US10673736B2

A first network node of a computer network discovers a host route by leveraging a temporary host route on the control plane of the computer network. The first network node receives, from a source host, a request for a host route associated with a destination host. The first network node determines that it has not previously stored the host route associated with the destination host, and generates a temporary host route associated with the destination host. The first network node propagates the temporary host route across the control plane of the computer network, causing each respective network node to discover if the destination host is connected to the respective network node.
US10673730B2

Example implementations described herein are directed to systems and methods for using and updating performance thresholds based on application characteristics. Example implementations compare monitored performance metrics with thresholds having similar application characteristics as the one monitored. Example implementations further manage remediation plans to solve performance issues based on application characteristics. In example implementations, management software retrieves existing plans created for similar situations in response to an issued alert.
US10673728B2

In one embodiment, a local service of a network reports configuration information regarding the network to a cloud-based network assurance service. The local service receives a classifier selected by the cloud-based network assurance service based on the configuration information regarding the network. The local service classifies, using the received classifier, telemetry data collected from the network, to select a modeling strategy for the network. The local service installs, based on the modeling strategy for the network, a machine learning-based model to the local service for monitoring the network.
US10673724B2

Systems and methods are described herein for managing peering relationships and applying peering policy between service providers and content distribution networks. Aspects discussed herein relate to establishing secure peering connections between service providers to exchange application and/or network information. In some embodiments, an application peering manager may apply peering policy based on token information or other suitable information configured to uniquely identify an application and/or subscriber. In other embodiments, policy enforcement points or other elements residing within a network may be configured to accept and/or apply peering policy to application sessions.
US10673721B2

An anomaly detection apparatus for detecting data flow anomalies classes a plurality of data flows on the basis of similarity in time series changes in the data amounts of the data flows; calculates a correlation coefficient at a normal time and a correlation coefficient at a certain timing between at least two data flows belonging to the same class; and determines that at least one of the at least two data flows is anomalous when a difference between the correlation coefficient at the normal time and the correlation coefficient at the certain timing is greater than a predetermined threshold.
US10673718B2

Disclosed herein are systems, methods, and apparatus for performing a new kind of traceroute. This traceroute is referred to herein as a “reverse” traceroute, as it enables a given network node to determine the path of packets sent to it from another node. Preferably, an encapsulating tunnel between the two nodes is leveraged. Preferably, a given network node (“first node”) performs the reverse traceroute by sending encapsulated inner packets in the tunnel to another network node (“second node”). The second node reflects the inner packets back to the first node. Preferably, the inner packets are configured such that their IP header TTLs expire at intermediate nodes (such as routers), and such that the resulting error messages are reported to the first node. In this way, the first node obtains information about the topology of the network and the path taken by inbound packets.
US10673711B2

A system, method and program product for bundling resources for a resource provisioning platform. A system is disclosed that includes a plurality of resources, wherein each resource belongs to one of a plurality of categories; a bundling system having: a data collection system that gathers historical transaction data associated with the resources; an analysis system that analyzes the historical transaction data to assign estimated valuations to different bundles of resources and includes (a) a substitution effect analyzer to analyze a substitution effect of resources in each category using discrete choice modeling and marginal value estimation, and (b) a joint dependence analyzer that determines intra-category and inter-category joint dependent inferences across all resources; and a bundle selection system that selects a set of bundles for provisioning based on the estimated valuations.
US10673706B2

Provided is a process of correlating information organized according to a logical architecture of a distributed application to information organized according to a network architecture of computers executing the distributed application, the process including: obtaining a logical-architecture topology of a logical architecture of a distributed application executing on a plurality of computing devices; obtaining a network-architecture topology of a physical architecture of the plurality of computing devices executing the distributed application; inferring pairs of logical-architecture host identifiers and network-architecture host identifiers that refer to the same computing device to produce a cross-namespace mapping that correlates the logical-architecture namespace with the network-architecture namespace; and storing the cross-namespace mapping in memory.
US10673705B2

A regenerator system is provided for dynamic and asymmetric bandwidth capacity adjustment when exchanging data between a first remote network device and a second remote network device. The regenerator includes first and second couplers in communication with the first and second remote network devices, respectively, using a first communication medium that provides multiple communication channels, and at least one redirecting device operable to selectively configure at least one of the channels for either transmission of a signal from the first remote network device to the second remote network device, or transmission of the signal from the second remote network device to the first remote network device.
US10673701B2

A system includes a first device having a first physical layer transceiver (PHY) and a first port that is coupled to the first PHY and that operates in a mode. The system also includes a second device having a second PHY and a second port that is coupled to the second PHY and that operates in a mode. The second device provides, through the second port via a cable coupled to the first port to the first device and prior to advertising the at least one mode that the second port is configured to operate in, a second PHY ability of the second PHY. The second device receives a first PHY ability of the first PHY and determines that a mismatch exists between the first and second PHY abilities. In response to the mismatch, the second device adjusts the operation of the second PHY to correct the mismatch.
US10673676B2

Certain aspects of the present disclosure generally relate to wireless communication. More particularly, aspects of the present disclosure provide multiplexing schemes which may be suited for the single carrier waveform. For example, some techniques and apparatuses described herein permit multiplexing of multiple, different data streams without destroying the single-carrier properties of the waveform. Additionally, or alternatively, some techniques and apparatuses described herein may provide unequal error protection, unequal bandwidth allocation, and/or the like as part of the multiplexing schemes. Examples of multiplexing schemes described herein include in-phase/quadrature (I/Q) multiplexing, superposition quadrature amplitude modulation (QAM) based at least in part on layered bit mapping, polarization division multiplexing of QAM with superposition coding, and frequency division multiplexing using UE-specific beams.
US10673670B2

The present invention provides a demodulation reference signal transmission apparatus, system, and method. The method includes: sending, by a base station, a configuration indication to user equipment UE, where the configuration indication is used to instruct the UE to send an independent DMRS and/or instruct the UE to send a combination of a DMRS and uplink data; and subsequently receiving, by the base station, the independent DMRS sent by the UE; and/or receiving the combination of the DMRS and the uplink data sent by the UE. In this way, the base station can trigger the UE to send the foregoing DMRS to complete frequency offset estimation, thereby improving accuracy of the frequency offset estimation.
US10673669B2

A sequence-based signal processing method and apparatus are provided. A sequence meeting a requirement for sending a signal by using a physical uplink control channel (PUCCH) is determined. The sequence is a sequence {fn} consisting of 12 elements, fn represents an element in the sequence {fn}, and the determined sequence {fn} is a sequence meeting a preset condition. Then, the 12 elements in the sequence {fn} are respectively mapped to 12 subcarriers, to generate a first signal, and the first signal is sent. By using the determined sequence, when the signal is sent by using the PUCCH, a low correlation between sequences can be maintained, and a relatively small peak-to-average power ratio (PAPR) value and a relatively small cubic metric (CM) value can be maintained. Therefore, a requirement of a communication application environment in which the signal is sent by using the PUCCH is met.
US10673666B2

The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method by a terminal in a wireless communication system is provided. The method includes identifying a slot type of a terminal from a first slot type and a second slot type, determining a position of a demodulation reference signal (DMRS) based on the slot type, and receiving the DMRS based on the position from a base station.
US10673660B2

The present invention relates to a continuous time linear equalizer comprising a first signal path comprising a high pass filter and a first controllable transconductance unit and a second signal path comprising a second controllable transconductance unit. The continuous time linear equalizer comprises a summation node configured to receive complementary current summation signals of the first transconductance unit and the second transconductance unit. The high pass filter comprises a first port configured to receive an input signal, a second port coupled to a control port of the first transconductance unit and a third port coupled to the summation node. The invention is notably also directed to a corresponding method and a corresponding design structure.
US10673651B2

In accordance with various implementations, a method is performed at a gateway with one or more processors, non-transitory memory, and a data interface. The method includes: obtaining a request to instantiate a tunnel for data from a guest service provider (GSP) to a user device that traverses an operator network; determining whether the request satisfies tunneling criteria, where the tunneling criteria at least includes a first criterion associated with intrinsic information associated with the operator network and a second criterion associated with extrinsic information that characterizes network resources of the network operator based on a relationship between the operator network and the GSP; instantiating the tunnel in response to determining that the request satisfies the tunneling criteria, where instantiating the tunnel includes the gateway transmitting tunnel instructions to other nodes of the operator network; and routing the data through the tunnel to transmit the data to the user device.
US10673633B2

Method for retrieving data entered during a server connection, the server having access to a memory including a generated hashed word of a first input data, which corresponds to the data modified by a processing function, the capacity of the hashed word being lower than a predefined capacity, a generated security key of a second input data, which corresponds to the data modified by a processing function, the capacity of the security key being equal to the difference between the predefined capacity and the hashed word capacity, the security key not being stored, method wherein: —after a request to retrieve the data, the hashed word and the security key are concatenated in order to reach the predefined capacity, and —an inverse hash function, using an algebraic solving of the hash function, is applied to the concatenation of the hashed word and security key, to retrieve the data.
US10673632B2

The invention is a method for deploying a trusted identity for a user issued by an issuer. The user has a user device configured to send a request for signature to an issuer device handled by the issuer. The request comprises a user public key allocated to the user. The issuer device is configured to compute an issuer signature by signing both the user's trusted identity and the user public key using an issuer private key allocated to the issuer. A block chain transaction containing the issuer signature is created and submitted to a Block Chain for transaction verification and storage.
US10673630B2

Methods, systems, and devices for facilitating the automated configuration of one or more new 802.11 access points (APs) are disclosed herein. A cloud server may receive a message associated with a customer account for one or more new APs. The cloud server may associate a first AP of the one or more new APs based on the message. The cloud server may then retrieve a public key associated with the first AP which has a reciprocal private key. The cloud server may send the public key to a gateway (GW) associated with the customer account. The GW may encrypt the GW credentials, such as a password and SSID, into a ciphertext using the public key and then broadcast this information. When the first AP has been powered on it may decrypt the ciphertext using the private key and use the credentials to act as a node in the GW's network.
US10673624B2

A communication control device includes a receiving unit, a generating unit, and an output unit. The receiving unit receives input of a binary tree in which each leaf node has an index and a node key assigned thereto, and receives input of node IDs that, from among the leaf nodes, enable identification of the leaf nodes belonging to a group. The generating unit generates, using the node key assigned to the root node of each partial tree of the binary tree which includes only the leaf nodes identified by the node IDs, a cipher text by encrypting a group key shared in the group, and generates set information containing the generated cipher text. The output unit outputs the set information at least to the communication devices that are associated to the leaf nodes belonging to the group.
US10673615B2

In one embodiment, data for use by a processor is stored in a memory. A network interface communicates over a network with a second device. At a processor, a Somewhat Homomorphic Encryption (SHE) of a plurality of secret shares is generated. The SHE of the plurality of secret shares is sent to the second device. The following is performed in a loop: a first result of a homomorphic exclusive-or operation performed by the second device on the SHE is received, a SHE of the first result is performed, yielding a second result, a SHE of the second result is performed yielding a third result, the third result is transmitted to the second device, and a final SHE result is received from the second device. The received final SHE result is decrypted in order to produce a final Somewhat Homomorphically Decrypted (SHD) output. The final SHD output is then output. Related methods, systems, and apparatus are also described.
US10673613B2

A polynomial complete homomorphic encryption method based on the coefficient mapping transformation. A plaintext is expressed as a polynomial consisting of a set of random values, two sets of random coefficient factors and a random constant of a specified mapping function, and in the polynomial: the expression and a set of random coefficient factors of the specified mapping function are taken as a key; another set of random coefficient factors, a set of random arguments and random constants of the mapping function are taken as the ciphertexts for homomorphic operations, so that the part of function key performs three different mappings and then undergoes numerical fitting to obtain the family of operational support functions consisting of three sub-functions respectively, which are used to perform the homomorphic operation of the ciphertext based on the family of operational support functions and return to the locality for decryption by the key.
US10673612B2

The present invention involves with a method of searchable public-key encryption, a system and server using the method.
US10673611B2

The present disclosure discloses a data transmission method, device, and system, and belongs to the field of communications technologies. The method includes: receiving a data packet sent by user equipment, where the data packet carries indication information used to instruct a base station to establish a specified data connection to the user equipment; generating a first key of the user equipment based on the indication information and a public key of the base station; and performing data transmission with the user equipment based on the first key of the user equipment. According to the data transmission method, the transmitted data can be encrypted and decrypted when there is no radio resource control connection between the base station and the user equipment, thereby improving data transmission security while ensuring data transmission efficiency.
US10673610B2

A system, method and computer-readable storage medium with instructions for protecting an electronic device against fault attack. Given a data represented as an input codeword of a systematic linear error correcting code, the technology provides the secure computation of the output codeword corresponding to the result of the non-linear function applied to this data. Other systems and methods are disclosed.
US10673608B2

Methods and systems are described for receiving a signal to be sampled and responsively generating, at a pair of common nodes, a differential current representative of the received signal, receiving a plurality of sampling interval signals, each sampling interval signal received at a corresponding sampling phase of a plurality of sampling phases, for each sampling phase, pre-charging a corresponding pair of output nodes using a pre-charging FET pair receiving the sampling interval signal, forming a differential output voltage by discharging the corresponding pair of output nodes via a discharging FET pair connected to the pair of common nodes, the FET pair receiving the sampling interval signal and selectively enabling the differential current to discharge the corresponding pair of output nodes, and latching the differential output voltage.
US10673607B2

In an example embodiment disclosed herein, a first clock is allowed to synchronize with a second clock as long as the time difference between the first and second clocks is less than a predefined limit. If the time difference between the clocks is not less than the predefined limit, the first clock does not synchronize with the second clock until a predefined activity has occurred.
US10673602B2

A method and apparatus for TDD inter-band carrier aggregation in a wireless communication system includes performing aggregating multiple cells with different TDD UL-DL configurations, transmitting a PUSCH transmission on a first cell, the subframe for HARQ feedback reception for the PUSCH in a first cell colliding with a UL subframe in a second cell, and performing one of setting the corresponding HARQ feedback to ACK, flushing the corresponding HARQ buffer, and changing the corresponding HARQ feedback subframe for the PUSCH to another subframe.
US10673596B2

Techniques are described for wireless communication. A first method includes generating uplink control information at a wireless device, and transmitting the uplink control information over an interlace of a component carrier of an unlicensed radio frequency spectrum band. The interlace includes a plurality of non-contiguous concurrent resource blocks in the unlicensed radio frequency spectrum band, and at least two resource blocks in the interlace include different portions of the uplink control information. A second method includes generating uplink control information at a wireless device, and transmitting the uplink control information over an uplink control channel of an unlicensed radio frequency spectrum band. Resources of the uplink control channel are divided into a plurality of discrete dimensions and the uplink control information of the wireless device is transmitted over a number of the discrete dimensions allocated to the uplink control information of the wireless device.
US10673589B2

A cellular network supports radio communication based on a first configuration which organizes a time-frequency space in first resource elements and radio communication based on a second configuration which organizes the time-frequency space in second resource elements and assigns at least one of the second resource elements to a utilization which is in conflict with the radio communication based on the first configuration. A node of the cellular network sends an indication to a communication device. The indication comprises time domain and/or frequency domain information for defining a pattern comprising at least one of the first resource elements which is to be disregarded by the communication device when performing radio communication with the cellular network based on the first configuration and/or the second configuration. The at least one first resource element of the pattern defines a first part of the time-frequency space which overlaps a second part of the time-frequency space defined by the at least one of the second resource elements.
US10673583B2

Embodiments of methods and apparatuses for resource allocation in a wireless communication system are disclosed. In one embodiment, a method of wireless communication comprises obtaining data to be transmitted over a plurality of sub-channels in a wireless communication environment, determining channel conditions associated with the plurality of sub-channels, scheduling the data to be transmitted according to the channel conditions associated with the plurality of sub-channels to form scheduled data for transmission, and transmitting the scheduled data to one or more receivers via the plurality of sub-channels. The method of determining channel conditions associated with the plurality of sub-channels comprises determining interference observed at each sub-channel in the plurality of sub-channels.
US10673574B2

The embodiments herein relates to a network node, a UE, and methods thereof for reliable group transmissions. The method in the UE comprises receiving, from a network node, at least one signaling comprising HARQ parameters including a diversity distance between a HARQ transmission and a subsequent HARQ re-transmission and information on a number of retransmissions; receiving at least one transmission comprising at least one packet from the network node; decoding the received at least one packet; if the decoding of the at least one packet is successful, encoding the at least one packet and retransmitting, to at least one other UE of the group, the at least one transmission including the at least one encoded packet, wherein retransmitting of the at least one packet is performed simultaneously as retransmission of the at least one transmission from the network node to the at least one other UE of the group.
US10673573B2

A method for an uplink transmission of a user equipment (UE) in a wireless communication system and the UE are provided. The method includes receiving, from a base station (BS), control signaling; grouping physical downlink shared channels (PDSCHs) based on the control signaling; determining a hybrid automatic repeat request acknowledgement/negative acknowledgement (HARQ-ACK/NACK) codebook for each grouping of the PDSCHs; and transmitting HARQ-ACK/NACK information corresponding to the HARQ-ACK/NACK codebook. The UE includes a transceiver configured to receive control signaling from a BS; and a processor configured to: group PDSCHs based on the control signaling; and determine an HARQ-ACK/NACK codebook for each group of PDSCHs, wherein the transceiver is further configured to transmit HARQ-ACK/NACK information corresponding to the HARQ-ACK/NACK codebook.
US10673566B2

A UE is described that communicates with a base station apparatus on serving cells having a primary cell and one or more secondary cells. The UE includes receiving circuitry configured to receive, a RRC message including first information configuring a CGB based transmission for a PDSCH. The receiving circuitry is also configured to receive, a RRC message including second information configuring a maximum number of CBGs per transport block. The UE includes processing circuitry configured to determine the number of bits for CBG transmission information comprised in a first DCI format, wherein the first DCI format is used for scheduling of the PDSCH. In a case that the first information is configured, the number of bits for the CBG transmission information comprised in the first DCI format may be determined based on the second information.
US10673565B2

A control network communication arrangement includes a second protocol embedded into a first protocol in a way that modules supporting the second protocol may be aware of and utilize the first protocol whereas modules supporting only the first protocol may not be aware of the second protocol. Operation of modules using the second protocol does not disturb operation of the modules not configured to use or understand the second protocol. By one approach, unique additional information is embedded into an end of frame portion of a message to confirm that the portion is the end of frame portion. This acts as a quality check confirming proper synchronization and decoding of the signaling on the communication bus.
US10673558B2

A method and network node for performing link adaption are disclosed. In one embodiment, a channel state information, CSI, measurement is received from a wireless device. An information carrying capacity, ICC, over a number of scheduling blocks, SBs, for a plurality of modulation formats for a target criteria is determined based at least in part on the CSI measurement from the wireless device. A modulation format of the plurality of modulation formats with a maximum ICC is selected. A transport block size, TBS, is determined for the selected modulation format. Link adaptation is performed based on the determined TBS.
US10673555B2

In an ultra-wideband (“UWB”) communication system comprising a pair of UWB transceivers, methods for securely performing channel sounding. In a first GCP Sync method, a pre-determined set of Golay Complementary Pairs is added to an 802.15.4a frame. In a second CLASS method, a cyphered low auto-correlation sum set is added to frame. In a third LCSSS method, a low cross-correlation sidelobe sum set is added to the frame. In general, these methods are adapted to transmit a pseudo-randomly generated codeset which may have inherent sidelobe distortions, and then, in the receiver, to compensate for this, and any channel-induced, distortion by selectively modifing the cross-correlation codeset.
US10673543B2

A method and apparatus for providing a network profile used for testing of a device under test, the method comprising the steps of reading at least one field test log file recorded during a field test of said device under test, wherein the field test log file comprises network protocol messages and/or physical layer measurement data and extracting one or more protocol messages and/or payload data from the recorded field test log file including information concerning associated cells of a cellular network to generate automatically the network profile.
US10673541B2

Methods, systems and apparatus for a user equipment to mitigate interference in a wireless charging state. The user equipment may determine when the user equipment enters a wireless charging state and, when the user equipment enters the wireless charging state, activate an interference mitigation. The user equipment may further determine when the UE exits the wireless charging state and, when the user equipment exits the wireless charging state, deactivate the interference mitigation.
US10673540B2

The invention relates to a method for communicating between at least one first system (2) and at least one second system (3) via a full-duplex synchronous serial link (4) capable of simultaneously routing data between said systems (2, 3), said data comprising: at least one message (12; 43) from the first system (2) to the second system (3), at least one message (16; 45) from the second system (3) to the first system (2), and a clock signal (13; 44). According to the method: the second system (3) receives a message (12; 43) and a clock signal (13; 44) sent by the first system (2), delayed and substantially in phase; the second system (3) sends the first system (2) a message (16; 45); the clock signal (13; 44) received by the second system (3) is returned (17; 46) to the first system (2) along with the message (16; 45) sent by the second system (3); and the first system (2) receives the message (16; 45) sent by the second system (3) and the returned clock signal (17; 46), delayed and substantially in phase.
US10673539B2

Embodiments of the present disclosure describe an underwater optical communication and illumination system employing laser diodes directly encoded with data, including spectrally efficient orthogonal frequency division multiplex quadrature amplitude modulation (QAM-OFDM) data. A broadband light source may be utilized to provide both illumination to an underwater field of interest and underwater optical communication from the field of interest to a remote location.
US10673537B2

The invention relates to a sensor and a system for measuring pressure, variation in sound pressure, a magnetic field, acceleration, vibration, or the composition of a gas. The sensor comprises an ultrasound transmitter, a cavity, and a passive sensor element. In accordance with the invention the sensor includes antenna means for receiving radio frequency signals (f1, f2), and connecting means connecting the antenna to the ultrasound transmitter for using the radio frequency signals for providing energy for driving the ultrasound transmitter.
US10673535B2

An example optical receiver may have an optical receiver front-end, four slicers, and a logic block. The optical receiver front-end may include a transimpedance amplifier to convert a photodiode output signal to a voltage signal. Three of the slicers may be data slicers, and one of the slicers may be an edge slicer. The slicers may each: shift the voltage signal based on an offset voltage set for the respective slicer, determine whether the shifted voltage signal is greater than a threshold value and generate a number of comparison signals based on the determining, and generate multiple digital signals by demuxing the comparison signals. The logic block may perform PAM-4 to binary decoding based on the data signals output by the data slicers and clock-and-data-recovery based on the digital signals output by the edge slicer.
US10673534B2

A signal processing method is provided. Under the method, a first digital signal can be obtained by an optical transmitter. The first digital signal is a one-dimensional bipolar digital signal. A spectral compression and filtering can be performed by the optical transmitter on the first digital signal to generate a second digital signal. A frequency shift can be performed by the optical transmitter on the second digital signal such that a center location of a spectrum of the frequency-shifted second digital signal is at a frequency of 0.
US10673527B2

Disclosed is a satellite telecommunications system including at least one satellite in terrestrial orbit, referred to as optical gateway satellite, having a payload, the payload including a communication module, referred to as user module, capable of exchanging data with at least one terrestrial user terminal, and further including a communication module, referred to as gateway module, capable of exchanging data in the form of optical signals with at least one terrestrial optical gateway station. Also disclosed is a method for controlling such a satellite telecommunications system.
US10673514B1

A communication device, method, and computer program product provide configuring, by a controller, a switching matrix of a radio frequency (RF) frontend of the communication device to a receive antenna tuning mode. The receive antenna tuning mode communicatively couples a transmitter to a first receive antenna of one or more receive antennas. A reference signal is transmitted using the first receive antenna at a selected transmit power level setting of the transmitter. A feedback receiver measures magnitude and phase values of both a forward coupled transmission signal and a reverse coupled reflection signal of the reference signal. An impedance value of the first receive antenna is determined based on the measured magnitude and phase values and the reference signal transmitted at the selected transmit power level setting. The first receive antenna is tuned by an antenna tuning module using the impedance value.
US10673513B2

A front end module (FEM) for a 5.2 GHz Wi-Fi acoustic wave resonator RF filter circuit. The device can include a power amplifier (PA), a 5.2 GHz resonator, and a diversity switch. The device can further include a low noise amplifier (LNA). The PA is electrically coupled to an input node and can be configured to a DC power detector or an RF power detector. The resonator can be configured between the PA and the diversity switch, or between the diversity switch and an antenna. The LNA may be configured to the diversity switch or be electrically isolated from the switch. Another 5.2 GHZ resonator may be configured between the diversity switch and the LNA. In a specific example, this device integrates a 5.2 GHz PA, a 5.2 GHZ bulk acoustic wave (BAW) RF filter, a single pole two throw (SP2T) switch, and a bypassable LNA into a single device.
US10673507B2

Methods and apparatuses for CSI reporting mechanisms are provided. A user equipment (UE) includes a transceiver and a processor operably connected to the transceiver. The transceiver is configured to receive information indicating a channel state information reference signal (CSI-RS) resource configuration, uplink-related downlink control information (DCI), and a CSI-RS associated with a selected CSI-RS resource in a same subframe as the uplink-related DCI. The processor configured to determine, in response to a CSI request included in the uplink-related DCI, an aperiodic CSI in reference to the CSI-RS. The transceiver is further configured to report the aperiodic CSI by transmitting the aperiodic CSI on an uplink channel.
US10673504B2

A transmission parameter determination method and apparatus are provided. In the method, a second node determines a transmission parameter grade X1 based on a predetermined set and at least one of predetermined information and indication signaling.
US10673500B2

Methods, systems, and devices for wireless communications are described. A user equipment (UE) having partially coherent antennas may be configured for simultaneous transmissions on groups of antennas (e.g., multiple pairs of antennas). To achieve the benefits of simultaneous transmissions using groups of antenna that are partially coherent, without having the transmissions affect each other (e.g., interference), the UE may apply a hybrid closed-loop multiple-input multiple-output (MIMO) scheme among each antenna in the antenna groups where phase coherence can be maintained. Following the hybrid closed-loop MIMO scheme, the UE may apply a transparent diversity scheme across each antenna of the groups. Alternatively, the UE may first apply the transparent diversity scheme and next apply the hybrid closed-loop MIMO scheme. By applying a hybrid closed-loop MIMO scheme, as well as a transparent diversity scheme, the UE may fully realize its resources and contribute to an improved spatial diversity for a MIMO system.
US10673498B2

A device and method for wireless communications. The device includes: an information acquisition unit, configured to acquire channel information about a transmission object and a non-transmission object for wireless communications, wherein the transmission of the transmission object is controlled by the device and transmission of the non-transmission object is not controlled by the device; and an interference reducing unit, configured to reduce interference with the non-transmission object based on the channel information about the transmission object and the non-transmission object.
US10673497B2

Methods and arrangements are described for Multi User Multiple-Input-Multiple-Output (MU-MIMO) signaling via Multiple-Input-Multiple-Output (MIMO) antennas between a base station and one of a plurality of mobile terminals supporting both Single User and Multi User Multiple-Input-Multiple-Output (SU-MIMO and MU-MIMO) signaling modes. Switching between the modes is supported, and the modes have partly shared signaling. SU-MIMO mode signaling which is not needed for MU-MIMO mode signaling is identified. Data bits of the identified signaling is interpreted to comprise signaling information associated with MU-MIMO mode.
US10673486B2

According to an embodiment, an electronic device, comprises a first communication circuit configured to support near-field communication (NFC); a second communication circuit configured to support wireless communication; at least one memory device; and at least one processor operationally connected with the first communication circuit, the second communication circuit, and the at least one memory device, wherein the at least one memory device stores instructions, when executed, cause the at least one processor to perform operations comprising: receive, from a first external electronic device via the first communication circuit, a first request for the first external electronic device to perform a transaction with a second external electronic device, in response to the first request: transmit the first request via the second communication circuit to the second external electronic device; and transmit a first response, corresponding to the first request, the first response including data stored in the at least one memory device, to the first external electronic device via the first communication circuit, and receive a second response corresponding to the first request from the second external electronic device via the second communication circuit, the second response containing at least part of the first response.
US10673485B2

A method and a receiving node for determining Time Of Arrival (TOA) for a radio signal received from a transmitting node in a wireless network. The receiving node detects the received radio signal by cross-correlating the received radio signal with a predefined reference signal transmitted by the transmitting node, to obtain a Cross-Correlated Function (CCF). The receiving node then estimates a set of candidate TOAs for respective signal components of the cross-correlated signal, and determines a final TOA for the received radio signal based on the set of candidate TOAs.
US10673484B2

A method includes: controllably configuring at least one antenna diversity switch in a wireless device to establish conductive paths between at least one transceiver of the wireless device and multiple antennas each disposed at a respective one of a multiple areas of a housing of the wireless device; and routing signals between the at least one transceiver and the multiple antennas, via the at least one antenna diversity switch, such that a signal is routed to either of at least two of the multiple antennas disposed at a first end area of the multiple areas of the housing of the wireless device or to either of at least two other antennas disposed at a second end area of the multiple areas of the housing of the wireless device.
US10673476B2

This disclosure describes a receiver having equalization with noise de-whitening mitigation for wireless communication. An input port receives, via an antenna, a signal communicated over a wireless communication link, the signal comprising a noise component. Control circuitry performs zero forcing equalization of the received signal to generate a zero forcing equalization result signal. The zero forcing equalization causes de-whitening of the noise component by increasing a correlation among elements of the noise component. The control circuitry mitigates the de-whitening of the noise component by: determining a noise variance value based on channel properties of the wireless communication link, and modifying the zero forcing equalization result signal based on the noise variance value. The modified zero forcing equalization result signal is communicated, via an output port, to log-likelihood ratio (LLR) generation circuitry for LLR computation.
US10673475B1

The disclosure provides a transmitter of a communication system using hybrid digital/analog beamforming and configured to perform digital pre-distortion (DPD). In an exemplary embodiment in accordance with the disclosure, the transmitter may generate a plurality of scrambling sequences. The transmitter may comprise a plurality of combining modules to receive a combined feedback signal. The transmitter may use the plurality of scrambling sequences to recover the signals output by the antenna arrays from the combined feedback signal. Thus, the transmitter may perform DPD for each antenna array.
US10673455B2

A device includes a capacitive digital to analog converter (CDAC) that further includes a plurality of capacitors to sample an analog input signal. The sampled analog input signal is converted into a digital signal and the digital signal is stored by a successive approximation register (SAR). Thereafter, the SAR regenerates the stored digital signal to a reset plurality of capacitors, and a comparator is configured as an amplifier to generate an equivalent analog voltage of the stored digital signal.
US10673437B2

A level-shifting circuit includes an input device configured to receive an input signal capable of switching between a reference voltage level and a first voltage level, and a set of capacitive devices paired in series with latch circuits. A first capacitive device of the set is coupled with an output of the input device, and each capacitive device and latch circuit pair is configured to upshift a corresponding received signal by an amount equal to a difference between the first voltage level and the reference voltage level.
US10673430B2

Provided is a semiconductor device for radio frequency switch that includes an SOI substrate and a gate electrode. The SOI substrate includes a buried oxide film and a semiconductor layer on a carrier substrate. The gate electrode is provided on the semiconductor layer. The semiconductor layer includes a first area below the gate electrode and a second area other than the first area. A third area is provided in at least part of the second area. A fourth area is provided in at least part of the first area. The fourth area has a different thickness from a thickness of the third area.
US10673424B1

Apparatus and associated methods relating to a switch leakage compensation delay circuit include a compensating transistor configured to passively bypass a leakage current around a capacitor that connects in series with a control transistor. In an illustrative example, the capacitor and the compensating transistor may be connected in parallel between a first node and a second node. The compensating transistor gate may be tied, for example, directly to its source and to the second node. The control transistor may connect its drain to the second node. When a control signal turns off the control transistor, a leakage current of the control transistor may be supplied from a leakage current of the compensating transistor such that the voltage across the capacitor may be maintained substantially constant. The delay circuit may advantageously mitigate the capacitor's voltage droop to reduce clock time skew, for example, in low speed interleaved ADC operation.
US10673423B2

In described examples, in response to a voltage at an external power terminal falling below a safe limit: a charge pump is operated at a first frequency to produce a voltage at a charge pump node; and a first controlled current is coupled from the charge pump node to a control terminal of a power switch transistor. The power switch transistor has a conduction path coupled between the external power terminal and an internal power terminal at which an internal power source is connected. In response to the voltage at the external power terminal reaching a selected level: the charge pump is operated at a second frequency, lower than the first frequency; and a second controlled current, lower than the first controlled current, is coupled from the charge pump node to the control terminal of the power switch transistor.
US10673419B2

Disclosures of the present invention particularly describe oscillator circuit with temperature compensation function, consisting of a fully differential amplifier, a current mirror unit, a bias current supplying unit, a compensation unit, and a reference signal generating unit. A variety of experimental data have proved that, based on the normal operation of the compensation unit and the reference signal generating unit, an oscillation frequency of this oscillator circuit would be maintained at same level even if the ambient temperature continuously increases. Therefore, because the frequency drift due to temperature variation would not occur in the oscillator circuit of the present invention, the novel oscillator circuit is potential oscillator to replace the conventional oscillators applied in analog-to-digital convertors or time-to-digital convertors.
US10673416B2

Circuits and techniques are described for reducing the impact of environmental noise and interference on the output signal of a capacitive sensor. The output signal is sampled randomly in some situations by generating a random sampling instant within a fixed clock period. The sampling is performed by a sampling or demodulation circuit. The demodulation circuit may be part of a larger circuit with various components that operate based on a fixed period clock signal.
US10673415B2

Techniques to generate two separate temperature independent reference voltages. The reference voltages can be generated using a chain of ΔVBE cells. A cross-quad ΔVBE-cell-based bandgap voltage reference can cancel out noise of associated current sources by forcing them to correlate. Several ΔVBE stages can be cascaded together to generate an appreciable PTAT component that can cancel the CTAT component from VBE. In some example configurations, only BJTs are used—without requiring use of an amplifier—to generate the bandgap voltages; in this way, extremely low noise voltage references can be generated. The PTAT and the CTAT voltages can be combined to generate a bandgap voltage of approximately VG0 or approximately 2VG0.
US10673405B2

Techniques are disclosed for forming high frequency film bulk acoustic resonator (FBAR) devices that include a bottom electrode formed of a two-dimensional electron gas (2DEG). The disclosed FBAR devices may be implemented with various group III-nitride (III-N) materials, and in some cases, the 2DEG may be formed at a heterojunction of two epitaxial layers each formed of III-N materials, such as a gallium nitride (GaN) layer and an aluminum nitride (AlN) layer. The 2DEG bottom electrode may be able to achieve similar or increased carrier transport as compared to an FBAR device having a bottom electrode formed of metal. Additionally, in some embodiments where AlN is used as the piezoelectric material for the FBAR device, the AlN may be epitaxially grown which may provide increased performance as compared to piezoelectric material that is deposited by traditional sputtering techniques.
US10673384B2

A power amplifier, a radio remote unit (RRU), and a base station, where the power amplifier includes an envelope controller, a main power amplifier, and an auxiliary power amplifier. The main power amplifier and the auxiliary power amplifier both set an envelope voltage output by the envelope modulator as operating voltages, and because the operating voltages of the main power amplifier and the auxiliary power amplifier may be adjusted simultaneously, symmetry of the power amplifier is improved, and an efficiency loss occurring probability is low, thereby enhancing efficiency of the power amplifier.
US10673382B2

An oscillator includes an external terminal, a resonator, and an oscillation circuit that oscillates the resonator. The oscillation circuit includes an amplification circuit and a current source that supplies a current to the amplification circuit, and the current is variably set according to a control signal input from the external terminal.
US10673380B2

An energy storage system includes a photovoltaic energy field, a stationary energy storage device, an energy converter, and a controller. The photovoltaic energy field converts solar energy into electrical energy and charges the stationary energy storage device with the electrical energy. The energy converter converts the electrical energy stored in the stationary energy storage device into AC power at a discharge rate and supplies a campus with the AC power at the discharge rate. The controller generates a cost function of the energy consumption of the campus across a time horizon which relates a cost to operate the campus to the discharge rate of the AC power supplied by the stationary energy storage device. The controller applies constraints to the cost function, determines a minimizing solution to the cost function which satisfies the constraints, and controls the energy converter.
US10673365B2

A motor vector control method and device, and an aircraft are provided. The method includes: receiving a Pulse Position Modulation (PPM) signal; acquiring a first given voltage signal of a motor according to the PPM signal; adopting a control manner of giving a d-axis current 0, to acquire a d-axis voltage of the motor; and calculating a q-axis voltage of the motor at the next moment according to the first given voltage signal and the d-axis voltage of the motor, and performing vector control on the motor according to the d-axis voltage of the motor and the q-axis voltage of the motor at the next moment.
US10673358B2

An electric drive system includes an energy storage system (ESS), a power conversion system, and an alternating current (AC) traction system. The ESS provides or receives electric power. The ESS includes a first energy storage unit and a second energy storage unit. The power conversion system is electrically coupled to the ESS for converting an input power to an output power. The AC traction system is electrically coupled to the power conversion system for converting the output power of the power conversion system to mechanical torques. The AC traction system includes a first AC drive device and a second AC drive device. An energy management system (EMS) is in electrical communication with the ESS, the AC traction system, and the power conversion system for providing control signals.
US10673348B2

To improve the accuracy of detecting a current flowing through an electric compressor after operation of the electric compressor, the electric compressor having a large change in temperature before and after operation. An inverter-integrated electric compressor (1) that compresses and discharges a refrigerant suctioned therein, includes an inverter device (2) provided with a circuit board (60) mounted with an inverter circuit (40), the inverter device (2) being integrally incorporated in an inverter case. The circuit board (60) is provided with a current detection circuit (30) that detects an input current flowing through the inverter circuit (40), and an offset correction circuit (20). The current detection circuit (30) includes a shunt resistor (32) that is serially connected to the inverter circuit (40) and detects a current, and a first amplifier (31) that amplifies and outputs a voltage appearing as a voltage drop in the shunt resistor (32). The offset correction circuit (20) includes a second amplifier (21) that performs an offset correction of the first amplifier (31). The first amplifier (31) and the second amplifier (21) are integrated into a single integrated circuit.
US10673335B2

The present disclosure shows ways to use multiple “integrated voltage regulator (IVR) units” to offer IVRs that can cover a wide range of specifications without having to design separate IVRs for different specifications. Instead of designing separate IVRs and paying for separate mask sets for IVRs targeting different specifications (e.g., different design and mask sets for 1 A IVR, 5 A IVR), the disclosed embodiments present ways to design and fabricate large numbers of the same unit IVRs (e.g., 1 A IVR) and decide how many of them to use post-fabrication to deliver different current specifications (e.g., use five 1 A unit IVRs for 5 A, use ten 1 A unit IVRs for 10 A). These disclosed embodiments reduce the mask cost of fabricating IVRs for different specifications and reduce design time by focusing on a single unit IVR.
US10673333B1

A power module with current rerouting across a printed circuit board (PCB) for decreasing electromagnetic interference and signal degradation is applied in an electronic device. The power module includes the PCB, a switch control chip, a switch circuit, a filtering circuit, a first switch, a second switch, and a control unit. The PCB includes a powered copper area, a first ground copper area, and a second ground copper area. When in the S3, S4, or S5 state and a voltage output terminal is disabled, the control unit turns off the first switch and turns on the second switch, to couple the powered copper area to the second ground copper area. When the voltage output terminal is enabled, the control unit reverses the on and off operations to enable the voltage output terminal to output a voltage.
US10673332B2

A switching regulator control circuit, having: a slope circuit 3 for generating a slope voltage VSLP on the basis of a clock signal CLK of a prescribed frequency; an error amplifier 1 for generating an error signal Vc corresponding to the difference between a reference voltage VREF and a voltage VFB corresponding to the output voltage of a switching regulator; a comparator 4 for comparing the error signal Vc and the slope voltage VSLP; and an RS flip-flop 6 set on the basis of the clock signal CLK and reset by a signal outputted by the comparator 4. The timing at which the RS flip-flop 6 is set is delayed with respect to the timing at which the sloping of the slope voltage VSLP is started.
US10673329B2

Examples herein relate to a multiphase voltage regulator, comprising a pulse-width modulation PWM controller to output a plurality of PWM signals for driving a plurality of pluggable stand-alone voltage regulator converter stage, wherein each pluggable stand-alone voltage regulator converter stage receives one of the PWM signals and delivers a regulated output voltage signal, wherein a contribution of the regulated output voltage signals is delivered to a load connected onto a printed circuit assembly PCA.
US10673324B2

An isolated converter with switched capacitors can include: a first capacitor; a first group of switches coupled between two terminals of an input port, where the first group of switches is configured to selectively couple a first terminal of the first capacitor to one of a first terminal and a second terminal of the input port; a second group of switches coupled between two terminals of an output port, where the second group of switches is configured to selectively couple a second terminal of the first capacitor to one of a first terminal and a second terminal of the output port; and a second capacitor coupled between one of the first and second terminals of the input port and one of the first and second terminals of the output port.
US10673323B2

A full bridge LLC resonant converter can include: a full bridge circuit including a first input node and a second input node; a LLC resonant tank circuit connected to the first input node and the second input node; a transformer winding part connected to the LLC resonant tank circuit; a rectifier circuit connected to the transformer through a first output node and a second output node; and a capacitor connected between the first input node and the first output node. The LLC resonant tank circuit can include a resonant capacitor connected to the first input node, a resonant inductor connected to the resonant capacitor, and a magnetizing inductance connected between the resonant inductor and the second input node.
US10673319B2

The present invention relates to an MMC converter system which can quickly cut off fault current by installing a plurality of disconnecting switch units on a line connected between two MMC converter devices. The MMC converter system comprises: a first MMC converter device including a plurality of serially connected sub modules; a second MMC converter device including a plurality of serially connected sub modules; a first disconnecting switch unit installed on a line between the first and second MMC converter devices; and a second disconnecting switch unit connected in series to the first disconnecting switch unit on the line, wherein each of the first and second disconnecting switch units comprises a mechanical switch installed on the line so as to open and close the line and a diode connected in parallel to the mechanical switch, and the two diodes are installed in opposite directions to each other.
US10673318B2

In certain embodiments, an apparatus includes an inductor having first and second terminals. The first terminal is configured to be coupled to a power source. The apparatus includes a pair of serially-coupled transistors coupled to the second terminal of the inductor. A transistor intermediate node is positioned between the pair of serially-coupled transistors. The apparatus includes a pair of serially-coupled diodes coupled to the second terminal of the inductor. A diode intermediate node is positioned between the pair of serially-coupled diodes. The apparatus includes a first capacitor coupled in parallel with the serially-coupled transistors and the serially-coupled diodes. The apparatus includes a sub-circuit having a second capacitor serially-coupled with an auxiliary transistor. The sub-circuit is coupled between the transistor intermediate node and the diode intermediate node and is in parallel with a transistor of the pair of serially coupled transistors and with a diode of the pair of serially-coupled diodes.
US10673310B2

A stator manufacturing apparatus is equipped with spindles as twisting and bending jigs, an inner guide having a first supply flow path and a suction flow path formed in the interior thereof, and an outer guide having a second supply flow path formed in the interior thereof. Further, the spindles have receiving members in which insertion recesses are formed. Through holes are formed in the receiving members, and the receiving members are formed with lateral holes therein which allow the interiors of the insertion recesses to communicate with each other.
US10673294B2

The present disclosure relates to electrical machines. The teachings thereof may be embodied in a corona shielding system, especially an outer corona shielding system, for an electrical machine. For example, a corona shielding system may include: a polymeric matrix; particles disposed in the matrix, including a mica-coated core and a layer of metal oxide disposed on the core; and a surface functionalization material disposed on a surface of the particles for binding to the matrix.
US10673293B2

An electric machine including a rotor operably coupled with a stator having a plurality of stator windings. Each stator winding defines has a plurality of axially extending segments disposed within the stator slots and a plurality of end turn segments. At least one first axially extending segment defining a first cross sectional area and at least two second axially extending segments defining a smaller second cross sectional area are disposed in each of the stator slots. At least one of the plurality of end turn segments conductively couples a single first axially extending segment in a first one of the plurality of slots to at least two second axially extending segments in a second one of the plurality of slots. In some embodiments, the larger first axially extending segments are all disposed radially outwardly of the smaller second axially extending segments. The windings may be formed using hairpin conductors.
US10673288B2

A method includes forming one or more oxide barrier layers on one or more protected portions of a magnetic, metallic body, and converting one or more unprotected portions of the magnetic, metallic body to a less magnetic material by exposing the magnetic metallic body having the one or more oxide barrier layers formed thereon to nitrogen. One or more protected portions of the magnetic, metallic body that are beneath the one or more oxide barrier layers are not converted to the less magnetic material. The method can be used to form one or more layers of a laminated electric motor.
US10673278B2

Provided is a wireless power transmission device to reduce an electromagnetic wave except for a signal to be transmitted during wireless power transmission, the wireless power transmission device including a transmitter configured to generate a magnetic field by inputting a high-frequency power signal generated by a transmission circuit into a first coil, a receiver configured to generate an induced current by allowing the generated magnetic field to pass through a second coil, and a reducer configured to reduce a harmonic component of the high-frequency power signal using a third coil inserted on a path between the transmitter and the receiver.
US10673266B2

An electric vehicle supply equipment includes multiple first power modules and a control circuit. The first power modules are electrically coupled in series at output and configured to provide a charging current and a charging voltage to charge an electric vehicle. The control circuit is configured to control one of the first power modules to be operated in a constant current mode to output the charging current, and configured to control the rest of first power modules to be operated in a constant voltage mode respectively to have at least one output voltage for generation of the charging voltage.
US10673263B2

The control device controls an adjusting unit that adjusts current flowing between an electric storage unit of an electric storage device configured such that the electric storage device can be connected in parallel with a distinct power supply device, and a wire that electrically connects the electric storage device and the distinct power supply device. The control device includes a current detecting unit that detects (i) current flowing between the wire and the electric storage unit in the second direction or (ii) current flowing between the wire and the electric storage unit when the first current adjusting unit electrically disconnects the wire and the electric storage unit, and an operation control unit that controls operation of the first current adjusting unit based on (i) voltage or SOC of the electric storage unit and (ii) a detection result of the current detecting unit.
US10673260B2

The disclosed embodiments provide a charging system for a portable electronic device. The charging system includes a first bidirectional switching converter connected to a first power port of the portable electronic device, a low-voltage subsystem in the portable electronic device, and a high-voltage subsystem in the portable electronic device and a second bidirectional switching converter connected to a second power port of the portable electronic device, the low-voltage subsystem, and the high-voltage subsystem. The charging system also includes a control circuit that operates the first and second bidirectional switching converters to provide and receive power through the first and second power ports and convert an input voltage received through the first or second power port into a set of output voltages for charging an internal battery in the portable electronic device and powering the low-voltage subsystem and the high-voltage subsystem.
US10673258B2

This specification describes a method comprising: receiving, by a charging activation apparatus associated with an electric vehicle, a first instance of a charging session ID from first server apparatus associated with a first electricity provider which is the electricity provider of a driver or owner of the electric vehicle; receiving, by the charging activation apparatus, a second instance of the charging session ID from second server apparatus associated with a second electricity provider which is the electricity provider for a power outlet with which the electric vehicle is currently electrically connected; comparing, by the charging activation apparatus, the first and second instances of the charging session ID; and determining, by the charging activation apparatus, if the first and second instances of the charging session ID correspond and, if the first and second instances of the charging session ID are determined to correspond, causing activation of charging of the electric vehicle via the electrical connection to the power outlet.
US10673253B2

A system and method for digital management and control of power conversion from battery cells. The system utilizes a power management and conversion module that uses a CPU to maintain a high power conversion efficiency over a wide range of loads and to manage charge and discharge operation of the battery cells. The power management and conversion module includes the CPU, a current sense unit, a charge/discharge unit, a DC-to-DC conversion unit, a battery protection unit, a fuel gauge and an internal DC regulation unit. Through intelligent power conversion and charge/discharge operations, a given battery type is given the ability to emulate other battery types by conversion of the output voltage of the battery and adaptation of the charging scheme to suit the battery.
US10673252B2

Battery sub-modules are selecting to electrically connect to a common power bus, including by: determining if a discharge-related fault indication for a given battery sub-module indicates that the given battery sub-module is in a discharge-related fault condition. If so, the given battery sub-module is excluded from the selected battery sub-modules such that said given battery sub-module is electrically disconnected from the common power bus. The selected battery sub-modules are configured so that the selected battery sub-modules are electrically connected to the common power bus; the selected battery sub-modules that are electrically connected to the common power bus are charged.
US10673245B2

A cascading regulation system connected to a number of serially connected power sources and uses multiple regulators having different cutoff voltages to provide an output for the local power consumption unit. Each of the regulators is connected to a subset of serially connected power sources and so configured that if the voltage generated at the lowest tap is no longer sufficient for a stable supply to the local power consumption unit, the next higher regulator takes over, and the output voltage drops in small steps reflective of that takeover of the next higher tap. When the voltage generated across a subsection grows, a lower connected tap may take over again, producing a slightly higher output voltage for the local power consumption unit. The cutover steps are chosen such that the output voltage range matches the range given as the acceptable input range for the local power consumption unit.
US10673244B2

A photovoltaic system, including: a plurality of photovoltaic panels having outputs connected in series as a string to provide a string output; a converter coupled to the string to receive the string output as an input and generate a direct current output from the input; a series connection of the string output and the direct current output; and a bus powered at least in part by the series connection of the string output and the direct current output.
US10673236B2

By virtue of the ability to vary local load via inverter (e.g., solar PV inverter) volt-ampere reactive power (VAR) injection, local demand and energy consumption can be controlled at a system level. Utilities that provide solar PV systems to consumers can leverage this ability to reduce the purchase of high cost energy. Moreover, revenue for such utilities can be maximized. For example, such localized voltage and VAR control allow for precise control to achieve, e.g., plus or minus about two percent of kW and kWHr of power consumed at a node.
US10673229B2

Methods for arc detection in a system including one or more photovoltaic generators, one or more photovoltaic power devices and a system power device and/or a load connectible to the photovoltaic generators and/or the photovoltaic power devices. The methods may measure voltage, current, and/or power delivered to the load or system power device, and the methods may measure voltage noise or current noise within the photovoltaic system. The methods may periodically, and/or in response to detecting noise, reduce an electrical parameter such as current or voltage in order to extinguish an arc. The methods may compare one or more measurements to one or more thresholds to detect arcing, and upon a comparison indicating that arcing is or was present, an alarm condition may be set.
US10673228B2

A unit having a power supply circuit that converts an input voltage from an input power supply to a predetermined output voltage, includes: an output terminal configured to output the output voltage to the outside of the unit; a switch provided between the power supply circuit and the output terminal; and a switch control part configured to turn off the switch when the input voltage is not applied from the input power supply and turn on the switch when the input voltage is applied.
US10673226B2

An example electrical power distribution system includes a plurality of circuit protection devices coupled between an electrical power source and a plurality of electrical loads. Each circuit protection device includes a trip unit, a network interface, a processor, and a memory. The trip unit is configured to selectively trip to prevent a flow of electrical current through said circuit protection device. The network interface is communicatively coupled to a communication network including the plurality of circuit protection devices. The memory stores instructions that, when executed by the processor, cause the processor to transmit, using the network interface, circuit protection device data to the network. The circuit protection device data is formatted according to a network communication protocol of the communication network.
US10673219B2

An electrical box assemblies and cable connectors are provided. The cable connectors include a frame and a cable retaining member releasably secured to the frame. The cable retaining members releasably secure an electrical cable to an electrical box by engaging the sheathing of the electrical cable. The electrical box assembly includes an electrical box and at least one cable connector.
US10673214B2

A workstation and method for the installation of a pulling head assembly onto one or more conductors of a cabling system are provided. The workstation incorporates one or more of: a conductor clamp that holds the conductors of the cabling system in place during the installation of the pulling head assembly; a cutting guide having indicia marks that indicate the lengths to which to cut the conductors in order to achieve a staggered pattern of pulling eyes attached to the conductors in the pulling head assembly; a stripping tool that is used to remove a portion of the insulation from the terminal end of each conductor so that the end of the conductor may be inserted into the pulling eye; and a crimping tool that is used to crimp the pulling eyes onto the terminal ends of each of the conductors.
US10673206B1

A semiconductor device includes an upper and lower mirror. At least one active region for light generation is between the upper and lower mirror. At least one cavity spacer layer is between at least one of the upper and lower mirror and the active region. The device includes an inner mode confinement region and an outer current blocking region. A depleted heterojunction current blocking region (DHCBR) including a depleting impurity is within the outer current blocking region of ≥1 of the upper mirror, lower mirror, and the first active region. A middle layer including a conducting channel is within the inner mode confinement region that is framed by the DHCBR. The DHCBR forces current flow into the conducting channel during normal operation of the light source.
US10673179B1

A smart breakaway electrical connector disconnects a powerline at a designed tensile load, detects the break, and wirelessly communicates the precise location of the break to repair dispatchers. Mating male and female housings hold the internal electrical connection points together. Locking arms pivotally connected to the female connector interlock by detent with the male connector and spring force on the locking arms is used to prevent disengagement of the detent until the design tensile force is exceeded. Photovoltaics combined with rechargeable batteries ensure power availability when the line is disconnected and utility power is unavailable.
US10673164B2

An electrical connector for circuit boards whose terminals 70 have a first abutment portion 72 which, within a terminal retaining portion 63A, is located closer to one interior wall surface of the above mentioned terminal retaining portion 63A opposed to one major face of said retained portion 71 than to said one major face and which is abuttable against said one interior wall surface, and a second abutment portion 73, which is located closer to the other interior wall surface of the terminal retaining portion 63A opposed to the other major face of the above mentioned retained portion 71 than to said other major face and which is abuttable against said other interior wall surface.
US10673163B2

A power interface, a mobile terminal, and an electronic device are disclosed. The power interface includes a housing, a connection body, and a partition piece. The connection body is arranged in the housing, configured to be connected to a circuit board, and includes at least one power-pin assembly. Each power-pin assembly includes a pair of power pins spaced apart from each other. The partition piece is sandwiched between the pair of power pins, and includes a tail end connected to the circuit board and a head end away from the circuit board and opposite to the tail end. The tail end is spaced apart from the housing and connected to the connection body.
US10673150B2

A terminal-bonded cable includes a terminal including: a conductor-bonded portion and a sheath-contacted portion; and a cable including a conductor constituted by a plurality of strands, a sheath which covers the conductor, an exposed conductor portion in which the conductor is partially exposed from the sheath in the length direction, and a bond portion which is formed in a part of the exposed conductor portion and in which strands are bonded to each other. The bond portion is bonded to the conductor-bonded portion. The sheath is in contact with the sheath-contacted portion. The conductor-bonded portion protrudes in a thickness direction from the sheath-contacted portion.
US10673145B2

Described embodiments include an antenna system and method. The antenna system includes a surface scattering antenna that has an electromagnetic waveguide structure and a plurality of electromagnetic wave scattering elements. The plurality of electromagnetic wave scattering elements are distributed along the waveguide structure, have a respective activatable electromagnetic response to a propagating electromagnetic wave, and produce a controllable radiation pattern. A gain definition circuit defines a radiation pattern configured to acquire a possible interfering signal. The defined antenna radiation pattern has a field of view covering at least a portion of an undesired field of view of an associated antenna. An antenna controller establishes the defined radiation pattern in the surface scattering antenna by activating the respective electromagnetic response of selected electromagnetic wave scattering elements. A correction circuit reduces an influence of the received possible interfering signal in a contemporaneously received signal by the associated antenna.
US10673137B1

A low-profile electronically scanned phased arrays integrated multi-beam cylindrical array that can scan by connecting to one feed or multiple feeds at one time.
US10673136B1

An information handling system operating a reconfigurable antenna training control system may comprise a configurable antenna system in one of a plurality of available configurations transceiving a radio frequency signal, and a radio frequency system measuring performance metrics for the signal transceived according to each available configuration over a training time period preset based on historical performance and stability of each available configuration. An antenna front end system may execute instructions of the reconfigurable antenna training control system to determine a weighted performance metric based on the measured performance metrics and on historical performance metrics for each candidate configuration, to compare the weighted performance metrics for each configuration, and to identify one of the configurations having a highest weighted performance metric as an optimal configuration. The configurable antenna may then establish a wireless link using the optimal configuration.
US10673125B2

According to an embodiment, a wireless apparatus includes an interposer including a conductive portion; a semiconductor chip mounted on a component mounting surface of the interposer; a sealing resin on the component mounting surface and sealing the semiconductor chip; a conductive layer covering a surface of the sealing resin and a side surface of the interposer and electrically connected to the conductive portion; a first slot-shaped aperture on a principal surface portion of the conductive layer facing the component mounting surface; a second slot-shaped aperture on a side surface portion of the conductive layer facing the side surface and continuing to the first aperture; and a slot-shaped aperture at the conductive portion and continuing to the second aperture. The first to third apertures function as an integrated slot antenna. A total length of the first aperture is longer than a total length of the third aperture.
US10673122B2

A communication apparatus for a vehicle is disclosed. The apparatus comprises a window comprising a metallic coating and forming an interior surface enclosing a portion of an interior compartment of the vehicle. The apparatus further comprises a wireless communication circuit comprising an antenna configured to communicate via a radio frequency. The antenna comprises an electrical conductor and a plurality of elongated openings formed in the metallic coating. The electrical conductor extends in a first direction and is in conductive connection with the communication circuit. The electrical conductor is disposed proximate to the interior surface of the window. The elongated openings extend in a second direction substantially perpendicular to the first direction. The elongated openings in combination with the electrical conductor provide for an improved transmission of the radio frequency.
US10673119B2

A directional coupler includes a substrate, an output line formed on a top of the substrate, and an input line formed on the top of the substrate and including a transmission region. The coupler also includes a lower input line formed on a bottom of the substrate below at least a portion of the transmission region, and one or more vias passing through the substrate and electrically coupling the input line and the lower input line.
US10673114B2

A signal transmission line includes a laminate, a signal conductor, a hollow portion, and a reinforcing conductor. The laminate includes a flexible laminate including resin layers each of which has flexibility. The signal conductor extends in a signal transmission direction of the laminate and is disposed in an intermediate position in a laminating direction of the resin layers. The hollow portion is in the laminate and defined by an opening provided at a portion of the plurality of resin layers. The reinforcing conductor is in the laminate. The hollow portion is disposed at a position overlapping with the signal conductor, in a plan view of the laminate from a surface perpendicular or substantially perpendicular to the laminating direction. The reinforcing conductor is disposed at a position different from the position of the hollow portion in a plan view.
US10673108B2

A lithium-air battery is provided. The lithium-air battery includes a negative electrode including lithium, a positive electrode including catalyst particles for controlling whether to generate LiO2 as a discharge product and for controlling a generation amount of LiO2, the positive electrode using oxygen as a positive electrode active material, and an electrolyte and a separator which are disposed between the negative electrode and the positive electrode.
US10673107B2

An electrolyte composition and an energy storage device employing the same are provided. The electrolyte composition includes a solid and a solution. The solid includes a core and a metal layer encapsulating the core, where the metal layer is selected from a group consisting of Zn, Al, Mg, Li, Na and the metal oxides thereof. In particular, the solid has a first density and the solution has a second density, and the ratio between the first density and the second density is from about 0.97 to 1.03.
US10673104B2

A method is provided for testing a semi-finished battery cell. The semi-finished battery cell is charged with a constant current when a voltage difference between the first conductor and the second conductor is less than a voltage threshold. The semi-finished battery cell is charged with a constant voltage when the voltage difference between the first conductor and the second conductor is equal to or larger than the voltage threshold. An overall electric quantity is obtained after a default time period, wherein the overall electric quantity is an electric quantity charged to the semi-finished battery cell with the constant current during the default time period. Accordingly, an insulation related to electrodes of the semi-finished battery cell is determined as poor when the overall electric quantity is larger than an electric quantity threshold.
US10673103B2

A battery module according to one embodiment includes a first battery unit including a first nonaqueous electrolyte battery, and a second battery unit electrically connected in series to the first battery unit and including a second nonaqueous electrolyte battery. Each of the first and second nonaqueous electrolyte batteries includes a negative electrode including a spinel-type lithium titanate. The first nonaqueous electrolyte battery includes a positive electrode including at least one olivine-type lithium phosphate. The second nonaqueous electrolyte battery includes a positive electrode including at least one lithium-containing composite oxide. The discharge capacity ratio Ca/Cb between the first battery unit and the second battery unit satisfy 1.5
US10673101B2

A monitoring device for a battery pack, which includes a plurality of battery cells, has at least one ultrasound source and at least one ultrasound sensor. The ultrasound source can be configured to generate and direct ultrasound at one or more battery cells of the battery pack. The ultrasound sensor can be configured to detect ultrasound reflected from or transmitted through one or more cells of the battery pack. A battery management unit receives one or more signals from the ultrasound sensor responsive to the detected ultrasound. The battery management unit can be configured to determine a state of the battery pack based at least in part on the detected ultrasound.
US10673100B2

An electric power system and a management method thereof. The electric power system includes a plurality of battery packs and a battery management apparatus. Each of the battery packs includes a casing, a battery cell assembly disposed in the casing, an encoder, and a monitoring unit, wherein the encoder could generate one of a plurality of encoding configurations and has an operating section which is adapted to be manually set the encoding configuration by a user; the monitoring unit senses a state of the battery cell assembly and generates an identification code according to the encoding configuration of the encoder, and outputs a state signal including the identification code. The battery management apparatus receives the state signal of each of the monitoring unit and obtain the state of the corresponding battery cell assembly according to the identification code of the received state signal.
US10673099B2

In at least select embodiments, the instant disclosure is directed to new or improved battery separators, components, materials, additives, surfactants, lead acid batteries, systems, vehicles, and/or related methods of production and/or use. In at least certain embodiments, the instant disclosure is directed to surfactants or other additives for use with a battery separator for use in a lead acid battery, to battery separators with a surfactant or other additive, and/or to batteries including such separators. In at least certain select embodiments, the instant disclosure relates to new or improved lead acid battery separators and/or systems including improved water loss technology and/or methods of manufacture and/or use thereof. In at least select embodiments, the instant disclosure is directed toward a new or improved lead acid battery separator or system with one or more surfactants and/or additives, and/or methods for constructing lead acid battery separators and batteries with such surfactants and/or additives for improving and/or reducing water loss from the battery.
US10673098B2

A core (u1, u2) around which a nonaqueous electrolyte secondary battery separator is to be wound. A side surface of the core (u1, u2) has a depression (20). This makes it possible, in a case where cores (separator cores) are stored by being stacked while still wet after cleaning, to prevent damage to a core caused by a problem where cores stick together and an core lower in a stack falls when a core higher in the stack is removed.
US10673095B2

Electrolytes and electrochemical cells include a novel ionic liquid having a quaternary cation and a boron cluster anion. In some versions, the boron cluster anion will be a functionalized or unfunctionalized icosahedral boranyl or carboranyl anion. Electrochemical cells have an electrolyte including the ionic liquid. In some versions, the ionic liquid is used as a solvent to dissolve an ionic shuttle salt for transport of active material, with an optional co-solvent. Methods to synthesize the ionic liquid include contacting a boron cluster salt with a quaternary salt to form the ionic liquid by a metathesis reaction.
US10673094B2

The present invention demonstrates Br2-based conversion chemistry is a potential route toward rechargeable Mg-batteries. Compared with Mg-ion or Mg-air chemistries, the Mg—Br2 system features fast kinetics and good cyclability. In one embodiment, the present invention provides a rechargeable non-aqueous, dual-electrolyte scheme. In one embodiment, the anolyte consisted of Mg(TFSI)2 dissolved in a monoglyme and diglyme mixture, whereas the catholyte was composed of Mg(TFSI)2 in PYR14TFSI ionic liquid mixed with active bromine species. When Mg was used as the anode, an open circuit voltage of 3.0 V (vs. Mg2+/Mg) was measured.
US10673076B2

A specific method for preparing platinum particles grafted with proton-conducting polymers and use of these particles as catalysts for oxygen reduction.
US10673073B2

A cathode material may include a coating layer capable of preventing transition metal cations from being diffused between a cathode active material and a solid electrolyte when an all-solid state battery is charged and discharged, and a method for preparing the same.
US10673068B2

The present disclosure relates to a negative electrode active material having excellent output characteristics and causing little gas generation, and an electrode including the negative electrode active material. The negative electrode active material includes metal oxide-lithium titanium oxide (MO-LTO) composite particles which have a shape of secondary particles formed by aggregation of primary particles, wherein the primary particles have a core-shell structure including a core and a shell totally or at least partially covering the surface of the core, the core includes primary particles of lithium titanium oxide (LTO), and the shell includes a metal oxide.
US10673067B2

A method for producing a positive electrode material for non-aqueous secondary batteries includes: performing a heat treatment on zirconium boride particles in an oxygen-containing atmosphere at a heat treatment temperature of not less than 220° C. and not more than 390° C., thereby obtaining heat-treated particles; and mixing the heat-treated particles with a positive electrode active material which contains a lithium transition metal complex oxide particles including at least one of cobalt and nickel in a composition thereof and having a layered structure, such that a content of the heat-treated particles relative to the lithium transition metal complex oxide particles is, as zirconium, not less than 0.25 mol % and not more than 2.2 mol %, thereby obtaining a positive electrode material for non-aqueous secondary batteries.
US10673065B2

An energy storage composition can be used as a new Na-ion battery cathode material. The energy storage composition with an alluaudite phase of AxTy(PO4)z, NaxTy(PO4)z, Na1.702Fe3(PO4)3 and Na0.872Fe3(PO4)3, is described including the hydrothermal synthesis, crystal structure, and electrochemical properties. After ball milling and carbon coating, the compositions described herein demonstrate a reversible capacity, such as about 140.7 mAh/g. In addition these compositions exhibit good cycling performance (93% of the initial capacity is retained after 50 cycles) and excellent rate capability. These alluaudite compounds represent a new cathode material for large-scale battery applications that are earth-abundant and sustainable.
US10673063B2

Provided is a process for producing prelithiated particles of an anode active material for a lithium battery. The process comprises: (a) providing a lithiating chamber having at least one inlet and at least one outlet; (b) feeding a plurality of particles of an anode active material, lithium metal particles, and an electrolyte solution (containing a lithium salt dissolved in a liquid solvent) into the lithiating chamber through at least one inlet, concurrently or sequentially, to form a reacting mixture; (c) moving this reacting mixture toward the outlet at a rate sufficient for inserting a desired amount of lithium into the anode active material particles to form a slurry of prelithiated particles dispersed in the electrolyte solution; and (d) discharging the slurry out of the lithiating chamber through the at least one outlet.
US10673059B2

Disclosed is a method for manufacturing a positive electrode including a positive electrode substrate made of aluminum foil and a positive electrode active material layer containing a positive electrode active material on the positive electrode substrate. This method includes the steps of forming the positive electrode active material layer on the positive electrode substrate; forming a protective layer on the positive electrode substrate; stretching an exposed region of the positive electrode substrate after the steps of forming the active material layer and the protective layer; and compressing the positive electrode active material layer after the stretching step.
US10673051B2

An energy storage arrangement, includes multiple energy storages, each energy storage having a housing and a terminal connection, wherein the terminal connection lies on an electrostatic potential of a first terminal of the energy storage and is arranged on an end side of the energy storage, wherein the housing lies on an electrostatic potential of a second terminal of the energy storage. The energy storage arrangement further has a first busbar electrically conductively fastened on the terminal connection of each of the energy storages, and a second busbar electrically conductively fastened on the housing on the end side of the energy arrangement on which the first busbar is arranged.
US10673046B2

A modified separator for a high-energy lithium metal-based electrochemical cell and methods of formation relating thereto are provided. The modified separator includes a substrate including a dopant and a coating layer disposed on the doped substrate. The dopant and compound comprising the coating layer are independently selected from the group consisting of: aluminum oxide (Al2O3), titanium dioxide (TiO2), zirconium dioxide (ZrO2), zinc oxide (ZnO), iron oxide (Fe2O3), tin oxide (SnO), silicon oxide (SiO2), tantalum oxide (Ta2O5), lanthanum oxide (La2O3), hydrofluoroolefin (HfO), cerium oxide (CeO2), and combinations thereof.
US10673039B2

A housing is provided for accommodating a stack of fuel cells, batteries or capacitors, including a first half-shell and a second half-shell opposite the first half-shell, a first pressure plate arrangement and a second pressure plate arrangement opposite the first pressure plate arrangement, the stack being accommodated between the two half-shells and between the two pressure plate arrangements, each half-shell gripping each pressure plate arrangement on the outer face thereof.
US10673035B2

A portable electronic device is described. This portable electronic device includes an external housing with a cavity defined by an edge. A keyboard, having a front surface and a back surface, is disposed in the cavity with the front surface facing the external housing. Moreover, a tray is disposed over the back surface of the keyboard, and is mechanically coupled to the external housing adjacent to the edge. Furthermore, battery cells are mechanically coupled to an opposite side of the tray from the back surface of the keyboard. The tray may allow the battery cells to be removed from the portable electronic device without damaging the keyboard. In addition, the tray may increase the compression strength and/or the bending strength of the portable electronic device.
US10673034B2

A battery module includes: a cell stack body; a pair of end plates disposed on a front surface and a rear surface of the cell stack body; and a fastening frame connecting the pair of end plates. The fastening frame includes; a pair of side frames disposed on the right surface and the left surface of the cell stack body. The pair of side frames each includes: a side frame body; a front turn-around portion that turn around the front surface of the cell stack body; and a rear turn-around portion that turn around the rear surface of the side frame body. The front turn-around portion and the rear turn-around portion each has a width in a front-rear direction larger than a width in a left-right direction of the side frame body.
US10673032B2

A top cap structure for a power battery includes a first electrode assembly and a top cap piece. The first electrode assembly includes a first electrode column and a first connection block. The first connection block includes a main body and a compound portion that are bonded together. A base metal material of the main body is different from the base metal materials of the first electrode column and the compound portion. The compound portion includes a first connection hole and the main body includes a second connection hole. A top portion of the first electrode column includes a connection section. The connection section passes through the top cap piece, the second connection hole, and the first connection hole, and extends from the first connection hole. The connection section and the compound portion are welded together. The connection section is riveted to the second connection hole.
US10673026B2

A battery cell housing includes a housing shell and a housing cover. A bearing surface and a first connecting surface separate thereto are present on the housing shell (16) on at least two mutually facing side walls or on all side. A contact surface on the housing cover is associated with each bearing surface and a second connecting surface on the housing cover is associated with the first connecting surface. The relative position of the second connecting surface and of the contact surface is adapted to the relative position of the bearing surface and of the first connecting surface. The contact surface and the second connecting surface can thus be spaced apart in the vertical direction (H) and/or the second connecting surface is present on an edge side strip extending downwards in the vertical direction (H) to a bottom of the housing shell.
US10673017B2

An organic EL display device includes an organic EL element and a sealing film. The organic EL element is formed over a display region of a base substrate. The sealing film covers the organic EL element. The sealing film includes a first barrier layer, a buffer layer, and a second barrier layer. The first barrier layer includes a first inorganic film and is disposed on the surface of the organic EL element. The buffer layer includes an organic film and is disposed on the surface of the first barrier layer. The second barrier layer includes a second inorganic film and is disposed on the surface of the buffer layer. The first barrier layer includes micropores in the surface, the surface being in contact with the buffer layer.
US10673012B2

A panel bottom sheet and a display device including the same are provided. The panel bottom sheet comprises a main sheet, a bonding member disposed on a bottom surface of the main sheet and partially exposing the bottom surface of the main sheet, a release film disposed below the bonding member, and a spacer disposed between the release film and the bottom surface of the main sheet. The bottom surface of the main sheet is divided into a cover region in which the bonding member is disposed and an exposed region which is exposed by the bonding member. The release film is disposed to overlap with the cover region and the exposed region, and the spacer is disposed to overlap with the exposed region.
US10673010B2

An electroluminescent device and a manufacturing method thereof are disclosed. The electroluminescent device includes a cathode layer and further includes an auxiliary cathode layer located on the cathode layer; a material of the auxiliary cathode layer (03) is at least one transparent metal.
US10673007B2

The present disclosure provides an organic light emitting diode (OLED) device and a method for manufacturing the same, an OLED display substrate and an OLED display device. The OLED device of the present disclosure comprises a substrate, and a first electrode, a light emitting layer and a second electrode arranged on the substrate, wherein the light emitting layer comprises fibers of p-phenylene based polymer as a host material, and the fibers of p-phenylene based polymer are arranged in a first orientation; and wherein the light emitted by the fibers of p-phenylene based polymer arranged in the first orientation is linearly polarized light in a first direction. The OLED device of the present disclosure can simultaneously ensure a good contrast, brightness and light transmittance.
US10672998B2

A compound having the formula Ir(LA)x(LB)y(LC)z is disclosed, wherein LA, LB, and LC each independently represents a bidentate ligand; wherein LA, LB, and LC can be same or different; wherein x is 1, 2 or 3; y is 0, 1 or 2; z is 0, 1 or 2; wherein x+y+z is 3; wherein LA includes an acetylide first dentate group bonded to Ir to form an Ir—C≡C partial structure; and wherein LA, LB, and LC are optionally linked together to form a tetradentate or hexadentate ligand.
US10672995B2

An organometallic compound represented by Formula 1: Ir(L1)n(L2)(3-n)  Formula 1 wherein in Formula 1, L1, L2, and n are the same as described in the specification.
US10672992B2

The present invention provides a novel compound which is capable of improving light-emitting efficiency, stability and lifespan of an element, an organic electronic element using the same, and an electronic device thereof.
US10672991B2

An organic light emitting device including a first electrode; a self-assembled monolayer on the first electrode; a hole control layer on the self-assembled monolayer; a light emitting layer on the hole control layer; an electron control layer on the light emitting layer; and a second electrode on the electron control layer, wherein the self-assembled monolayer includes a plurality of organic molecules, each of the plurality of organic molecules having a head bonded to the first electrode, a terminal end adjacent to the hole control layer, and a tail connecting the head with the terminal end.
US10672989B2

Disclosed is a compound useful as a material for an organic electroluminescence device with high luminous efficiency. A compound is represented by the following formula (1) or (2):
US10672988B2

Embodiments described herein provide functionalized carbon nanostructures for use in various devices, including photovoltaic devices (e.g., solar cells). In some cases, the carbon nanostructures are fullerenes substituted with one or more isobenzofulvene species and/or indane species. Devices including such materials may exhibit increased efficiency, increased open circuit potential, high electron/hole mobility, and/or low electrical resistance.
US10672976B2

A magnetoresistive random-access memory (MRAM) is disclosed. MRAM device has a magnetic tunnel junction stack having a significantly improved performance of the free layer in the magnetic tunnel junction structure. The MRAM device utilizes a precessional spin current (PSC) magnetic layer in conjunction with a perpendicular MTJ where the in-plane magnetization direction of the PSC magnetic layer is free to rotate. The precessional spin current magnetic layer is constructed with a material having a face centered cubic crystal structure, such as permalloy.
US10672964B2

The disclosed embodiments relate to the design of a temperature sensor, which is integrated into a semiconductor chip. This temperature sensor comprises an electro-thermal filter (ETF) integrated onto the semiconductor chip, wherein the ETF comprises: a heater; a thermopile, and a heat-transmission medium that couples the heater to the thermopile, wherein the heat-transmission medium comprises a polysilicon layer sandwiched between silicon dioxide layers. It also comprises a measurement circuit that measures a transfer function through the ETF to determine a temperature reading for the temperature sensor.
US10672960B2

A light-emitting device is disclosed. The light emitting device includes a base, a reflective layer formed on the base, a coating layer formed on the reflective layer, a sidewall disposed on the base, the sidewall being arranged to form a reflector cup, and a light-emitting diode (LED) chip disposed in the reflector cup.
US10672959B2

A light emitting device package can include first and second frames spaced apart from each other; a package body including a body portion between the first and second frames; a light emitting device including first and second electrode pads; first and second through holes in the first and second frames, respectively; a first resin between the body portion and the light emitting device; and a conductive material in the first and second through holes, in which the first and second electrode pads of the light emitting device respectively overlap with the first and second through holes, the first and second electrode pads are spaced apart from each other, and the conductive material in the first and second through holes respectively contacts the first and second electrode pads, and a first side surface of the first electrode pad and a second side surface of the second electrode pad facing the first side surface both contact the first resin.
US10672957B2

Light emitting diode (LED) apparatuses and methods having a high lumen output density. An example apparatus can include a substrate with one or more LEDs enclosed by an encapsulant. The encapsulant comprises beveled edges and/or top surface facets. By providing facets in the encapsulant and minimizing the chip-to-area ratio through efficient via placement, a high lumen density is achieved. Facets and bevels can be created by removing material from the encapsulant with a beveled blade.
US10672956B2

A light emitting device including a plurality light emitting diodes configured to produce a primary light; a wavelength conversion means configured to at least partially convert the primary light into secondary light having peak emission wavelength ranges between 450 nm and 520 nm, between 500 nm and 570 nm, and between 570 nm and 680 nm; and a molded part to enclose the light emitting diodes and the wavelength conversion means.
US10672953B2

A light-emitting diode (LED) includes an epitaxial laminated layer with an upper surface and an opposing lower surface, the LED including: a first-type semiconductor layer; an active layer; and a second-type semiconductor layer. A portion of the first-type semiconductor layer and the active layer are etched to expose a portion of the second-type semiconductor layer; a first electrode and a second electrode are disposed over the lower surface of the epitaxial laminated layer; the first electrode is disposed over a surface of the first-type semiconductor layer; the second electrode is disposed over a surface of the exposed second-type semiconductor layer; a transparent medium layer over the upper surface of the epitaxial laminated layer, having a refractive index n1> 1.6; a transparent bonding medium layer over one upper surface of the transparent medium layer, having a refractive index n2
US10672934B2

A single photon avalanche diode (SPAD) image sensor is disclosed. The SPAD image sensor include: a substrate of a first conductivity type, the substrate having a front surface and a back surface; a deep trench isolation (DTI) extending from the front surface toward the back surface of the substrate, the DTI having a first surface and a second surface opposite to the first surface, the first surface being level with the front surface of the substrate; an epitaxial layer of a second conductivity type opposite to the first conductivity type, the epitaxial layer surrounding sidewalls and the second surface of the DTI; and an implant region of the first conductivity type extending from the front surface to the back surface of the substrate. An associated method for fabricating the SPAD image sensor is also disclosed.
US10672931B2

A solar cell is equipped with: a wafer; an n-type laminated body that is provided on the first main surface side of the wafer; and a p-type laminated body, which is provided on the first main surface side of the wafer such that the p-type laminated body is adjacent to the n-type laminated body in the X direction, and which extends in the Y direction. The wafer has: a lightly doped region that is doped to be n type; and a plurality of first main surface-side highly doped regions, which have an n-type dopant concentration that is higher than that of the lightly doped region, and which are provided between the lightly doped region and the p-type laminated body. The first main surface-side highly doped regions are discretely provided at intervals in the Y direction.
US10672930B2

A tandem-type photoelectric conversion device includes, arranged in the following order from a light-incident side: a first photoelectric conversion unit; an anti-reflection layer; a transparent conductive layer; and a second photoelectric conversion unit. The first photoelectric conversion unit includes a light absorbing layer including a photosensitive material of perovskite-type crystal structure represented by general formula R1NH3M1X3 or HC(NH2)2M1X3, wherein R1 is an alkyl group, M1 is a divalent metal ion, and X is a halogen. The second photoelectric conversion unit includes a light absorbing layer having a bandgap narrower than a bandgap of the light absorbing layer in the first photoelectric conversion unit. The anti-reflection layer and the transparent conductive layer are in contact with each other, and a refractive index of the anti-reflection layer is lower than a refractive index of the transparent conductive layer.
US10672920B2

An article, for example a solar cell, includes a first substrate having a first surface and a second surface. An underlayer is located over the second surface. A first conductive layer is located over the underlayer. An overlayer is located over the first conductive layer. A semiconductor layer is located over the conductive oxide layer. A second conductive layer is located over the semiconductor layer. The first conductive layer can include a conductive oxide and at least one dopant selected from the group consisting of tungsten, molybdenum, niobium, and/or fluorine. The overlayer can include a buffer layer having tin oxide and at least one of zinc, indium, gallium, and magnesium.
US10672918B2

A test signal is applied from a continuity test source to a photovoltaic (PV) panel string, to test electrical continuity in the PV panel string and between the PV panel string and an inverter that is coupled to the PV panel string. If the test signal is detected at a PV panel disconnect switch that is separate from the continuity test source and switchably couples one or more Direct Current (DC) PV panels in the PV panel string, then the PV panel disconnect switch is controlled to connect the one or more DC PV panels in the PV panel string. Otherwise, the PV panel disconnect switch is controlled to disconnect the one or more DC PV panels from the PV panel string. The test signal could be, for example, an Alternating Current (AC) signal tuned to a PV installation that includes the PV panel string and the inverter.
US10672912B2

The disclosure provides an N-type thin film transistor, including a poly-silicon layer, a gate layer, a source and a drain. The poly-silicon layer includes a channel region, a source region and a drain region at two side of the channel region. The gate layer is on the channel region, a projection of the gate layer on the poly-silicon layer partially overlaps the source region and the drain region, and a thickness of the gate layer on the source region and the drain region are smaller than a thickness of the gate layer on the channel region. The source region and the drain region both include a heavily-doping region and a lightly-doping region connected to the heavily-doping region, the source and the drain are respectively on the heavily-doping region of the source region and the drain, and respectively electrically connects to the heavily-doping region of the source region and the drain.
US10672908B2

A substrate is patterned to form trenches and a semiconductor fin between the trenches. Insulators are formed in the trenches and a dielectric layer is formed to cover the semiconductor fin and the insulators. A dummy gate strip is formed on the dielectric layer. Spacers are formed on sidewalls of the dummy gate strip. The dummy gate strip and the dielectric layer underneath are removed until sidewalls of the spacers, a portion of the semiconductor fin and portions of the insulators are exposed. A second dielectric layer is selectively formed to cover the exposed portion of the semiconductor fin, wherein a thickness of the dielectric layer is smaller than a thickness of the second dielectric layer. A gate is formed between the spacers to cover the second dielectric layer, the sidewalls of the spacers and the exposed portions of the insulators.
US10672905B2

A semiconductor structure includes a substrate, a bottom source/drain region disposed on a top surface of the substrate, and a plurality of fins disposed over a top surface of the bottom source/drain region. The fins provide vertical transport channels for one or more vertical transport field-effect transistors. The semiconductor structure also includes at least one self-aligned shared contact disposed between an adjacent pair of the plurality of fins. The adjacent pair of the plurality of fins includes a first fin providing a first vertical transport channel for a first vertical transport field-effect transistor and a second fin providing a second vertical transport channel for a second vertical transport field-effect transistor.
US10672903B2

A semiconductor device includes a drain region for a transistor, a drain active area directly below the drain region, a drift area directly below an insolation structure, and an accumulation area directly below a gate structure of the transistor. The semiconductor device includes a first selectively doped implant region of a first concentration of a first conductivity type extending to a first depth. The first selectively doped implant region is located in the drift area, the drain active area, and the accumulation area. The semiconductor device includes a second selectively doped implant region of a second concentration of the first conductivity type and extending to a second depth less than the first depth. The second concentration is less than the first concentration. The second selectively doped implant region is located the drain active area, but not in the accumulation area. The second selectively doped implant region occupies a lateral portion of the drain active area that the first doped region does not occupy.
US10672900B2

A semiconductor device includes: a first base layer; a drain layer disposed on the back side surface of the first base layer; a second base layer formed on the surface of the first base layer; a source layer formed on the surface of the second base layer; a gate insulating film disposed on the surface of both the source layer and the second base layer; a gate electrode disposed on the gate insulating film; a column layer formed in the first base layer of the lower part of both the second base layer and the source layer by opposing the drain layer; a drain electrode disposed in the drain layer; and a source electrode disposed on both the source layer and the second base layer, wherein heavy particle irradiation is performed to the column layer to form a trap level locally.
US10672897B2

To enhance the performance of a semiconductor device. Gate electrodes extending in a Y direction and applied with a gate potential, and emitter regions and base regions both applied with an emitter potential are formed in an active cell area. The plural emitter regions are formed so as to be separated from each other in the Y direction by the base regions. A plurality of hole discharge cell areas having a ring-shaped gate electrode applied with an emitter potential are formed within an inactive cell area. The hole discharge cell areas are arranged to be separated from each other along the Y direction. Thus, an input capacitance of an IGBT is reduced, and a switching loss at turn on of the IGBT is improved.
US10672896B2

The present invention relates to the field of semiconductor switches, and relates more particularly to a GaN-based bidirectional switch device. The present invention provides a gate-controlled tunneling bidirectional switch device without Ohmic-contact, which avoids a series of negative effects (such as current collapse, incompatibility with traditional CMOS process) caused by the high temperature ohm annealing process. Each insulated gate structure near schottky-contact controls the band structure of the schottky-contact to change the working state of the device, realizing the bidirectional switch's ability of bidirectional conducting and blocking. Due to the only presence of schottky in this invention, no heavy elements such as gold is needed, and this device is compatible with traditional CMOS technology.
US10672895B2

Embodiments provide a method for manufacturing a bipolar junction transistor, comprising: providing a semiconductor substrate comprising a buried layer of a first conductive type; doping the semiconductor substrate in a collector implant region, to obtain a collector implant of the first conductive type extending parallel to a surface of the semiconductor substrate and from the surface of the semiconductor substrate to the buried layer; providing a base layer of a second conductive type on the surface of the semiconductor substrate, the base layer covering the collector implant; providing a sacrificial emitter structure on the base layer, wherein a projection of an area of the sacrificial emitter structure is enclosed by an area of the collector implant; and partially counter doping the collector implant through an area of the base layer surrounding an area of the base layer that is covered by the sacrificial emitter structure.
US10672857B2

First type of pixel lines include first type of end pixels each disposed at the end on the opposite side of the first direction and at the end on the opposite side of the second direction of a pixel line extending in the second direction. The second type of pixel lines include second type of end pixels each disposed at the end on the opposite side of the first direction and at the end on the opposite side of the second direction of a pixel line extending in the second direction. Luminance values of the plurality of first type of end pixels are smaller than luminance values of internal pixels surrounded by other pixels in four directions of the first direction, the opposite direction of the first direction, the second direction, and the opposite direction of the second direction in response to the same input picture signal.
US10672852B1

A mobile terminal includes: a body, an organic light-emitting diode (OLED) screen component over a surface of the body, a first light sensor, and a second light sensor. The OLED screen component includes: a self-emitting light layer and a light transmitting functional layer above the self-emitting light layer; at least one optical microhole in the self-emitting light layer; the first and second light sensors are disposed under the self-emitting light layer and at positions corresponding to the optical microhole; a first polarizer and a quarter phase retarder are disposed on the first optical path; an incident light path of a ambient light to the first light sensor passes through the first polarizer and a second polarizer, and polarization directions of the first polarizer and the second polarizer are perpendicular; an incident light path of the ambient light to the second light sensor passes through the first polarizer.
US10672848B2

A display device including a substrate, a source electrode and a drain electrode on the substrate, the source electrode and the drain electrode being spaced apart from each other, a first planarization layer on the source electrode and the drain electrode, a second planarization layer on the first planarization layer, and a first electrode on the second planarization layer. A step difference between a top of the first planarization layer and a top of the drain electrode is 100 Å or less.
US10672841B2

A display apparatus includes a first substrate and a second substrate opposing to the first substrate. The first substrate includes a transmission area in which a shutter unit is disposed and an emission area in which an organic light emitting diode is disposed. The shutter unit includes a first shutter electrode, a second shutter electrode, and a shutter layer interposed between the first and second shutter electrodes. The organic light emitting diode includes a pixel electrode, a common electrode, and a light-emitting layer interposed between the pixel and common electrodes. At least one of the first and second shutter electrodes is connected to the common electrode of the organic light emitting diode.
US10672827B2

An imaging device having a pixel including a photoelectric converter that generates electric signal; first transistor having a gate coupled to the photoelectric converter; second transistor one of a source and a drain of which is coupled to one of a source and a drain of the first transistor; third transistor one of a source and a drain of which is coupled to the other of the source and the drain of the second transistor, the other of the source and the drain of the third transistor coupled to the photoelectric converter; first capacitor having a first and second ends, the first end coupled to the other of the source and the drain of the second transistor, first reference voltage applied to the second end; and second capacitor having a third and fourth ends, the third end coupled to the first end, the fourth end coupled to the photoelectric converter.
US10672826B2

An imaging system includes a focal plane array comprising a first row of photodetectors, a second row of photodetectors adjacent to the first row of photodetectors, and a segmented isolation grid including portions disposed between photodetectors in the first row of photodetectors and photodetectors in the second row of photodetectors.
US10672820B2

A hybrid bonded structure including a first integrated circuit component and a second integrated circuit component is provided. The first integrated circuit component includes a first dielectric layer, first conductors and isolation structures. The first conductors and the isolation structures are embedded in the first dielectric layer. The isolation structures are electrically insulated from the first conductors and surround the first conductors. The second integrated circuit component includes a second dielectric layer and second conductors. The second conductors are embedded in the second dielectric layer. The first dielectric layer is bonded to the second dielectric layer and the first conductors are bonded to the second conductors.
US10672811B2

An image sensing device for minimizing light reflected from a light shielding layer is disclosed. The image sensing device includes a semiconductor layer formed to include an active pixel region and an optical black pixel region, a light shielding layer located at the optical black pixel region formed over the semiconductor layer, a first color filter layer located at the active pixel region formed over the semiconductor layer, and a second color filter layer located over the light shielding layer. Each of the first and second color filter layers includes at least one first color filter, at least one second color filter, and at least one third color filter. In the first color filter layer, the first color filter, the second color filter, and the third color filter are arranged in the same layer. In the second color filter layer, the first color filter and the second color filter are arranged in the same layer whereas the third color filter is formed in another layer different from the layer of the first and second color filters.
US10672808B2

An optical sensor in which photo currents generated by light in the visible and infrared wavelength ranges are to be tapped separately at pn junctions of active regions. The active regions include n- or p-doping and are formed in a p-substrate 52. The optical sensor comprises a surface-near first active region 12, and a second active region 14 subjacent to the first active region 12 and forming together with the first active region 12 a pn junction 22 that is short-circuited. A third active region 20 is subjacent to the second active region 14 and forming together with the second active region a further pn junction 23. Together with a fourth active region 24 subjacent to the second active region 20, a further pn junction 25, 29 is formed together with the third active region 20 and the substrate 52.
US10672807B1

A photo detector comprises a first photo diode configured to capture visible light, a second photo diode configured to capture one of infrared light or ultraviolet light, and an isolation region between the first photo diode and the second photo diode. The photo detector is capable of capturing infrared light and ultraviolet light in addition to visible light.
US10672800B2

Disclosed are a display panel and a display device including the same, in which each of non-display area lines, provided in an outer side among a plurality of non-display area lines connecting a driving driver to a plurality of display area lines provided in a display area, includes two electrodes electrically connected to each other with an insulation layer therebetween.
US10672798B2

A method of manufacturing an active array substrate, comprising: providing a substrate; forming gate electrodes on the substrate; forming a gate insulating layer, a semiconductor layer and an Ohmic contact layer on the transparent substrate and the gate electrodes in order; forming source electrodes and drain electrodes on the Ohmic contact layer; forming a protection layer on the source electrodes and the drain electrodes; and forming a pixel electrode layer on the protection layer, wherein the pixel electrode layer is electrically connected to the drain electrode. The gate insulating layer comprises nanometer porous silicon and nanometer particles, and a dielectric constant of the nanometer particle is greater than a dielectric constant of the nanometer porous silicon.
US10672789B2

A vertical semiconductor device may include a first gate pattern, second gate patterns, a first channel hole, a first semiconductor pattern, a second channel hole, and a second semiconductor pattern. The first gate pattern may extend in a first direction on a substrate including first and second regions. The first direction may be parallel to an upper surface of the substrate, and a portion of the first gate pattern on the second region may include a first opening. The second gate patterns may be vertically stacked and spaced apart from each other on the first gate pattern, and each of the second gate patterns may extend in the first direction. The first channel hole may extend through the second gate patterns and the first gate pattern and expose a first portion of the substrate on the first region of the substrate. The first semiconductor pattern may be at a lower portion of the first channel hole. The second channel hole may extend through the second gate patterns and expose a second portion of the substrate on the second region of the substrate, and the second channel hole may be disposed within an area of the first opening in a plan view, wherein the first opening has a larger area than the second channel hole in a plan view. The second semiconductor pattern may be at a lower portion of the second channel hole.
US10672788B2

A semiconductor memory device includes conductive layers and insulation layers alternately stacked along a first direction. A core member extends through the insulation layers and conductive layers. A semiconductor layer on an outer periphery of the core member has a first region facing a conductive layer of the stack and a second region adjacent to the first region and facing an insulation layer. The first region has a first thickness and a first impurity concentration. The second region has a second thickness that is greater than the first thickness and a second impurity concentration that is different from the first impurity concentration. A charge accumulation film is between the semiconductor layer and the conductive layer in a second direction crossing the first direction.
US10672779B2

According to one embodiment, a semiconductor memory device includes: a substrate; a first interconnect; a second interconnect; a plurality of third interconnects; a fourth interconnect; a semiconductor member; a charge storage member; and a conductive member. One of the plurality of third interconnects is disposed on two second-direction sides of the conductive member. Portions of the one of the plurality of third interconnects disposed on the two second-direction sides of the conductive member are formed as one body.
US10672774B2

A method of forming a bit line gate structure of a dynamic random access memory (DRAM) includes the following steps. A polysilicon layer is formed on a substrate. A sacrificial layer is formed on the polysilicon layer. An implantation process is performed on the sacrificial layer and the polysilicon layer. The sacrificial layer is removed. A metal stack is formed on the polysilicon layer. The present invention also provides another method of forming a bit line gate structure of a dynamic random access memory (DRAM) including the following steps. A polysilicon layer is formed on a substrate. A plasma doping process is performed on a surface of the polysilicon layer. A metal stack is formed on the surface of the polysilicon layer.
US10672771B2

To provide a semiconductor device that can reduce power consumption and retain data for a long time and a memory device including the semiconductor device. The semiconductor device includes a word line divider, a memory cell, a first wiring, and a second wiring. The word line divider is electrically connected to the first wiring and the second wiring. The memory cell includes a first transistor with a dual-gate structure. A first gate of the first transistor is electrically connected to the first wiring, and a second gate of the first transistor is electrically connected to the second wiring. The word line divider supplies a high-level potential or a low-level potential to the first wiring and supplies a predetermined potential to the second wiring, whereby a threshold voltage of the first transistor is changed. With such a configuration, a semiconductor device that can reduce power consumption and retain data for a long time is driven.
US10672769B2

A method includes forming a transistor over a substrate, wherein the transistor includes a source, a drain over the source, a semiconductor channel between the source and the drain, and a gate surrounding the semiconductor channel. A silicide layer is formed over the drain of the transistor. A capping layer is formed over the silicide layer. Portions of the capping layer and the silicide layer are removed to define a drain pad over the drain of the transistor.
US10672764B2

A semiconductor device includes a first region having a first active pattern with first protrusion portions and first recess portions, and a second region having a second active pattern with second protrusion portions and second recess portions. First gate patterns are on the first protrusion portions. Second gate patterns are on the second protrusion portions. A first source/drain region is on one of the first recess portion of the first active pattern between two of the first gate patterns. The first source/drain region has a first reinforcing epitaxial layer at an upper portion thereof. A second source/drain region is on one of the second recess portions of the second active pattern between two of the second gate patterns. The second source/drain region has a second reinforcing epitaxial layer having an epitaxial growth surface that is shaped differently than a first epitaxial growth surface of the first reinforcing epitaxial layer.
US10672760B2

A method of making a semiconductor device includes etching an insulation layer to form a plurality of openings over a first region of the substrate and a plurality of openings over a second region of the substrate. The method includes filling a first opening of the plurality of openings over the first region with a first P-metal. The method includes filling a second opening of the plurality of openings over the first region with a first N-metal. An area of the first N-metal substantially differs in size from an area of the first P-metal. The method includes filling a first opening of the plurality of openings over the second region with a second P-metal. The method includes filling a second opening of the plurality of openings over the second region with a second N-metal. An area of the second N-metal differs from an area of the second P-metal.
US10672757B2

A multiphase parallel digital current (DC) to DC converter (DCDC) circuit includes a loop operational amplifier (EA) unit, N output-stage circuit units, and M drive units, where a drive unit corresponds to at least one output-stage circuit unit including a comparator (COMP) and a power stage circuit, an output end of the loop operational amplifier EA unit is connected to an input end of the drive unit, an output end of the drive unit is connected to an input end of a COMP in a corresponding output-stage circuit unit, and an output end of the COMP is connected to an input end of a power stage circuit in the same output-stage circuit unit, and an input end of the loop operational amplifier EA unit is connected to output ends of all the power stage circuits.
US10672752B2

A semiconductor package and a manufacturing method for the semiconductor package are provided. The semiconductor package has a redistribution layer, at least one die over the redistribution layer, through interlayer vias on the redistribution layer and aside the die and a molding compound encapsulating the die and the through interlayer vias disposed on the redistribution layer. The semiconductor package has connectors connected to the through interlayer vias and a protection film covering the molding compound and the die. The protection film is formed by a printing process.
US10672739B2

A first member of a first semiconductor module and a second member of a second semiconductor module are disposed adjacent to each other along a crossing line segment crossing a longitudinal direction of the first semiconductor module as seen in a plan view. The first member is provided with a first circuit. The second member is provided with a second circuit. The first circuit does not drive when the second circuit is driving. The second circuit does not drive when the first circuit is driving.
US10672729B2

A method of forming a package structure includes disposing a semiconductor device over a first dielectric layer, wherein a first redistribution line is in the first dielectric layer, forming a molding compound over the first dielectric layer and in contact with a sidewall of the semiconductor device, forming a second dielectric layer over the molding compound and the semiconductor device, forming a first opening in the second dielectric layer, the molding compound, and the first dielectric layer to expose the first redistribution line, and forming a first conductor in the first opening, wherein the first conductor is electrically connected to the first redistribution line.
US10672728B2

An integrated fan-out (InFO) package includes a first redistribution structure, a plurality of dies, a plurality of first conductive structures, an encapsulant, a second redistribution structure, and insulating layer, a plurality of second conductive structures, an antenna confinement structure, and a slot antenna. The dies and the first conductive structures are disposed on the first redistribution structure. The first conductive structures surround the dies. The encapsulant encapsulates the dies and the first conductive structures. The second redistribution structure is disposed on the dies, the first conductive structures, and the encapsulant. The insulating layer is over the second redistribution structure. The second conductive structures and the antenna confinement structure are embedded in the insulating layer. The slot antenna is disposed on the insulating layer.
US10672726B2

Integrated circuits (ICs) that avoid or mitigate creation of changes in accumulated charge in a silicon-on-insulator (SOI) substrate, particularly an SOI substrate having a trap rich layer. In one embodiment, a FET is configured such that, in a standby mode, the FET is turned OFF while maintaining essentially the same VDS as during an active mode. In another embodiment, a FET is configured such that, in a standby mode, current flow through the FET is interrupted while maintaining essentially the same VGS as during the active mode. In another embodiment, a FET is configured such that, in a standby mode, the FET is switched into a very low current state (a “trickle current” state) that keeps both VGS and VDS close to their respective active mode operational voltages. Optionally, S-contacts may be formed in an IC substrate to create protected areas that encompass FETs that are sensitive to accumulated charge effects.
US10672721B2

A method for fabricating an electronic device includes fixing a rear face of an integrated-circuit chip to a front face of a support wafer. An infused adhesive is applied in the form of drops or segments that are separated from each other. A protective wafer is applied to the infused adhesive, and the infused adhesive is cured. The infused adhesive includes a curable adhesive and solid spacer elements infused in the curable adhesive. A closed intermediate peripheral ring is deposited on the integrated-circuit chip outside the cured infused adhesive, and an encapsulation block is formed such that it surrounds the chip, the protective wafer and the closed intermediate peripheral ring.
US10672720B2

A semiconductor device provided on a semiconductor substrate includes an element region including an element, a moisture-resistant frame surrounding the element region, an insulating layer provided between the moisture-resistant frame and an outer peripheral edge of the semiconductor device and on the semiconductor substrate, a first metal line extending along the outer peripheral edge and provided in the insulating layer, and a groove provided in the insulating layer.
US10672707B2

A low aspect ratio interconnect is provided and includes a metallization layer, a liner and a metallic interconnect. The metallization layer includes bottommost and uppermost surfaces. The uppermost surface has a maximum post-deposition height from the bottommost surface at first metallization layer portions. The metallization layer defines a trench at second metallization layer portions. The liner includes is disposed to line the trench and includes liner sidewalls that have terminal edges that extend to the maximum post-deposition height and lie coplanar with the uppermost surface at the first metallization layer portions. The metallic interconnect is disposed on the liner to fill a trench remainder and has an uppermost interconnect surface that extends to the maximum post-deposition height and lies coplanar with the uppermost surface at the first metallization layer portions.
US10672700B2

A display device and a chip-on-film structure thereof are provided. The chip-on-film structure includes a substrate, multiple first output pads, multiple second output pads, multiple first lead wires, and multiple second lead wires. The substrate has a surface including a bonding zone. The first and output pads are located in the bonding zone. The first lead wires and the first output pads are located on the same surface of the substrate. The first lead wires and the second lead wires are located on two opposite surfaces of the substrate. Each of the first lead wires is connected to one of the first output pads. Each of the second lead wires is connected to one of the second output pads. The second lead wires each have a portion corresponding to the bonding zone and having the terminal sections that are respectively opposite to the first and second output pads.
US10672699B2

A semiconductor device with redistribution layers on partial encapsulation is disclosed and may include providing a carrier with a non-photosensitive protection layer, forming a pattern in the non-photosensitive protection layer, providing a semiconductor die with a contact pad on a first surface, and bonding the semiconductor die to the non-photosensitive protection layer such that the contact pad aligns with the pattern formed in the non-photosensitive protection layer. A second surface opposite to the first surface of the semiconductor die, side surfaces between the first and second surfaces of the semiconductor die, and a portion of a first surface of the non-photosensitive protection layer may be encapsulated with an encapsulant. The carrier may be removed leaving the non-photosensitive protection layer bonded to the semiconductor die. A redistribution layer may be formed on the contact pad and a second surface of the non-photosensitive protection layer opposite to the first surface.
US10672694B2

A printed circuit board (PCB) reducing a thickness of a semiconductor package and improving reliability of the semiconductor package, a semiconductor package including the PCB, and a method of manufacturing the PCB may be provided. The PCB may include a substrate base having at least one base layer, and a plurality of wiring layers disposed on a top surface and a bottom surface of the at least one base layer, the plurality of wiring layers defining a plurality of wiring patterns, respectively may be provided. An elastic modulus of a conductive material of one wiring pattern of at least one wiring layer from among the plurality of wiring layers may be less than a conductive material of another wiring pattern.
US10672692B2

A lead frame that is partially covered with an adhesion layer. A method for forming a lead frame with an adhesion layer starting with a lead frame and using a photo-imageable polyimide or epoxy material to form the adhesion layer. A method for forming a lead frame with an adhesion layer starting with a lead frame blank and using a photo-imageable polyimide or epoxy material to form the adhesion layer.
US10672691B2

A packaged semiconductor device has a thin profile, two face-to-face mounted power semiconductor device dice, and no internal bond wires. A first semiconductor device die is mounted so that a gate pad is bonded to the bottom of a first lead, and so that a source pad is bonded to the bottom of a second lead. A second semiconductor device die identical to the first is mounted so that a gate pad is bonded to the top of the first lead, and so that a source pad is bonded to the top of the second lead. The backside drain electrodes of both dice are electrically coupled to a third lead. The third lead in one example has a forked-shape, and the two dice are disposed entirely between the two tines of the fork. After encapsulation, the three leads extend parallel to each other from a body portion of the package.
US10672690B2

A method for manufacturing an electronic assembly features a semiconductor device with a first side and a second side opposite the first side to facilitate enhanced thermal dissipation. The first side has a first conductive pad. The second side has a primary metallic surface. By heating the assembly once, a first substrate (e.g. lead frame) is bonded to a first conductive pad via first metallic bonding layer; and second substrate (e.g., heat sinking circuit board) is bonded to a primary metallic surface via a second metallic bonding layer. In one configuration the second metallic bonding layer is composed of solder and copper, for example.
US10672687B2

A semiconductor device includes a die pad, and a first lead integrally connected to the die pad. A second lead and a third lead are arranged laterally away from the first lead. A semiconductor element including a first lateral surface and a second lateral surface adjacent to each other and a third lateral surface located opposite to the first lateral surface and adjacent to the second lateral surface, is mounted on the die pad. A plurality of first conductive members electrically connects the at least part of a main electrode pad to the end on the die pad side of the second lead. A second conductive member connects a control electrode pad to the end on the die pad side of the third lead.
US10672686B2

A method of forming a conductive through substrate via includes forming an opening in a first surface of a semiconductor substrate comprising a LDMOS transistor structure in the first surface, forming a first conductive layer in a first portion of the opening in the semiconductor substrate using first deposition parameters such that the first conductive layer fills the opening in the first portion, and forming a second conductive layer on the first conductive layer in a second portion of the opening using second deposition parameters such that the second conductive layer bounds a gap in the second portion.
US10672684B2

In one embodiment, an apparatus for holding down a heat sink on a printed circuit board comprises a pair of hold down clips, each of the hold down clips comprising a first end for attachment to the heat sink, a resiliently compressible arm, and a retaining finger at a second end for insertion into an opening in the printed circuit board. The retaining finger is configured to exert a spring force against a lower surface of the printed circuit board when inserted into the opening to securely hold down the heat sink on an upper surface of the printed circuit board.
US10672676B2

A fingerprint sensor device and a method of making a fingerprint sensor device. As non-limiting examples, various aspects of this disclosure provide various fingerprint sensor devices, and methods of manufacturing thereof, that comprise an interconnection structure, for example a bond wire, at least a portion of which extends into a dielectric layer utilized to mount a plate, and/or that comprise an interconnection structure that extends upward from the semiconductor die at a location that is laterally offset from the plate.
US10672675B2

Related to is a gate on array. A circuit for testing a gate line of an array substrate includes: a test pad and a first switch unit which connects the test pad and the gate line and has an end connected to a control terminal. A voltage is applied to the control terminal to control activation and deactivation of the first switch unit. The gate line is in normal operation when the first switch unit is deactivated, and the test pad tests a signal of the gate line when the first switch unit is activated. In normal display, the first switch unit is deactivated, and the gate line is in normal operation. This can avoid influences of an additional load, which would otherwise cause abnormal display of a picture. In a manufacturing procedure, explosive wound caused by electrostatic discharge of the test pad can be prevented. When a display device cannot be lit, an external voltage can be introduced to activate the first switch unit, so as to detect a signal of the gate line.
US10672671B2

Semiconductor devices and methods of forming the same include forming a first channel region on a first semiconductor region. A second channel region is formed on a second semiconductor region. The second semiconductor region is formed from a semiconductor material that is different from a semiconductor material of the first semiconductor region. A semiconductor cap is formed on one or more of the first and second channel regions. A gate dielectric layer is formed over the nitrogen-containing layer. A gate is formed on the gate dielectric.
US10672668B2

A finned semiconductor structure including sets of relatively wide and relatively narrow fins is obtained by employing hard masks having different quality. A relatively porous hard mask is formed over a first region of a semiconductor substrate and a relatively dense hard mask is formed over a second region of the substrate. Patterning of the different hard masks using a sidewall image transfer process causes greater lateral etching of the relatively porous hard mask than the relatively dense hard mask. A subsequent reactive ion etch to form semiconductor fins causes relatively narrow fins to be formed beneath the relatively porous hard mask and relatively wide fins to be formed beneath the relatively dense hard mask.
US10672665B2

A method for forming a FinFET device structure includes forming a first fin structure and a second fin structure on a substrate. The method also includes depositing a first spacer layer over the first and second fin structures. The method also includes growing a power rail between the bottom portion of the first fin structure and the bottom portion of the second fin structure. The method also includes forming a second spacer layer over the sidewalls of the first spacer layer and over the top surface of the power rail. The method also includes forming a first fin isolation structure over the power rail between the first and second fin structures. The method also includes forming a first contact structure over the first fin structure and a portion of the power rail. The method also includes forming a second contact structure over the second fin structure.
US10672664B2

In an embodiment, a method includes forming at least one trench in non-device regions of a first surface of a semiconductor wafer, the non-device regions being arranged between component positions, the component positions including device regions and a first metallization structure, applying a first polymer layer to the first surface of a semiconductor wafer such that the trenches and edge regions of the component positions are covered with the first polymer layer and such that at least a portion of the first metallization structure is uncovered by the first polymer layer, removing portions of a second surface of the semiconductor wafer, the second surface opposing the first surface, revealing portions of the first polymer layer in the non-device regions and producing a worked second surface and inserting a separation line through the first polymer layer in the non-device regions to form a plurality of separate semiconductor dies.
US10672657B2

A method of forming a semiconductor device assembly comprises forming tiers comprising conductive structures and insulating structures in a stacked arrangement over a substrate. Portions of the tiers are selectively removed to form a stair step structure comprising a selected number of steps exhibiting different widths corresponding to variances in projected error associated with forming the steps. Contact structures are formed on the steps of the stair step structure. Semiconductor device structures and semiconductor devices are also described.
US10672653B2

Techniques are provided to fabricate metal interconnects using liner planarization-free process flows. A sacrificial layer is formed on a dielectric layer, and the sacrificial and dielectric layers are patterned to form an opening in the dielectric layer. A conformal liner layer is deposited, and a metal layer deposited to form a metal interconnect in the opening. An overburden portion of the metal layer is planarized to expose an overburden portion of the liner layer. A first wet etch is performed to selectively remove the overburden portion of the liner layer. A second wet etch process is performed to selectively remove the sacrificial layer, resulting in extended portions of the liner layer and the metal interconnect extending above a surface of the dielectric layer. A dielectric capping layer is formed to cover the sidewall and upper surfaces of the extended portions of the liner layer and the metal interconnect.
US10672643B2

Techniques for reducing off-state current in dual channel CMOS devices are provided. In one aspect, a method for forming a dual channel finFET includes: patterning NFET/PFET fins on a wafer from a first channel material and a second Ge-containing channel material; depositing a GeO2 layer on the fins; annealing the fins to selectively oxidize the at least one PFET fin; depositing a liner onto the fins which induces a negative charge in the PFET fin(s); removing unreacted GeO2 and the liner from the NFET fin(s); depositing a dielectric layer onto the fins which induces a positive charge in the NFET fin(s). A dual channel finFET device is also provided.
US10672639B2

A system for sending a cassette pod is provided. The system includes a processing machine having a load port for receiving the cassette pod. The system further includes a manipulating apparatus positioned above the processing machine. The manipulating apparatus includes an intermediate module having a stage and a driving mechanism connected to the stage to change the position of the stage. The manipulating apparatus further includes a conveyor module having a gripper assembly for grasping the cassette pod.
US10672638B2

A chip pickup system is provided. The chip pickup system includes a detector for detecting a position of an irregular semiconductor chip on a holder. The holder holding plural semiconductor chips in predetermined positions on the holder. The irregular semiconductor chip is out of the predetermined positions. The system further includes a pickup tool for picking up the irregular semiconductor chip at least on the basis of information on the position of the irregular semiconductor chip detected by the detector.
US10672637B2

A purge tower assembly for a substrate container. The assembly may include a purge interface body, including a base portion and a top portion, for mounting to a bottom plate of a substrate container. The base portion may include a substantially tubular base sidewall and the top portion may have a top sidewall positioned on the top edge of the base portion. The top portion may include an inlet nozzle for mounting through a rearward inlet in the bottom plate. The inlet nozzle may have a substantially tubular sidewall extending upwardly from the top sidewall and defining an interior of the inlet nozzle. The base portion and the top sidewall may define an offset conduit portion disposed connected to the base portion and the inlet nozzle, the base portion and the inlet nozzle in fluid communication via the offset conduit portion.
US10672624B2

A method of making a semiconductor device may include providing a carrier comprising a semiconductor die mounting site. A build-up interconnect structure may be formed over the carrier. A first portion of a conductive interconnect may be formed over the build-up interconnect structure in a periphery of the semiconductor die mounting site. An etch stop layer and a second portion of the conductive interconnect may be formed over the first portion of the conductive interconnect. A semiconductor die may be mounted to the build-up interconnect at the semiconductor die mounting site. The conductive interconnect and the semiconductor die may be encapsulated with a mold compound. A first end of the conductive interconnect on the second portion of the conductive interconnect may be exposed. The carrier may be removed to expose the build-up interconnect structure. The first portion of the conductive interconnect may be etched to expose the etch stop layer.
US10672622B2

An etching method includes loading, first and second supplying, removing and etching steps. In the loading step, a target object is loaded into a chamber. In the first supply step, a first gas containing carbon, hydrogen and fluorine is supplied into the chamber. In the modification step, plasma of the first gas is generated to modify a surface of a mask film and a surface of an organic film which is not covered with the mask film. In the second supply step, a second gas for etching the organic film is supplied into the chamber. In the removal step, a modified layer formed on the surface of the organic film is removed by applying a first high frequency bias power. In the etching step, the organic film below the modified layer is etched by applying a second high frequency bias power lower than the first high frequency bias power.
US10672619B2

Provided is a material composition and method that includes forming a patterned resist layer on a substrate, where the patterned resist layer has a first line width roughness. In various embodiments, the patterned resist layer is coated with a treatment material, where a first portion of the treatment material bonds to surfaces of the patterned resist layer. In some embodiments, a second portion of the treatment material (e.g., not bonded to surfaces of the patterned resist layer) is removed, thereby providing a treated patterned resist layer, where the treated patterned resist layer has a second line width roughness less than the first line width roughness.
US10672613B2

A method of forming a semiconductor structure includes forming a metal gate stack over a shallow trench isolation (STI) material in a semiconductor substrate, forming an interlayer dielectric over the STI material, recessing the interlayer dielectric to a height lower than a top surface of the metal gate stack, forming a helmet structure over the recessed interlayer dielectric, and after forming the helmet structure, etching the metal gate stack until reaching the STI material.
US10672604B2

Improved resistive random access memory (RRAM) devices are provided that use a 2-D electrode as the SET electrode to take up a variable amount of oxygen from an oxide material, thereby providing a non-volatile resistive memory cell.
US10672598B2

Methods for testing or adjusting a charged-particle detector are provided. A diagnostic and/or adjustment method for a charged-particle detector of an instrument includes providing, from a photon source, photons incident on the charged-particle detector. Moreover, the method includes detecting a response by the charged-particle detector to the photons incident thereon. Related detection systems are also provided.
US10672592B2

The present invention provides a Soft Plasma Cleaning (SPC) system (30, 130, 230) including a Guided Soft-Plasma Cleaning (G-SPC) (30). The SPC system is a non-thermal, low temperature process and operable at atmosphere pressure, in both air and liquid medium. In an embodiment, a feedstock gas (40) is supplied to provide a discharging fluid (50) in the cleaning chamber (34). A plasma guiding and amplifying component (52) guides and expands the discharging fluid to cover a large ablation area over the workpiece (32), thereby also suppressing ion and electron bombardment damage or etching. The plasma guiding and amplifying component (52) may be formed with dielectric plates or tubes (37, 56, 58), with each dielectric having an aperture (37a, 56a, 58a). The electric field and ion energy in the cleaning chamber can be additionally controlled via a floating electrode (160, 160a), so as to suppress plasma damage during SPC.
US10672589B2

A plasma processing apparatus includes: a processing container; an electrode that places a workpiece thereon; a plasma generation source that supplies plasma into the processing container; a bias power supply that supplies a bias power to the electrode; an edge ring disposed at a periphery of the workpiece; a DC power supply that supplies a DC voltage to the edge ring; a controller that executes a first control procedure in which the DC voltage periodically repeats a first state having a first voltage value and a second state having a second voltage value, the first voltage value is supplied in a partial time period within each period of a potential of the electrode, and the second voltage value is supplied such that the first and second states are continuous.
US10672584B2

A X-ray generating device includes a chamber, a rotating body in the chamber, a starting material storage vessel for storing a target starting material in liquid form, and a starting material supply mechanism for applying the target starting material onto a surface of the rotating body. The X-ray generating device also includes an energy beam inlet window disposed at an opening of the chamber and configured to transmit an energy beam, which will be directed onto the target starting material on the surface of the rotating body and introduce the energy beam from the exterior of the chamber to the interior of the chamber, and an X-ray outlet window disposed at the opening of the chamber and configured to transmit the X-rays, which are generated upon irradiating the target starting material with the energy beam, and allow the X-rays to proceed to the exterior of the chamber.
US10672583B1

Electron gun. The electron gun includes a circular cathode. The circular cathode comprises a spherical surface. The electron gun further includes a focus electrode. The focus electrode has four quadrants. The focus electrode is disposed about the circular cathode. The focus electrode includes four primary focus angle points. At least two of the four, adjacent, primary focus angle points have different angle values. Each of the four primary focus angle points is in a different quadrant. Focus angles on the focus electrode between any two primary focus angle points vary from one primary focus angle point to another primary focus angle point.
US10672570B2

A keyswitch structure includes a base plate, a keycap, a first support, and a second support. The keycap is located above the base plate. The first support is connected to and between the keycap and the base plate and has an upper connection portion, a lower connection portion, and a protruding limitation portion. The upper connection portion is located between the lower connection portion and the protruding limitation portion. The first support is rotatably connected to the keycap and the base plate through the upper connection portion and the lower connection portion respectively. The protruding limitation portion is located close to and under the cap body. The second support is connected to and between the keycap and the base plate. The keycap moves up and down relative to the base plate through the first support and the second support.
US10672565B2

An aluminum electrolytic capacitor includes: an exterior case of a bottomed cylindrical shape for accommodating a capacitor element in which an anode foil and a cathode foil are wound in an overlapping manner with a separator interposed therebetween; and an elastic sealing member for sealing an opening of the exterior case, wherein the exterior case is formed with, on an outer circumferential surface, a plurality of tapered concave portions whose depth in the radial direction becomes shallow from the bottomed cylindrical bottom toward the opening side, whereby a tapered raised portion, which is raised toward the center side in the radial direction, is formed on an inner circumferential surface located on the back surface of the concave portion, and the capacitor element is abutted and supported by the raised portion.
US10672564B2

The Electret Energy Storage System (EESS) achieves an advancement in the energy storage field due to high energy/power level densities integrated into a long term energy storage solution. Combining the high density energy storage solution of the EESS with traditional battery storage technologies reduces the overall energy storage three dimensional footprint when compared to battery only footprints. This combined EESS/battery long term energy storage provides a solution in providing energy from renewable energy systems when the presence of the wind or sun are not available when compared to traditional battery only storage solutions.
US10672557B2

Disclosed are a wireless power transmitter and a method of controlling power thereof. A wireless power transmitter includes a power supply device to supply AC power to the wireless power transmitter; and a transmission coil to transmit the AC power to a reception coil of a wireless power receiver by resonance. The wireless power transmitter controls transmission power to be transmitted to the wireless power receiver based on a coupling state between the transmission coil and the reception coil.
US10672555B2

One object is to provide a new type of coil element capable of reducing leakage magnetic flux. A coil element according to one embodiment of the present invention is provided with an insulator body made of a magnetic material and having a mounting surface and an upper surface opposed to said mounting surface, a coil conductor embedded in the insulator body, an external electrode electrically connected to the coil conductor, a shield layer provided on the upper surface of the insulator body and having a larger magnetic permeability than the insulator body, and a plating layer formed to cover the mounting surface of the external electrode and having a larger magnetic permeability than the insulator body. The plating layer is formed to be thicker than the shield layer.
US10672552B2

Disclosed is an adhesive laminate core manufacturing apparatus for successively forming lamina members of a predetermined shape while allowing a strip-shaped material, of which the surface is coated with an adhesive layer, to pass therethrough, and successively manufacturing laminate cores comprising the lamina members integrated, per predetermined sheet, by interlaminar bonding. The adhesive laminate core manufacturing apparatus according to one aspect of the present invention comprises: a protrusion forming unit pressing the material for the delamination of the laminate cores, so as to form interlaminar division protrusions on the surface of the material at each predetermined position along the longitudinal direction of the material; a blanking unit blanking the material so as to successively form the lamina members; and a lamination unit integrating the lamina members so as to successively manufacture the laminate cores. According to the present invention, the laminate cores, in which the predetermined sheets of the laminar members are integrated in an interlaminar bonding manner, can be continuously manufactured by using the strip-shaped material of which the surface is coated with the adhesive layer in advance.
US10672549B2

A solenoid electrical diagnostic system includes a solenoid circuit operable in response to an electrical current. A low-side switch includes a low-side input configured to receive a pulsed voltage signal and a low-side output in signal communication with the solenoid circuit. The low-side switch continuously switches between an on-state and an off-state based on the pulsed voltage signal to adjust a level of the current flowing through the solenoid circuit. A solenoid monitoring unit generates a low-side output state signal based on an output voltage at the low-side output, and a low-side input state signal based on an input voltage at the low-side input. The solenoid electrical diagnostic system further includes an electronic hardware controller determines at least one operating condition of the solenoid circuit based on a comparison between the state signals and a threshold value.
US10672538B2

A composite cable in which noise generated by a ground wire is less likely to intrude signal lines even in the case where the ground wire is combined. The composite cable includes a plurality of wires, a separator which covers the outer circumference of the plurality of wires all together, and a sheath which covers the outer circumference of the separator. The plurality of wires includes a plurality of signal lines, a plurality of power lines, and a ground wire. The ground wire is isolated from the plurality of signal lines with the plurality of power lines interposed therebetween.
US10672532B2

A system and method for enhanced magnet wire insulation is described. The method comprises a sequence of operations to create an enhanced magnet wire insulation suitable for use in temperatures of about 550° Fahrenheit. A magnet copper wire is wrapped with a polyimide wrap and subsequently wrapped with an organic polymer thermoplastic (e.g., PEEK). The polyimide wrap is applied while the magnet copper wire is around a spool to create a wrapped magnet wire. The wrapped magnet wire can be heated using an induction coil in a metal tube bolted to an extruder to remove moisture and to enable adding the layer of organic polymer thermoplastic. The metal tube can be held at a partial vacuum to augment moisture removal of the wrapped magnet wire prior to running the wrapped magnet wire through the extruder which adds the organic polymer thermoplastic layer. This method produces an enhanced magnet wire suitable for a wide range of temperatures.
US10672531B2

A conductive paste and method of manufacturing thereof. The conductive paste comprises conductive particles dispersed in an organic medium, the organic medium comprising: (a) a solvent; and (b) a binder comprising a polyester. The conductive paste typically comprises silver and may contain various other additives. A stretchable conductive layer can be formed by curing the conductive paste.
US10672529B1

A spectrometer focusing apparatus is provided that includes a hollow cylinder for x-rays to traverse a length thereof, a defracting element configured as a ring on an interior circumference of a portion of the hollow cylinder, at least one disk having an edge defining a circle aligned with the defracting element, and an aperture formed between the defracting element and the edge of the at least one disk.
US10672519B2

A system and method for predicting a health outcome of a user based on a determination of knowledge the user possesses regarding issues of physiological or mental health.
US10672518B2

Exemplified method and system facilitates monitoring and/or evaluation of disease or physiological state using mathematical analysis and machine learning analysis of a biopotential signal collected from a single electrode. The exemplified method and system creates, from data of a singularly measured biopotential signal, via a mathematical operation (i.e., via numeric fractional derivative calculation of the signal in the frequency domain), one or more mathematically-derived biopotential signals (e.g., virtual biopotential signals) that is used in combination with the measured biopotential signals to generate a multi-dimensional phase-space representation of the body (e.g., the heart). By mathematically modulating (e.g., by expanding or contracting) portions of a given biopotential signal, in the frequency domain, the numeric-based operation gives emphasis or de-emphasis to certain measured frequencies of the biopotential signals, which, when coupled with machine learning, facilitates improved diagnostics of certain pathologies.
US10672512B2

Systems and methods are disclosed for automatically managing how and when computerized advanced processing techniques (for example, CAD and/or other image processing) are used. In some embodiments, the systems and methods discussed herein allow users, such as radiologists, to efficiently interact with a wide variety of computerized advanced processing (“CAP”) techniques using computing devices ranging from picture archiving and communication system (“PACS”) workstations to handheld devices such as smartphone and tablets. Furthermore, the systems and methods may, in various embodiments, automatically manage how data associated with these CAP techniques (for example, results of application of one or more computerized advanced processing techniques) are used, such as how data associated with the computerized analyzes is reported, whether comparisons to prior abnormalities should be automatically initiated, whether the radiologist should be alerted of important findings, and the like.
US10672508B2

An intelligent gateway device provided at a premise (home or business) for providing and managing application services associated with use and support of a plurality of digital endpoint devices associated with the premises. The device includes a communications and processing infrastructure integrated with a peer and presence messaging based communications protocol for enabling communications between the device and an external support network and between the device and connected digital endpoint devices. A services framework at the gateway device implements the communications and processing infrastructure for enabling service management, service configuration, and authentication of user of services at the intelligent gateway. The framework provides a storage and execution environment for supporting and executing received service logic modules relating to use, management, and support of the digital endpoint devices. Thus, the gateway device provides a network-based services point of presence for a plurality of digital endpoint devices at the premises.
US10672493B2

A sample and hold circuit with long hold time. A sample and hold circuit includes an amplifier, a capacitor, a switch, and a sampling network. The capacitor includes a first terminal coupled to an inverting input of the amplifier. The switch includes a first terminal that is coupled to an output of the amplifier, and a second terminal that is coupled to the inverting input of the amplifier. The sampling network is coupled to a non-inverting input of the amplifier.
US10672492B2

A data sampling circuit module, a data sampling method and a memory storage device are provided. The method includes: receiving a differential signal and generating an input data stream according to the differential signal; sampling a clock signal according to a plurality of turning points of the input data stream and outputting a sampling signal; and outputting a bit data stream corresponding to the input data stream according to the sampling signal.
US10672490B2

Semiconductor memory devices and methods for manufacturing semiconductor memory devices are provided herein, An example method includes forming a first silicon layer on a bottom conductive layer, transforming the first silicon layer into a first polysilicon layer, forming a second silicon layer stacked on the first polysilicon layer, and a third silicon layer stacked on the second silicon layer, transforming the second and third silicon layers into second and third polysilicon layers, forming an amorphous silicon layer on the third polysilicon layer, forming the amorphous silicon layer into a silicide layer on at least a portion of the third polysilicon layer, depositing an oxide onto at least a portion of the first, second, and third polysilicon layers, selectively trimming the silicide layer, and forming a top conductive layer on at least a portion of the trimmed silicide layer.
US10672481B2

Disclosed is a semiconductor memory device and a method of operating the same. The semiconductor memory device includes a memory cell array including a plurality of memory blocks, a peripheral circuit configured to perform an erase characteristic check operation and an erase operation on the plurality of memory blocks. The semiconductor memory device also includes a control circuit configured to control the peripheral circuit to perform the erase characteristic check operation and the erase operation, determine whether each of the plurality of memory blocks has a normal erase characteristic or an overerase characteristic according to a result of the erase characteristic check operation for each of the plurality of memory blocks, and set an erase voltage of the erase operation based on the determined erase characteristic according to the result of the erase characteristic check operation.
US10672476B2

Provided herein may be a storage device having disturb characteristics and a method of operating the storage device. The storage device may include one or more semiconductor memory devices, each including a plurality of memory cells, and a memory controller configured to set levels of pass voltages of the one or more semiconductor memory devices depending on program speeds of the plurality of memory cells.
US10672469B1

A device comprises a first block of memory cells, a second block of memory cells to store a feature array, and a third block of memory cells to store an array of output values. Sensing circuitry is coupled to the first block of memory cells and the second block of memory cells to compare electrical differences between the memory cells in the first block and the memory cells in the second block to generate the array of output values. Writing circuitry is operatively coupled to the third block to store the array of output values in the third block of memory cells.
US10672465B1

One illustrative device includes, among other things, a first resistive storage element; a second resistive storage element; and logic to couple the first resistive storage element and the second resistive storage element in a series arrangement in a first configuration and to couple the first resistive storage element and the second resistive storage element in a parallel arrangement in a second configuration.
US10672462B2

A data management circuit is provided. The data management circuit includes a volatile memory, a power supply circuit, and a signal receiving circuit. An output terminal of the power supply circuit is coupled to the volatile memory, and an output terminal of the signal receiving circuit is coupled to the output terminal of the power supply circuit and the volatile memory. The power supply circuit is configured to provide power to the volatile memory. The signal receiving circuit is configured to receive a wireless control signal and to output a data clearance signal corresponding to the wireless control signal, such that data recorded in the volatile memory is cleared by the data clearance signal.
US10672458B1

Systems, among other embodiments, include topologies (data and/or control/address information) between an integrated circuit buffer device (that may be coupled to a master, such as a memory controller) and a plurality of integrated circuit memory devices. For example, data may be provided between the plurality of integrated circuit memory devices and the integrated circuit buffer device using separate segmented (or point-to-point link) signal paths in response to control/address information provided from the integrated circuit buffer device to the plurality of integrated circuit buffer devices using a single fly-by (or bus) signal path. An integrated circuit buffer device enables configurable effective memory organization of the plurality of integrated circuit memory devices. The memory organization represented by the integrated circuit buffer device to a memory controller may be different than the actual memory organization behind or coupled to the integrated circuit buffer device. The buffer device segments and merges the data transferred between the memory controller that expects a particular memory organization and actual memory organization.
US10672447B2

Disclosed is a memory device. The memory device includes a memory cell array that includes a target cell, a row decoder that drive a word line, and a write driver and sense amplifier that are configured to drive a bit line and a source line. The row decoder is configured to drive the word line in a first program operation and a second program operation. Between a start of the first program operation and an end of the second program operation, the write driver and sense amplifier are configured to continuously drive a bit line connected to the target cell with a second driving voltage or drive a source line connected to the target cell with a third driving voltage.
US10672443B2

A fin-Field Effect Transistor based system on chip (SoC) memory is provided and includes a control block, first logic gates, and row decoder blocks. The control block includes a clock generator circuit that generates an internal clock signal, and a global driver circuit coupled to the clock generator circuit that drives a global clock signal. Each row decoder block includes a second logic gate that receives higher order non-clocked address signals via input terminals, a transmission gate that combines the global clock signal and the higher order non-clocked address signals, third logic gates that receive lower order non-clocked address signals and higher order clocked address signals, and output a combined lower order address and higher order address along with the global clock signal, level shifter circuits that receive the outputs, and word-line driver circuits that generate word-lines based on the output of the level shifter circuits.
US10672440B2

Aspects of the present disclosure include a memory sub-system configured to reduce latency and power consumption during a read-write cycle. The memory system comprises a first memory component and a processing device operatively coupled to the first memory component. The processing device is configured to receive a request to write a first sequence of data bits from a first data block of a second memory component to memory media of the first memory component. In response to receiving the request, the processing device reads a second sequence of data bits from a second data block stored in the memory media of the first memory component, and compares the first sequence of data bits with the second sequence of data bits. The processing device determines whether to execute a write cycle, at the first memory component, to write the first sequence of data bits from the first data block to the memory media of the first memory component based on a result of comparing the first sequence of data bits with the second sequence of data bits.
US10672432B2

A semiconductor device comprises a stack structure comprising decks each comprising a memory element level comprising memory elements, and a control logic level in electrical communication with the memory element level and comprising control logic devices. At least one of the control logic devices of the control logic level of one or more of the decks comprises at least one device exhibiting a gate electrode shared by neighboring vertical transistors thereof. A control logic assembly, a control logic device, an electronic system, a method of forming a control logic device, and a method of operating a semiconductor device are also described.
US10672431B2

An apparatus according to one embodiment includes a reel having a hub, and a damping layer coupled to the reel for translating motion of a motor to the reel. The damping layer is physically configured to dampen motor-induced motion of the reel along an axis of rotation of the reel. An apparatus according to another embodiment includes a reel having a hub, and a damping layer coupled to the reel for translating motion of a motor to the reel. The damping layer includes a laminate having a first metal layer and a viscoelastic layer extending along the first metal layer for dampening motor-induced motion of the reel along an axis of rotation of the reel.
US10672427B2

Long term optical memory includes a storage medium composed from an array of silicon nanoridges positioned onto the fused silica glass. The array has first and second polarization contrast corresponding to different phase of silicon. The first polarization contrast results from amorphous phase of silicon and the second polarization contrast results from crystalline phase of silicon. The first and second polarization states are spatially distributed over plurality of localized data areas of the storage medium.
US10672419B1

According to one embodiment, a magnetic recording and reading apparatus has a magnetic head and a system controlling a flying height of the magnetic head. The system includes a main control unit, a resistance measurement unit which measures a resistance value of a magnetic flux control layer, a calculation unit which obtains a resistance value change rate with respect to an initial resistance value, a determination unit which determines a flying height for recording corresponding to the resistance value change rate, and a flying height control unit which controls a flying height of the magnetic head.
US10672417B2

Systems and methods are disclosed for creating a machine generated avatar. A machine generated avatar is an avatar generated by processing video and audio information extracted from a recording of a human speaking a reading corpora and enabling the created avatar to be able to say an unlimited number of utterances, i.e., utterances that were not recorded. The video and audio processing consists of the use of machine learning algorithms that may create predictive models based upon pixel, semantic, phonetic, intonation, and wavelets.
US10672410B2

Provided are an apparatus and method for decoding audio, The method includes receiving a bitstream consisting of audio packets; decoding an audio packet included in the received bitstream; extracting a type of the decoded packet; obtaining system data from a packet of which system metadata corresponds to the extracted packet type; and transmitting the obtained system data to a system engine, wherein the system data includes at least one of information regarding a type of the system engine and a length of the system data.
US10672407B2

Systems and methods are disclosed for customizing, distributing and processing audio fingerprint data. An example method includes receiving, at a first device, an activation signal and a first audio fingerprint via first wireless communications between the first device and a communications network, the receiving occurring while the first device is not recording audio via a microphone of the first device; based on the activation signal, recording audio using the microphone during a first time period; generating a second audio fingerprint representative of the recorded audio; determining whether the second audio fingerprint matches the first audio fingerprint; and sending an indication of whether the second audio fingerprint matches the first audio fingerprint to an audience measurement entity via second wireless communications between the first device and the communications network.
US10672399B2

Techniques are provided for creating a mapping that maps locations in audio data (e.g., an audio book) to corresponding locations in text data (e.g., an e-book). Techniques are provided for using a mapping between audio data and text data, whether the mapping is created automatically or manually. A mapping may be used for bookmark switching where a bookmark established in one version of a digital work (e.g., e-book) is used to identify a corresponding location with another version of the digital work (e.g., an audio book). Alternatively, the mapping may be used to play audio that corresponds to text selected by a user. Alternatively, the mapping may be used to automatically highlight text in response to audio that corresponds to the text being played. Alternatively, the mapping may be used to determine where an annotation created in one media context (e.g., audio) will be consumed in another media context.
US10672390B2

The systems and methods disclosed herein combine a plurality of interpretations of a voice-based input. The systems and methods may receive the voice-based input, process it using one or more automatic speech recognition modules to obtain a plurality of interpretations, and identify an entity set for each of the plurality of interpretations. The systems and methods may further generate a combined interpretation based on a first interpretation and second interpretation selected form the plurality of interpretations and assign a semantic score to the combined interpretation based on the entity sets of the first and second interpretation.
US10672389B1

Systems and methods for automatically self-correcting or correcting in real-time one or more neural networks after detecting a triggering event, or breaching boundary conditions are provided. Such a triggering event may indicate incorrect output signal or data being generated by the one or more neural networks. In particular, machine controllers of the invention limit the operations of neural networks to be within boundary conditions. Autonomous machines of the invention can be self-corrected after a breach of a boundary condition is detected. Autonomous land vehicles of the invention are capable of determining the timing of automatic transition to the manual control from automated driving mode. The controller of the invention filters and saves input-output data sets that fall within boundary conditions for later training of neural networks. The controllers of the invention include security architectures to prevent damages from virus attacks or system malfunctions.
US10672385B2

A method for implementing a speaker-independent speech recognition system with reduced latency is provided. The method includes capturing voice data at a carry-on-device from a user during a pre-flight check-in performed by the user for an upcoming flight; extracting features associated with the user from the captured voice data at the carry-on-device; uplinking the extracted features to the speaker-independent speech recognition system onboard the aircraft; and adapting the extracted features with an acoustic feature model of the speaker-independent speech recognition system.
US10672384B2

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.
US10672382B2

Methods and apparatuses are provided for performing end-to-end speech recognition training performed by at least one processor. The method includes receiving, by the at least one processor, one or more input speech frames, generating, by the at least one processor, a sequence of encoder hidden states by transforming the input speech frames, computing, by the at least one processor, attention weights based on each of the sequence of encoder hidden states and a current decoder hidden state, performing, by the at least one processor, a decoding operation based on a previous embedded label prediction information and a previous attentional hidden state information generated based on the attention weights; and generating a current embedded label prediction information based on a result of the decoding operation and the attention weights.
US10672381B2

Disclosed herein are systems, computer-implemented methods, and computer-readable media for dialog modeling. The method includes receiving spoken dialogs annotated to indicate dialog acts and task/subtask information, parsing the spoken dialogs with a hierarchical, parse-based dialog model which operates incrementally from left to right and which only analyzes a preceding dialog context to generate parsed spoken dialogs, and constructing a functional task structure of the parsed spoken dialogs. The method can further either interpret user utterances with the functional task structure of the parsed spoken dialogs or plan system responses to user utterances with the functional task structure of the parsed spoken dialogs. The parse-based dialog model can be a shift-reduce model, a start-complete model, or a connection path model.
US10672380B2

Techniques are provided for wake-on-voice (WOV) key-phrase enrollment. A methodology implementing the techniques according to an embodiment includes generating a WOV key-phrase model based on identification of the sequence of sub-phonetic units of a user-provided key-phrase. The WOV key-phrase model is employed by a WOV processor for detection of the user spoken key-phrase and triggering operation of an automatic speech recognition (ASR) processor in response to the detection. The method further includes updating an ASR language model based on the user-provided key-phrase. The update includes one of embedding the WOV key-phrase model into the ASR language model, converting sub-phonetic units of the WOV key-phrase model and embedding the converted WOV key-phrase model into the ASR language model, or generating an ASR key-phrase model by applying a phoneme-syllable based statistical language model to the user-provided key-phrase and embedding the generated ASR key-phrase model into the ASR language model.
US10672379B1

Systems and methods for establishing a communications system between multiple electronic devices are described herein. In some embodiments, audio data representing a first utterance may be received from a first electronic device. A user account may be associated with the electronic device, and intent data may be determined from the audio data. Based on the intent data, it may be determined that the utterance includes an intent to communicate with a contact. A list of potential contacts may then be generated. Based on the intent data, a condition may be determined. The condition may represent a particular circumstance in which the utterance was received by the first electronic device, and based on the condition, a plurality of interaction ranks may be determined. A contact name having the highest interaction rank may be determined from the plurality of contacts, and a communications session between the first electronic device and an electronic device belonging to the contact may be established.
US10672377B2

An active noise control (ANC) system uses a proportional integral (PI) controller to produce a control signal based on feedback that comprises a combination of ambient sound and antinoise. The ANC system generates a corrected control signal based on the control signal and a configurable filtering parameter, and produces the antinoise under control of the corrected control signal such that the antinoise destructively interferes with frequencies of the ambient sound to produce the feedback. The ANC system uses a microphone to receive the feedback and provide the feedback to the PI controller.
US10672372B2

This tone setter comprises a memory for storing a program and a plurality of tone data; and at least one processor configured to utilize the plurality of tone data and set a sound source. In accordance with the program, the at least one processor executes accepting a selection of one or more tones made by an operation of a user; and setting, in at least an electronic musical instrument or a sound source of the tone setter, tone data corresponding to the selected one or more tones such that sound having the selected one or more tones is generatable with the musical instrument.
US10672369B2

An adapter for the finger appendage of a brass instrument has an adapter body. An outboard side and an inboard side of the adapter body are spaced apart along a width. The adapter includes a fitting portion defining the outboard side of the adapter body and a spacer portion defining the inboard side of the adapter body. The fitting portion defines a mounting opening configured to receive the first portion of the adapter body to mount the adapter body on the finger appendage such that the spacer portion is received in the finger gap and the inboard side of the adapter body opposes the second portion of the finger appendage to define a reduced gap having a width that is less than the width of the finger gap.
US10672364B2

An image display device includes an image display unit including first pixels each constituted of sub-pixels of three or more colors included in a first color gamut and second pixels each constituted of sub-pixels of three or more colors included in a second color gamut different from the first color gamut, the first pixels and the second pixels being arranged in a matrix and adjacent to each other; and a processing unit that determines an output of the sub-pixels included in each pixel of the image display unit corresponding to an input image signal. The processing unit determines an output of the sub-pixels included in the other one of the pixels based on part of components of an input image signal corresponding to one of the first pixel and the second pixel that are adjacent to each other.
US10672360B2

A display data correction apparatus is provided with: a control circuit responsive to an input gray-level value for initially providing first to N-th control points (N≥3) defined in a coordinate system in which a first coordinate axis is associated with the input gray-level value and a second coordinate axis is associated with an output gray-level value to be calculated for the input gray-level value; and a processing circuit obtaining an output gray-level value by repeating an update operation in which the first to N-th control points are updated. The degree (N−1) Bezier curve is used as an approximated curve of the gamma curve. The output gray-level value is finally obtained as the coordinate value of a specific point in the degree (N−1) Bezier curve along the second coordinate axis, where the specific point has the coordinate value closest to the input gray-level value along the first coordinate axis.
US10672350B2

A variety of methods for driving electro-optic displays so as to reduce visible artifacts are described. Such methods include (a) applying a first drive scheme to a non-zero minor proportion of the pixels of the display and a second drive scheme to the remaining pixels, the pixels using the first drive scheme being changed at each transition; (b) using two different drive schemes on different groups of pixels so that pixels in differing groups undergoing the same transition will not experience the same waveform; (c) applying either a balanced pulse pair or a top-off pulse to a pixel undergoing a white-to-white transition and lying adjacent a pixel undergoing a visible transition; (d) driving extra pixels where the boundary between a driven and undriven area would otherwise fall along a straight line; and (e) driving a display with both DC balanced and DC imbalanced drive schemes, maintaining an impulse bank value for the DC imbalance and modifying transitions to reduce the impulse bank value.
US10672346B2

A double-sided display comprises: a first data driver that is connected to one end of the data lines and applies a data signal of a first image to the data lines; and a second data driver that is connected to the other end of the data lines and applies a data signal of a second image to the data lines. The first data driver supplies a first pixel data signal of the first image to a first data line and an nth pixel data signal of the first image to an nth data line, and the second data driver supplies a first pixel data signal of the second image to the nth data line and an nth pixel data signal of the second image to the first data line.
US10672341B2

An organic light emitting diode (OLED) display device for monitoring a driving voltage supplied to an OLED display panel from a set unit and generating a compensation voltage and transmitting the compensation voltage to a display panel when voltage drop occurs is discussed. The OLED display device includes a power supply unit of a set unit configured to supply a voltage for driving an OLED of a panel unit, a cable configured to transmit the voltage supplied from the power supply unit of the set unit to the panel unit, and a control circuit unit comprising a voltage adjustment module configured to compare the voltage transmitted through the cable with a target voltage and to generate a voltage with an amplitude corresponding to a difference.
US10672338B2

A display may include an array of organic light-emitting diode display pixels having transistors characterized by threshold voltages subject to transistor variations. Compensation circuitry may be used to measure a transistor threshold voltage for a pixel. The threshold voltage may be sampled by controlling the pixel to sample the threshold voltage onto a capacitor at the pixel. The pixel may include at least one semiconducting-oxide transistor, silicon transistors, and a light-emitting diode. The diode may be coupled to a data line that can be used for both data loading and compensation sensing operations. Reset operations may be performed after data programming and before emission to reset the anode voltage for the diode.
US10672325B2

A light emitting display device includes: a display panel including a plurality of pixel groups arranged along a first direction; first, second, and third pixels in each of the pixel groups, arranged in a second direction which crosses the first direction, and respectively emitting light having different colors; a light emitting element in each of the first, second and third pixels; a first power supply line connected to the light emitting element of each first pixel of each pixel group; a second power supply line connected to the light emitting element of each second pixel of each pixel group; and a third power supply line connected to the light emitting element of each third pixel of each pixel group.
US10672316B2

A COF circuit board, a display device, a signal processing method and a bridging chip are provided. The COF circuit board includes: a flexible circuit board, a driver integrated circuit and a bridging chip disposed on the flexible circuit board, wherein the flexible circuit board is further provided with a first connecting terminal and a second connecting terminal. An output end of the driver integrated circuit is electrically connected to the first connecting terminal. The bridging chip includes N first registers, M second registers and a controller, wherein the N first registers are electrically connected to an input end of the driver integrated circuit, the M second registers are electrically connected to the second connecting terminal, the controller is configured to write values in the M second registers into the corresponding N first registers according to a register corresponding relationship.
US10672315B2

The embodiments of the present disclosure provide an array substrate, a display panel, a display apparatus and a current measuring method. The array substrate may include: a plurality of pixel units and sensing lines. Each of the pixel units may include a driving transistor, and the sensing line is configured to transmit an output of the driving transistor to a sensing device. At least two of the plurality of driving transistors may have their outputting terminals connected in series. Outputting terminals of adjacent driving transistors of the at least two of the driving transistors may be connected through a first switching element. At least one of the driving transistor of the at least two of the driving transistors may have an outputting terminal connected to the sensing line through a second switching element.
US10672313B2

An array substrate, a method for determining an abnormal display thereof, a display panel, and a display device are provided. The array substrate includes: a source IC in a border area of the array substrate, wherein the source IC includes a reset pin and idle output pins; a reset unit in the border area of the array substrate, wherein the reset unit includes an output terminal and input terminals, the input terminals of the reset unit are electrically connected with the idle output pins of the source IC, and the output terminal of the reset unit is electrically connected with the reset pin of the source IC; and the reset unit is configured to determine whether the array substrate displays abnormally, and if so, to reset the source IC.
US10672301B2

A backing for an ornamental pin including a tab extended backwards at an angle. Said tab allows ornamental pin to become a display, and vice versa. Includes at least one hole configured to receive at least one type of pin back, including but not limited to needle style pins and locking pin mechanisms. Backing is substantially rigid to allow for standing function. Tab may be adjustable, but still fixable at an angle. Tab may be rigidly fixed at a particular angle. May include grip section for ease of use. Grip section may also enable the pin to lay more uniformly against a user's clothing when ornamental pin is used as such.
US10672293B2

Natural language learning in context is provided by generating combined text of a user's native tongue and language to be learned. The combined text is generated based on elements of code-switching including syntax and semantics. Combining text based on elements of code-switching maximizes the learnability or the likelihood of retaining certain text of a foreign language.
US10672289B2

Methods and systems allow a user or operator to easily create cyber-training environments for use in a cyber-training system. In one embodiment, the environments are configured as missions. The missions may have a plurality of features, such as training objectives, a mission storyline, a mission order and mission objectives, relative to a mission environment. The mission environment comprises a virtual environment, such as defined by a virtual network having virtual machines or devices.
US10672281B2

A device can receive obstacle data from a plurality of sources. The obstacle data can include location data associated with obstacles. The device can determine weightings for the obstacles based on the plurality of sources. Each of the weightings can indicate a measure of reliability/accuracy of the information regarding an obstacle. The device can process the obstacle data to associate the obstacles with airspace voxel(s), that represent one or more 3D portions of airspace, based on the location data, receive flight parameters relating to a proposed flight plan of a UAV through airspace represented by a set of airspace voxels, determine whether the set of airspace voxels includes any of the airspace voxel(s), and perform one or more actions to cause a recommendation, regarding the proposed flight plan and based on the determination, to be provided. The recommendation can be based on one or more of the weightings.
US10672276B2

An imaging display system including an imaging unit that images an image of outside of a riding device and outputs a video signal that indicates the image, a video signal processing unit that receives the video signal from the imaging unit and outputs a digital video signal based on the video signal that has been received, a central signal processing unit that receives the digital video signal from the video signal processing unit via a transmission line in the riding device, a display control unit that receives the digital video signal from the video signal processing unit, generates a display signal from the digital video signal that has been received, and outputs the display signal, and a display unit that displays an image that is indicated by the display signal that has been received from the display control unit is configured.
US10672270B2

A traffic information providing device according to an embodiment includes: a communication unit that receives driving information from a plurality of vehicles; and a controller that detects vehicles having danger of a collision at an intersection area from the plurality of vehicles on the basis of the received driving information, creates traffic information for the detected vehicles having danger of a collision to avoid a collision of the vehicles having danger of a collision, and controls the communication unit to transmit the created traffic information to the vehicles having danger of a collision before entering the intersection area.
US10672269B2

Embodiments of the present disclosure provide a display control assembly, a control method for a display control assembly, a head-up display system, and a vehicle. The display control assembly includes a processor and a display source. The processor is configured to generate, according to driving state information of a vehicle, traffic information of an intersection to be approached by the vehicle and distance information, prompt information for indicating a driving suggestion; and the display source is configured to output the prompt information.
US10672268B1

The improved traffic signal indicating sign may be coupled to a motorist warning such as a traffic signal or to a traffic sign in advance of the traffic signal. The improved traffic signal indicating sign may extend beyond the edges of the motorist warning to which it is coupled and may call attention to the motorist warning. A backplate surrounding the motorist warning may comprise an inner border and an outer border. The inner border may comprise a plurality of border indicator lights which may be associated with the traffic signal and may be communicatively coupled, either directly or indirectly, to a controller for the traffic signal such that the border indicator lights may change to reflect the state of the traffic signal. The outer border may comprise a reflective strip to further increase awareness.
US10672264B2

In one embodiment, an incident report including a path segment identifier and an incident identifier is received at a computing device. The incident identifier is sent to a traffic prediction model. The traffic prediction model returns a traffic distribution value. The traffic distribution value identifies a portion of a traffic prediction distribution derived from historical data. The computing device accesses a lookup table according to traffic distribution value and the path segment identifier to receive a speed prediction.
US10672261B2

A control device is configured to control one or more electrical loads in a load control system. The control device is a wall-mounted device such as dimmer switch, a remote control device, or a retrofit remote control device. The control device includes a gesture-based user interface for applying advanced control over the one or more electrical loads. The types of control includes absolute and relative control, intensity and color control, preset, zone, or operational mode selection, etc. Feedback is provided on the control device regarding a status of the one or more electrical loads or the control device.
US10672258B1

Apparatuses, systems, and methods are provided for determining injuries to occupants (e.g., drivers, passengers, etc.) of a vehicle after an accident. A telematics system may be configured to receive telematics data from one or more vehicles involved in an accident. Using the received telematics data, a computing device of the telematics system may determine whether injuries were sustained by passengers of the one or more vehicles. In response to the determination, the computing device may perform one or more pre-first notice of loss assessments.
US10672254B2

Methods and systems for configuring communication at a premises are described. A network device at a premises may be in communication with a first network and a second network. The network device may receive data from a communication device located at the premises. The network device may transmit the data via the first network or the second network based on configuration data, which may be received from a computing device.
US10672243B2

A smart device comprising at least one memory, a retractable base, the retractable base being electronically adjustable, a processor, coupled to the at least one memory, one or more sensors, wherein at least one of the one or more sensors is exterior to a smart device housing and communicable to the processor, and wherein the one or more sensors acquire a space information, an individual information, or both, of a surrounding environment. The processor causes the retractable base to adjust based on instructions stored on the at least one memory, wherein the processor utilizes space information and individual information, in a surrounding environment, to determine how to adjust the retractable base, wherein the processor, in response to changes in the space information, the individual information or both, causes the retractable base to adjust, and wherein the processor stores the changes of the space information, the individual information or both, in the at least one memory, and causes the retractable base to adjust in response to new changes in the space information, the individual information or both.
US10672240B2

An operating device for operating an electrical bicycle component includes a base element, an actuating element and a housing. The base element is configured to be non-rotatably mounted about a bicycle handlebar. The actuating element is rotatable relative to the base element from a neutral position to a first actuating position. The actuating element may be pre-loaded into the neutral position. A first electrical contact switch may be actuated when the actuating element is moved from the neutral position to the first actuating position.
US10672234B2

A system and associated method are provided for dispensing lottery tickets at retail establishments. A lottery ticket terminal is in communication with a retail POS register and accepts a request for purchase of a particular lottery ticket selected from a plurality of different lottery tickets. A dispenser array is in communication with the terminal and includes a plurality of separate bins having a different respective lottery tickets stored. The lottery tickets have a machine readable code printed thereon and each bin includes a scanner disposed to read the code as the tickets are dispensed from the bin by an electronic drive mechanism. The lottery ticket terminal transmits a purchase signal for dispensing a particular lottery ticket that is routed to the respective bin containing the particular lottery ticket. The bin transmits a signal that is routed to a central lottery server for each lottery ticket dispensed from the bin, the signal identifying the lottery ticket from the scanned code.
US10672233B2

Embodiments of the present concept provide gaming devices configured for linked game play. First and second gaming devices that are separately playable by first and second players are electronically linked so that a gaming event being played at the first gaming device may also be being played at the second gaming device. Also provided is a method of sharing game play across multiple gaming devices, where the method includes receiving a wager from a first player at a first gaming device, receiving a wager from a second player at a second gaming device, initiating a gaming event that is displayed at the first and second gaming devices, and awarding prizes associated with gaming outcomes displayed at the first and second gaming devices. These and other arrangements of the present concept may allow cooperative or competitive game play between the first and second player.
US10672224B2

An improved apparatus, system and method for presenting multiple systems, games, and/or services on a common Player Interface, for example, any component or components of a gaming system, including an electronic or technologic aid—including, but not limited to terminals, player stations, handhelds, fixed units, etc.—that directly enables player interaction in a game, and create, monitor, translate, record, and communicate data such as accounting information, player transactions, etc.
US10672223B2

A craps gaming system is directed to a craps table including a dice area and one or more sensors configured to sense when dice are added to the dice area and when dice are removed from the dice area. A plurality of player consoles located in close proximity to the craps table are connected over a network to the one or more sensors. Each player console is configured to enable players to place bets on a craps game played on the craps table. Each player console is configured to disable the player console from accepting further bets on the craps game when a signal is received from the one or more sensors indicating that dice have been removed from the dice area.
US10672217B2

A system, device and method for dispensing a product includes a delivery system that includes at least one auger with internal flighting that is either integral with or attached to an internal wall of a barrel portion of the auger. The auger rotates and the spiral flighting within the auger transmits a product from a bulk loading station to a product dispensation area. Thus, products can be bulk loaded into a device rather than having to be loaded one-by-one into a dispensing device. The spiral flighting reduces pinch points associated with conventional auger systems.
US10672213B2

Currency note sorting devices and systems, and corresponding methods of identifying and sorting currency notes are described herein. A method for sorting currency notes that includes receiving currency notes, identifying the denomination of the currency notes, and distributing the currency notes to slots of a wallet based on the identified denomination. The wallet slots include staggered braille tabs to aid visual-impaired users of the wallet.
US10672205B2

A vehicle including a fluidic subsystem composed of an electric motor, a motor driver and a fluidic pump that is disposed in a fluidic circuit of the vehicle is described. A controller includes an instruction set that is executable to determine operating parameters associated with the fluidic subsystem, and determine a plurality of power efficiency parameters for the fluidic subsystem based upon the operating parameters. The power efficiency parameters include a hydraulic power efficiency, an electro-mechanical power efficiency and an electric power efficiency. The controller can determine a state of health for the fluidic subsystem based upon the power efficiency parameters, and detect a fault in the fluidic subsystem when the state of health is less than a threshold state of health. The fault can be communicated to a vehicle operator.
US10672199B2

Methods and systems are provided for reliably prognosing a vehicle component, such as a vehicle battery or an intake air filter. A state of degradation of the component is recursively predicted by updating, based on a sensed vehicle operating parameter, a previously estimated state of degradation of the component, the parameter selected based on the component being diagnosed, as well as based on past driving history and future driving predictions. The predicted state of degradation is then converted into an estimate of time or distance remaining before the component needs to serviced, and displayed to the vehicle operator.
US10672194B2

An editing device for three-dimensional shape data includes: an editor that edits a three-dimensional shape in a second coordinate system different from a first coordinate system, the three-dimensional shape being configurated by multiple voxels and represented by three-dimensional shape data in the first coordinate system; and a converter that converts the three-dimensional shape in the second coordinate system, which is edited by the editor using arrangement information that indicates a positional relationship between the multiple voxels, into a three-dimensional shape in the first coordinate system.
US10672193B2

Embodiments relate to receiving an indication of a desired item by a user in a multi-use virtual world. The indication requests a rendering of a restricted virtual object in a space of the user. A server can determine and retrieve a partially rendered model of the restricted virtual object, determine a rendering location based on position data, and link the partially rendered model to the user and to the rendering location. The partially rendered model and the rendering location can be sent to user devices for rendering the partially rendered model at the rendering location. A partially rendered appearance of the restricted virtual object indicates to a second user the desired item by a first user. A fully rendered model may contain restricted content data, whereas a partially rendered model may not contain restricted content data. The restricted content data may include a restricted digital media file.
US10672192B2

A display device and a method thereof are provided. The display device includes a display, a communicator, and a processor to display a virtual reality (VR) content on the display, in response to a trigger signal and motion information to change a display viewpoint area of the VR content being received from a user terminal device through the communicator, control the display to display by changing a display viewpoint area of the VR content based on first motion direction included in the motion information until a predetermined signal is received. In response to the predetermined signal being received from the user terminal device, control the display to terminate changing the display viewpoint area.
US10672188B2

Optimizations are provided for reconstructing geometric surfaces for an environment that includes moving objects. Multiple depth maps for the environment are created, where some of the depth maps correspond to different perspectives of the environment. A motion state identifier is assigned to at least some pixels in at least some of the depth maps corresponding to moving objects in the environment. A composite 3D mesh is built using at least some of the multiple depth maps, by incorporating pixel information from the depth maps, while omitting pixel information identified by the motion state identifiers as being associated with moving objects.
US10672183B2

Graphics processing systems can include lighting effects when rendering images. “Light probes” are directional representations of lighting at particular probe positions in the space of a scene which is being rendered. Light probes can be determined iteratively, which can allow them to be determined dynamically, in real-time over a sequence of frames. Once the light probes have been determined for a frame then the lighting at a pixel can be determined based on the lighting at the nearby light probe positions. Pixels can then be shaded based on the lighting determined for the pixel positions.
US10672177B2

A graphics processing system performs a final gather process so as to generate final gather lighting data for a scene. The final gather process comprises casting sampling rays from a final gather point within the scene. Radiosity data provided for the scene is sampled using the sampling rays cast from the final gather point. Final gather lighting data is then generated from the sampled radiosity data. The sampling rays are cast from the final gather point in an informed manner based on directional irradiance data provided for the scene. The final gather process can therefore be carried out by the graphics processing system more efficiently and effectively.
US10672166B2

Systems and methods are provided for displaying multiple aircraft states of an aircraft build process. A method includes storing, in a computer storage device, visual depictions of the multiple aircraft states that are layered over one another. The multiple build states of an aircraft represent different operational states of the aircraft over time. A user interface is configurable to display aircraft build states that occur during an aircraft build process based upon retrieval of the particular build phase from the computer storage device.
US10672162B1

A density gradient analysis tool can be employed in conjunction with heat mapping systems. According to one embodiment, a method includes receiving data points. The method further includes calculating a data distribution of the data points. The data distribution has bins, and the bins represent an interval of time. The method further includes rendering a heat map based, at least in part, on the data distribution. The heat map includes regions corresponding to the bins.
US10672146B2

A calibration apparatus for an onboard camera includes an image acquiring unit, a marker recognizing unit, a movement distance calculating unit, an image storage unit, and a calibration unit. The movement distance calculating unit calculates a movement distance of a vehicle based on a number of times that a process in which a first feature portion in a marker moves to a position overlapping a second feature position in the marker in the image is repeated. The image storage unit stores a specific image that includes the marker. The calibration unit calibrates the onboard camera using the specific image. The image storage unit stores, as the specific image, (a) the image in which the marker is recognized, and (b) the image acquired when the movement distance from a position of the vehicle when the specific image has been acquired in the past reaches a predetermined distance.
US10672135B2

The invention relates to a device for processing CT imaging data, comprising a processing unit, which is configured to receive a plurality of sets of CT imaging data recorded at different imaging positions and at different points in time. Furthermore, the processing device is configured to provide a plurality of auxiliary sets of CT imaging data, each auxiliary set of CT imaging data comprising processed image data allocated to spatial positions inside a respective spatial section of the object space, wherein a given one of the spatial sections contains those spatial positions which are covered by those sets of CT imaging data acquired at a respective one of the imaging positions, and to generate the processed image data for a given spatial position using those of the sets of CT imaging data acquired at the respective one of the imaging positions.
US10672128B2

An image segmentation method is disclosed. The method includes receiving a plurality of atlases and a subject image, each atlas including an atlas image showing a structure of interest and associated structure delineations, the subject image being acquired by an image acquisition device and showing the structure of interest. The method further includes calculating, by an image processor, mapped atlases by registering the respective atlases to the subject image, and determining, by the image processor, a first structure label map for the subject image based on the mapped atlases. The method also includes training, by the image processor, a structure classifier using a subset of the mapped atlases, and determining, by the image processor, a second structure label map for the subject image by applying the trained structure classifier to one or more subject image points in the subject image. The method additional includes combining, by the image processor, the first label map and the second label map to generate a third label map representative of the structure of interest.
US10672120B2

Techniques for linking geometry extracted from one or more medical images, the geometry including a plurality of geometric objects each having parameter values including at least one value for location and at least one value for direction/orientation, the plurality of geometric objects comprising a target geometric object and at least two candidate geometric objects, the techniques include: (A) comparing parameter values of the target geometric object with parameter values of the at least two candidate geometric objects, (B) selecting one of the at least two candidate geometric objects to link to the target geometric object based, at least in part, on the comparison; and (C) linking the to target geometric object with the selected candidate geometric object.
US10672114B1

A distance-based score approximation having improved computational efficiency is provided. Responsive to receiving a score request, a computing entity identifies an observation point based on a location indicated in the score request and defines a set of annuli comprising a plurality of concentric annuli centered on the observation point and defined by a predetermined maximum radius. The computing entity queries a geographic database for map information corresponding to geometry elements located within the predetermined maximum radius of the observation point and determines an intersection of each geometry element with each annulus. The computing entity determines a contribution for each intersection based at least in part on a size of the intersection, a measure assigned to the corresponding geometry element, and a representative radius of the corresponding annulus. The computing entity aggregates the contribution for each intersection to determine the distance-based score approximation and provides the distance-based score approximation.
US10672111B2

An image processing apparatus includes at least one processor operatively coupled to a memory, serving as an obtaining unit configured to obtain a contrast material-enhanced image of an object, a first region extraction unit configured to extract a first region representing a first anatomical portion of the object from the image, with the first anatomical portion in the object being contrast material-enhanced, and an estimation unit configured to estimate a phase of the image based on a comparison result between a feature amount concerning a gray level in the first region and statistical data concerning a gray level in a plurality of phases of the first anatomical portion.
US10672109B2

A modular architecture is provided for denoising Monte Carlo renderings using neural networks. The temporal approach extracts and combines feature representations from neighboring frames rather than building a temporal context using recurrent connections. A multiscale architecture includes separate single-frame or temporal denoising modules for individual scales, and one or more scale compositor neural networks configured to adaptively blend individual scales. An error-predicting module is configured to produce adaptive sampling maps for a renderer to achieve more uniform residual noise distribution. An asymmetric loss function may be used for training the neural networks, which can provide control over the variance-bias trade-off during denoising.
US10672103B2

A method for moving a virtual object includes displaying a virtual object and moving the virtual object based on a user input. Based on the user input attempting to move the virtual object in violation of an obstacle, displaying a collision indicator and an input indicator. The collision indicator is moved based on user input and movement constraints imposed by the obstacle. The input indicator is moved based on user input without movement constraints imposed by the obstacle.
US10672095B2

Techniques for improving data transfer in a system having multiple accelerated processing devices (“APDs”) are described herein. In such a system, multiple APDs are coupled to a processor (e.g., a central processing unit (“CPU”)) via a general interconnect fabric and to each other via a high speed interconnect. The techniques herein increase the effective bandwidth for transfer of data between the CPU and the APD by transmitting data to both APDs through the portion of the interconnect fabric coupled to each respective APD. Then, one of the APDs transfers data to the other APD or to the processor via the high speed inter-APD interconnect. Although data transferred “indirectly” through the helper APD takes slightly more time to be transferred than a direct transfer, the total effective bandwidth to the target is increased due to the high-speed inter-APD interconnect.
US10672094B2

This invention is a dynamically reconfigurable pick-put system comprising: a digitally transformable mobile unit having a mobile unit computer and a mobile unit light bar controller, with a set of transformable mobile unit computer readable instructions included with the digitally transformable mobile unit that can digitally transform the mobile unit from a mobile unit configuration to a stationary unit configuration and can (a) direct a user to a particular stationary unit, actuate the mobile unit light bar to identify a location on the digitally transformable mobile unit where the item picked from the stationary unit is to be placed on the digitally transformable mobile unit, when in the mobile unit configuration, and (b) actuate the mobile unit light bar to identify the location of an item on the digitally transformable mobile unit to be picked when in the stationary unit configuration.
US10672085B2

Systems and methods for mixing, storing, and dispensing pesticides, and guiding a user to an appropriate pest solution, are provided. One pesticide dispensing system includes a portable container comprising an opening configured to receive a pack having a predetermined size and shape, the pack containing a concentrated pesticide. The system further includes a piercing unit to create a hole in the pack for dispensing the pesticide into the container via the opening. Embodiments also include a pest solution selection kiosk comprising a display for displaying a first set of prompts for selection of a pest solution and receiving a touch input representing user selection of a prompt; a processor for identifying second prompts based on the user selection and stored pest solution criteria and identifying a pest solution product based on user-selection of the second prompts. The display presents information about the selected product and/or a dispense option.
US10672062B2

A system or method is provided to monitor a consumer's shopping routes associated with shopping lists. A location and movements of the consumer in a merchant's store may be monitored using a network of Bluetooth beacons installed throughout the merchant's store. When the consumer picks up a product from a store shelve and crosses out an item from a digital shopping list, the system may mark the location where the merchandise is picked up. Thus, a shopping route of the consumer may be detected as the consumer picks ups and crosses out various products listed on the shopping list during the shopping trip in the store. The consumer may share the shopping route with another consumer. The shopping route may be shared in real time, such that another consumer may make suggestions or comments or approve various items picked up by the consumer in real time.
US10672053B1

Embodiments include systems and methods for providing comparative bid analysis and purchase order preparation. In one embodiment, a method can include receiving price data from one or more vendors; based at least in part on the received price data, identifying similar items from the two or more vendors; comparing the identified similar items to determine a lowest price; generating one or more indications for output to a user to verify price data; based at least in part on the received price data, generating a proposed purchase order selecting the lowest price for some or all of the identified items; providing the proposed purchase order for the user to select one or more items; after user approval, generating a purchase order for the two or more vendors utilizing some or all of the user-selected items in the proposed purchase order; and transmitting the purchase order to the two or more vendors.
US10672047B2

An intelligent product catalog system provides for electronic creation, management and viewing of product information using a multimedia display system. A central database repository stores the product information and provides for an unlimited number of product attributes and dynamic reconfiguration of the product information. The central database repository comprises a meta data system, a scheme system and an object model system. A plurality of applications access the central database repository, the applications being automatically adaptive to the dynamic reconfiguration of the product information. A user interface provides display, sorting and filtering of the product information including the unlimited number of product attributes.
US10672045B2

A method includes receiving a plurality of design files at a computer-based system, wherein each of the design files is indicative of a respective structural design, a structural value associated with the respective structural design, and a source identifier associated with a designer of the respective structural design; causing a graphical representation of at least a portion of the structural designs to be displayed to a user; receiving a user selection of a first structural design of the displayed structural designs; generating an additive manufacturing file indicative of the first structural design in a predefined format, wherein the predefined format enables the processing of the additive manufacturing file into a physical structure through an additive manufacturing process; transmitting the selected first structural design in the predefined format; and determining, by the computer based system, a royalty value associated with the selected first structural design based at least on the structural value, the source identifier, and one or more additional parameters.
US10672043B2

In a method of confidentially outputting a delivery waybill, a seller receives an order information including a customer's personal information and transmits the order information to a product provider after removing the personal information. The product provider generates a delivery information and transmits it with a delivery waybill print request to a confidential delivery waybill server. The confidential delivery waybill server generates a combined delivery waybill information by combining the delivery information and logistics information and transmits it with the delivery waybill print request to the confidential delivery waybill agent of the seller. The confidential delivery waybill agent generates a delivery waybill by combining the combined delivery waybill information and the personal information of the customer and transmits the delivery waybill to a printer of the product provider. Finally, the product provider prints the delivery waybill including the personal information of the customer on a document.
US10672042B2

A system and method for customizing mobile device application reviews that collects attributes of the mobile device of the reviewing user along with the actual review. When a potential user accesses the reviews, corresponding information is collected from the mobile device of the potential user and then used to filter the reviews for the target application. The attributes can include mobile device type, mobile device operating system, location, mobile device service provider, mobile device storage capacity remaining, mobile device signal strength, and type of mobile connection. The filtering of reviews can be managed manually by the potential user or automatically by using intelligent analysis of the attributes and the content of the reviews in order to provide enhanced insight to the potential user.
US10672036B2

Methods, systems, and apparatus include computer programs encoded on a computer-readable storage medium, including a method for providing content. A linking is provided of identifiers for users or devices known to a content delivery service. Each identifier is associated with the user or device in a specific context. The linking includes first and second identifiers. A request for content is received that includes either the first or second identifier. Bidders in an exchange are identified that have expressed an interest in bidding on a content delivery opportunity associated with the user or the device. For each bidder, a relative value is determined for a respective bidder for the opportunity to present content to the user or device in association with each identifier known to the bidder. For each bidder, a real-time bid request is generated in the exchange that includes the highest value identifier for submission to a respective bidder.
US10672034B2

Document consumption and value add service techniques and systems are described. In one example, a digital medium environment is configured to control availability of a value add service to consumers of a document. Consumption data is collected from a plurality of client devices. The consumption data describes characteristics of consumption of the document by respective client devices. A readership index is calculated that describes an amount of overall consumption of the document by the plurality of client devices. Responsive to a determination by the computing device that the readership index has exceeded a threshold, the value add service that relates to the document is exposed for interaction by at least one of the plurality of client devices.
US10672033B2

The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transmission rate than a 4G communication system such as LTE. A security problem in which information of a monitoring device is provided to another PLMN exists in the procedure for connecting ProSe Functions of two PLMNs and transmitting and receiving information therebetween, and thus, configuration of a D2D discovery service between different providers (inter PLMN) is difficult in reality, despite being defined in the standard. Therefore, the present invention provides a method of using a content server with an existing D2D discovery method in order to advertise, through D2D discovery, real-time local area advertisements to device of a plurality of providers. A monitoring device requests advertisement information directly from a content server, or requests advertisement information from a different PLMN ProSe Function, and thereby the other PLMN ProSe Function may request advertisement information from a content server.
US10672032B2

An intelligent marketing and advertising platform which provides an innovative merchandising solution for retailers by effectively transforming the glass surface of retail product containers (such as cooler doors) into a non-transparent display of planograms. The merchandising solution provides for digital planograms and pricing management, real time promotional updates and sales data, etc. This is accomplished by converting/transforming the simple glass surface of a retail product container (such as cooler/freezer doors) into digital “smart” screens that provide for innovative advertising solutions.
US10672031B2

A display device (1) includes a screen (3), at least one sensor, and a processing unit (6) configured to manage content displayed on the screen (3) based on information received from the at least one sensor. The device (1) is configured to detect the presence of one or more user in the vicinity of the device (1) and display content, such as advertisements, on the screen based on information received from the sensors. A plurality of display devices may be interconnected to form a composite display system. The device/system may further use sensors to determine information/advertising content relevant to the demographic of the user(s).
US10672020B1

Embodiments of the present invention provide methods, systems, apparatuses, and computer program products for classifying merchants. In one embodiment a method is provided comprising providing, a first promotion specifying a redemption and a charge monetary values, the redemption monetary value being specified by redemption parameters of the first promotion and a value indicative of a total amount of funds purchased in response to accepting an instance of the first promotion, wherein the funds purchased can be redeemed for offerings of one or more merchants specified by the promotion, the charge monetary value being a monetary value charged for accepting the first promotion, and providing a first classification classifying the first promotion as a promotion having a redemption monetary value that may be used to purchase offerings of the one or more merchants over the course of multiple transactions.
US10672011B2

The present invention provides techniques for use in association with online advertising, relating to use of serving thresholds, associated with predicted click through rates, and delivery policies, associated with advertising inventory serving and distribution. An offline-trained machine learning-based model may be utilized in advertising serving decision-making in connection with serving opportunities. However, serving thresholds and delivery policies, for use in association with the model in serving decision-making, may be adjusted online, such as in real-time or near real-time, based on information obtained online affecting factors such as predicted click through rates and advertising inventory distribution.
US10672010B2

A management system includes: an information terminal that reads an information code attached to a management target, the information code storing code identification information that specifies the management target; and a server communicable with the information terminal. The information terminal includes: a reading portion that optically reads display information including the information code; a position information acquisition portion that acquires position information of the information terminal; a terminal-side transmission portion that transmits the position information as reading position information to the server; and a notification portion that notifies predetermined information. The server includes: a storage portion that stores management information; a determination portion that determines whether the code identification information corresponds to information of the information code attached to the management target; and a server-side transmission portion that transmits a determination result to the information terminal. The notification portion notifies information with respect to the determination result.
US10672008B2

The invention relates to a system and method for providing anonymized, filtered data from a financial institution having cardholders to a business client. The method may include the steps of storing data in at least one database. The data may include credit card transaction data and debit card transaction data maintained by the financial institution, cardholder demographic data maintained by the financial institution, and other data maintained by the business client. The method may also implement a heuristic process to clean the data. Further, the method may comprise providing an interface for the business client to allow the business client to filter and display the data. The interface can anonymize the data to safeguard the privacy of the cardholders, receive input from the business client as to desired filtering criteria, wherein the filtering criteria include time period, geographic region, type of merchant, and cardholder demographic data, and present the anonymized, filtered data to the business client. The invention can thus enable improved decision making by the business client in various promotions, investments and other transactions.
US10672004B2

A method for detecting fraudulent sign-ups at a payment system is discussed. The method includes receiving a suspect sign-up request for creating a new user account at the payment system. The method includes providing access to a new duplicate user account responsive to receiving the suspect sign-up request, the new duplicate user account imitating the new user account. The method includes initiating a fraud determination of whether the suspect sign-up request is fraudulent. The method includes receiving a request from the user device, the request for adding a new financial account to the new user account. The method includes providing an indication of an addition of the new financial account to the new user account. The method also includes delaying the addition of the new financial account to the new user account until receiving results of the fraud determination.
US10672002B2

Embodiments of the disclosure enable permission to be obtained using nonvisual communication. A system receives a request for authorization of a transaction, identifies an account based on user identifier data included in the request, establishes a communication link with a user device associated with the user account, generates a prompt message identifying a merchant and a transaction amount associated with merchant identifier data and transaction data included in the request, analyze the prompt message to generate a prompt audibly perceivable at the user device, analyze a speech reply received from the user device to generate a feedback message, and analyze the feedback message to determine whether permission to authorize the transaction is obtained. Aspects of the disclosure provide for authorizing a transaction in a secure and user-friendly manner.
US10672001B2

A first embodiment of the present invention relates to systems and methods for determining a priority for a set of alert triggers and performing additional processing based on the determined priority. In some embodiments, additional processing may include generating and sending of alert messages. In other embodiments, additional processing may further include determining that the generating and sending of alert messages are to be delayed until a later time. In yet other embodiments, additional processing may include determining that no alert message is to be generated and sent. A second embodiment of the present invention relates to systems and methods for dynamically selecting a delivery channel and generating an alert message for the selected delivery channel. In some embodiments, the alert message may be formatted based on the selected delivery channel. According to one embodiment, the alert message may be generated based on a compact protocol format. When the alert message is received by a mobile device, the mobile device may use the alert message to generate a second alert message.
US10671998B2

A method for detecting fraudulent logins at a payment system is discussed. The method includes receiving a suspect login request for logging into an existing user account at the payment system. The method includes providing access to a duplicate user account responsive to receiving the suspect login request, the duplicate user account being a copy of a portion of the existing user account. The method includes initiating a fraud determination of whether the suspect login request is fraudulent. The method includes receiving a request for transferring a first amount of funds from the existing user account to another account. The method includes providing an indication that the first amount of funds is being transferred to the another account. The method also includes delaying a transfer of the first amount of funds to the another account until receiving results of the fraud determination.
US10671995B1

Various examples are directed to payment cards with budget displays including systems and methods for using the same. A payment card may comprise a display and a control circuit. The control circuit may display, at the display of the payment card, a first display state indicating a first unused portion of a budget amount for a current budget period. The control circuit may access first budget status data generated in response to a transaction made with the payment card and modify the display to display a second display state indicating a second unused portion of the budget amount for the current budget period, wherein the second unused portion is based at least in part on the transaction.
US10671988B2

A method is provided for processing an electronic payment. The method comprises (a) receiving, by a server, a first electronic request for a first token from a cardholder's device, the server being in communication with a database storing payment credentials for one or more payment cards associated with the cardholder; (b) generating the first token using an identity of the cardholder's device and transmitting the first token to the device; (c) receiving a second electronic request for processing the transaction from a merchant terminal, said second request comprising the first token and a merchant terminal identifier; (d) generating a second token using the first token and the merchant terminal identifier and transmitting the second token to the merchant terminal; (e) receiving a third token and a transaction authorization request from a merchant acquiring bank; (f) validating the third token using the second token; and (g) upon the validation operation (f) being successful, submitting the transaction authorization request to a card issuing bank.
US10671982B2

Disclosed is a method for processing of earnest money checks comprising the steps of: a. receiving a physical earnest money check from a buyer that is a party to a real estate purchase and sale contract for a real estate property, b. via a computing device connected to the Internet, accessing an online application for the processing of physical check payments, c. selecting a Send Earnest Money Check functionality in the application and at one or more prompts capturing a photo of an image of a front face of the physical check and an image of a back face of the check, and d. at one or more prompts inputting information for an earnest money payment transaction, the information comprising buyer information, the real estate property information and title company information for a title company that is approved by the buyer and a seller to the real estate purchase contract for managing escrow and closing.
US10671963B2

A method, electronic device, and computer-readable storage medium are provided for populating a calendar. In one embodiment, a method is provided for receiving tracking data regarding a delivery item, calculating an expected delivery date for the delivery item, identifying one or more deadlines associated with the delivery item, based on the tracking information, and automatically populating a user's calendar with the expected delivery date and the one or more deadlines.
US10671946B2

A power source provides power (e.g., electrical power) to a powered object. The object is identified and the amount of power consumed by the object is measured. Information representing the object identity and the amount of power consumed by the object is transmitted to a remote server. Proximity between a device and the object may be determined, in response to which the device may obtain the information representing the object identity and the amount of power consumed by the object, and transmit such information to the remote server, in addition to information representing an identity of a user of the device.
US10671939B2

An exemplary system, method and computer accessible medium for generating an image(s) of a portion(s) of a patient can be provided, which can include, for example, receiving first imaging information related to the portion(s), receiving second information related to modelling information of a further portion(s) of a further patient(s), where the modelling information includes (i) an under sampling procedure, and/or (ii) a learning-based procedure, and generating the image(s) using the first information and the second information. The modelling information can include artifacts present in a further image of the further portion(s). The image(s) can be generated by reducing or minimizing the artifacts. The second information can be generated, for example using a variational network(s).
US10671938B2

Provided in some embodiments is an artificial intelligence (“AI”) engine configured to work with a pedagogical programming language configured to enable an author to 1) define a mental model to be learned by an AI model, the mental model including an input, one or more concept nodes, one or more stream nodes, and an output, as well as 2) define one or more curriculums for training the AI model respectively on the one or more concept nodes. A compiler can be configured to generate an assembly code from a source code authored in the pedagogical programming language. An architect module can be configured to propose a neural-network layout from the assembly code. A learner module can be configured to build the AI model the neural-network layout. An instructor module can be configured to train the AI model on the one or more concept nodes respectively with the one or more curriculums.
US10671934B1

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for real-time deployment of machine learning systems. One of the operations is performed by the system receiving video data from a video image capturing device. The received video data is converted into multiple video frames. These video frames are encoded into a particular color space format. The system renders a first display output depicting imagery from the multiple encoded video frames. The system performs an inference on the video frames using a machine learning network to determine the occurrence of one or more objects in the video frames. The system renders a second display output depicting graphical information corresponding to the determined one or more objects from the multiple encoded video frames. The system then generates a composite display output including the imagery of the first display output overlaid with the graphical information of the second display output.
US10671933B2

An approach for a computer to evaluate a predictive model includes identifying features of training samples in a set of training samples. The approach selects evaluation metrics from a set of evaluation metrics as available metrics using identified features and includes determining recommended metrics using the predictive model, the available metrics, and a predetermined set of user-preferred metrics. The approach applies the predictive model created using the set of training samples to a set of test samples to calculate values of the available metrics. The approach evaluates the predictive model by using the available metrics and the values of the available metrics to evaluate the predictive model by evaluating the predictive model using the recommended metrics and the values of the recommended metrics.
US10671931B2

A multi-horizon predictor system that predicts a future parameter value for multiple horizons based on time-series data of the parameter, external data, and machine-learning. For a given time horizon, a time series data splitter splits the time into training data corresponding to a training time period, and a validation time period corresponding to a validation time period between the training time period and the given horizon. A model tuner tunes the prediction model of the given horizon fitting an initial prediction model to the parameter using the training data thereby using machine learning. The model tuner also tunes the initial prediction model by adjusting an effect of the external data on the prediction to generate a final prediction model for the given horizon using the validation data. A multi-horizon predictor causes the time series data splitter and the model tuner to operate for each of multiple horizons.
US10671929B2

Mechanisms are provided in a question answering (QA) system comprising a QA system pipeline that analyzes an input question and generates an answer to the input question, for pre-processing the input question. The mechanisms receive an input question and input the input question to a pre-processor flow path having one or more pre-processors. The one or more pre-processors transform the input question into a transformed question by correcting errors in a formulation of the input question that are determined to be detrimental to efficient and accurate processing of the input question by a QA system pipeline of the QA system. The transformed question is then input to the QA system pipeline of the QA system which processes the transformed question to generate and output an answer to the input question.
US10671926B2

A computer implemented system for automating the generation of an analytic model includes a processor configured to process a plurality of data sets. Each data set includes values for a plurality of variables. A time-stamping module is configured to derive values for a plurality of elapsed-time variables for each data set, and the plurality of variables and plurality of elapsed-time variables are included in a plurality of model variables. A model generator is configured to create a plurality of comparison analytic models each based on a different subset of model variables. Each comparison analytic model is configured to operate on new data sets associated with current opportunities, and to output a likelihood of successfully closing each current opportunity. A model testing module is configured to select an operational analytic model from among the comparison analytic models based on a quality metric.
US10671920B2

Systems and methods to receive one or more first images associated with a training set of images to train a machine learning model; provide the one or more first images as a first input to a first set of layers of computational units, wherein the first set of layers utilizes image filters; provide a first output of the first set of layers of computational units as a second input to a second layer of the computational units, wherein the second layer utilizes random parameter sets for computations; obtain distortion parameters from the second layer of the computational units; generate one or more second images comprising a representation of the one or more first images modified with the distortion parameters; obtain, as a third output, the one or more second images; and add the one or more second images to the training set of images to train the machine learning model.
US10671917B1

Described is a system for neural decoding of neural activity. Using at least one neural feature extraction method, neural data that is correlated with a set of behavioral data is transformed into sparse neural representations. Semantic features are extracted from a set of semantic data. Using a combination of distinct classification modes, the set of semantic data is mapped to the sparse neural representations, and new input neural data can be interpreted.
US10671907B2

An electrical junction comprising a first pair of leads and a second pair of leads. The first pair of leads and the second pair of leads comprise a Weyl semimetal. The junction comprises an electrical crossing arranged between the leads of the first pair and the leads of the second pair and is configured to provide an electrical connection between the leads of the first pair and the leads of the second pair. A related electrical device and a related neural network may be also presented.
US10671902B2

A dispenser with a replaceable cartridge containing a product to be dispensed, and a housing configured to removably receive the cartridge. The cartridge has a surface that is marked with a first marking, and the housing has a surface that is marked with a second marking. The housing is configured so that, when the cartridge is received by the housing, the first marking and the second marking together form a machine readable code that is detectable from outside of the housing.
US10671896B2

Systems and techniques are disclosed for improvement of machine learning systems based on enhanced training data. An example method includes providing a visual concurrent display of a set of images of features, the features requiring classification by a reviewing user. The user interface is provided to enable the reviewing user to assign classifications to the images, the user interface being configured to create, read, update, and/or delete classifications. The user interface is responsive to the user, with the user response indicating at least two images with a single classification. The user interface is updated to represent the single classification.
US10671895B2

A “Best of Burst Selector,” or “BoB Selector,” automatically selects a subjectively best image from a single set of images of a scene captured in a burst or continuous capture mode, captured as a video sequence, or captured as multiple images of the scene over any arbitrary period of time and any arbitrary timing between images. This set of images is referred to as a burst set. Selection of the subjectively best image is achieved in real-time by applying a machine-learned model to the burst set. The machine-learned model of the BoB Selector is trained to select one or more subjectively best images from the burst set in a way that closely emulates human selection based on subjective subtleties of human preferences. Images automatically selected by the BoB Selector are presented to a user or saved for further processing.
US10671887B2

Methods and apparatus, including computer program products, for creating a quality annotated training data set of images for training a quality estimating neural network. A set of images depicting a same object is received. The images in the set of images have varying image quality. A probe image whose quality is to be estimated is selected from the set of images. A gallery of images is selected from the set of images. The gallery of images does not include the probe image. The probe image is compared to each image in the gallery and a match score is generated for each image comparison. Based on the match scores, a quality value is determined for the probe image. The probe image and its associated quality value are added to a quality annotated training data set for the neural network.
US10671886B2

In one aspect, the present disclosure relates to a method for or performing single-pass object detection and image classification. The method comprises receiving image data for an image in a system comprising a convolutional neural network (CNN), the CNN comprising a first convolutional layer, a last convolutional layer, and a fully connected layer; providing the image data to an input of the first convolutional layer; extracting multi-channel data from the output of the last convolutional layer; and summing the extracted data to generate a general activation map; and detecting a location of an object within the image by applying the general activation map to the image data.
US10671884B2

Systems and methods for clustering data are disclosed. For example, a system may include one or more memory units storing instructions and one or more processors configured to execute the instructions to perform operations. The operations may include receiving data from a client device and generating preliminary clustered data based on the received data, using a plurality of embedding network layers. The operations may include generating a data map based on the preliminary clustered data using a meta-clustering model. The operations may include determining a number of clusters based on the data map using the meta-clustering model and generating final clustered data based on the number of clusters using the meta-clustering model. The operations may include and transmitting the final clustered data to the client device.
US10671877B2

An image masking method is provided. The method includes: extracting an object from an image; obtaining characteristic information about the extracted object by analyzing the extracted object; determining whether the extracted object is a masking target according to an input setting value or the obtained characteristic information; and performing masking such that the obtained characteristic information is reflected on the extracted object, in response to determining that the extracted object is the masking target among a plurality of objects extracted from the input image, wherein the setting value is set by an input designating at least a partial region in the input image, and wherein in the determining whether the extracted object is the masking target, an object positioned in the at least a partial region is determined as the masking target among the extracted objects.
US10671869B2

Systems and methods monitor driver behavior for vehicular fleet management in a fleet of vehicles using driver-facing imaging device. The systems and methods herein relate generally to vehicular fleet management for enhancing safety of the fleet and improving the performance of the fleet drivers, and further relate to monitoring the operation of fleet vehicles using one or more driver-facing imaging devices disposed in the fleet vehicles for recording activities of the fleet drivers and their passengers, storing information relating to the monitored activities, selectively generating warnings related to the monitored activities, and reporting the monitored activities to a central fleet management system for use in enhancing the safety of the vehicles of the fleet and for helping to improve the performance of the fleet drivers.
US10671867B2

A smart device is provided with an application program for displaying a video feed received from the smart device's camera. The application can determine the coordinates for an intersection point, which is a point on the ground where the smart device is pointing at. The application can display a target on the visual representation of the intersection point. Based on whether the smart device is at an appropriate distance from the intersection point, the user interface can superimpose an indicator on the video feed received from the camera. This can inform the user whether the smart device is at an optimal scan distance from the intersection point (or an object) so that the object can be identified by a machine learning model.
US10671862B2

The present disclosure relates to detection of obstacles by an autonomous vehicle in real-time. An obstacle detection system of an autonomous vehicle obtains point cloud data from single frame Light Detection and Ranging (LIDAR) data and camera data, of the surroundings of the vehicle. Further, the system processes the camera data to identify and extract regions comprising the obstacles. Further, the system extracts point cloud data corresponding to the obstacles and enhances the point cloud data, with the detailed information of the obstacles provided by the camera data. Further, the system processes the enhanced point cloud data to determine the obstacles along with the structure and orientation of obstacles. Upon determining the details of the obstacles, the system provides instructions to the vehicle to manoeuvre the obstacle. The disclosed obstacle detection system provides accurate data about a structure, an orientation and a location of the obstacles.
US10671859B2

Present disclosure provides a travel assistance device which comprises: a road detection unit that obtains an infrared image in front of a vehicle from an infrared imaging unit that is mounted on the vehicle, and detects a road end line of a road on which the vehicle travels from the captured infrared image; a division line detection unit that obtains a visible image in a range corresponding to a range indicated by the infrared image from a visible imaging unit that is mounted on the vehicle, and detects a division line of the road from the captured visible image; an image generation unit that generates an integrated image indicating the road end line and the division line on the basis of the infrared image and the visible image registered with each other; and a division line estimation unit.
US10671857B2

A system for video surveillance includes an image sensor configured capture an image including a reference zone and a memory device that stores instructions. The system also includes one or more processors that are configured to execute the instructions to determine 3D coordinates of a target comprised in the image and determine 3D coordinates of the reference zone. The one or more processors are further configured to identify an event according to the 3D coordinates of the target and the 3D coordinates of the reference zone.
US10671856B1

Described is a system for counting stacked items using image analysis. In one implementation, an image of an inventory location with stacked items is obtained and processed to determine the number of items stacked at the inventory location. In some instances, the item closest to the camera that obtains the image may be the only item viewable in the image. Using image analysis, such as depth mapping or Histogram of Oriented Gradients (HOG) algorithms, the distance of the item from the camera and the shelf of the inventory location can be determined. Using this information, and known dimension information for the item, a count of the number of items stacked at an inventory location may be determined.
US10671852B1

Described herein are systems and methods that search videos and other media content to identify items, objects, faces, or other entities within the media content. Detectors identify objects within media content by, for instance, detecting a predetermined set of visual features corresponding to the objects. Detectors configured to identify an object can be trained using a machine learned model (e.g., a convolutional neural network) as applied to a set of example media content items that include the object. The systems provide user interfaces that allow users to review search results, pinpoint relevant portions of media content items where the identified objects are determined to be present, review detector performance and retrain detectors, providing search result feedback, and/or reviewing video monitoring results and analytics.
US10671849B2

According to one embodiment, a system includes a wearable device on a head of a user and including a display in a line of vision of the user, a first detector configured to detect a movement of the user, a second detector configured to detect a state of an apparatus operated by the user, and a server connected to the wearable device, the first detector and the second detector. The server is configured to display information about work contents of the user on the display based on a detection result of the first detector and a detection result of the second detector.
US10671843B2

Technologies for detecting interactions with surfaces from a spherical view of a room include a compute device. The compute device includes an image capture manager to obtain one or more images that depict a spherical view of a room that includes multiple surfaces. Additionally, the compute device includes a surface interaction detection manager to detect, from the one or more images, a person in the room, generate a bounding box around the person, preprocess the bounding box to represent the person in an upright orientation, determine a pose of the person from the preprocessed bounding box, detect an outstretched hand from the determined pose, and determine, from the detected outstretched hand, a surface of interaction in the room.
US10671831B2

Methods and systems for high-speed filtering of candidate fingerprint images in a gallery using a non-reference-point based matching involving histograms of tokens representing minutia data. The method or system may involve detecting minutia patterns in a probe image, defining tokens that represent the minutia patterns detected in the probe image, measuring a degree of similarity between the probe image and each gallery image by comparing a probability of occurrence of a set of the tokens defined for the probe image with a probability of occurrence of the same set of tokens in that gallery image, and identifying as a candidate for a match to the probe image each gallery image for which the measured degree of similarity satisfies a criterion.
US10671828B2

A sensor has parallel upper pickup lines in an upper conductive layer, parallel lower pickup lines in a lower conductive layer, parallel drive lines oriented transversely to the upper and lower pickup lines in a middle conductive layer, a first insulating layer separating the upper pickup lines from the drive lines, and a second insulating layer opposite the first insulating layer and separating the lower pickup lines from the drive lines. Upper electrode pairs are defined at locations where an upper pickup electrode crosses a drive line, and each upper electrode pair has an impedance that is sensitive to a first object contacting or in close proximity to the upper electrode pair. Lower electrode pairs are defined at locations where a lower pickup line crosses a drive line, and each lower electrode pair has an impedance that is sensitive to a second object contacting or in close proximity to the lower electrode pair.
US10671827B2

The present disclosure relates to a method for fingerprint verification. The method includes performing a first fingerprint verification to obtain a first verification result in a process during which a physical key provided with a fingerprint verification component is pressed. If the first verification result is a failed verification, the method further includes performing a second fingerprint verification to obtain a second verification result in a process during which the physical key is raised, and using the second verification result as a final verification result of fingerprint verification.
US10671826B2

A method includes the steps of obtaining distance measurements between a device and a number of lighting fixtures, processing the distance measurements to assign coordinates to each one of the lighting fixtures, and facilitating registration of the coordinates of a subset of the lighting fixtures to obtain registered coordinates for all of the lighting fixtures. The coordinates indicate a relative location of each one of the lighting fixtures with respect to one another. The registered coordinates indicate a location of each lighting fixture in a desired coordinate space. Accordingly, a location of a lighting fixture within a desired coordinate space can be easily obtained, which may enable significant additional functionality of the lighting fixture.
US10671818B2

A system and computer-implemented method for analyzing chip card transactions to identify defective chip cards and/or defective chip readers in need of replacement. Constraints are established to define a subset of card transactions. From a full set of card transactions the subset is identified consisting of each card transaction falling within the constraints and occurring at a merchant having a chip reader. From this subset the unique chip cards are identified, and for each unique chip card a percentage of fallback transactions is calculated. The percentage of fallback transactions is compared to a maximum value, and if the percentage of fallback transactions exceeds the maximum value, the chip card is identified as defective. Each defective chip card is reported to the card issuer, along with at least a recommendation to replace the defective chip card. A similar process may be used to identify defective chip readers of particular merchants.
US10671810B2

Examples relate to citation explanations. A process to provide citation explanation is provided herein. The process analyzes a primary document to extract a citation claim. The process generates a set of candidate segments of a cited document that may correspond to the citation claim. The process also analyzes the set of candidate segments.
US10671809B2

A method, computer system, and a computer program product for altering a written communication based on a dress style associated with a recipient is provided. The present invention may include receiving a plurality of visual data associated with the recipient. The present invention may also include analyzing the received plurality of visual data. The present invention may then include determining the dress style associated with the recipient based on the analyzed plurality of visual data. The present invention may further include retrieving a writing style associated with the recipient from a knowledge base based on the determined dress style. The present invention may also include generating a plurality of writing guidelines based on the retrieved writing style associated with the recipient.
US10671806B2

The embodiments disclose a method including providing a website interface within the customizable application builder with no code visualization tools for an application creation user, providing a form builder for creating at least one form, with at least one form element for receiving form input from an end user, with a conditional rule builder, an auto pdf mapping tool, a manual pdf mapping tool and at least two dynamic pdf mapping tools, wherein each of the pdf mapping tools has no code visualization tools and allows the user to drag and drop form elements onto a pdf format, wherein the auto pdf mapping tool automatically generates a pdf of the entire form, wherein the manual pdf mapping tool automatically generates a customizable pdf of the form, and wherein the dynamic pdf mapping tool user may edit the blank html template and dynamically generates a customizable pdf of the form.
US10671803B2

Techniques are described for user-controlled annotation and sharing of one or more digital items. Examples of digital items that may be shared with other users include digital representations of graphic images, photographs, audio segments, songs, video segments, movies, and text (such as lists of favorites (e.g., a list of favorite books, a list of favorite movies, and a list of favorite places to visit)). A user may make a digital item available to other users of a computer network, such as an instant messaging system, a chat environment, or a subscription-based computer network. User-entered annotations, such as textual comments, may be associated with a digital item, and a user can select which other users can view and/or change all, or some, of the annotations.
US10671801B2

A markup generation system generates a markup file that can be interpreted in a consistent manner by different markup viewers. The markup generation system includes inert variables declarations and markers in the markup file. The markup generation system determines a position in a code segment in the markup file for placing the attribute value based on the marker in the code segment. The attribute value can be used by markup viewers to interpret the markup file.
US10671798B2

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for locating, using a content binder library, content elements of a publisher page. For each content element, the library determines presentation attributes of the content element and at least one other library detects a mode parameter that specifies a type of user device that is requesting the publisher page. The library selects a particular content element from the publisher page as a reference point for positioning a digital component at the publisher page using the presentation attributes of the particular content element. The library determines a location of the publisher page for rendering the digital component, where the location is determined based on the reference point and the mode parameter. The library provides the digital component for display at the location of the publisher page.
US10671797B2

When executing a feature of a frame (HTML document), a web browser utilizes a method for adjusting the size of the frame. The method includes expanding the size of the frame to cover at least a portion of the area of the interface components in response to a request for executing a feature of the frame. After expanding the size of the frame, the web browser executes the feature, wherein the feature renders a visual content within the expanded frame and disables the interface components within the expanded frame. Subsequently, responsive to another request, the web browser reduces the size of the expanded frame to an initial size of the frame.
US10671782B2

A system and method to perform an ordered write of timing analysis data obtained in parallel during integrated circuit development process two or more data sets with two or more processors in parallel. The two or more data sets result from timing analysis and correspond with two or more paths, each path includes a set of interconnected components, and the processing includes collecting and formatting information to obtain the timing analysis data associated with each of the two or more paths. The method includes determining a next timing analysis data using an ordered list of the two or more data sets that correspond with the timing analysis data, consulting an availability vector to determine whether the next timing analysis data is available, and writing the next timing analysis data as soon as it is available prior to completion of the processing of others of the two or more data sets.
US10671766B2

A three-dimensional (3D) modeling application is configured to generate a graphical user interface (GUI) that notifies a user whether a 3D model represents a stable, marginally stable, or unstable object. The 3D modeling application includes a stability module that determines the stability of the object based upon the 3D model. Advantageously, the user may ensure that an object will be stable, before printing the object with a 3D printer.
US10671753B2

Systems, methods, and software for sensitive data handling frameworks for user applications are provided herein. An exemplary method includes receiving subsets of structured user content consolidated into associated flattened representations, the associated flattened representations having a mapping to the structured user content and accompanied by at least lengths and offset information relating to the mapping. The method includes individually parsing the subsets of structured user content to classify portions as comprising sensitive content corresponding to one or more predetermined data schemes and, for each of the portions, identifying an associated offset and length for the portion relating to the subsets of structured user content, and indicating at least the associated offset and length to the user application for marking of the sensitive content in a user interface to the user application.
US10671752B1

A method includes receiving a data capture event affecting personal data of a user stored in at least one storage device of a computing system and mapped in a privacy graph database. Personal data of the user may be identified in the data capture event and classified into the data categories. In response to the data capture event, a mapping of user-centric nodes associated with the at least one user associated with other users in the privacy graph database is automatically updated using the classified personal data in the data capture event. A request by a requester for personal data of at least one specific user stored in the at least one storage device is received. The privacy graph database is queried to provide the requested personal data and locations of the requested personal data of the at least one specific user in the request stored in the computing system.
US10671744B2

Lightweight trusted execution technologies for internet-of-things devices are described. In response to a memory request at a page unit from an application executing in a current domain, the page unit is to map a current virtual address (VA) to a current physical address (PA). The policy enforcement logic (PEL) reads, from a secure domain cache (SDC), a domain value (DID) and a VA value that correspond to the current PA. The PEL grants access when the current domain and the DID correspond to the unprotected region or the current domain and the DID correspond to the secure domain region, the current domain is equal to the DID, and the current VA is equal to the VA value. The PEL grants data access and denies code access when the current domain corresponds to the secure domain region and the DID corresponds to the unprotected region.
US10671738B2

Systems and methods are disclosed herein for publishing sensitive content at a future time, where prior to the future time, receiving an encrypted version of the sensitive content is received and a sequence of proof rules are applied to random portions of the encrypted version of the sensitive content. Upon successful application of the sequence of proof rules, the encrypted version of the sensitive content is prepared for publication and optionally published in encrypted form. At the future time, an encryption key is received for the encrypted version of the sensitive content and the encrypted version of the sensitive content is decrypted with the encryption key to produce the sensitive content.
US10671734B1

Methods and systems for performing an authenticated boot; performing a continuous data protection; performing automatic protection and optionally a consolidation; and performing other defenses and protection of a protected computing device (such as a computer system) are provided. The aspects include integrating security mechanisms (which may include a “call home” function, role and rule-based policies, validating technologies, encryption and decryption technologies, data compression technologies, protected and segmented boot technologies, and virtualization technologies. Booting and operating (either fully or in a restricted manner) are permitted only under a control of a specified role-set, rule-set, and/or a controlling supervisory process or server system(s). The methods and systems make advantageous use of hypervisors and other virtual machine monitors or managers.
US10671731B2

According to one embodiment, an electronic apparatus includes a hardware processor. The hardware processor executes first authentication processing and second authentication processing when the electronic apparatus is powered on or rebooted. The hardware processor executes the first authentication processing using first data stored in the nonvolatile storage region after executing the second authentication processing in a case of executing the second authentication processing when the electronic apparatus is powered on or rebooted. The hardware processor deletes the first data from the nonvolatile storage region when setting of not executing the second authentication processing upon the electronic apparatus is powered on or rebooted is made.
US10671729B2

Provided is an adaptive dynamic analysis method, an adaptive dynamic analysis platform and a device equipped with the same. The adaptive dynamic analysis method for an application running in a container environment of a Linux host includes stopping execution of a first activity of the application, and acquiring analysis information for malicious code diagnosis of the application, conducting dynamic analysis using the analysis information, acquiring environment information to execute a second activity based on the dynamic analysis, and performing an execution environment update of the application by reflecting the environment information, and executing the application to enable the second activity to run.
US10671726B1

According to one embodiment, a computerized method comprises processing one or more objects by a first thread of execution that are part of a multi-thread process, monitoring events that occur during the processing of the one or more objects by the first thread, and storing information associated with the monitored events within an event log. The stored information comprises at least an identifier of the first thread to maintain an association between the monitored events and the first thread. Subsequently, the stored information within the event log is accessed for rendering a graphical display of the monitored events detected during processing of the one or more objects by the first thread on a display screen.
US10671724B2

Encryption operations may be performed by a computer system for various reasons. It is often unclear, however, whether one of the many processes executing on a system is performing encryption. Encryption can be computationally expensive, and a process that engages in a large amount of encryption may represent a performance bottleneck for the system, limiting the ability of the system to do additional work (or weakening it to a Denial of Service attack). Further, while encryption is used in many legitimate contexts, it is also used by malware in certain scenarios to communicate with a remote attacker (e.g. command and control software) or used as part of ransomware. Thus, detecting whether a process is performing encryption can be important to identifying a performance bottleneck or uncovering malware. By monitoring a process and examining certain aspects of its activity, however, encryption operations can be detected and further remedial actions can be taken if needed.
US10671721B1

A scalable, threat detection system features computing nodes including a first computing node and a second computing node operating as a cluster. Each computing node features an analysis coordinator and an object analyzer. The analysis coordinator is configured to conduct an analysis of metadata associated with a suspicious object that is to be analyzed for malware, where the metadata being received from a remotely located network device and to store a portion of the metadata within a data store. The object analyzer is configured to retrieve the portion of the metadata from the data store, monitor a duration of retention of the metadata in the data store, and determine whether a timeout event has occurred for the object associated with the metadata based on retention of the metadata within the data store that exceeds a timeout value included as part of the metadata associated with the suspicious object for malware.
US10671718B2

A system and method for authentication are provided. The system for authentication according to one embodiment of the present disclosure includes: a service server configured to: receive a first authentication request message from an authentication server and convert a random number included in the first authentication request message into an optical code; a first user terminal configured to receive the optical code from the service server and display the optical code; and a second user terminal configured to: recognize the random number by capturing an image of the displayed optical code in response to receiving a second authentication request message from the service server and authenticate a user by using the random number, the second authentication request message, and biometric information of the user.
US10671713B2

A method for controlling unlocking and related products are provided. An electronic device includes at least one processor and a computer readable storage coupled to the at least one processor. The computer readable storage stores at least one computer executable instruction thereon, which when executed by the at least one processor, cause the at least one processor to carry out actions, including: obtaining a face image; carrying out a group of rough features and a group of fine features from the face image; carrying out a verification operation for the group of rough features and the group of the fine features; carrying out a next unlocking process when verification of the group of rough features and the group of fine features is passed.
US10671710B2

A digital authentication system includes an authentication device and a central computer device. The authentication device includes a signal identification module, a display, and a signal feedback unit. The central computer device includes an authentication module and a communication module. The authentication module includes at least one positioning location information, at least one authentication licensing information, and at least one time information. The communication module is configured to transmit the positioning location information and the time information to the authentication device. The authentication device is configured to activate the signal identification module according to the positioning location information and the time information. When the activated signal identification module receives an external authentication signal, the display displays an authentication result, and the signal feedback unit returns an authentication license to the central computer device.
US10671698B2

Aspects of the subject matter described herein relate to language translation. In aspects, a reference to a language translation component is embedded or otherwise inserted into a Web page. When the Web page is rendered, code corresponding to the language translation component may be downloaded and executed. Once executed, the translation component may access other content in the Web page and allow a user to request translation of the Web page. Upon receiving an indication that translation is desired, the translation component may send content in the Web page to a translation service and receive translated content. The translation component may then provide this translated content to a user viewing the Web page.
US10671690B2

This document describes a digital component deduplication system for generating packetized data with encryption tokens for transmittal over one or more packetized networks. A packetized data search determines that an encryption token is included with the packetized data. The encryption token includes keyed data representing a first digital component. The packetized data search engine searches the keyed database to identify contents, in the keyed database, of one or more entries that includes the keyed data representing the first digital component. A list of candidate digital components is generated. For candidate digital components associated with a data interface for requesting an eligibility value from a second client device associated with the candidate digital component, a security server generates, using the data interface, additional packetized data comprising i) a request for the eligibility value from the second client device, and ii) the encryption token.
US10671686B2

A method, apparatus and system for processing webpage data. The method includes: in response to a webpage being opened, sending a link contained in the webpage to a network side device; receiving a group identification from the network side device, the group identification being determined by the network side device according to the link and used to specify a group the link belongs to; determining whether there is a browsed link belonging to the group specified by the group identification; and in response to determining there is a browsed link belonging to the group specified by the group identification, prompting that webpage content pointed by the link contained in the webpage has been browsed.
US10671685B1

Methods and apparatus related to adjusting the ranking of a suggestion for a geographic location based on determining how many of one or more users visited the geographic location after receiving the suggestion. In some implementations the one or more users may belong to first grouping of users and the ranking may be adjusted only for suggestions to the first grouping of users. In some implementations it may be determined if a second grouping of users visited the geographic location after receiving the suggestion. In some implementations a property of the given geographic location may be determined based on a comparison of how many of the second grouping of users visited the given geographic location after receiving the suggestion and how many of the one or more users visited the given geographic location after receiving the suggestion.
US10671683B2

A method and apparatus are provided for automatically generating and processing first and second concept vector sets extracted, respectively, from a first set of concept sequences and from a second, temporally separated, concept sequences by performing a natural language processing (NLP) analysis of the first concept vector set and second concept vector set to detect changes in the corpus over time by identifying changes for one or more concepts included in the first and/or second set of concept sequences.
US10671682B2

Technical solutions are described for selecting and retrieving, by a media retrieval system, media items for displaying. An example method for selecting and retrieving the media items includes monitoring a conversation of a user via a user device, and extracting a conversation topic from the conversation. The method further includes determining that a metadata database of a media storage associated with the user includes the conversation topic. The method further includes adding, in response, to a topic match database, from the media storage, an identity of a media item matching with the conversation topic, and adding, to a list of media items to be played back by a media display device, the topic match database. Further yet, the method includes playing back, by the media display device, the media item.
US10671681B2

A user interaction with a computer device is monitored, the user interaction comprising at least user consuming material via the computer device. Content of the material the user is consuming is identified. Physiological pattern generated by the user while consuming the content is captured via at a sensor device. Responsive to detecting that the physiological pattern represents an outlier, a term in the content is determined for which additional information is to be provided. The term may be determined from the content based on user knowledge, frequency of the term appearing in previous content consumed by the user and popularity of the term. A search query is executed with the determined term. Result of the search query may be filtered based on the user's knowledge. The filtered result and at least one of the previous content containing the term the user has previously consumed is presented.
US10671678B2

The present invention provides a surface acoustic wave sensor capable of suitably controlling the flow of a liquid sample onto IDT electrodes. A surface acoustic wave sensor has a piezoelectric substrate, a first IDT electrode and a second IDT electrode which are located on the upper surface of the piezoelectric substrate and are separated from each other while sandwiching a detection part on the piezoelectric substrate therebetween, and the cover which forms the space being on the first IDT electrode, second IDT electrode, and the detection part and straddling them. On the lower surface of the cover, the detection part-facing surface facing the detection part has a smaller contact angle to the liquid sample than that of a pair of electrode-facing surfaces facing the first IDT electrode and second IDT electrode.
US10671675B2

Systems and methods for classifying electronic information are provided by way of a Technology-Assisted Review (“TAR”) process. In certain embodiments, the TAR process is a Scalable Continuous Active Learning (“S-CAL”) approach. In certain embodiments, S-CAL selects an initial sample from a document collection, trains a classifier by using a default classification for a portion of the initial sample, scores the initial sample, selects a sub-sample from the initial sample for review, removes the reviewed sub-sample from the initial sample, and repeats the process by re-training the classifier until the initial sample is exhausted. In certain embodiments, a classification threshold is determined using a calculated estimate of the prevalence of relevant information such that the threshold classifies the information in accordance with a determined target criteria. In certain embodiments, the estimate of prevalence is determined from the results of iterations of a TAR process such as S-CAL.
US10671664B2

A computer-based method of providing control commands of a control command set for manufacturing a three-dimensional object with an additive manufacturing device. The method includes at least the following steps: a step of allocating input data that represent at least a partial surface of the object to be manufactured, where the partial surface has an initial surface texture defined by a set of initial texture parameter values that characterize the geometry of the initial surface texture; a step of determining a set of target texture parameter values that differ from the set of initial texture parameter values, and a step of generating control commands of a control command set to manufacture the partial surface by the additive manufacturing device with a surface texture that is defined by the set of target texture parameter values.
US10671661B2

In one embodiment, a method includes generating a first query requesting a data structure of a specific data type, retrieving the data structure of the specific data type from one or more hierarchical graphs using the first query, retrieving one or more data items from the hierarchical graphs using the data structure, and validating the retrieved data items by determining whether the data structure corresponds to the retrieved data items.
US10671656B2

A method for recommending a text content based on a concern, a computer device, and a non-transitory computer readable storage medium are provided. The method includes: acquiring a query input by a user, and acquiring a reference text content selected by the user from search results corresponding to the query; generating a term vector of the query according to a term relative to the query in the reference text content; determining the concern of the user from a plurality of reference concerns according to similarities between the term vector of the query and term vectors of the plurality of reference concerns; and recommending the text content matched with the concern to the user.
US10671654B2

Methods and systems for estimating a probability of re-sharing information include extracting keywords from a set of documents addressed to a user. The keywords from the set of documents are weighted according a metric for the user's interest in the keywords' respective source documents to create an interest model. A new document having one or more keywords is received. A likelihood that the user will re-share the new document is determined. The likelihood is based on the interest model and the one or more keywords present in the new document. The new document is automatically responded to based on the determined likelihood.
US10671648B2

A method is provided that includes storing a plurality of data items in a data aggregation system. Each of the plurality of data items is associated with one or more location identifiers indicating a particular point on the earth. The method further includes receiving, by at least one processor, a query indicating a geographic location. Data items having associated location identifiers matching the received geographic location are retrieved from the data aggregation system. The method further includes outputting the retrieved data items.
US10671641B1

An automated method and computer program product are provided for synchronizing a column-oriented target database with a row-oriented source database. Change data are replicated from a change log of the row-oriented source database via a staging database to the column-oriented target database. The change data including inserts and deletes. Change data of the change log is read into the staging database and is consolidated and grouped into a consolidated grouping of inserts, and a consolidated grouping of deletes. The consolidated grouping of inserts from the staging database are applied to the target database in a batched manner, and the consolidated grouping of deletes from the staging database are applied to the target database in a batched manner.
US10671639B1

Updates to a hierarchical data structure may be selectively replicated to other replicas of the hierarchical data structure. An update for a hierarchical data structure may be received and committed to the hierarchical data structure. A determination as to whether any other replicas of the hierarchical data structure have permission to receive the update may be made. For those replicas of the hierarchical data structure with permission to receive the update, the update may be provided to the replicas and committed to the replicas. Different types of replication techniques may be implemented, such as pull-based replication techniques or push-based replication techniques. Replication permissions for objects of the hierarchical data structure may be individually defined, in some embodiments.
US10671638B2

A client can allocate identifiers to local content items and ensure the identifiers are unique at a content management system. For example, a client can add a first content item at a first path and determine the first content item does not have a first unique identifier. The client can determine that a second content item at a second path was previously associated with the first path and determine that the first content item should inherit a second unique identifier from the second content item. The client can then assign the second unique identifier to the first content item and add a node representing the first content item to a local tree representing a local state of content items at the client, the node including the second unique identifier. The client can also upload the first content item with the second unique identifier to the content management system.
US10671623B2

Methods and apparatus are provided for repairing vehicles. A computing device having first and second software executables can determine vehicle identification information (VII) that identifies a vehicle. The computing device can store first and second vehicle identifiers that are based on the VII and are respectively associated with the first and second software executables, where the first vehicle identifier differs from the second vehicle identifier. The computing device can be used to repair the vehicle by at least: receiving a request to activate the first software executable, and activating the first software executable at least by providing the stored first vehicle identifier to the first software executable.
US10671620B2

The present application provides a method for recommending a teacher to a target student in a network teaching system. The method comprises: obtaining characteristic information of the target student; retrieving at least one candidate teacher from a teacher database according to the characteristic information of the target student, so as to obtain a candidate teacher list including the at least one candidate teacher; calculating, for the target student, a probability of reserving a course provided by each candidate teacher in the candidate teacher list; and ranking the at least one candidate teacher in the candidate teacher list based on the calculated probability and providing the target student with the ranked candidate teacher list.
US10671616B1

A method for selectively modifying scores of youth-oriented content search results is disclosed. The method includes identifying a plurality of search results, with each search result being associated with one of a plurality of scores. The method further includes selecting a subset of search results from the plurality of search results, and selecting a subset of scores within the plurality of scores that includes scores associated with the selected subset of search results. The method further includes modifying each score of the subset of scores with a query-dependent factor.
US10671609B2

Embodiments are disclosed for facilitating the compilation of measure data. In the context of a method, an example embodiment includes generating, by configuration circuitry of an interpreter, at least one abstract syntax tree based on a CQL file containing measure logic and a CQL grammar file. This example embodiment of the method further includes converting, by the configuration circuitry, the at least one abstract syntax tree into at least one strongly-typed expression tree and storing the at least one strongly-typed expression tree in a memory. Finally, the example embodiment of the method may further include executing, by data evaluation circuitry of the interpreter, the at least one strongly-typed expression tree using retrieved user data. Corresponding apparatuses and computer program products are also provided.
US10671605B2

A method, system, and apparatus for managing a persistent query result set are disclosed. A resource manager is disclosed that receives a query from a client over a computer network. A computer database server is disclosed that executes the query and generates a result set based on and in response to the received query. An execution platform is disclosed that divides the result set into a plurality of chunks, wherein each chunk comprises a portion of the generated result set. The resource manager adds metadata to each of the plurality of chunks. A first chunk of the plurality of chunks comprises metadata pointing to the plurality of chunks. The resource manager delivers at least the first chunk of the plurality of chunks to the client in response to the query. The execution platform offloads the remaining plurality of chunks to cloud storage in parallel.
US10671601B2

Receiving a first model associated with a user, a generic model of a generic domain, and a specific domain having an associated domain-specific corpus. A first set of query terms based on elements of the first model, and a second set of query terms based on elements of the generic model, are determined. A third set of query terms is generated based on the first and second sets of query terms. The domain specific corpus is queried using the third set of query terms, and a domain specific model is generated based on results of the querying.
US10671598B2

A client information management apparatus comprises a hardware processor. The hardware processor performs: detecting a change in a department where one client member belongs and updating a department about one client member in client information if member name in client personal information is the same as a member name about the one client member registered with the client information and if the department in the client personal information differs from the department about the one client member registered with the client information; referring to the communication information and extracting a member relating to the one client member as an update target member from different client members registered with the client information; and updating a department about the update target member registered with the client information to the same department as the one client member.
US10671595B2

A method may include maintaining first data structure with records organized in a first hierarchy, and maintaining a second data structure with records organized in a second hierarchy. The method may also include receiving a first change request for a value stored in a first record. The first change request may be received from a parent in the first data structure of the first record. The method may additionally include changing the first value according to the first change request, and receiving a second change request for the value stored in the first record. The second change request may be received from a parent in the second data structure of the first record. The method may further include sending a notification to the parent in the first data structure that the parent in the second data structure is attempting to change the first record.
US10671589B2

A system may utilize a combination of real-time and polling connectors for data crawling. A real-time connector may use a collector to write data associated with a new event from a database to a channel and record external identifiers (IDs) associated the data. A polling connector may use a verifier to compare the recorded IDs with IDs associated with a batch of data, and may write any data of the batch of data to the channel that has not been written previously written by the collector. The system may include an onboarder for reading data previously stored in the database.
US10671588B2

Systems and methods for multiple updates to a database using paths is disclosed. Updates to a graph database can be performed by associating an attribute node, that stores the updated value, to the entity node to-be updated. When the entity node is queried for the value, the nearest attribute node is identified using a shortest path determination.
US10671587B2

Provided are techniques for reduced fixed length sort of variable length columns. A fixed length sort is performed to sort a table having rows for a query, wherein the fixed length sort is based on a sort key comprised of a variable length column. A pre-determined number of the rows are read to identify the variable length column as a candidate for truncation. A length for truncating the variable length column is determined based on database statistics and based on the reading of the pre-determined number of the rows. The variable length column is truncated to the determined length to output a truncated variable length column for the sort key. The rows are sorted on the sort key having the truncated variable length column. Results are generated using the sorted rows and returned for the query.
US10671585B2

A method begins by a dispersed storage (DS) processing module storing a data portion in a dispersed storage network (DSN), where the data portion is associated with a set of data index keys, a version index key, and with a set of portion index keys. The method continues with the DS processing module traversing, based on the set of data index keys, a plurality of index structures to determine whether an object retrieval structure exists for the data portion. When the object retrieval structure exists, the method continues with the DS processing module updating the object retrieval structure by determining whether a version record exists that corresponds to the version index key and when the version record exists, creating, within the version record, a new data portion record for the data portion to include an identifier of the data portion and the set of portion index keys.
US10671582B2

Method and systems for data storage is provided. Metric data corresponding to a component of a datacenter is received, the metric data associated with a metric instance that identifies the component of the datacenter. It is determined that the metric instance is not stored at an index server. The metric instance is stored at the index server, the metric instance being synchronously stored in a flattened format. A slot identification is generated based on at least a portion of the metric instance, and the metric instance is stored at an inventory server in accordance with the slot identification, the metric instance being asynchronously stored in an unflattened format.
US10671578B2

Embodiments can provide a computer implemented method in a data processing system comprising a processor and a memory comprising instructions, which are executed by the processor to cause the processor to implement a system for providing classification job estimation for a data security platform comprising one or more data sources, the method comprising: for each of the one or more data sources: counting the number of databases; counting the number of tables in each database; selecting a random database; selecting a random table within the random database; retrieving a database data sample from the random table; measuring one or more latencies associated with issuing and retrieving the database data sample; measuring a processing time required to evaluate the database data sample against one or more policy rules; compiling one or more mean times for the latencies and processing times; and calculating a data source scan time using the one or more mean times and the number of tables in each database; and calculating a total estimation time through summation of each of the one or more data source scan times compiled for each of the one or more data sources.
US10671568B2

Systems and techniques of de-duplicating file and/or blobs within a file system are presented. In one embodiment, an email system is disclosed wherein the email system receives email messages comprising a set of associated attachments. The system determines whether the associated attachments have been previously stored in the email system, the state of the stored attachment, and if the state of the attachment is appropriate for sharing copies of the attachment, then providing a reference to the attachment upon a request to share the attachment. In another embodiment, the system may detect whether stored attachments are corrupted and, if so, attempt to repair the attachment, and possibly, prior to sharing references to the attachment.
US10671567B2

The present disclosure provides systems and methods for optimizing lock detection in a change block tracker (CBT). A method comprises detecting changes on a disk volume and saving them to current changes, creating a volume changes and a snapshot changes collection, on a snapshot creation request, moving current changes to frozen changes, on a lock request, moving changes to the volume changes collection of the current snapshot, on another lock request, moving volume changes of current snapshot to frozen changes and deleting snapshot changes of current snapshot, when snapshot name is not the same as current snapshot, otherwise: moving the volume changes collection to the frozen changes, copying the frozen changes to the current changes, moving the snapshot changes collection to the frozen changes, and copying the snapshot changes collection to the current changes, moving all volume changes for other snapshots to current changes and allowing the client to read the frozen changes.
US10671564B2

A neural network unit has a first memory that holds elements of a data matrix and a second memory that holds elements of a convolution kernel. An array of neural processing units (NPU) each have a multiplexed register that receives a corresponding element of a row from the first memory and that also receives the multiplexed register output of an adjacent NPU. A register receives a corresponding element of a row from the second memory. An arithmetic unit receives the outputs of the register, the multiplexed register and an accumulator and performs a multiply-accumulate operation on them. For each sub-matrix of a plurality of sub-matrices of the data matrix, each arithmetic unit selectively receives either the element from the first memory or the adjacent NPU multiplexed register output and performs a series of the multiply-accumulate operations to accumulate into the accumulator a convolution of the sub-matrix with the convolution kernel.
US10671556B2

A programmable apparatus for executing a function is disclosed. The programmable apparatus includes a physical interface configured to be connected with an external apparatus. The programmable apparatus also includes a function logic circuit configured to execute the function on the programmable apparatus. The programmable apparatus further includes a plurality of peripheral logic circuits, each of which is configured to connect the function logic circuit with the physical interface using a respective protocol. The programmable apparatus also includes a selector circuit configured to select one from among the plurality of the peripheral logic circuits to activate.
US10671554B1

Flow control credit management is provided when converting traffic from a first parallel link width on a first link to a second parallel link width on a second link A current value is calculated for a variable flow control credit exchange rate (R) associated with the first and second links. A first flow control credit indicator is received on the second link, and a credit amount calculated based on the first flow control credit indicator and R. A second flow control credit indicator for the credit amount is then transmitted on the first link.
US10671551B1

Systems, methods, and circuitries adapt a system-on-chip (SoC) for use with different external devices. In one example, an SOC includes a plurality of SoC data lanes configured to conduct data signals between the SoC and an external device interface. The SoC also includes an interface lane adaptor and a device interface including a plurality of interface connectors. The interface lane adaptor circuitry includes a plurality of SoC adaptor connectors connected to the interface connectors; a plurality of external adaptor connectors connected to the SoC data lanes and configured to be connected to the external device interface; a lane selector circuitry configured to connect a selected one of a first or a second SoC adaptor connector to a selected SoC data lane; and a lane configuration circuitry configured to control the lane selector circuitry to connect either the first or the second SoC adaptor connector to the selected SoC data lane.
US10671547B2

Methods and apparatus relating to lightweight trusted tasks are disclosed. In one embodiment, a processor includes a memory interface to a memory to store code, data, and stack segments for a lightweight-trusted task (LTT) mode task and for another task, a LTT control and status register including a lock bit, a processor core to enable LTT-mode, configure the LTT-mode task, and lock down the configuration by writing the lock bit, and a memory protection circuit to: receive a memory access request from the memory interface, the memory access request being associated with the other task, determine whether the memory access request is attempting to access a protected memory region of the LTT-mode task, and protect against the memory access request accessing the protected memory region of the LTT-mode task, regardless of a privilege level of the other task, and regardless of whether the other task is also a LTT-mode task.
US10671546B2

A technique includes receiving a request to initialize a region of a memory. Content that is stored in the region is encrypted based at least in part on a stored nonce value and a key. The technique includes, in response to the request, performing cryptographic-based initialization of the memory, including altering the stored nonce value to initialize the region of the memory.
US10671543B2

Methods and systems which, for example, reduce energy usage in cache memories are described. Cache location information regarding the location of cachelines which are stored in a tracked portion of a memory hierarchy is stored in a cache location table. Address tags are stored with corresponding location information in the cache location table to associate the address tag with the cacheline and its cache location information. When a cacheline is moved to a new location in the memory hierarchy, the cache location table is updated so that the cache location information indicates where the cacheline is located within the memory hierarchy.
US10671542B2

Apparatuses, methods and storage medium associated with application execution enclave memory page cache management, are disclosed herein. In embodiments, an apparatus may include a processor with processor supports for application execution enclaves; memory organized into a plurality of host physical memory pages; and a virtual machine monitor to be operated by the processor to manage operation of virtual machines. Management of operation of the virtual machines may include facilitation of mapping of virtual machine-physical memory pages of the virtual machines to the host physical memory pages, including maintenance of an unallocated subset of the host physical memory pages to receive increased security protection for selective allocation to the virtual machines, for virtualization and selective allocation to application execution enclaves of applications of the virtual machines. Other embodiments may be described and/or claimed.
US10671541B2

A system and method including, in some embodiments, receiving a request for a graphics memory address for an input/output (I/O) device assigned to a virtual machine in a system that supports virtualization, and installing, in a graphics memory translation table, a physical guest graphics memory address to host physical memory address translation.
US10671540B2

Embodiments are disclosed for performing cache aware searching. In response to a search query, a first bucket and a second bucket in remote storage for processing the search query. A determination is made that a first file in the first bucket is present in a cache when the search query is received. In response to the search query, a search is performed using the first file based on the determination that the first file is present in the cache when the search query is received, and the search is performed using a second file from the second bucket once the second file is stored in the cache.
US10671536B2

A method and apparatus for pre-fetching data into a cache using a hardware element that includes registers for receiving a reference for an initial pre-fetch and a stride-indicator. The initial pre-fetch reference allows for direct pre-fetch of a first portion of memory. A stride-indicator is also received and is used along with the initial pre-fetch reference in order to generate a new pre-fetch reference. The new pre-fetch reference is used to fetch a second portion of memory.
US10671530B1

The flow cache of a network flow processor (NFP) stores flow lookup information in cache lines. Some cache lines are stored in external bulk memory and others are cached in cache memory on the NFP. A cache line includes several lock/hash entry slots. Each slot can store a CAM entry hash value, associated exclusive lock status, and associated shared lock status. The head of a linked list of keys associated with the first slot is implicitly pointed to. For the other lock/entry slots, the cache line stores a head pointer that explicitly points to the head. Due to this architecture, multiple threads can simultaneously process packets of the same flow, obtain lookup information, and update statistics in a fast and memory-efficient manner. Flow entries can be added and deleted while the flow cache is handling packets without the recording of erroneous statistics and timestamp information.
US10671523B2

A memory system include: a plurality of first memory devices each coupled to a first channel and including a plurality of first memory blocks; a plurality of second memory devices each coupled to a second channel and including a plurality of second memory blocks; a first access controller suitable for controlling an access to the first memory blocks; a second access controller suitable for controlling an access to the second memory blocks; and a bad block controller suitable for: selecting one between the first and second access controllers by comparing bad physical addresses corresponding to bad blocks included in each of the first and second memory devices with first and second physical addresses respectively corresponding to the first and second memory blocks, and transferring one of the first and second physical addresses and substitute physical address that replace the bad physical addresses.
US10671522B2

A memory controller and a memory system including the same are provided. The memory controller includes a memory storing a flash translation layer (FTL) mapping table, which includes a physical page number (PPN) of a flash memory and a logical page number (LPN) corresponding to the PPN; a central processing unit (CPU) accessing a memory mapped address space to which a logical address corresponding to the LPN is allocated; and an LPN translator receiving the logical address from the CPU, extracting an LPN corresponding to the logical address, reading, from the memory, the FTL mapping table corresponding to the extracted LPN, extracting a PPN corresponding to the extracted LPN, and transmitting the extracted PPN to the CPU.
US10671514B2

One or more techniques and/or systems are provided for facilitating simulation of an application used to access features of a vehicle. For example, an application developer may use an application development environment to develop an application that is used to display information through a vehicle display, obtain telemetry data from the vehicle, and/or modify vehicle features of the vehicle. However, the application development environment may not have real-time access to a vehicle (e.g., while the vehicle is being driven), which significantly reduces the ability to test the application. Accordingly, vehicle parameter signals may be simulated and provided to application code of the application (e.g., the application developer may specify a fan speed as “high”, preprogrammed vehicle speed data may be supplied to the application code, etc.). In this way, the application can be tested as though the application had access to an operational vehicle.
US10671508B2

Some examples described herein relate to testing of a cloud service. In an example, a cloud service to be tested may be deployed in a cloud system. A test load may be applied to the cloud service. Upon application of the test load to the cloud service, a determination may be made whether a performance metric related to the cloud service meets a pre-configured criterion. If the performance metric related to the cloud service meets a pre-configured criterion, the cloud service may be scaled. Operations of applying, determining, and scaling may iterated until an end condition is met, wherein the test load applied to the cloud service may vary after each iteration operation.
US10671505B2

A service monitoring system and method are provided. The service monitoring system includes a service apparatus configured to: convert text information corresponding to a functional block from among one or more functional blocks of a target service into a first abbreviated key, add the first abbreviated key and the text information to a first table, convert call flow information into a second abbreviated key, the call flow information indicating an order in which the one or more functional blocks are called when the target service is executed, and add the second abbreviated key and the call flow information to a second table; and a monitoring server configured to receive the first table and the second table from the service apparatus, and to acquire profiling information regarding the functional block using the first table and the second table.
US10671503B2

Remotely monitoring a test on a test specimen includes receiving information pertaining to the test, rendering on a remote computing device display an information message having portions indicative of a testing device, of information related to the testing device or a test being conducted on the testing device, and of time that has elapsed since the second portion has occurred, and updating the third portion indicative of the time that has elapsed. A test operation monitoring system includes an image capture device, and a computing device operatively connected to the image capture device to receive information on the testing operation from the image capture device, the computing device having a controller configured to receive information pertaining to the testing operation and to render on a display an information message indicative of parameters of the testing device at a selectable amount of progress through the testing operation.
US10671498B2

A method is applied to a system including a host cluster and at least one pair of storage arrays. The host cluster includes a quorum host, the quorum host includes a quorum unit, and the quorum host is an application host having a quorum function. A pair of storage arrays includes a first storage array and a second storage array. The quorum host receives a quorum request, temporarily stops delivering a service to the first storage array and the second storage array, determines, from the first storage array and the second storage array, which is a quorum winning storage array and which is a quorum losing storage array according to logic judgment, stops the service with the quorum losing storage array, sends quorum winning information to the quorum winning storage array, and resumes the delivered service between the host cluster and the quorum winning storage array.
US10671493B1

A system, method, and computer-readable storage medium enable configuring data replication in a three-site disaster recovery solution by replicating data from more than one primary volume of storage devices at a primary datacenter using a first copy technology to a secondary data center and using a tertiary copy technology to a tertiary data center. A graphical user interface presents the sessions of replicating the data using the second copy technology including: (i) one or more characteristics of the sessions; (ii) identified volumes that are in each session; and (iii) any additions or removals of volumes per session.
US10671491B2

Example embodiments relate to asset browsing and restoration over a network using on demand staging. A method may include accessing a compound asset in the storage system and restoring it as a staged asset in a staging area of the storage access system before receiving an indication from a client device to browse at least a portion of the compound asset. The method may include accessing the internal structure of the staged asset to generate an asset directory, wherein the asset directory indicates discrete items within the compound asset. The method may include storing the asset directory in the storage access system. The method may include providing the stored asset directory or a portion of the stored asset directory to the client device over a network in response to an indication from the client device to browse the compound asset.
US10671489B2

A variable checkpoint mechanism in a streams manager checkpoints a streaming application based on periodic time periods for checkpoints. The variable checkpoint mechanism can take a checkpoint before a periodic time period ends when a spike is coming, or can take a checkpoint after the periodic time period ends when there is backpressure in a consistent region of the streaming application. When there is no anticipated spike coming and when there is no backpressure in a consistent region of the streaming application, the checkpoint is performed at the normal end of the periodic time period for checkpoints. In this manner the checkpoint timing of the variable checkpoint mechanism can be adjusted real-time to minimize the negative impact of checkpointing on the performance of the streaming application.
US10671486B2

Methods that can optimize data storage via tracking flashcopy use are provided. One method includes storing flashcopies of data to a target volume in which the data is stored on a source volume and each flashcopy represents a particular portion of the data. The method further includes tracking a quantity of input/output (I/O) requests for each respective portion of the data on the target volume represented by a flashcopy and copying a particular portion of the data from the source volume to the target volume in response to receiving a predetermined quantity of I/O requests on the target volume for the particular portion of the data. Systems and apparatus that can include, perform, and/or implement the methods are also provided.
US10671481B2

Provided are a computer program product, system, and method for using geographical location information to provision multiple target storages for a source device. A determination is made of a geographical location of the source device and a distance between the source device and each of the target storages and between each pair of target storages. A determination is further made of qualifying k-tuples of the target storages, wherein each k-tuple comprises a group of k target storages to which the source data is to be backed-up. A qualifying k-tuple has one target storage that satisfies a distance requirement with respect to the source device and a distance between any two target storages in the k-tuple satisfies the distance requirement. A selected qualifying k-tuple is indicated to use to backup the source data at the k target storages in the qualifying k-tuple.
US10671479B2

A memory device includes a memory array that includes a buffer data. The memory device also includes a memory controller. The memory controller includes an error correction code (ECC) component. The memory controller further receives a status command and an indication related to the quality of the data to analyze with the ECC component. Based on a status value, the memory controller utilizes one of a plurality of error correction techniques via the ECC component to correct an error (e.g., soft state, calibration, etc.).
US10671477B2

A method for operating a memory device includes: receiving a first read command and a first address; reading a first read data and a first error correction code from memory cells selected based on the first address; detecting and correcting an error of the first read data using the first error correction code; storing the first address as an error detection address in an address latch circuit; storing an error-corrected bit of the first read data and a position of the error-corrected bit of the first read data in a data latch circuit; and transmitting an error-corrected first read data to an external device.
US10671475B2

Provided are a method, a system, and a computer program product in which a storage controller determines one or more resources that are impacted by an error. A cleanup of tasks associated with the one or more resources that are impacted by the error is performed, to recover from the error, wherein host input/output (I/O) operations continue to be processed, and wherein tasks associated with other resources continue to execute.
US10671465B2

Upon occurrence of multiple errors in a central processing unit (CPU) package, data indicating the errors is stored in machine check (MC) banks. A timestamp corresponding to each error is stored, the timestamp indicating a time of occurrence for each error. A machine check exception (MCE) handler is generated to address the errors based on the timestamps. The timestamps can be stored in the MC banks or in a utility box (U-box). The MCE handler can then address the errors based on order of occurrence, for example by determining that the first error in time causes the remaining error. The MCE can isolate hardware/software associated with the first error to recover from a failure. The MCE can report only the first error to the operating system (OS) or other error management software/hardware. The U-Box may also convert the timestamps into real time to support user debugging.
US10671455B2

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for blockchain-based notification are provided. One of the methods includes: obtaining, from a computing device, a notification message indicating that a current state of a workflow is one of one or more states of the workflow, wherein a blockchain contract deployed in a blockchain is executable to update the current state among the one or more states of the workflow; executing a function associated with the one state in response to the notification message; and in response to completion of the execution of the function, transmitting, to the computing device, a reply message indicating completion of the execution of the function associated with the one state.
US10671448B2

Devices and systems supporting more than one Virtual Assistant (VA) are able to initiate and collaborate with multiple virtual assistants within the same session and at the same time. This system allows application specific virtual assistants to register and listen for intents from a general purpose virtual assistant. When the general purpose virtual assistant raises an intent, control can be passed to an interested application specific virtual assistant for handling. The system of registering new intents increases the knowledge of the general purpose virtual assistant, or overloads the handling of an existing intent.
US10671440B2

A system for provisioning resources includes an input interface and a processor. The input interface is configured to receive a time series of past usage data. The past usage data comprises process usage data and instance usage data. The processor is configured to determine an upcoming usage data based at least in part on the time series of the past usage data, and provision a computing system according to the upcoming usage data.
US10671429B2

An information processing apparatus includes: a reconfiguration device which can change a circuit configuration through a dynamic partial reconfiguration; and a controller which controls a circuit arrangement in the reconfiguration device, in which when a processing circuit related to a new task is arranged in the reconfiguration device, the controller determines a circuit assignment of a processing circuit related to an existing task in execution and the processing circuit related to the new task with respect to an area as a result of combining an area used for the processing circuit related to the existing task in execution and a space area, based on a predicted end time of the processing of the respective tasks, and arranges the processing circuits related to the respective tasks in the reconfiguration device in accordance with the determined circuit assignment.
US10671428B2

An exemplary method for using a virtual assistant may include, at an electronic device configured to transmit and receive data, receiving a user request for a service from a virtual assistant; determining at least one task to perform in response to the user request; estimating at least one performance characteristic for completion of the at least one task with the electronic device, based on at least one heuristic; based on the estimating, determining whether to execute the at least one task at the electronic device; in accordance with a determination to execute the at least one task at the electronic device, causing the execution of the at least one task at the electronic device; in accordance with a determination to execute the at least one task outside the electronic device: generating executable code for carrying out the least one task; and transmitting the executable code from the electronic device.
US10671426B2

Data processing apparatus comprises one or more interconnected processing elements; each processing element being configured to execute processing instructions of program tasks; each processing element being configured to save context data relating to a program task following execution of that program task by that processing element; and to load context data, previously saved by that processing element or another of the processing elements, at resumption of execution of a program task; each processing element having respective associated format definition data to define one or more sets of data items for inclusion in the context data; the apparatus comprising format selection circuitry to communicate the format definition data of each of the processing elements with others of the processing elements and to determine, in response to the format definition data for each of the processing elements, a common set of data items for inclusion in the context data.
US10671421B2

A virtual machine start method and apparatus is presented, where the method includes determining N types of virtualized network function components (VNFCs) according to a first service; obtaining a distribution relationship between the N types of VNFCs and virtual machines, where the distribution relationship indicates a quantity of each type of VNFC distributed in each virtual machine; selecting at least one to-be-started virtual machine from unstarted virtual machines according to the distribution relationship, so that a total quantity of each type of VNFC included in a started virtual machine and the at least one to-be-started virtual machine meets a corresponding preset quantity; and starting the at least one to-be-started virtual machine. In the present disclosure, types and a quantity of VNFCs running on each virtual machine are first obtained.
US10671415B2

Non-limiting examples of the present disclosure relate to generation and surfacing of user-specific contextual insights from analysis of telemetry data that is associated with user interaction with an exemplary application/service. Processing operations described herein extend to generation of any type of contextual insights from any type of telemetry data. In one example, user-specific contextual insights are generated to provide users with writing assistance to digital documents created through exemplary applications/services. A user interface is presented through a productivity service. Writing assistance telemetry data, associated with one or more users, is analyzed. Writing assistance telemetry data comprises, data evaluating, for the user(s), spelling, grammar and a writing style across content of one or more digital documents. User-specific insight analytics are generated for the user(s) based on analysis of the writing telemetry data. The user interface is adapted to present the generated user-specific contextual insights for the user.
US10671411B2

Provided are systems and methods for generating a copy of an object in an object-oriented programming architecture. In one example, the method may include one or more of receiving a command to copy a model object comprising a hierarchical object-oriented architecture that references one or more underlying data objects, freezing a state of the one or more underlying data objects to generate a frozen data store of underlying object data, generating a first proxy object that references the frozen data store and a second proxy object that references the frozen data store, modifying the model object to reference the first proxy object instead of referencing the one or more underlying data objects, and generating a copy of the model object that references the second proxy object and storing the copy of the model object.
US10671397B2

A method and associated computer program product are disclosed for generating an executable file from an object file, the object file being associated with an architecture having a predefined calling convention designating one or more call-clobbered registers. The method comprises identifying, from a first annotation included in the object file with a function call instruction, at least one restore instruction that follows the function call instruction, the function call instruction associated with a predefined function of the object file. The at least one restore instruction corresponds to at least one of the one or more call-clobbered registers. The method further comprises determining, based on at least a first list of registers that are referenced by the predefined function, the first list being included in the object file, whether to eliminate the at least one restore instruction.
US10671393B2

A technique includes determining whether one or more instructions in an instruction group require cracking. Whether the instructions that require cracking are associated with a decode-time instruction optimization (DTIO) sequence is also determined. In response to a first instruction, included in the one or more instructions, requiring cracking and the first instruction not being part of a DTIO sequence, the first instruction is cracked into internal operations (IOPs). In response to a second instruction, included in the one or more instructions, requiring cracking and the second instruction being part of a DTIO sequence, an IOP sequence (that includes at least one IOP that is associated with at least a cracked version of the second instruction and at least a third instruction that is included in the one or more instructions and at least one other IOP that is associated with the cracked version of the second instruction) is generated.
US10671388B1

The embodiments herein describe handling overflow that occurs between different portions of a multi-result vector storing results from performing multiple operations in parallel. Rather than using guard bits to separate the various results in the multi-result vector, the embodiments herein describe using overflow monitors to detect and account for overflow that can occur in a multi-result vector that is passed in a chain of arithmetic units. Side band logic evaluates the LSBs in the operands for the reduced-precision operations to generate an expected value of performing the operation and compares the expected value to an actual value of the corresponding bits in the multi-result vector. If the expected and actual values match, then there was no overflow. However, if the values do not match, the side band logic updates the overflow value so that this overflow can be corrected once the final multi-result vector has been calculated.
US10671387B2

Embodiments relate to vector memory access instructions for big-endian (BE) element ordered computer code and little-endian (LE) element ordered computer code. An aspect includes determining a mode of a computer system comprising one of a BE mode and an LE mode. Another aspect includes determining a code type comprising one of BE code and LE code. Another aspect includes determining a data type of data in a main memory that is associated with the object code comprising one of BE data and LE data. Another aspect includes based on the mode, code type, and data type, inserting a memory access instruction into the object code to perform a memory access associated with the vector in the object code, such that the memory access instruction performs element ordering of elements of the vector, and data ordering within the elements of the vector, in accordance with the determined mode, code type, and data type.
US10671383B2

Techniques for inferring code deprecation from module deprecation are disclosed. A system detects a reference to a type. The system determines that a particular module, in a plurality of modules in a module system, exposes the referenced type. The system determines that the particular module is associated with a deprecation status. Responsive to determining that the particular module is associated with the deprecation status, the system presents information indicating that the reference references a deprecated module.
US10671382B2

The invention relates to a device for integrating software components of a distributed real-time software system, said components being run on target hardware and on a development system, wherein the target hardware comprises computing nodes, and the development system comprises one or more computers. The device is designed as an expanded development system in which the computing nodes of the target hardware are connected to the computers of the development system via one or more time-controlled distributor units, wherein the expanded development system has a sparse global time of known precision, and wherein the computing nodes of the target hardware are connected to the computers of the development system via the one or more time-controlled distributor units such that the data content of a TT message template of a TT platform of the target hardware can be provided both by a simulation process of the development system as well as by an operative process of the target hardware in a timely manner.
US10671378B2

A system is configured to perform operations that include determining a first set of modular features corresponding to a first version of a service provider application and a second set of modular features corresponding to a second version of the service provider application. An original version of the service provider application may have been downloaded from an application store. The operations further include identifying, based on a comparison between the first set of modular features and the second set of modular features, a new set of modular features. The operations also include applying the new set of modular features to the first version of the service provider application. The applying may be based on determining that the new set of modular features supports predefined interface templates and corresponding interpreters. As such, the operations may be performed without communicating with the application store.
US10671362B2

A compiler and linker include multiple addressing mode resolvers that generate code to resolve a plurality of function calls that use different addressing modes. A first addressing mode is defined where a first address for first data is specified as an offset from a base pointer. A second, relative addressing mode is defined where a second address for second data is specified as an offset from an address of an instruction that references the second data. The generated code assures correct operation when functions with different addressing modes are included in the computer program. The generated code preserves a base pointer when executing a function that uses relative addressing, when needed. The compiler inserts one or more relocation markers that trigger certain functions in the linker. A linker resolves the relocation markers inserted by the compiler, and generates code, when needed, that handles a mismatch between addressing modes.
US10671358B2

Method, system and computer readable storage medium for transmitting content from an SCM version of a repository maintained by an SCM system to a corresponding search engine (SE) version of the repository maintained by a search engine system. The method includes generating a content request, the content request comprising information defining a start state of the SCM version of the repository and a filter field; identifying one or more files in the SCM version of the repository that have changed between the start state and an end state; filtering the identified files based on the filter field in the content request to form a filtered set of files and a removed set of files; extracting content and metadata for one or more files from the filtered set of files; and transmitting the extracted content to the search system for storage as part of the search system version of the repository.
US10671354B2

A method of automatically generating a source code for implementing a function in hardware according to specifications defining a communication protocol includes: obtaining input data including the specifications; preprocessing the input data by extracting a table including a plurality of fields from the input data and classifying the table; generating structured data by performing lexical analysis on values of the plurality of fields according to a desired rule; and generating the source code from the structured data.
US10671345B2

An integrated circuit may include normalization circuitry that can be used when converting a fixed-point number to a floating-point number. The normalization circuitry may include at least a floating-point generation circuit that receives the fixed-point number and that creates a corresponding floating-point number. The normalization circuitry may then leverage an embedded digital signal processing (DSP) block on the integrated circuit to perform an arithmetic operation by removing the leading one from the created floating-point number. The resulting number may have a fractional component and an exponent value, which can then be used to derive the final normalized value.
US10671326B2

A storage unit (SU) in a dispersed storage network (DSN) coordinates with affiliated dispersed storage units (SUs) to designate a leader SU among the plurality of SUs and when the SU is designated the leader, receives management information that is associated with the affiliated SUs from at least some of the affiliated SUs. The SU processes the management information from the at least some of the affiliated SUs to determine whether at least one of the affiliated SUs is offline; and based on a determination that the at least one of the SUs of the affiliated SUs is offline, transmits the management information for the affiliated SUs to one or more administrators associated with the DSN.
US10671308B2

An example operation may include one or more of receiving a request comprising a file segmented into a plurality of segments corresponding to a plurality of storage nodes, identifying a segment from among the plurality of segments which is designated for the storage node from among remaining segments designated for other storage nodes, storing the identified segment in a local storage of the storage node, hashing the identified segment, and transmitting a response to a client system which includes the hashed identified segment.
US10671306B2

A chunk-based data deduplication system and method. Incoming data chunk is partitioned into head and tail portions for fingerprinting and mapping into respective head SHA (secure hash algorithm) and tail SHA tables. Head or tail fingerprints are used to locate predecessor data chunks almost identical to incoming data chunks and to determine data bursts to deduplicate the incoming data chunks.
US10671303B2

Predictively selecting subset of disks of a storage system to be spun-up, including providing metadata of data entities stored in the disks of the storage system, estimating the data entity access probabilities for a prediction time window based on the metadata, each data entity access probability being indicative for the probability of access to a certain data entity within the prediction time window, calculating disk access probabilities for a prediction time window based on the estimated probability of access of data entities, each disk access probability being indicative for the probability of access to a certain disk within the prediction time window, estimating the number of disks to be spun-up in a certain prediction time window, dynamically adapting the data entity threshold value and/or the disk access threshold value, selecting a subset of disks to be spun-up in the following prediction time window.
US10671302B1

Applying a rate limit across a plurality of storage systems, including: determining a rate limit for paired storage systems; receiving, by a first storage system, an amount of I/O operations serviced by the second storage system during a previous predetermined period of time; determining whether the amount of I/O operations serviced by the second storage system is less than half of the rate limit for the paired storage systems; if so, setting local a rate limit for a next predetermined period of time for the first storage system to the difference between the rate limit for the paired storage systems and the amount of I/O operations serviced by the second storage system during the previous predetermined period of time; and otherwise, setting a local rate limit for a next predetermined period of time for the first storage system to half of the rate limit for the paired storage systems.
US10671299B2

The nonvolatile memory module includes at least one nonvolatile memory, and a device controller including a RAM to store data exchanged between a host and the at least one nonvolatile memory and a DIMM controller to control data exchange between the RAM and the at least one nonvolatile memory. An allocation for an access area at an access to the RAM is performed during a write transaction in which data is recorded at the RAM and is released during a read transaction of the recorded data.
US10671295B2

A state machine engine includes a state vector system. The state vector system includes an input buffer configured to receive state vector data from a restore buffer and to provide state vector data to a state machine lattice. The state vector system also includes an output buffer configured to receive state vector data from the state machine lattice and to provide state vector data to a save buffer.
US10671291B2

Example implementations relate to memory read requests. For example, an implementation may include tracking progress of an iterative write sequence to write data to a memory element of a memory module. A received read request is detected to be addressed to a memory bank that includes the memory element undergoing the iterative write sequence. Based on the tracked progress, a time is determined to interrupt the iterative write sequence with insertion of the read request. The time aligns between operations of the iterative write sequence and data is returned within a predetermined read latency.
US10671289B2

Embodiments include receiving an indication of a data storage module to be associated with a tenant of a distributed storage system, allocating a partition of a disk for data of the tenant, creating a first association between the data storage module and the disk partition, creating a second association between the data storage module and the tenant, and creating rules for the data storage module based on one or more policies configured for the tenant. Embodiments further include receiving an indication of a type of subscription model selected for the tenant, and selecting the disk partition to be allocated based, at least in part, on the subscription model selected for the tenant. More specific embodiments include generating a storage map indicating the first association between the data storage module and the disk partition and indicating the second association between the data storage module and the tenant.
US10671282B2

A method for controlling a display device comprising a touch screen is provided. The control method displaying, on the touch screen, a plurality of windows that do not overlap one another and that respectively correspond to executing, displaying a center button disposed at an intersection of a plurality of dividing lines that distinguishes the plurality of windows, receiving an input of a window size change command for changing a size of at least one of the plurality of windows, changing the size of at least one of the plurality of windows in response to the window size change command, and discontinuing the displaying of less than all of the plurality of windows and enlarging a size of at least one remaining window.
US10671281B2

In some examples, a computing device includes at least one processor; and at least one module, operable by the at least one processor to: output, for display at an output device, a graphical keyboard; receive an indication of a gesture detected at a location of a presence-sensitive input device, wherein the location of the presence-sensitive input device corresponds to a location of the output device that outputs the graphical keyboard; determine, based on at least one spatial feature of the gesture that is processed by the computing device using a neural network, at least one character string, wherein the at least one spatial feature indicates at least one physical property of the gesture; and output, for display at the output device, based at least in part on the processing of the at least one spatial feature of the gesture using the neural network, the at least one character string.
US10671279B2

A method according to one embodiment includes detecting a touch event on a touch-sensitive input area of a display. The touch event includes a gesture. The touch-sensitive input area has groups of virtual ambiguous keys arranged approximately radially about a center point. The method further includes determining at least one character from at least one of the virtual ambiguous keys selected by the gesture. The method further includes outputting the determined at least one character on the display.
US10671277B2

A portable electronic device (100) having a touch screen (112) with a floating soft trigger icon (175) for enabling various functions of the electronic device (100), such as bar code reading, capturing RFID data, capturing video and images, calling applications, and/or placing phone calls. The floating trigger icon (175) is displayed on the touch screen (112) to enable easy identification and access of the trigger icon (175). The trigger icon (175) may be selected via application of any one of various unique control gestures (200, 210, 220, 230, 240, 250, 260) to configure the electronic device (100). Based on the selected mode or function of the device (100), the trigger icon (175) may alter its appearance to facilitate use of the device (100). The operation and functionality of the trigger icon (175) may be programmed to customize operation of the device (100).
US10671275B2

The embodiments herein describe a mode of applications on the portable electronic device that improves single-handed operation of the devices. For example, the embodiments herein describe an ergonomic mode of an application that displays the graphical user interface (GUI) of the application in a bottom area of the display screen of the electronic device to allow the user to more easily interact with objects. The embodiments herein also describe an ergonomic mode of a keyboard displayed on the display screen of the portable electronic device. During the ergonomic mode of the keyboard, the keyboard is shifted towards a vertical edge of the display screen to allow a user to more easily reach keys of the keyboard that were previously unreachable without the user switching to two handed operation of the device or repositioning the electronic device in the user's hand.
US10671273B2

An electronic device and a method of the electronic device is provided. The electronic device includes a touch screen display that displays a user interface, a force sensor that detects a pressure with which an external object touches the touch screen display, a wireless communication circuit, and a processor that controls the touch screen display to display the user interface, receives, from at least one of the force sensor and the wireless communication circuit, data representing that the external object is pressing a portion of the user interface with a pressure greater than or equal to a selected pressure, receives a handwriting input through the touch screen display, and displays the handwriting input on the user interface on the touch screen display.
US10671263B2

Aspects include methods, systems, and computer programs to tag collaborative content to facilitate mining key content as a runbook. The method includes providing a user interface allowing a user to annotate portions of content in a collaborative effort system, the content comprising one or more log elements and responsive to a user utilizing the user interface and selecting a log element in the content, tagging the selected log element with an annotation. The tagged log elements may be used to generate a runbook.
US10671261B2

Example embodiments provide a system and method for configuring remote control devices to display application dependent control frames of a remote control user interface. A digital receiver runs a plurality of applications at the receiver device. The digital receiver detects a switch command. The switch command causes a background application to become a primary application, whereby the primary application is the application in focus on a display device. The digital receiver switches the background application into the primary application, the switching causing a previous primary application to become a new background application. The digital receiver retrieves, from a settings datastore, configuration information for remote control settings corresponding to the primary application, and causes, based on the configuration information for the remote control settings, a remote control frame corresponding to the primary application to replace, on a display of the remote control device, a remote control frame corresponding to the previous primary application.
US10671253B2

Techniques are described herein for a multimode graphical user interface (GUI), where a first mode of the GUI uses an unguided navigation model and a second mode uses a guided navigation model in which the GUI is distilled down to only its most critical elements. This may be achieved by sequentially displaying a single user interface element and removing all other user-interface elements of the GUI. The second mode of the GUI may lead a user through multiple options one at a time, thus creating a guided navigation model. The second mode may be initiated upon detecting a certain event (e.g., a period of inactivity, an explicit command from the user, etc.). The multimode GUI may be used to guide a user through one or more recommended items of media content from one or more different content-providing sources.
US10671247B2

A display method and display apparatus are provided. The display method includes: an image to be viewed is activated; an instructing operation from a user is monitored; a Tools menu associated with the activated image is displayed according to a first instructing operation; options in the Tools menu are toggled according to a second instructing operation for the Tools menu; an option from the toggled options is selected according to a user operation; and the activated image is displayed according to the selected option.
US10671243B2

An apparatus and method for screen operation are provided. The apparatus includes an electronic device. The electronic device includes a display on which one or more objects are displayed, and a processor for controlling a display state of the display. The processor adjusts, based on a location indicated by a received input event, a display location of the one or more objects displayed on the display.
Patent Agency Ranking