an associated animation, the graphic character object temporary storage and the animation object data being part of a local memory of a computer system. A method includes receiving a vector graphic object having character part objects which are represented as geometric shapes, displaying a two dimensional character, changing the scale of a part of the displayed two dimensional character, and storing an adjusted parameter in the graphic character object temporary storage as a percentage change from the default value, displaying a customized two dimensional character, applying keyframe data in an associated animation object data to the character parts objects, and displaying an animation according to the keyframe data.
US09786030B1
Implementations generally relate to providing focal length adjustments in photos. In some implementations, a method includes determining a face model of a face in a photo. The method further includes simulating a change in the focal length based on the face model.
US09786027B1
A method including playing a first interactive 3D simulation for a first 3D location of a computer graphics (CG) content clip for at least a first predetermined length of time. The method also includes, while playing the first interactive 3D simulation and within the first predetermined length of time, determining a first subset of the plurality of 3D assets to be downloaded for rendering two or more second 3D locations of the plurality of 3D locations; adapting the level of detail for one or more first 3D assets of the first subset of the plurality of 3D assets based at least in part on (a) a bandwidth for downloading the first subset of the plurality of 3D assets through the network, and (b) a processing power of the player device; and downloading the first subset of the plurality of 3D assets at the level of detail as adapted for the bandwidth and the processing power. The method additionally includes, after the first predetermined length of time, receiving a selection for a selected 3D location of the two or more second 3D locations. The method further includes playing a second interactive 3D simulation for the selected 3D location using at least a second subset of the first subset of the plurality of 3D assets, the second interactive 3D simulation being played devoid of delays for downloading and rendering the second interactive 3D simulation. Other embodiments are provided.
US09786019B2
Embodiments of the invention comprise systems, computer program products, and methods for a financial and social management system that provides improved tracking and management related to how, where, when, and with whom a user enters into activities. The financial and social management system captures activity information and images from various sources of information, including but not limited to social networking accounts, e-receipts, calendars, contact lists, location determination devices, and the like, and associates the activity information and images with the activities of one or more users. The financial and social management system captures past and future activities of the multiple users based on a location or time period, and assembles the activities into group packages. The group packages are supplemented with the images and the activity information related to the past and future activities captured from the various sources of information of the multiple users.
US09786013B2
Systems and methods for matching subscribers with subscription providers include gathering, via a network from one or more remote computing systems, claims data, performance data, and service data regarding a number of providers; determining, by processing circuitry of a computing device based on the claims data, the performance data, and the service data, one or more provider metrics for each provider of the number of providers; calculating, by the processing circuitry based on the one or more provider metrics, one or more relationships between a number of subscribers and each provider of the plurality of providers; and ranking, by the processing circuitry, the number of providers based at least on part on the one or more relationships.
US09786007B2
A computerized method of identifying additional influential variables in multi-aspect adjudication frameworks comprising: acquiring an appraisal table having a set of variables affecting at least one adjudication aspect of a multi-aspect adjudication framework; identifying a set of additional variables affecting at least one adjudication aspect of a multi-aspect adjudication framework which fulfills an objective function, said objective function having a plurality of rules, said objective function assessing the compliance of at least one of said appraisal table and said set of additional variables with said plurality of rules; and outputting said set of additional variables.
US09786004B2
A customer may desire to enroll in a transaction, such as a product or a service, offered, managed, and/or owned by an institution, such as a financial institution. The customer may attempt to directly enroll in the product or service or may enroll in the product or service through an agent of the institution. The customer and/or agent may select the product or service (e.g., via a workstation or other device), and a computing device may determine which documents the product or service uses, which documents the customer has on file already, and/or which documents the customer is missing. The computing device may cause the customer and/or agent to be notified of the missing documents. When the customer and/or agent provides all of the documents for the product or service (or an exception applies to one or more missing documents), the computing system may enroll the customer in the selected product or service.
US09786002B2
A system and method for presenting a sales demonstration using a user interface of a pool/spa controller is provided. A first device includes a system controller user interface and sends data to a second device. The second device processes the data to present a media presentation which exhibits systems, associated features, and their ability to be controlled via a controller. A user can control pool and/or spa equipment using the first device, and the user's input can guide a presentation on the second device, which demonstrates corresponding features of such equipment. As such, the natural connections among a user, a controller, and an associated feature are demonstrated in a sales-effective manner. Additionally, the first device can present a user with a simulation of a control system interface to allow for effective sales of products.
US09786000B2
Method, computer program product, and system of visual identification of an item selected by a person during a transaction within an environment having a plurality of items. The method includes acquiring, using a visual sensor disposed within the environment, image information that includes at least a portion of the selected item, and analyzing the image information to determine a set of possible items for classifying the selected item. The method further includes selecting, based on personal profile information associated with the person, one of the set of possible items to thereby identify the selected item.
US09785997B2
A method for multi-selection gifting, including identifying a mufti-selection gift, the mufti-selection gift comprising (i) a gift recipient, (ii) a plurality of gift choices, each gift choice being either an individual item of merchandise or a group of items of merchandise, and (iii) a designated maximum cost of gift choices that may be selected, and interactively guiding the gift recipient in selecting one or more of the plurality of gift choices without exceeding the designated maximum cost, including un-grouping a group of items in a gift choice into a plurality of individual items, and re-grouping a plurality of items into a group, if the plurality of items were originally part of the same group in the mufti-selection gift.
US09785994B2
Embodiments of the invention are directed to systems, methods and computer program products for aiding with purchase inquiries through an optical head-mounted display in a wearable computer. An exemplary apparatus is configured to receive information captured by the wearable computer; transmit, to at least one database, the received information including a primary identifier and at least one secondary identifier; retrieve, from at least one database, detailed information related to the first item of interest and the at least one additional item of interest, where the detailed information is associated with the primary identifier and the at least one secondary identifier; and present, on the optical head-mounted display in the wearable computer, the detailed information related to the first item of interest and the at least one additional item of interest, in a comparison format.
US09785992B2
A personalized stored value card and teaser presentation creation system includes a server included with instructions to generate a graphical user interface (GUI) on a second computing device, receive user-supplied content including at least one of user-supplied textual, audio, image, or video content, receive stored value card information associated with a merchant of a stored value card and a monetary amount to be associated with the stored value card, and transmit the received user-supplied content to the server. The server then generates a stored value card holder comprising the received user-supplied content, facilitates a financial transaction to acquire a stored value card associated with the received stored value card information, composites a teaser presentation that includes the received user-supplied content by rendering the user-supplied content in one or more pre-defined fields of the teaser presentation, the teaser presentation indicating, to the recipient, that the stored value card holder and the stored value card are to be received, and transmits the teaser presentation along with or prior to the stored value card holder and the stored value card to a recipient.
US09785987B2
A user interface for an information presentation system that displays information of interest to the user identified by the information presentation system based on selecting tasks that may be relevant to the user given the user's current context. The user interface displays options for the user to select from among relevant tasks and/or goals of completing the task. For each selected task and goal, the system may generate one or more sets of items that are relevant to completing the task. The user interface may present the user with the option to select from among the sets of items or to navigate among the sets of items. The user interface may be an easy-to-use interface on a portable computing device to support shopping applications.
US09785985B2
A computationally implemented system and method that is designed to, but is not limited to: electronically receiving user status information regarding a particular individual living being including living being identification associated with the particular individual living being to at least in part electronically generate, based at least in part upon the user status information, one or more selection menus electronically identifying at least in part one or more candidate ingestible products, the electronically generated one or more selection menus to be electronically outputted to provide, via electronically enabled input in response thereto, selection opportunity of the one or more candidate ingestible products subject to ingestion by the particular individual living being prior to selection of at least one candidate ingestible product as at least one selected ingestible products via the electronically enabled input in response to the electronically outputted one or more selection menus.
US09785982B2
Billing data associated with telecom products provided by a variety of vendors is captured, normalized, and processed to calculate true profit margins by invoice, by vendor, by geographic location, by end-customer, by circuit, or combinations of these. A bill may be received from the vendor, and associated with a specific vendor profile. The vendor profile may include a validation routine specific to the vendor. A plurality of telephone numbers associated with an end-customer may be extracted from the bill based on the vendor profile and stored on a storage device. A previous bill from the vendor may be accessed in response to receiving the bill from the vendor. End-customer profitability may be determined for a first time period based on data extracted from the received bill and displayed.
US09785981B2
A method for authentication of user reviews includes providing a user certificate to a user's mobile device. A transaction log is received from the mobile device. The transaction log includes an encrypted tag identifier which has been transmitted to the mobile device from a review tag at a location where a service is provided by a service provider when the review tag has verified the validity of the user certificate. The encrypted tag identifier is decrypted to identify the service provider. The user is prompted to submit a review of the service provided by the service provider.
US09785980B2
Methods and systems for providing advertisements for inclusion in video content. In one embodiment, a video is formatted into a specific format for advertising purposes. The format describes a standard for advertisement placement opportunities within a video in which a client device may select advertisements for display during these opportunities.
US09785977B2
An online direct marketing and advertising system is presented in which advertisers have an opportunity to send targeted promotions, coupons and offers that are placed in a user's web-based email account without the drawbacks of sending conventional email. The promotions do not take up disk quota space and, at the same time, the system does not need to divulge private user information to the advertiser. This system provides a means to free web-based email providers from the need to obtain opt-in permission to send offers to their users as providers are frequently prohibited from sharing the user's email address and personal information with merchants.
US09785968B1
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for long-term targeting. In one aspect, a method includes: assigning a user a unique identifier and recognizing the user when the user interacts with a content system; logging user actions and preferences as the user interacts with one or more web based resources over a long time period where the long time period exceeds a life of one session and an expiration of one or more cookies residing on a user device; identifying logged user actions and preferences that are associated with a same time period in a previous year, including identifying immutable and mutable aspects of the logged user actions and preferences that are time-related; adjusting the mutable aspects based on the current date; and providing, to the user, content based on the immutable aspect, the adjusted mutable aspects, and information included in a content request.
US09785965B2
User interface displays are generated that have user input mechanism that receive campaign creation user inputs to create an automated campaign. The campaign is activated, and analytics components gather and generate performance information indicative of a performance of the created campaign. The performance data is displayed, for individual actions, and aggregated actions for user management of the campaign.
US09785964B2
A system to display information using a display shelf of a retailer may include a first display configured to be attached to a first edge portion of the display shelf and to display information related to a first product. A second display may be configured to be attached to a second edge portion of the display shelf and to display information related to a second product. The first display and the second display can be configured to have a height similar to a height of the first and the second edge portion of the shelf. The first display and the second display may also be configured to display information related to a third product as if the first display is continuously connected to the second display as an extended display.
US09785956B2
A system and method of enhancing the lead exchange process simultaneously and in real-time calculates a quality index of a lead or plurality of leads within the lead exchange process. The quality index provide a measure of the quality of the leads with the lead exchange process. The calculations are done electronically by a computer system and are based on differences to the mean, allowing for relative indices, which permit the use in a dynamic environment.
US09785953B2
The present invention relates to a system and method for generating demand groups. The system receives demand group modeling data including a product listing, point of sales data, available econometric data and product information. Attributes may then be assigned to the products based upon product identifiers, size, flavor, brand, and product descriptions utilizing natural language processing. The products may then be clustered according to the attributes and point of sales data. One or more decision trees may be generated for the product listings using the point of sales data. Demand rules may be received, which may be applied to the product clusters and the decision trees to generate demand groups. A confidence score may be generated for each product indicating how well that product fits within the demand group. These confidence scores may be compared against a threshold. Products with scores below the threshold may be flagged for user review.
US09785925B2
Apparatus and methods for an automated teller machine (“ATM”) currency stamper are provided. The currency stamper may be configured to mark currency retracted by the ATM. The mark may include one or more attributes of the currency. The mark may include transaction information associated with a dispensing and/or retraction of the currency. Marked currency may be stored in the ATM. Marked currency may be scanned. A scanning of marked currency may read the attributes of the currency and the transaction information included in the mark. The scanning of the marked currency may erase the mark. A value of the marked currency may be calculated. The value may be determined based on the currency attributes and transaction information included in the mark applied to the currency.
US09785919B2
Systems and methods for automatically identifying and classifying distress of an aircraft component are provided. In one embodiment, a method includes accessing one or more digital images captured of the aircraft component and providing the one or more digital images as an input to a multi-layer network image classification model. The method further includes generating a classification output for the one or more images from the multi-layer network image classification model and automatically classifying the distress of the aircraft component based at least in part on the classification output.
US09785915B2
Methods for managing a project are disclosed. The methods comprise accepting at least two project templates from a database, wherein the project database contains personal project templates and work project templates categorized by type of project. A start date and/or an end date for each project template may be accepted. Information related to each project template may be automatically generated. The information related to all project templates may be aggregated and a user may access the information related to all project templates from one user interface.
US09785914B2
Apparatus, systems, and methods may operate to within the context of a shared document review process to receive an updated comment associated with an original comment by a comment series identifier. Further actions may include generating a comment differentiation identifier that serves to differentiate the updated comment from the original comment, and storing at least a portion of the updated comment and the comment differentiation identifier in a collaboration comment repository. Using stored document version history and a timeline, the state of the document at a particular point in time, and a history of the comment series can be rendered as a result. Additional apparatus, systems, and methods are disclosed.
US09785911B2
A method and system for piece-picking or piece put-away within a logistics facility. The system includes a central server and at least one mobile manipulation robot. The central server is configured to communicate with the robots to send and receive piece-picking data which includes a unique identification for each piece to be picked, a location within the logistics facility of the pieces to be picked, and a route for the robot to take within the logistics facility. The robots can then autonomously navigate and position themselves within the logistics facility by recognition of landmarks by at least one of a plurality of sensors. The sensors also provide signals related to detection, identification, and location of a piece to be picked or put-away, and processors on the robots analyze the sensor information to generate movements of a unique articulated arm and end effector on the robot to pick or put-away the piece.
US09785904B2
The difference between estimated costs predicted for performing a first workscope and actual costs for performing the first workscope is determined. The model used to generate the estimated costs is adjusted to compensate for the difference, resulting in an improved model. Before beginning a second scope of work that is comparable to the first workscope, the improved model is used to predict estimated costs and a price for the second workscope. The estimated costs for the second workscope include predicted productivity gains. The price for the second workscope can be reduced relative to the price for the first workscope as a result of the improved model and the predicted productivity gains.
US09785899B2
A computer-implemented process for managing configurable resource policies executes a resource expression associated with a received user selection to extract information from an executing simulation. Responsive to a determination that there are no more user selections to process, a set of rules is selected using the user selections and resource expression to populate a resource template using extracted information and selected rules. A resource policy is generated using the populated template. The generated resource policy is applied to the executing simulation, wherein behavior of the executing simulation is modified.
US09785897B2
Methods, apparatuses, and computer-readable media for optimizing efficiency of a workforce management system include receiving a service request, the service request including a service location, transmitting the service location to a plurality of map service providers, receiving geospatial coordinates and a corresponding confidence score from each map service provider which corresponds to a precision accuracy and indicates an estimated accuracy of the geospatial coordinates to the service location, calculating a plurality of overall scores for the plurality of map service providers based at least in part on the precision accuracy of each map service provider and a plurality of attributes associated with each map service provider, selecting a map service provider from the plurality of map service providers based at least in part on the plurality of overall scores, and transmitting geospatial data including coordinates provided by the selected map service provider to a technician.
US09785896B2
A method includes: a computer receiving historical data from at least one service vehicle; the computer receiving network definitions for the least one service vehicle; the computer receiving dynamic data from the at least one service vehicle; and the computer developing predictions and corrective actions to prevent service bunching, based upon the historical data, the network definitions, and the dynamic data.
US09785893B2
This disclosure describes, generally, methods and systems for creating dynamic subsets of larger equipment parts lists (EPLs). For example, a method may include receiving a search request that includes an associated failure code and a target asset. The method might further include providing an EPL for the asset type, and retrieving sub-lists of the EPL based on previous search requests which are associated with the failure code for the asset type. The method may further predict which one of the plurality of sub-lists has the highest probability of being associated with the failure code for the asset type and might present the predicted sub-list of the EPL to a user.
US09785888B2
Disclosed herein is an information processing apparatus including an evaluation information extraction section configured to extract evaluation information including an object targeted to be evaluated and an evaluation of the object targeted to be evaluated from a linguistic expression given as information expressed linguistically by a user of interest; an identification section configured to identify whether the evaluation information is of a first type regarding content or of a second type regarding another user; and an evaluation prediction section configured to predict the evaluation by the user of interest regarding the content, based on the evaluation information of the first type given by the user of interest and on the evaluation information given by the other user in the evaluation information of the second type given by the user of interest.
US09785887B2
According to an aspect, a pair of related entities that includes a first entity and a second entity is received. Distributional relations are detected between the first entity and the second entity. The detecting includes identifying two sets of entities in a corpus, the first set including the first entity and at least one other entity that is semantically similar to the first entity, and the second set including the second entity and at least one other entity that is semantically similar to the second entity. Semantic relations are detected between entities in the first set and entities in the second set. A relation classifier is trained using the pair of related entities and detected semantic relations. The relation classifier model is applied to a new pair of entities to determine a likelihood of a semantic relation between the entities in the new pair of entities.
US09785886B1
A method includes, based on a fitness function, selecting a subset of models from a plurality of models. The plurality of models is generated based on a genetic algorithm and corresponds to a first epoch of the genetic algorithm. Each of the plurality of models includes data representative of a neural network. The method also includes performing at least one genetic operation of the genetic algorithm with respect to at least one model of the subset to generate a trainable model and sending the trainable model to an optimization trainer. The method includes adding a trained model received from the optimization trainer as input to a second epoch of the genetic algorithm that is subsequent to the first epoch.
US09785878B2
An RFID tag for stably holding an RFID inlet raised and spaced apart with respect to an article, on which the tag is placed. The RFID tag is raised from a surface of the article by being flexed to bring the RFID tag into contact with a head portion of a banding band. A through hole defined in a tag base allows insertion of the banding band. The hole includes a first through bore and a second through bore. The tag base includes a base region for raising a holding region and a holding region for an RFID inlet for being reused. The base region raises the RFID inlet with respect to the article, and the holding region having the RFID inlet is raised from the base region.
US09785877B1
Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications (“RSSI”) of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.
US09785866B2
Techniques for optimizing multi-class image classification by leveraging negative multimedia data items to train and update classifiers are described. The techniques describe accessing positive multimedia data items of a plurality of multimedia data items, extracting features from the positive multimedia data items, and training classifiers based at least in part on the features. The classifiers may include a plurality of model vectors each corresponding to one of the individual labels. The system may iteratively test the classifiers using positive multimedia data and negative multimedia data and may update one or more model vectors associated with the classifiers differently, depending on whether multimedia data items are positive or negative. Techniques for applying the classifiers to determine whether a new multimedia data item is associated with a topic based at least in part on comparing similarity values with corresponding statistics derived from classifier training are also described.
US09785865B2
Techniques are described for performing multi-stage image classification. For example, multi-stage image classification can comprise a first classification stage and a second classification stage. The first classification stage can determine an overall classification for an input image (e.g., based on a relative entropy result calculated for the input image). The second classification stage can be performed by dividing the image into a plurality of blocks and classifying individual blocks, or groups of blocks, based on a classification model that is specific to the overall classification of the image determined in the first classification stage.
US09785859B2
A digital image of the object is captured and the object is recognized from plurality of objects in a database. An information address corresponding to the object is then used to access information and initiate communication pertinent to the object.
US09785858B2
A method and apparatus for hierarchical parsing and semantic navigation of a full or partial body computed tomography CT scan is disclosed. In particular, organs are segmented and anatomic landmarks are detected in a full or partial body CT volume. One or more predetermined slices of the CT volume are detected. A plurality of anatomic landmarks and organ centers are then detected in the CT volume using a discriminative anatomical network, each detected in a portion of the CT volume constrained by at least one of the detected slices. A plurality of organs, such as heart, liver, kidneys, spleen, bladder, and prostate, are detected in a sense of a bounding box and segmented in the CT volume, detection of each organ bounding box constrained by the detected organ centers and anatomic landmarks. Organ segmentation is via a database-guided segmentation method.
US09785856B2
A method for image processing that includes: obtaining a mask of a connected component (CC) from an image; generating a stroke width transform (SWT) image based on the mask; calculating multiple stroke width parameters for the mask based on the SWT image; identifying a hole in the CC of the mask; calculating a stroke width estimate for the hole based on the stroke width values of pixels in the SWT image surrounding the hole; generating a comparison of the stroke width estimate for the hole with a limit based on the multiple stroke width parameters for the mask; and generating a revised mask by filling the hole in response to the comparison.
US09785850B2
A system and process of nearsighted (myopia) camera object detection involves detecting the objects through edge detection and outlining or thickening them with a heavy border. Thickening may include making the object bold in the case of text characters. The bold characters are then much more apparent and heaver weighted than the background. Thresholding operations are then applied (usually multiple times) to the grayscale image to remove all but the darkest foreground objects in the background resulting in a nearsighted (myopic) image. Additional processes may be applied to the nearsighted image, such as morphological closing, contour tracing and bounding of the objects or characters. The bound objects or characters can then be averaged to provide repositioning feedback for the camera user. Processed images can then be captured and subjected to OCR to extract relevant information from the image.
US09785845B2
A drive support display device supporting a drive of a self-vehicle based on a detection result by an object detector regarding a nearby area of the self-vehicle. The device receives object information from an external source, the object information identifying a nearby object existing in the nearby area of the self-vehicle, determines whether the nearby object is detected by the object detector, and provides a warning indicator when the determination section determines that the nearby object is an undetected nearby object that is not detected by the object detector. As a result, the undetected nearby object, which is already identified as existing somewhere nearby the self-vehicle but is invisible therefrom, may be emphasized in an image provided by the drive support display device.
US09785843B2
The present invention provides a tunnel decision apparatus, including: a camera which outputs an image of a view in front of a vehicle; a road area classifying unit which detects a vanishing point from the image of the view in front of a vehicle to output at least one of a road area and a non-road area; a pattern detecting unit which detects at least one of a lamp pattern from the non-road area and a lane pattern from the road area; and a tunnel decision unit which determines whether the vehicle enters a tunnel in consideration of at least one of the lamp pattern and the lane pattern.
US09785842B2
A safety alarm system for a vehicle including: a sensor module configured to output an open signal when a vehicle door is opened; an image photographing module configured to output first and second vehicle surrounding image obtained by sequentially photographing a vehicle surrounding area; and a control module configured to detect whether a moving object is located within a predetermined vehicle safety area in the first and second images input by operating the image photographing module at the time of inputting the open signal and generating a safety alarm when the moving object is detected.
US09785830B2
Methods to select and extract tabular data among the optical character recognition returned strings to automatically process documents, including documents containing academic transcripts.
US09785829B2
An information processing apparatus includes a setting unit, an extracting unit, and an associating unit. The setting unit sets a position of a first-type person in a region within a predetermined distance from a communication device installed in a structure in a case where the communication device communicates with a mobile terminal carried by the first-type person. The extracting unit extracts a person from an image captured by an image capturing device installed in the structure. The associating unit associates the extracted person with information indicating the first-type person in a case where a relationship between the region and the position of the person satisfies a predetermined condition.
US09785821B2
A capacitive sensor a method of making a capacitive sensor are disclosed. The capacitive sensor includes: a plurality of rows of sensor electrodes included in a first layer; a plurality of columns of sensor electrodes included in a second layer, where the plurality of columns of sensor electrodes are arranged orthogonally to the plurality of rows of sensor electrodes to form a two-dimensional sensing array; and, a plurality of conductive elements included in a third layer disposed between the first and second layers, wherein, for each conductive element of the plurality of conductive elements, a first end of the conductive element is electrically connected to a sensor electrode in the plurality of rows of sensor electrodes and a second end of the conductive element is capacitively coupled to a sensor electrode in the plurality of columns of sensor electrodes to form a trans-capacitive sensing pixel of the two-dimensional sensing array.
US09785820B2
The technology presented here reduces the number of ports associated with the mobile device by combining a plurality of ports into a single multipurpose port. In one embodiment, the multipurpose port includes multiple sensors that detect various properties associated with a light beam, and a light guide that transmits the light beam between the environment outside and the multiple sensors inside the mobile device. In another embodiment, a multipurpose camera includes one or more pixels, different from the rest of the multipurpose camera pixels, where the one or more pixels receive a unique control signal. The unique control signal, sent by a processor coupled to the multipurpose camera, includes an instruction to perform an action different from the rest of the pixels, e.g., to turn on when the rest of the pixels are off. The active pixels can detect coarse properties of the light while saving mobile device battery life.
US09785817B2
Systems and methods of operation for an image processor system to process images to locate two-dimensional regions which are likely to contain machine-readable symbol data or text. Such regions of interest (ROIs) may be preserved at full resolution, while the contents of non-ROIs are averaged into a single pixel value. Transition densities in an image may be converted into a numeric value. Such transition densities may be indicative of the presence of data of interest, such as textual data and/or machine-readable symbol data. The pixels values for the pixels in the ROIs may be sent to a decoder unchanged (i.e., full resolution), which absolves the decoder from having to perform any ROI location computations. Modified or altered images may be compressed to much smaller size files while maintaining lossless ROIs, which allows for transmission of such images to processor-based devices over a data communications channel in real time.
US09785815B2
Embodiments of an image reader and/or methods of operating an image reader can capture an image, identify a bar code or IBI form within the captured image, and, store or display the captured image responsive to the an orientation of the bar code.
US09785814B1
A method of assisting in focusing a three dimensional camera system on an object within a field of view is disclosed. The process involves at the camera system, determining a distance D in a z direction, within the field of view, to a current focal plane; and rendering to a display, an aimer graphic element with the Z direction distance equal to D in a manner that causes the aimer graphic element to move in the Z direction with changes in the focal plane.
US09785810B2
This invention relates generally to a method and system for storing, retrieving, and managing data for tags that are associated in some manner to any type of object. More particularly, the present invention writes data to these tags, reads data from these tags, and manages data that is written to and/or read from these tags.
US09785806B2
A radio frequency identification (RFID) tag includes a power source, a transmitter to transmit a unique identifier, and a receiver operatively coupled to the transmitter and to receive low-frequency signals from an active RFID transceiver located in the vicinity. The transmitter is activated by the power source responsive to the receiver receiving a wake up command at a predetermined low frequency from the active RFID transceiver. An RFID transceiver includes an antenna, non-transitory computer-readable medium storing instructions and a transmitter to transmit low-frequency signals to RFID tags through the antenna. A processing device of the RFID transceiver can execute the instructions to insert a station identifier (ID) into the low-frequency signals that direct the RFID tags to retransmit the station ID, wherein the station ID identifies an approximate location of the RFID tags.
US09785803B2
Disclosed are a method, an apparatus, and a system for collecting tags which may reduce recognition time and energy consumption as compared with a tag collection technology in an active radio frequency identification (RFID) system standard according to the related art. The method for collecting tags by an apparatus for collecting the tags in a RFID system, one collection round including: recognizing tags; and collecting data from recognized tags, wherein the recognizing of the tags comprises one scan period, and comprises repeatedly performing a scan process until the tags are recognized using a bit map indicating a recognition status of the tags within one scan period.
US09785801B2
An embodiment includes an apparatus comprising: an out-of-band cryptoprocessor coupled to secure non-volatile storage; and at least one storage medium having firmware instructions stored thereon for causing, during runtime and after an operating system for the apparatus has booted, the cryptoprocessor to (a) store a key within the secure non-volatile storage, (b) sign an object with the key, while the key is within the cryptoprocessor, to produce a signature, and (c) verify the signature. Other embodiments are described herein.
US09785799B2
A system and method for program access control includes, for a typestate, providing typestate properties and assigning a role to the typestate in a program in accordance with the typestate properties. Access to operations is limited for the typestate in the program based on the role assigned to the typestate and an access permission level.
US09785797B2
New tokenization tables are derived at intervals in order to increase the security of tokenized data that is transferred between two endpoints. Generation of the new tokenization tables is based on previous tokenization tables, which advantageously allows the generation process to be performed locally at the two endpoints independently of an external tokenization table provider. New tokenization tables can periodically be distributed to the endpoints as a new starting point for derivation.
US09785789B2
An optical security method for object authentication using photon-counting encryption implemented with phase encoded QR codes. By combining the full phase double-random-phase encryption with photon-counting imaging method and applying an iterative Huffman coding technique, encryption and compression of an image containing primary information about the object is achieved. This data can then be stored inside of an optically phase-encoded QR code for robust read out, decryption, and authentication. The optically encoded QR code is verified by examining the speckle signature of the optical masks using statistical analysis.
US09785787B2
A device may identify an image to be encrypted, and may convert the image to a first string in a first format. The first string may represent the image. The device may receive information that identifies a key for encrypting the first string, and may generate a first encrypted string by encrypting the first string using the key. The device may convert the first encrypted string, in the first format, to a second encrypted string in a second format. The device may provide the second encrypted string to a storage device without providing the key or the image to the storage device. The storage device may be unable to recover the image using the second encrypted string.
US09785781B2
Presented are a method, apparatus, and computer-readable medium for data exchange. The method includes specifying, by a user equipment (UE), a first data, and creating, by the UE, a rule set, the rule set governing access to the first data. The method further includes uploading, by the UE, the first data with the rule set to a user selected server, the first data being accessible at the user selected server based on the rule set.
US09785778B2
A test object that includes at least one computer program that includes dynamic executable code is obtained. The at least one computer program is transformed into a format that is configured to execute in a hosted isolated computing environment. Directed execution of the at least one computer program is initiated, in the hosted isolated computing environment. Dynamic code vulnerabilities of the at least one computer program are detected, based on the directed execution.
US09785769B2
In some examples of a virtual computing environment, multiple virtual machines may execute on a physical computing device while sharing the hardware components corresponding to the physical computing device. A hypervisor corresponding to the physical computing device may be configured to designate a portion of a cache to one of the virtual machines for storing data. The hypervisor may be further configured to identify hostile activities executed in the designated portion of cache and, further still, to implement security measures on those virtual machines on which the identified hostile activities are executed.
US09785763B2
A method for biometric authentication of a user of a mobile device, and a case for performing the method is provided. The method includes, by the case, coupling the mobile device to the case, receiving from the mobile device biometric data of the user of the mobile device that was captured by the mobile device, storing the biometric data, receiving a request from the mobile device for authenticating the user of the mobile device, the request including biometric data captured by the mobile device, comparing the biometric data stored in the case and the biometric data included in the request, and sending to the mobile device a response to the request for authenticating the user of the mobile device based on a result of the comparison, wherein the response to the request is for use by the mobile device to perform an operation based on the authentication of the user.
US09785751B2
A medication delivery system is disclosed that includes a portable container and a controller. The portable container includes a body and a lid that forms a securable storage compartment, and a latch that is coupled to the body and configured to releasably secure the lid. The portable container also includes a processor and a power source coupled to the latch, the processor causing the latch to release when an access signal based on a unique identifier is received.
US09785749B2
Training a machine to provide specialized health care apparatus may include receiving text describing a user's health condition via a user interface. Text may be converted into corresponding medical terms. A database may be searched for a list of health care providers treating health conditions associated with the medical terms. A machine learning model may be built that may include user preference for a predefined set of features associated with the user's health condition and health care provider preference for the predefined set of features in treating the user's health condition. The machine learning model may predict one or more of the health care providers that provide treatment for the user's health condition that matches the user's preference. The machine learning model may be retrained based on one or more of feedback from the user, the health care providers, and updated traits of the users and the health care providers.
US09785748B2
Computer-implemented methods are disclosed for estimating values of hemodynamic forces acting on plaque or lesions. One method includes: receiving one or more patient-specific parameters of at least a portion of a patient's vasculature that is prone to plaque progression, rupture, or erosion; constructing a patient-specific geometric model of at least a portion of a patient's vasculature that is prone to plaque progression, rupture, or erosion, using the received one or more patient-specific parameters; estimating, using one or more processors, the values of hemodynamic forces at one or more points on the patient-specific geometric model, using the patient-specific parameters and geometric model by measuring, deriving, or obtaining one or more of a pressure gradient and a radius gradient; and outputting the estimated values of hemodynamic forces to an electronic storage medium. Systems and computer readable media for executing these methods are also disclosed.
US09785740B2
A computer implemented system and method is provided for modifying a layout of one or more standard cells defining a circuit component, the layout providing a layout pattern for a process technology. The method comprises receiving, after completion of one or more initial place and route operations, an input data file that includes the layout pattern of the layout. The layout includes the one or more standard cells and placement and routing information generated by the one or more initial place and route operations. The method further comprises identifying one or more metal portions associated with one or more rails of the one or more standard cells of the layout. A metal fill operation is then performed using the input data file in order to generate a modified input data file. The metal fill operation includes modifying the one or more metal portions with one or more metal fill patterns to form a reduced resistive path associated with the one or more metal portions.
US09785739B1
The present disclosure relates to a system and method for fluid parameterized cell (Pcell) evaluation. Embodiments may include displaying a fluid Pcell in a first format. Embodiments may further include identifying a first state in a fluid Pcell evaluation code. In some embodiments, the first state may indicate that alterations are being made to the fluid Pcell. Embodiments may also include displaying instances of the fluid Pcell in a second format based upon, at least in part, identifying the first state in the fluid Pcell evaluation code. Embodiments may further include identifying a second state in the fluid Pcell evaluation code. In some embodiments, the second state may indicate the completion of the alterations to the fluid Pcell. Embodiments may also include displaying a final instance of the fluid Pcell in the first format based upon, at least in part, identifying the second state in the fluid Pcell evaluation code.
US09785731B1
A method of projection a production characteristic includes receiving down well video image data depicting multiphase flow within the well, determining a flow rate data of at least one phase of the multiphase flow based on the down well video image data, and projecting the production characteristic based at least in part on the determined flow rate using a well performance model.
US09785725B2
Systems and methods for visualizing relational data as RDF graphs in order to explore connections between data in the relational schema. The relational data is first converted into an initial RDF graph. Referential constraints between tables in the relational data, including unasserted referential constraints and pseudo-referential constraints, are automatically detected and used to augment the RDF graph. In addition, datatype properties in the RDF graph may be folded into annotation objects for better visualization. The resulting graph may be an edge-node graph, with edges corresponding to referential constraints between nodes corresponding to relational table rows.
US09785722B2
A system and method for replaying a user's interaction with a webpage by requesting playback of user interaction data from a replay server, receiving a media asset from the replay server to allow playback the requested user interaction data, the media asset being pre-fetched for use by a proxy application, periodically requesting and receiving the user interaction data from the replay server, recreating an interaction visualization from the user interaction data, and playing back said interaction visualization based on data received from the replay server.
US09785707B2
A system and method for processing audio text files includes a content repository storing audio text files. A text transformer linguistically analyzes the audio text files within a content of multiple lexicons to form edited text results and creates a reflection repository having reflection files therein corresponding to the audio text files from the edited text results. A search engine searches the reflection files and a user device displays a first reflection file from the reflection files or a first audio text file from the audio files in response to searching.
US09785703B1
A computer-based system for presenting interpersonal relationship recommendation that utilizes peer based opinions about a potential match to influence the recommendation, and that presents the peer based opinions along with the recommendation.