US08593586B2
A liquid crystal display including a backlight unit and a liquid crystal display panel is provided. The backlight unit includes an exciting light source and quantum dot remote phosphor. Spectrum of the backlight unit has relative maximum brightness peaks BL1, BL2 and BL3 between 445 nm to 455 nm, between 528 nm to 538 nm, and between 618 nm to 628 nm, respectively. The liquid crystal display panel is disposed above the backlight unit and has a red color filter, a green color filter, a blue color filter and a yellow color filter, wherein areas of the red color filter, the green color filter, the blue color filter and the yellow color filter are ARAGABAY, respectively. The areas ARAGABAY satisfy the following relationship: 0.75
US08593585B2
A light bar fixing structure of a backlight module includes a reverse U-shaped frame, a light bar structure, and a fixing plate. The reverse U-shaped frame, which has an opening and multiple slits therein, is disposed on a back cover of the backlight module. The light bar structure includes a substrate and a plurality of light emitting devices. The fixing plate is attached to the substrate by using an adhesive layer. In addition, a plurality of buckling portions is provided in a periphery of the fixing plate, and by engaging the buckling portions with the slits, the fixing plate is fixed on the reverse U-shaped frame, which makes the light bar structure protrude from the opening of the reverse U-shaped frame after inserting through the opening. Therefore, regardless of light emitting device thickness, the light bar structure can be, in this manner, fixed on the back cover.
US08593579B2
The present invention provides a projection display capable of realizing high contrast in a display image plane. The projection display includes a light source; a first light modulator modulating light from the light source on the basis of an input image signal, and generating a first image light; a second light modulator modulating the first image light on the basis of the image signal, and generating a second image light; and a projection lens projecting the second image light generated with the second light modulator.
US08593578B1
Dual display screens are oriented back-to-back such that one display screen is visible from a first direction and one display screen is visible from a direction opposite the first direction.
US08593577B2
An image pickup apparatus operates in a normal power-consumption mode in the period after reception of an image-transfer request command from a digital television set until completion of an operation for transferring still image data in accordance with the image-transfer request command, and operates in a low power-consumption mode in the period after the completion of the operation for transferring the still image data in accordance with the image-transfer request command until reception of another image-transfer request command from the digital television set.
US08593574B2
A system that incorporates teachings of the present disclosure may include, for example, a set top box having a controller to receive a single video stream comprising two-dimensional image content and a depth map of the two-dimensional image content, generate three-dimensional image content in real-time from the two-dimensional image content and the depth map where the three-dimensional image content is generated when a display device operably coupled with the set top box is determined to be capable of presenting the three-dimensional image content, and provide either the two-dimensional image content or the three-dimensional image content to the display device. Other embodiments are disclosed.
US08593573B2
An application for a television with a headphone dock. The headphone dock provides status to the television as to when a set of headphones are docked (idle) or undocked (in use). The television changes routing of audio signals based upon the status of the headphones.
US08593572B2
Systems and methods directed to determining motion in a video signal are provided. A plurality of pixels of a plurality of adjacent field lines of alternating parity of the video signal are evaluated to generate a plurality of differential values. A sign of each differential value is determined, and when each differential value has the same sign, at least one differential value can be compared with a threshold value. Responsive to the comparison of at least one differential value with a threshold value, a motion coefficient indicative of a magnitude of motion associated with one of the plurality of pixels can be generated.
US08593571B2
An information processing apparatus has: a first motion vector calculation unit which determines a first motion vector between one image frame and an image frame immediately before this one image frame in a second image frame group which frame rate is an n number of frames per predetermined time; a second motion vector calculation unit which determines a second motion vector between one image frame and an image frame which is n frames before the one image frame in the second image frame group; and a detection unit which detects that the second image frame group has been obtained from a first image frame group which frame rate is an m number of frames per the predetermined time by the frame conversion, when the ratio of the first motion vector and the second motion vector is in a predetermined range.
US08593564B2
A digital camera system configurable to operate in a low-resolution refocusable mode and a high-resolution non-refocusable mode comprising: a camera body; an image sensor mounted in the camera body having a plurality of sensor pixels for capturing a digital image; an imaging lens for forming an image of a scene onto an image plane, the imaging lens having an aperture; and an adaptor that can be inserted between the imaging lens and the image sensor to provide the low-resolution refocusable mode and can be removed to provide the high-resolution non-refocusable mode, the adaptor including a microlens array with a plurality of microlenses; wherein when the adaptor is inserted to provide the low-resolution refocusable mode, the microlens array is positioned between the imaging lens and the image sensor.
US08593559B2
A reproducing apparatus, an image data reproducing method, a program, and a storage medium each detects an attitude state of the reproducing apparatus, extracts a part of an area of image data obtained by an image pickup device, and reproduces the part of the area of the extracted image data. According to the detection result, the part of the area of the image data is changed to another part of the area and rotation processing of another part of the area is performed, thereby reproducing the another part of the area which was subjected to the rotation processing.
US08593557B2
The method includes producing first identification data used as reference; performing subject recognition on acquired images of subjects to obtain recognition images, producing second identification data, and matching the first identification data with the second identification data; tallying the acquired images based on matching results for each subject and by shooting tendency factor; judging whether a number of the acquired images or a proportion of the number of the acquired images of the subjects in respect of each of the shooting tendency factors is within a given range from tally results of the acquired images; and providing shooting assist so that the number of the acquired images or the proportion of the number of the acquired images in respect of the shooting tendency factor judged to be outside the given range is placed within the given range.
US08593556B2
A digital image signal processing apparatus having an angle of view preview function, a method of controlling the digital image signal processing apparatus, and a recording medium having embodied thereon a computer program for executing the method. Accordingly, a display image displaying at least one piece of angle of view information that is different from angle of view information of a currently mounted interchangeable lens is generated by performing image signal processing, and the display image is displayed. Accordingly, a photographer is informed about angle of view information needed to capture a desired image, and the photographer may easily select an interchangeable lens having desired angle of view information.
US08593553B2
A solid-state imaging device including a photoelectric conversion portion; a floating diffusion region; a transfer gate electrode made of an n-type semiconductor; a sidewall made of an n-type semiconductor formed on the photoelectric conversion portion side of the transfer gate electrode with an insulating film therebetween; and a sidewall made of an insulating layer formed on the floating diffusion region side of the transfer gate electrode.
US08593548B2
A method of processing an image includes the steps of separating an image into multiple color channels, and dividing the image into multiple zones, in which each zone includes a sub-array of pixels. The method then calculates a color shading profile for each zone. The color shading profile is calculated as a linear function, typically a straight line. If a linear function cannot be determined for that zone, the method interprets a function for that zone using the nearest zone neighbors. The method corrects the color shading using the functions calculated for the respective zones.
US08593546B2
According to one embodiment, an image processing apparatus includes a defect correction unit, a noise reduction processing unit, and an output selection unit. The defect correction unit includes a contrast determination unit and an illuminance determination unit. The output selection unit selects the output from the defect correction unit when a target pixel is determined to be a defect. The defect correction unit enables a correction value to be output as a signal value which is applied to the target pixel in accordance with the contrast determination and the illuminance determination.
US08593544B2
An imaging apparatus including an imaging unit that captures images of a photographic subject and continuously generates electronic image data; a display unit that displays, at a predetermined display frame rate, images corresponding to the image data generated by the imaging unit; an image processing unit that either performs a first-type special effect operation that can be displayed at the predetermined display frame rate or performs a second-type special effect operation that can be displayed at a faster display frame rate than the predetermined display frame rate; an operation input unit that receives input of a change instruction signal that provides an instruction for changing a combination of image processing operations during a special effect operation performed by the image processing unit; and a control unit that instructs the image processing unit to switch the special effect operation from the first-type special effect operation to the second-type special effect operation.
US08593535B2
This is directed to determining the relative position of several devices by capturing representations of the device environments in which a tag is located. The devices can compare the captured representations to determine a perspective of the tag corresponding to each device. In some cases, a device can determine an absolute position relative to a coordinate system integrated in a tag. Using the positioning information, several devices can receive directions to come together at a particular meeting point. In some cases, several devices can operate an application that requires the interaction of several users of the devices (e.g., multi-player games). The application can control the time or manner in which inputs are provided based on the relative positions of the devices. In some cases, the devices can display virtual content that is shared across several devices, where the different devices can each interact with the virtual content.
US08593533B2
The present invention provides an image processing apparatus capable of obtaining good shake-corrected images in electronic image stablization irrespective of changes of image-taking conditions. An image processing apparatus comprises a shake correcting part that performs coordinate transformation processing based on shake information to an input image that is generated by use of an image-pickup device, and a method changing part that changes a coordinate transformation method for the coordinate transformation processing.
US08593529B2
An integration circuit integrates an angular velocity signal outputted from a vibration detection element and generates a shift amount signal indicating the shift amount of an imaging device. A control unit samples a plurality of amplitude values of an acceleration signal during a predetermined unit period in the panning state or the tilting state. When an average value of the sampling values exists nearer to zero than a predetermined basic threshold value, it is judged that the panning state or the tilting state is terminated.
US08593527B2
A system and method for remotely controlling a camera may include a telephony device communicatively coupled to a data network. The telephony device comprises at least one module adapted to generate a control signal in response to receiving a user command associated with dialing of an emergency telephone number. A camera may be adapted to start capturing images in response of receiving the control signal.
US08593517B2
A method of controlling a video source in a video surveillance system having a video source connected by a network to a workstation having a graphical user interface for enabling a user to control the video source comprising the steps of providing a video analysis program for analyzing the video images generated by the video source before the video images are transmitted over the network, providing a file containing the user interface controls for the graphical user interface and the parameters for configuring the video analysis program; storing the file in memory, downloading the file to the workstation at run time and enabling a user to configure the video analysis program by interacting with the graphical user interface.
US08593510B2
An image display apparatus and an operating method thereof are provided. The image display apparatus may determine the location of a user, and may display a 3D object in consideration of the location of the user. If the user moves his or her eyes or hands, the location of the 3D object may change accordingly.
US08593505B2
A system that incorporates the subject disclosure may include, for example, a method for selecting, by a first party device, a second party device from a queue of devices, transmitting, by the first party device, video of a first party device to the second party device, receiving, by the first party device, video of the second party device while the first party device does not receive video from a plurality of devices other than the second party device, and transmitting, by the first party device, combined video of the first and second devices to the plurality of devices other than the second party device. Other embodiments are disclosed.
US08593504B2
Once an active video conference is set up and a user is viewing the active video conference at a video terminal, the video terminal looks for different events that indicate a change in focus of the user to or from the active video conference. For example, the user brings up another application and starts using the application or the user has minimized a window that is displaying the active video conference. The video terminal sends a change of focus message based on the event to a video conference bridge or another video terminal that is streaming the active video conference to the user. The video conference bridge/video terminal processes the message and changes video portion of the stream of the active video conference based on the message. The result is that there is improved use of bandwidth between the video terminal and the video conference bridge/video terminal.
US08593502B2
A videoconferencing system includes a touch screen display device and a videoconferencing unit. The display device displays video data for the videoconference and generates touch data based on user selections relative to the touch screen. The videoconferencing unit is operatively coupled to the touch screen device by a video connection and a data interface connection, for example. The unit establishes and conducts a videoconference with one or more endpoints via a network. The unit sends video data to the display device and receives touch data from the device. The received touch data is used to control operation of the videoconferencing system. The received touch data can be used to initiate a videoconference call, change an operating parameter, change orientation of a camera, initiate a picture-in-picture display, access a menu, access memory, change a source of video data, initiate a whiteboard display, and access a screen of a connected device.
US08593486B2
Provided is a video image data generation system including a database for storing a plurality of image data photographed in various directions in various locations, correlating the directions and the locations with the stored image data, and correlating and storing a photographed sub-region when the image data is acquired, a route view point specifying device which specifies various locations and eye level directions arranged on a view point route, an image search engine which searches an image of an eye level direction specified from a location of a view point route specified by the route view point specifying device and outputs video data, wherein the image search engine searches image data stored in a database and the image data including a sub-region located in an eye level direction in each of a plurality of locations on a view point route by referencing photography direction data correlated with the sub-region.
US08593478B2
A system and method are provided for determining a color palette model from an image of a document. Pixel values of the image of the document are clustered to provide image clusters. Color layers of the image are determined, each color layer corresponding to an image cluster. Aspects of the color palette model can be determined using the color layers. Aspects of the color palette model include a foreground-background color pair for a content block in the document and a background-area color of the document.
US08593475B2
Methods and apparatuses for scheduling and storing media creation are described. Methods and apparatuses for rendering a plurality of vector graphic objects on a display are also described.
US08593471B2
The method includes the following steps: monitoring an actual value of a relevant parameter of a display bandwidth of data to be output by the memory; comparing the actual value of the relevant parameter with a threshold to determine whether the actual display bandwidth meets predetermined requirements; and selecting an access arbitration mode for the memory according to whether the predetermined requirements are met. The access controller includes: a monitoring and comparing unit, adapted to monitor an actual value of a relevant parameter of a display bandwidth of data to be output by the memory and compare the actual value of the relevant parameter with a threshold to determine whether the actual display bandwidth meets predetermined requirements; and an arbitration adjusting unit, adapted to select an access arbitration mode for the memory according to whether the predetermined requirements are met.
US08593470B2
A power adjustment circuit includes memory controller logic that is couplable to system memory or other memory if desired. The memory control logic is operative to provide a variable memory clock signal to the system memory and to place the system memory in a self refresh mode wherein the self refresh mode does not require a memory clock signal. Thereafter, the memory clock control logic adjusts the frequency of the memory clock signal to a lower (or higher) frequency clock signal, and in response to the frequency of the memory clock signal becoming stable, the memory clock control logic restores the memory to a normal mode using the lower adjusted frequency memory clock signal. As such, a dynamic memory clock switching mechanism is employed for quickly varying the frequency of memory modules for discrete graphics processors, graphics processors integrated on a chip, or any other processors such that the memory clock can be reduced to a lower frequency in real time to save power.
US08593461B2
A method for the graphical display of a plurality of series of numerical data is provided which includes: determining a smallest and a largest numerical value within each series of numerical data; calculating a relative change between said smallest and said largest numerical value within each series of numerical data; determining a largest relative change out of said relative changes; generating a plurality of graphical representations to be displayed on a display means, wherein each graphical representation is representing one series of numerical data out of the plurality of series of numerical data, the numerical data being represented by indicators in the graphical representation; wherein an interval between a minimum position and a maximum position in a first direction of each graphical representation corresponds to an individual range of numerical values between a minimum value and a maximum value; wherein the value of a numerical data is graphically represented by the position of the corresponding indicator in said interval in the first direction, the method further comprising the step of choosing the minimum value and the maximum value individually for each graphical representation on the basis of said largest relative change and at least one of said smallest and said largest value within the corresponding series.
US08593459B2
A computer-implemented method includes initializing a driver associated with an input/output adapter in response to receiving an initialize driver request from a client application. The computer-implemented method includes initializing the input/output adapter to enable adapter capabilities of the input/output adapter to be determined. The computer-implemented method also includes determining the adapter capabilities of the input/output adapter. The computer-implemented method further includes determining slot capabilities of a slot associated with the input/output adapter. The computer-implemented method also includes setting configurable capabilities of the input/output adapter based on the adapter capabilities and the slot capabilities.
US08593456B2
The object is to generate an image in which an overlapped part of a tuned object and a non-tuned object having a contour line drawn therein is naturally represented. Only tuned objects among objects existing in a virtual three-dimensional space are perspective transformed, and image data and depth data of each tuned object is written into a process buffer 163a for each pixel. The contour of each tuned object is detected based on the depth data and normal line data acquired from the perspective transformation process, and contour line data is written into a process buffer 163c together with the depth data. When a non-tuned objects is perspective transformed, in a pixel in which a non-tuned objected is located on the front side of a tuned object, image data and depth data of the process buffer 163a are updated. The contour line data of the process buffer 163c is combined with the image data of the process buffer 163a, and the composed data is written into a frame buffer 112. However, the contour line data of pixels having different depth data is not written.
US08593455B2
A method and system to compress and decode mesh data with random accessibility in a three-dimensional mesh model, the system to compress mesh data with random accessibility in a three-dimensional mesh model including: a mesh data acquisition unit to acquire mesh data from a three-dimensional mesh model having a plurality of cells; a wire mesh generation unit to generate a wire mesh including a plurality of wire cells by using the mesh data, each wire cell including at least two cells of the plurality of cells; a data structure generation unit to generate wire mesh information on the wire mesh and wire cell data including mesh data of the respective wire cells; and an encoding unit to compress the generated wire mesh information and the generated wire cell data.
US08593451B2
A method of generating a 3D complex octree map. A plurality of points each having 3D location information are detected from a range image. A space having the detected plurality of points is represented using grids. If points in a grid forms a plane, the grid is not subdivided and planar information about the plane is stored. A space not forming a plane is subdivided, thereby enhancing the storage efficiency.
US08593445B2
A display apparatus employs a pixel array section including pixel circuits forming a matrix, signal lines as columns, scan lines as rows and power-supply lines, and driving sections. The driving sections are a signal selector, a write scanner and a drive scanner. The signal selector provides an electric potential representing a gradation or a predetermined reference electric potential. The write scanner provides a control signal. The drive scanner provides a power-supply voltage changing the electric potential from high to low. The drive scanner drives adjacent power-supply lines as a group. The number of lines as a group is determined in advance. The drive scanner switches a power-supply voltage from high to low and vice versa, and applies the voltage to groups by shifting the phase from group to group. The voltage is supplied to a group at the same phase and switched the electric potential.
US08593442B2
Techniques are described for detecting and compensating for characteristic changes of a photoelectric conversion element, such as changes related to the temperature of the photoelectric conversion element. A display device that includes an I/O display panel and a light-receiving drive circuit is disclosed. The I/O display panel includes a plurality of display pixels; and a plurality of photoelectric conversion elements including a first photoelectric conversion element that substantially is shielded from light and a second photoelectric conversion element that is exposed to light. The light-receiving drive circuit receives a first detection signal from the first photoelectric conversion element and resets the second photoelectric conversion element based on the first detection signal.
US08593428B1
Systems and methods for track-pad input are disclosed. In one embodiment, a track-pad device includes a center sensor and a plurality of radial sensors. The center sensor senses electrical characteristic change at a center of the track-pad device. The plurality of radial sensors sense electrical characteristic changes in the respective vicinity of each of the plurality of radial sensors. The plurality of radial sensors can be configured in concentric rings about the center sensor.
US08593411B2
A display- and control element panel for controlling cabin functions in an aircraft, comprising a bi-stable display element and a control elements wherein the bi-stable display element and the control element are arranged so as to be essentially congruent, wherein the bi-stable display element is adapted to reproduce information at least in one sub-region, and wherein an event is triggerable by activating the control element.
US08593410B2
A touch sensor panel including a plurality of drive lines crossing a plurality of sense lines, forming an array. The plurality of drive lines and the plurality of sense lines are formed by interconnecting sections of at least one conductive material having a truncated diamond shape or formed of interconnected conductive lines. At least one conductive dummy region may be disposed in an area of the touch sensor panel around the truncated diamond shape sections or interconnected conductive lines of the plurality of drive lines and the plurality of sense lines. One or more lines may be formed overlapping the interconnected sections of each of the plurality of drive lines and the plurality of sense lines.
US08593405B2
The present invention provides a method for executing commands in an electronic device, which has a touch sensing element, a keyboard unit and a display. First, the touch sensing element is configured for detecting a touch on one of the keys on the keyboard unit and generating a responsive signal corresponding to the touched key. Afterward, a plurality of items corresponding to the touched key is shown on the display according to the responsive signal. Subsequently, the touch on the key is moved onto another key on the keyboard unit so as to mark one of the items. Finally, a command associated with the marked item is executed when the touch on the key is terminated.
US08593387B2
A display device includes a pixel portion to which a non-inverted video signal is input in a first period and an inverted video signal is input in a second period, and a signal line driver circuit comprising a switch circuit portion for controlling output of the non-inverted video signal and the inverted video signal to the pixel portion. The switch circuit portion is controlled by a first signal serving as a first high power supply potential and a first low power supply potential in the first period and is controlled by a second signal serving as a second high power supply potential and a second low power supply potential in the second period, so that the switch circuit portion controls output of the non-inverted video signal and the inverted video signal to the pixel portion.
US08593384B2
A system for displaying images includes a transflective display panel and a light source module oppositely disposed thereto. The light source module includes a light guide plate, a plurality of first light-emitting diodes (LEDs), a plurality of second LEDs, and a lighting control unit electrically connected to the pluralities of first and second LEDs. The light guide plate includes a first portion and a second portion corresponding to a first display region and a second display region of the transflective display panel, respectively. Each first LED is a white light-emitting diode and transmits an emitted light therefrom to the first display region by the first portion of the light guide plate. The plurality of second LEDs includes red, green, and blue LEDs and transmits an emitted light therefrom to the second display region by the second portion of the light guide plate.
US08593367B2
An antenna design technique which allows antennas to be self-matched while supporting multi-band and broadband operations. The technique includes adding a raised and curved ground plane section electrically coupled to the ground plane. The curved ground plane section allows for a smooth transition of the surface current hence a boarder bandwidth is achieved. A slit positioned between the ground plane and the ground plane section can also be used to further improve the antenna bandwidth. The technique does not increase the antenna thickness neither its volume, thus allowing application in slim handheld device applications such as flip phones. Using this technique, a narrow band antenna is made broadband to cover several frequency bands of interest. The technique is applied to a quad-band antenna to broaden its bandwidth to become a sept-band antenna. The technique is used to also improve the antenna match at all the seven bands it supports.
US08593366B2
This multi-antenna apparatus includes a first antenna element and a second antenna element, and an ungrounded passive antenna element arranged between the first antenna element and the second antenna element, wherein the passive antenna element has a first opposing portion opposed to the first antenna element, a second opposing portion opposed to the second antenna element and a coupling portion coupling the first opposing portion and the second opposing portion with each other.
US08593365B2
A method for installing radiator elements arranged on different planes and an antenna having the radiator elements are provided, in which a first-position radiator element is placed on one plane, a second-position radiator element is placed on another plane, and power supply cables are connected to the first-position radiator element and the second-position radiator element. The power supply cables are designed to compensate for a phase difference between signals radiated in the air from the first-position radiator element and the second-position radiator element by a phase difference between signals propagated via the power supply cables.
US08593354B2
A multi-band antenna (1), comprising a grounding element (10) extending horizontally along a longitudinal direction, comprising a side edge (101) with a connecting point (102) and a grounding point (103) distanced from the connecting point by a length; a radiating element (11) disposed at an upper level parallel to the grounding element and defining a first end and a second end, and operating in a first frequency band; a connecting element (12) located between the radiating element and the grounding element, comprising a first portion (121) connecting to the first end of the radiating element and a second portion (122) linking to said connecting point of the grounding element; a parasitic element (13) extending from the second portion of the connecting element towards the second end of the radiating element along the longitudinal direction, and operating in a second frequency band; a feeding point (141) disposed on the second portion of the connecting element and under the parasitic element; and a feeding line (15) comprising an inner conductor connected to the feeding point and an outer conductor connected to the grounding point; wherein said connecting element, the grounding element, the feeding point and the grounding point together forming a slot (16) operating in a third frequency band.
US08593350B2
A wireless communication terminal comprises: a first circuit board 22 to which a reference potential pattern 32 is provided and an electric component is arranged; a case body 24 attached to the first circuit board 22 and including a conducting portion 38 which is electrically conducted to the reference potential pattern and covers the electronic component in a state where the case body is attached and a non-conducting portion 40 including no electric conductivity; and a housing 8 which houses therein the first circuit board 22 and the case body 24. An antenna 50 is formed on the non-conducting portion 40 and the antenna 50 is insulated from the conducting portion 38 and electric power is supplied to the antenna 50 from the first circuit board 22.
US08593347B2
A GNSS receiver includes a RF front end for receiving GNSS ranging signals, a navigation processor for calculating location from the ranging signals, and a repository of static data. The navigation processor includes the static data in the location calculation. Examples of static data include a digital elevation map, coordinates of tunnel entrances for use when the receiver resumes reception of the signals upon exiting a tunnel, and descriptions of structures in sufficient detail to enable multipath mitigation.
US08593341B2
A position calculation method and apparatus are described. The position calculation apparatus may include an inertial measurement unit and be configured to be coupled with at least one sensor unit for detecting a physical event for use in position calculation. The presence of and type sensor unit may identified, and the position processing to be undertaken may depend on this identification.
US08593323B2
An A/D conversion device has first to third pulse delay circuits, first to third pulse passage stage detection circuits, a time output circuit, and an output circuit. Each of the first to third pulse delay circuit has multiple stages of delay units which are connected together and delay a first to a third pulse signals, respectively. Each of the first to third pulse passage stage detection circuit detects a first to a third number of stages, respectively. The time output circuit outputs a time signal. The output circuit outputs the digital value corresponding to the third number of stages.
US08593322B2
In plural analog circuits that can operate in parallel and are coupled to a common analog power supply terminal, one analog circuit is controlled in the analog operation start according to timing control data that specifies an interval for suppressing the analog operation start of the one analog circuit in the analog operation cycle of the other analog circuit that has already started the analog operation. The control is conducted so that when the operation of one analog circuit starts, timing when the operation of the one analog circuit is influenced by the analog operation start of the other analog circuits in the operation cycle of the one analog circuit is retained as timing control data in advance, and the analog operation start of the other analog circuits is delayed or temporarily suppressed in synchronization with the operation start of the one analog circuit according to the timing control data.
US08593317B2
An apparatus, comprising: a charge-pump; a sampler that samples an optical signal, including: a black sampler; a video sampler; and an analog to digital converter. The first aspect further provides a single clock that is coupled to and provides clocking signals to: a) the charge-pump logic that is coupled to the charge-pump; and b) the sampler logic that is coupled to the sampler that samples the optical signal.
US08593305B1
Circuits that are matched to balanced codes may recover transmitted information in a noise resilient and power efficient manner. Circuit components for processing a balanced code may include one or more of: matched amplification of the signals representing the balanced code, matched equalization and/or filtering on the signals representing the balanced code, matched non-linear filtering on the signaling representing the balanced code to detect the presence of particular symbols and matched latching of the signals representing the balanced code. Such matched circuits and circuit components may be achieved at least in part by incorporating suitable common circuit nodes and/or a single energy source into circuit topologies.
US08593304B2
An installation for detecting and displaying the failures of the functional systems of an aircraft is described. The installation can include both a general alarm system (4) connected to said functional systems (2) and to the auxiliary alarm detection means (5) originated from said functional systems, and a complementary alarm system (6), connected to said functional systems (2), independently from the general system (4), and able to indicate a breakdown not detected by the general system on the instrument panel of the cockpit.
US08593299B2
An LED light and communication system includes at least one optical transceiver, the optical transceiver including a light support and a processor. The light support has a plurality of light emitting diodes and at least one photodetector attached thereto. The processor is in communication with the light emitting diodes and the at least one photodetector, where the processor is constructed and arranged to illuminate at least one of the light emitting diodes to generate a light signal which in turn includes at least one embedded data packet. The at least one embedded data packet communicates global positioning system (GPS) location information.
US08593298B2
The present invention is directed to a surface mount circuit board indicator. In one embodiment the surface mount circuit board indicator includes a printed circuit board (PCB) having at least one light emitting diode (LED) die, one or more traces and at least one lens, a housing comprising at least one opening on a side along a perimeter of the housing, wherein the PCB is coupled to the housing such that a light output surface of the at least one LED die faces a same direction as the at least one opening and at least one alignment pin coupled to the housing.
US08593294B2
According to embodiments, a storage device, which has a wireless communication processing part providing a wireless communication function and a memory, includes an acceleration sensor, a buzzer, and a control part which detects a user's operation based on acceleration information output from the acceleration sensor and determines whether or not a file management operation including access to the memory is started and whether or not the buzzer is rung.
US08593291B2
A system includes a component, an electronic circuit, and a display. The electronic circuit and the display are on the component. The electronic circuit is connected to receive data related to use of the component. The electronic circuit is connected to the display for providing a time parameter related to at least one from the group consisting of remaining life of the component and life expended by the component. The time parameter is for displaying on the display.
US08593288B2
A method and a device for detecting the state of a driver are described. In the process, the curve of a signal which characterizes the state of the driver is evaluated, and a signal indicating the state of the driver is generated in response to a typical curve.
US08593283B2
Embodiments of the invention pertain to Radio Frequency Identification (RFID) method and system using an antenna array, an array controller, and control algorithms. Embodiments of the invention can induce strong radio-frequency (RF) excitation, for a given level of radiated RF power, at any point within an arbitrary inhomogeneous medium. For RFID applications, one typical inhomogeneous medium is an ensemble of cases on a pallet. Another typical medium is a warehouse environment having stored goods together with shelving and other material present. An embodiment of the invention is applicable to the process of reading battery-less, or “passive” RFID tags, which rely on incident RF electromagnetic fields established by RFID readers to power the electronic circuitry within the tags.
US08593270B2
The present invention relates to a tester, its use and a method for testing signal lines of a flight control system for a trimmable horizontal stabilizer (THS) motor of an aircraft. The tester comprises at least one test-relay (52, 54) to be connected with a relay socket of the flight control system, when the signal lines of the flight control system are to be tested, and at least one indicator (60, 70, 80, 90) being electrically connected with the at least one test-relay (52, 54) for indicating whether a voltage being applied to the test-relay (52, 54) is equal to or larger than a predetermined voltage. The method according to the invention comprises the steps of connecting at least one test-relay (52, 54) of a tester (1), in place of the original relay, with the relay socket of the flight control system, applying a voltage to the at least one test-relay (52, 54) and determining whether a voltage being applied to the at least one test-relay (52, 54) is equal to or larger than a predetermined voltage.
US08593267B2
Disclosed are systems and methods that enable expanded functionality for call control monitoring and control of external electrical/electromechanical devices using a telecommunication system.
US08593260B2
A system and method are provided for modifying the effective reading range of an radio frequency identification tag. The tag, a chip-based tag, includes an antenna and a chip in communication with the antenna. The chip includes circuitry including field effect transistors that can modify the effective reading range of the tag by modifying characteristics of the tag including the modulation depth of the backscatter signal, the impedance characteristics of the tag front end electronics, the power consumption characteristics and the threshold power-on voltage of the tag. These characteristics are change either temporarily or permanently in response to commands communicated to the tag from a radio frequency identification reader.
US08593253B2
A communication system is configured to operate in an ad hoc wireless network. The communication system includes a transmission device configured to send and receive a message, a signing module configured to generate a hierarchical signature using the message, and a verifying module configured to hierarchically verify a predetermined portion of a hierarchically signed message.
US08593252B2
An electronic lock box system includes a wireless portable transponder that communicates with an electronic lock box using a low power radio link. The portable transponder includes: a wide area network radio to communicate to a central clearinghouse computer, a motion sensor to activate its wide area network radio, and a connector to communicate with a secure memory device. The electronic lock box sends a hail message that is intercepted by the portable transponder; the hail message includes identification information. The portable transponder responds with a message that includes a time sensitive encryption key; the lock box authenticates this response message using its own time sensitive encryption key. If the messages are authenticated, the lock box sends an access event record to the portable transponder, and this access event record is stored in the secure memory device. If a wide area network is available, the portable transponder sends the access event record to the central clearinghouse computer.
US08593237B1
The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.
US08593234B2
A method for manufacturing a bulk acoustic wave resonator, each resonator including: above a substrate, a piezoelectric resonator, and next to the piezoelectric resonator, a contact pad connected to an electrode of the piezoelectric resonator; and, between the piezoelectric resonator and the substrate, a Bragg mirror including at least one conductive layer extending between the pad and the substrate and at least one upper silicon oxide layer extending between the pad and the substrate, the method including the steps of: depositing the upper silicon oxide layer; and decreasing the thickness unevenness of the upper silicon oxide layer due to the deposition method, so that this layer has a same thickness to within better than 2%, and preferably to within better than 1%, at the level of each pad.
US08593230B2
MEMS oscillators, which include a silicon-type, in particular piezoresistive resonators, can be used to provide a fixed, stable output frequency. Silicon has a natural temperature dependence of Young's modulus, therefore, as ambient temperature changes and/or the piezoresistive resonator is powered, the resonator temperature changes, and the resonance frequency of the resonator drifts. In order to account for the temperature drift of the piezoresistive resonator, the piezoresistive resonator itself is used as a temperature sensor. The relative resistance change of the piezoresistive resonator depends only on the relative temperature change and material property of the resonator. Therefore, an accurate temperature can be sensed directly on the piezoresistive resonator. The temperature drift information is provided to a frequency adjuster, which corrects the output frequency of the circuit.
US08593226B2
A circuit includes a transimpedance amplifier portion having a first input node and a second input node, and a feedback circuit portion comprising a first transistor having a drain terminal connected to the first input node, a source terminal, and a gate terminal, a second transistor having a drain terminal connected to the second input node, a source terminal, and a gate terminal, and a third transistor having a drain terminal connected to the source terminal of the first transistor and the source terminal of the second terminal.
US08593225B2
A power amplifier is configured to generate impedances at harmonic frequencies such that the power amplifier operates in a class C mode in a low output amplitude range and in a class F or inverse F mode in a high output amplitude range. Related methods of operation are also discussed.
US08593217B1
A FIR filter component for a voltage mode driver includes a first node, a second node, and a first switching component comprising a first transistor having a first drain/source, a gate, and a second drain/source, and also a second transistor having a first drain/source, a gate, and a second drain/source. The FIR filter component also includes a first tunable resistor coupled between the first node and a first potential, and a second tunable resistor coupled between the second node and a second potential, wherein the FIR filter component is configured to generate a first output signal at the first output node.
US08593216B2
A loop filter with noise cancellation includes first and second signal paths, an operational amplifier (op-amp), and a noise cancellation path. The first signal path provides a first transfer function (e.g., a lowpass response) for a first signal. The second signal path provides a second transfer function (e.g., an integration response) for a second signal. The second signal is a scaled version of, and smaller than, the first signal by a factor of alpha, where alpha is greater than one. A capacitor in the second signal path may be scaled smaller by a factor of alpha. The op-amp couples to the first and second signal paths and facilitates summing of signals from the first and second signal paths to generate a control signal having op-amp noise. The noise cancellation path couples to the op-amp and provides a noise cancellation signal used to cancel the op-amp noise in the control signal.
US08593214B2
A field device for process instrumentation having an interface for connecting a two-wire cable and for outputting measurement values, wherein the interface comprises a series circuit having a transistor circuit by which the loop current is adjustable as a function of a control signal, a power supply, and a device by which the loop current can be captured as an actual value that is fed by a first feedback coupling to a regulator having integrated behavior. The regulator compares the actual value to a target value, and generates a control signal for the transistor circuit. The actual value is fed by a second feedback coupling to a summation point as a compensation signal for generating an input signal for the transistor circuit as a function of the control signal and the compensation signal to suppress interference coupled into the two-conductor line.
US08593212B2
A signal-noise ratio control system which reduces noise interference includes a touch sensor, a touch controller, and a level shifter. The touch sensor is driven by a driving signal and outputs an analog signal based on a touch situation. The touch controller generates the driving signal and provides a divided voltage based on the analog signal. The level shifter adjusts a voltage level of the driving signal based on a voltage level of the divided voltage.
US08593211B2
A half-bridge power circuit comprises a first gallium nitride field effect transistor (GaN FET); a first driver coupled to a gate of the first GaN FET; an anode of a capacitor coupled to an output of the driver and a source of the first GaN FET; a diode having a cathode coupled to the cathode of the capacitor; and a bootstrap capacitor clamp (BCC) controller, including: a field effect transistor (FET) coupled to an anode of the diode, and a comparator coupled to a gate of the FET, the comparator configured to receive as inputs: a) a signal representative of an input voltage (VDRV) applied to the FET; b) a ground; c) a boot signal representative of a voltage at the anode of the capacitor (Boot); and d) a signal representative of a voltage at the source of the first GaN FET (SW).
US08593207B2
A limiting amplifier with an input stage with dc offset cancellation, identical gain stages, an output buffer and a feedback filter. The input stage receives a differential input signal and outputs a first intermediate differential signal. The gain stages are cascaded to amplify the first intermediate differential signal and generate a second intermediate differential signal, amplified by the output buffer to produce an output signal. The feedback filter provides a dc offset voltage of the output signal to the input stage for the dc offset cancellation. The input stage comprises a resistor network coupled between a pair of input nodes and a power line and comprising a common resistor, a pair of load resistors and a shunt resistor. The load resistors share a common terminal connected to the common resistor that is connected to the power line. The shunt resistor has two terminals respectively connected to the load resistors.
US08593205B2
An output buffer circuit includes first and second output circuits, and those output terminals are coupled to each other. The first output circuit outputs a first signal having a voltage level of a first high potential power supply or a low potential power supply and includes a first output transistor at a high potential side. The second output circuit outputs a second signal having a voltage level of a second high potential power supply, which is lower than the first high potential power supply, or the low potential power supply and includes a second output transistor at a high potential side. A control circuit sets the gate and back gate of at least one of the first and second output transistor to the voltage level of the second high potential power supply when the first high potential power supply is deactivated and the second high potential power supply is activated.
US08593199B2
The clock generation method contains the following steps. In a pulse recognition step, an input pulse signal is first filtered to remove a shorter signal. Then, a width digitization calculation is conducted on the remaining pulse signal. Based on the width digitization calculation, a signal is recorded and a period of the recorded signal is determined. The value of the period is delivered to a gain module. In a step for verifying the input value to D/A converter, two values are input to a D/A converter from the gain module, and the output from the D/A converter is delivered to an oscillator. The gain module determines a desired input value from the gain module to the D/A converter. In a pulse generation step, the gain module inputs the desired input value to the D/A converter which in turn delivers to the oscillator for the generation of a corresponding clock.
US08593188B2
An improved charge pump based phase locked loop where the loop filter resistor noise is reduced by about an order is presented. The voltage controlled oscillator generates a clock signal, and this is input to the phase detector, which, compares the oscillator clock with the reference clock and using the Charge pump it generates a current output proportional to the phase difference. The loop filter converts this proportional current to a voltage and connects it to the oscillator input. The loop filter consists of a capacitor, resistor and the apparatus that bypasses most of the resistor noise.
US08593183B2
An architecture for controlling the clock waveform characteristics, including but not limited to the clock amplitude and clock rise and/or fall times, of resonant clock distribution networks is proposed. This architecture relies on controlling the size of clock drivers and the duty cycles of reference clocks. It is targeted at resonant clock distribution networks and allows for the adjustment of resonant clock waveform characteristics with no need to route an additional power grid. Such an architecture is generally applicable to semiconductor devices with multiple clock frequencies, and high-performance and low-power clocking requirements such as microprocessors, ASICs, and SOCs.
US08593182B2
A frequency synthesizer includes an oscillator for providing an RF clock, a phase shifter coupled to said oscillator for providing a shifted RF clock by changing phase of said RF clock, and a time-to-digital converter (TDC) coupled to said phase shifter for quantizing a time difference between a frequency reference clock and said shifted RF clock, wherein a range of said TDC covers significantly less than a full range of said RF clock period. An associated method is also provided.
US08593176B2
Circuits comprising asynchronous linear pipelines and one-phase pipelines, and methods of forming asynchronous linear pipeline circuits and converting them to one-phase pipeline circuits are provided. Additional circuits, systems and methods are disclosed.
US08593168B2
A first power-cutoff switch is disposed between a power line and an internal power line dedicated for a circuit block, and has a current supply capacity having the level at which ON-current can protect an external examination environment. A second power-cutoff switch is disposed between a power line and an internal power line, and has a current supply capacity having the level at which ON-current can supply consumed current of the circuit block. A detecting circuit detects that a voltage of the internal power line matches a reference voltage. The first power-cutoff switch is ON/OFF by an operation state of the circuit block. The second power-cutoff switch is ON by detecting the matching of the volumes with the detecting circuit and is OFF by the ON/OFF operation of the first power-cutoff switch.
US08593166B2
A test system includes a test substrate that transmits/receives signals to/from a semiconductor wafer, and a control apparatus to control the test substrate. The semiconductor wafer includes an external terminal coupled to an external measurement circuit, a plurality of selecting wiring lines provided to receive/transmit signals to/from the corresponding the measuring points, and a selecting section that selects one of the selecting wiring lines and that allows signal transmission between the corresponding measuring point and the external terminal through the selected selecting wiring line. The test substrate includes a measurement circuit that is coupled to the external terminal of the semiconductor wafer and that measures an electrical characteristic of a signal transmitted through the selecting wiring line selected by the selecting section, and a control section that controls which one of the measurement wiring lines is to be selected by the selecting section in the semiconductor wafer.
US08593164B2
In one general aspect, an apparatus can include a block defining a temperature control channel therethrough and a defining a sample chamber. The apparatus can also include an electrode disposed inside of the block such that the sample chamber is fluidically isolated from the temperature control channel by the electrode. The electrode can be configured to receive a signal from an impedance analyzer during a dielectric spectroscopy experiment related to a sample included in the sample chamber.
US08593153B2
A system and method for detecting damage in an electrical wire, including delivering at least one test electrical signal to an outer electrically conductive material in a continuous or non-continuous layer covering an electrically insulative material layer that covers an electrically conductive wire core. Detecting the test electrical signals in the outer conductive material layer to obtain data that is processed to identify damage in the outer electrically conductive material layer.
US08593139B2
A magnetic sensor includes a spin valve-type magneto-resistive element, a voltage detection part, a coil, and a current control part, the coil being configured to apply a measuring magnetic field to the spin valve-type magneto-resistive element upon application of a current, the voltage detection part being configured to output a detection signal to the current control part upon detecting an output voltage of the spin valve-type magneto-resistive element reaching a predetermined voltage value, the current control part being configured to control the current to unidirectionally increase or unidirectionally decrease a strength of the measuring magnetic field from an initial value, but upon input of the detection signal, control the current to return the strength of the measuring magnetic field to the initial value, the initial value being a magnetic field strength where the spin valve-type magneto-resistive element reaches saturation magnetization.
US08593131B2
A signal generation circuit includes: a first signal source that generates a first signal; and a variable rate frequency divider section that generates a variable rate frequency-divided signal in which a first frequency-divided signal obtained by frequency-dividing the first signal by a first frequency dividing ratio and a second frequency-divided signal obtained by frequency-dividing the first signal by a second frequency dividing ratio temporally alternately appear in a specified mixing ratio.
US08593128B2
Another embodiment includes a voltage regulator. The voltage regulator includes a series switch element connected between a first voltage supply and a common node, the series switch element comprising an NMOS series switching transistor, a shunt switch element connected between the common node and a second voltage supply, the shunt switch element comprising an NMOS shunt switching transistor. The voltage regulator further includes means for closing the series switch element during a first period by applying a switching gate voltage to a gate of the NMOS series switch transistor of the series switch element, wherein the switching gate voltage has a voltage potential of at least a threshold voltage greater than a voltage potential of the common node, means for closing the shunt switch element during a second period, the shunt switch element comprising an NMOS shunt switching transistor.
US08593125B1
A buck switching regulator includes a feedback control circuit including a first gain circuit configured to generate a first feedback signal indicative of the regulated output voltage; a ripple generation circuit configured to generate a ripple signal using the switching output voltage and to inject the ripple signal to the first feedback signal; a second gain circuit configured to generate a second feedback signal indicative of the regulated output voltage; an operational transconductance amplifier (OTA) configured to generate an output signal having a magnitude indicative the difference between the second feedback signal and the first reference signal; and a comparator configured to generate a comparator output signal having an output level indicative of the difference between the output signal of the OTA and the first feedback signal. As thus configured, the buck switching regulator generates an output voltage with increased accuracy and fast transient response.
US08593117B2
A control system for a DC to DC converter includes a predicted state generator module, a voltage estimation module, an error module, and a pulse width modulation (PWM) module. During a prior sampling period, the predicted state generator module generates a predicted capacitor voltage and a predicted capacitor current for a current sampling period. The voltage estimation module generates an estimated value of an output voltage of the DC to DC converter during the current sampling period based on the predicted capacitor current, the predicted capacitor voltage, a delay value, and a duty cycle value for the prior sampling period. The error module generates a voltage error value based on difference between a measured value of the output voltage and the estimated value. The PWM module controls the duty cycle of the DC to DC converter based on the voltage error value.
US08593116B2
A switched-mode converter includes a first magnetic circuit including a first inductive element, coupled to at least one second inductive element and electrically coupled in series with the second element and with a first diode between a first one of two input terminals and a first one of two output terminals; a first switch coupled in series with a third inductive element between a second terminal of the first inductive element and a second input terminal, a common node between the first switch and the third inductive element being connected to one of the output terminals by a second diode; and a circuit capable of canceling the voltage across the first switch before its turning-on.
US08593113B2
A system for providing backup power supply to a device is provided. The system includes a supercapacitor and a single circuit for charging and discharging of a supercapacitor. The single circuit operates with an inductor to provide for charging and discharging of the supercapacitor.
US08593106B2
A dual-chargeable battery pack in a power supply is disclosed. The dual-chargeable battery pack comprises a main body provided with an electrical energy storage device, a first connecting device and a second connecting device. The first connecting device comprises a first charging terminal set and a first power output terminal set, wherein the first charging terminal set is configured to receive an input of a first power for outputting to the electrical energy storage device. The second connecting device comprises a second charging terminal set which is configured to receive an input of a second power for outputting to the electrical energy storage device. The electrical energy storage device is configured to output the electrical energy accumulated therein as a third power through the first power output terminal set. The second power is different than the first power.
US08593104B2
A reserve power source for charging a device, such as a depleted power source or a vehicle. The reserve power source including: a reserve battery which requires activation to produce power, such as a thermal battery or a liquid reserve battery; an activator for activating the reserve power upon one of an electrical or mechanical activation; and a pair of terminals operatively connected to the reserve battery for outputting the produced power. The reserve power source can also include a cable connected to each of the pair of terminals for connecting outputting the produced power to the depleted power source and/or conditioning circuitry for conditioning the produced power prior to output at the terminals. The reserve battery can also include a stop for preventing the activator from activating the reserve power source, where the stop is selectively removable when activation is desired.
US08593097B2
A seat adjusting device for an automobile seat (1) having an electric motor (11) for generating a drive motion, wherein the electric motor is operationally coupled to a gearbox (13) for transmitting the drive motion thereof, the gearbox having a gearbox housing (19) in which gearbox elements are disposed for a step-up or step-down transmission of the motor drive motion, by means of which electric motors of lesser technical complexity can be used than previously. To this end, the invention proposes that the gearbox (13) has detection device for detecting information about the speed of at least one of the gearbox elements or detecting a variable dependent on the speed.
US08593088B2
A system and method for calibrating an interior permanent magnet (IPM) motor with an optimized maximum torque per ampere trajectory curve. The system and method use a real-time particle swarm technique that requires less known parameters than standard maximum torque per ampere trajectory techniques.
US08593086B2
A drive system, such as for a fluid jet cutting system, includes a brushless synchronous motor configured to drive movement through a loosely coupled transmission, a sensor configured to sense movement, and a control system configured to drive the brushless synchronous motor responsive to previously measured drive coupling.
US08593085B2
The present invention relates to an electrical device for charging accumulator means (5), said electrical device comprising: a motor (6) connected to an external mains (11); an inverter (2) connected to the phases of said motor (6); and switching means (4) integrated into the inverter (2), said switching means (4) being configured to permit said motor (6) to be supplied and to permit the accumulator means (5) to be charged by the inverter (2). According to the invention, said electrical device further includes, for each phase of said motor (6), an RLC low-pass filter (18) connected, on the one hand, to the mid-point (16) of the phase of said motor (6) and, on the other hand, to ground.
US08593082B2
A color temperature adjusting system includes a processing unit, a constant-current drive unit, and an light emitting unit (LED) unit including two unmatched LED modules with different basic color temperatures. A table records a relationship between coefficient values and current values for the current(s) flowing through the two LED modules. The processing unit selects one of a number of predetermined formulas to calculate the coefficient value by comparing a desired value with a threshold value, and further determines the current values according to the calculated coefficient value listed in a table. The constant-current drive unit includes two drive module generating modulating signals to adjust the respective values of the current flowing through the two LED modules to match the determined current values, thereby adjusting the color temperature value of the LED unit to the desired level. A related method is also provided.
US08593078B1
A universal dimming topology is provided for an electronic ballast having an inverter providing an output current across first and second output branches for driving a light source in accordance with a dimming control input signal. A filament voltage control block modulates first and second filament heating switches to provide filament heating voltage across first and second connection terminals associated with the output branches. During a preheat operating mode a control block disables the inverter and provides pulse width modulated control signals to the filament voltage control block to modulate the filament heating switches at a predetermined frequency. During a normal operating mode the control block enables the inverter and provides pulse width modulated control signals to the filament voltage control block to modulate the filament heating switches in accordance with a duty ratio based on a detected output current.
US08593066B2
It is a problem to provide a light-emitting device capable of obtaining a constant brightness without being affected by deterioration in an organic light-emitting layer or temperature change, and of making desired color display. The lowering in OLED brightness due to deterioration is reduced by causing the OLED to emit light while keeping constant the current flowing through the OLED instead of causing the OLED to emit light while keeping constant the OLED drive voltage. Namely, OLED brightness is controlled not by voltage but by current thereby preventing against the change in OLED brightness due to deterioration of OLED. Specifically, the drain current Id of a transistor for supplying a current to the OLED is controlled in a signal line drive circuit thereby keeping constant the drain current Id without relying upon the value of a load resistance.
US08593057B2
An organic electroluminescent display device including first to fourth pixel regions each including red, green and blue sub-pixel regions, each of the first to fourth pixel regions being divided into first and second column, and the first column being divided into first and second rows, wherein a red sub-pixel region and a green sub-pixel region are respectively arranged in the first and second rows, and a blue sub-pixel region is arranged in the second column; a red emitting layer formed in the red sub-pixel region; a green emitting layer formed in the green sub-pixel region; and a blue emitting layer formed in the blue sub-pixel region.
US08593053B2
A display device includes: plural sub-pixels included in a main pixel, emitting light of different colors respectively; at least three apertures arranged so as to be aligned along one direction in the sub-pixel; and an aperture defining portion defining aperture lengths so that an aperture length of an aperture other than apertures at both edge portions along the one direction is longer than an aperture length of apertures at both edge portions along the one direction in the at least three apertures.
US08593052B1
The present invention discloses a method for modifying a carbon nanotube electrode interface, which modifies carbon nanotubes used as a neuron-electrode interface by performing three stages of modifications and comprises the steps of: carboxylating carbon nanotubes to provide carboxyl functional groups and improve the hydrophilicity of the carbon nanotubes; acyl-chlorinating the carboxylated carbon nanotubes to replace the hydroxyl functional groups of the carboxyl functional groups with chlorine atoms; and aminating the acyl-chlorinated carbon nanotubes to replace the chlorine atoms with a derivative having amine functional groups at the terminal thereof. The modified carbon nanotubes used as the neuron-electrode interface has lower impedance and higher adherence to nerve cells. Thus is improved the quality of neural signal measurement. The present invention also discloses a microelectrode array, wherein the neuron-electrode interface uses carbon nanotubes modified according to the method of the present invention.
US08593049B2
A field electron emitter including a metal electrode; and a plurality of carbon nanotubes, wherein a portion of the plurality of carbon nanotubes protrude from a surface of the metal electrode and a portion of the plurality of carbon nanotubes are in the metal electrode. Also disclosed is a field electron emission device including the field electron emitter and a method of manufacturing the field electron emitter.
US08593045B2
A spark plug which exhibits improved resistance to high-temperature oxidation of an electrode, and improved resistance to spark-induced erosion of, improved resistance to oxidation of, and improved joining reliability of a tip joined to the electrode. A spark plug has spark members; each of the spark members has a weight of 1.5 mg or more; and a center electrode and a ground electrode contain Ni as a main component, C in an amount of 0.005% by mass to 0.10% by mass, Si in an amount of 1.05% by mass to 3.0% by mass, Mn in an amount of 2.0% by mass or less, Cr in an amount of 20% by mass to 32% by mass, and Fe in an amount of 6% by mass to 16% by mass.
US08593040B2
A light emitting apparatus comprising an at least substantially omnidirectional light assembly including an LED-based light source within a light-transmissive envelope. Electronics configured to drive the LED-based light source, the electronics being disposed within a base having a blocking angle no larger than 45°. A plurality of heat dissipation elements (such as fins) in thermal communication with the base and extending adjacent the envelope.
US08593037B1
A quartz resonator flow cell has a piezoelectric quartz wafer with an electrode, pads, and interconnects disposed on a first side thereof. The piezoelectric quartz wafer has a second electrode disposed on a second side thereof, the second electrode opposing the first electrode. A substrate is provided having fluid ports therein and the piezoelectric quartz wafer is mounted to the substrate such that the second side thereof faces the substrate with a cavity being formed between the substrate and the wafer. The fluid ports in the substrate are aligned with the electrode on the second side of the piezoelectric quartz wafer which is in contact with the cavity.
US08593029B2
Provided is a Lundell type rotating machine with high efficiency and high output, which has a rigid and magnetically advantageous magnet retention structure. A rotor iron core includes laminated magnetic-pole members mechanically and magnetically coupled to two laminated magnetic end plates, which extend in an axial direction so as to be brought into meshing engagement with each other to constitute a Lundell type rotor iron core, and permanent magnets provided between the magnetic-pole members. The magnetic-pole members are retained in predetermined positions between the magnetic end plates by dovetail grooves of a non-magnetic retention body over substantially the entire lengths. The permanent magnets are held in direct contact with the magnetic-pole members so as to be interposed therebetween. Thus, the magnet retention structure which is mechanically rigid and magnetically highly efficient even when increased in size can be obtained.
US08593026B2
A magnetic gear arrangement is provided comprising a first gear member for generating a first magnetic field and a second gear member for generating a second magnetic field. A coupling element is disposed between the first and second gear members and provides arrangements of interpoles which couple the first and second magnetic fields. The coupling element comprises a plurality of magnetisable lamellae, each interpole in an arrangement of interpoles being formed from a group of neighboring lamellae. Selected lamellae are deactivatable to provide boundaries between adjacent interpoles. This allows different numbers and arrangements of interpoles to be formed, so as to provide different gear ratios between the first and second gear members.
US08593023B2
There is provided a compact stator coil assembly that has heat radiation increased and a cooling performance improved. A stator coil assembly includes a first coil piece, a second coil piece, and an insulating member provided with a retaining portion that catches the first coil piece and the second coil piece so that those coil pieces form a predetermined coil pattern. A coil loop is formed by the first coil piece and the second coil piece. The stator coil assembly further includes a heat-transfer member having a heat-transfer portion insulated from the first coil piece and the second coil piece and embedded in the insulating member, and a slit formed in the heat-transfer member so as to cut off the pathway of an induced current that is to flow through the heat-transfer member.
US08593020B2
A motor for an electric vehicle includes a frame, a stator disposed in the frame, a rotor disposed to be rotatable with respect to the stator; and an engaging portion that restricts the stator from moving with respect to the frame in a circumferential direction, the engaging portion including at least one rib protruding from one of the surfaces of the frame and the stator, and at least one rib accommodation portion formed at other of the surfaces of the frame and the stator, wherein the at least one rib and the at least one accommodation portion are engaged to allow heat to be transferred therebetween. Under this configuration, a cooling performance may be improved and durability may be enhanced.
US08593017B2
An electric energy generator from a vibrational field includes a body of non-ferromagnetic material, at least one pair of permanent magnets pivotally hung from the body in such a way that they are arranged therebetween. The magnets have faces of equal magnetic polarity turned to each other from opposite sides of the body, whereby a repulsive force is established between the magnets tending to keep them spread apart in an equilibrium position. A plurality of electric coils is arranged on the surface of the body so as to intercept the magnetic field generated by the magnets. The body is configured to be connectable to a vibration source, the vibration contrasting the repulsive force and causing an oscillation of the magnets about the equilibrium position, thereby generating a magnetic flux variation and thus an electric power production as an output from the electric coils.
US08593014B2
Method of operating and device for controlling an energy installation comprising photovoltaic modules (401) and inverters (402), in which a selection and control unit (404) selects combinations of connections of the photovoltaic modules and controls a switching unit so as to establish combinations.
US08593003B2
An outdoor power generating apparatus includes a housing placed at an outside and including a power generation chamber, a power generation source accommodated in the power generation chamber and formed by either one of an engine and a fuel cell, an intake portion provided within the housing and positioned at an upper side of the power generation source, the intake portion including an outside air inlet portion that opens to a side wall of the housing to bring an outside air, the intake portion including a meander passage that connects the outside air inlet portion to the power generation chamber while bringing the outside air to meander from the outside air inlet portion towards the power generation chamber, and a drain port provided at the meander passage and discharging a water in a liquid state that remains at the meander passage to an outside of the meander passage.
US08592998B2
Anchor designs for thin film packages are disclosed that, in a preferred embodiment are a combination of SiGe-filled trenches and Si-oxide-filled spacing. Depending on the release process, additional manufacturing process steps are performed in order to obtain a desired mechanical strength. For aggressive release processes, additional soft sputter etch and a Ti—TiN interlayer in the anchor region may be added. The ratio of the total SiGe—SiGe anchor area to the SiO2—SiGe anchor area determines the mechanical strength of the anchor. If this ratio is larger than 1, the thin film package reaches the MIL-standard requirements.
US08592991B2
In one embodiment, a semiconductor device includes a semiconductor substrate having a first surface, and a second surface opposite to the first surface. The second surface defines a redistribution trench. The substrate has a via hole extending therethrough. The semiconductor device also includes a through via disposed in the via hole. The through via may include a via hole insulating layer, a barrier layer, sequentially formed on an inner wall of the via hole. The through via may further include a conductive connector adjacent the barrier layer. The semiconductor device additionally includes an insulation layer pattern formed on the second surface of the substrate. The insulation layer pattern defines an opening that exposes a region of a top surface of the through via. The semiconductor devices includes a redistribution layer disposed in the trench and electrically connected to the through via. The insulation layer pattern overlaps a region of the conductive connector.
US08592990B2
A semiconductor device includes: a first porous layer that is formed over a substrate and includes a SiO2 skeleton; a second porous layer that is formed immediately above the first porous layer and includes a SiO2 skeleton; a via wiring that is provided in the first porous layer; and a trench wiring that is buried in the second porous layer. The first porous layer has a pore density x1 of 40% or below and the second porous layer has a pore density x2 of (x1+5) % or above.
US08592978B2
A semiconductor device includes a semiconductor substrate, an insulating film formed above the semiconductor substrate, and a plurality of first buried wirings and a plurality of second buried wirings located in the insulating film at predetermined intervals alternately in a direction parallel to a surface of the semiconductor substrate. Each second buried wiring is formed so that a width between both side surfaces thereof is increased from a lower end toward an upper portion and at an upper surface the width is larger than a width at an upper surface of each first buried wiring.
US08592972B2
Methods are disclosed to process a thermal interface material to achieve easy pick and placement of the thermal interface material without lowering thermal performance of a completed semiconductor package. One method involves applying a non-adhesive layer on one or more surfaces of the thermal interface material, interfacing the thermal interface material with one or more components to interface the non-adhesive layer therebetween, and applying heat to alter the non-adhesive layer to increase thermal contact between the thermal interface material and the interfacing component(s).
US08592967B2
A semiconductor apparatus comprising an integrated semiconductor circuit device having pluralities of electrode pads, pluralities of first external terminals connected to the electrode pads of the integrated semiconductor circuit device, an inductor disposed in a region surrounded by the first external terminals, and a resin portion sealing them, the integrated semiconductor circuit device being arranged on an upper surface of the inductor, and the inductor being exposed from a lower surface of the resin portion together with the first external terminals.
US08592961B2
A non-leaded semiconductor device comprises a sealing body for sealing a semiconductor chip, a tab in the interior of the sealing body, suspension leads for supporting the tab, leads having respective surfaces exposed to outer edge portions of a back surface of the sealing body, and wires connecting pads formed on the semiconductor chip and the leads. End portions of the suspension leads positioned in an outer periphery portion of the sealing body are unexposed to the back surface of the sealing body, but are covered with the sealing body. Stand-off portions of the suspending leads are not formed in resin molding. When cutting the suspending leads, corner portions of the back surface of the sealing body are supported by a flat portion of a holder portion in a cutting die having an area wider than a cutting allowance of the suspending leads, whereby chipping of the resin is prevented.
US08592955B2
The invention notably concerns a method for depositing nano-objects on a surface. The method includes: providing a substrate with surface patterns on one face thereof; providing a transfer layer on said face of the substrate; functionalizing areas on a surface of the transfer layer parallel to said face of the substrate, at locations defined with respect to said surface patterns, such as to exhibit enhanced binding interactions with nano-objects; depositing nano-objects and letting them get captured at the functionalized areas; and thinning down the transfer layer by energetic stimulation to decompose the polymer into evaporating units, until the nano-objects reach the surface of the substrate. The invention also provides a semiconductor device which includes a substrate and nano-objects accurately disposed on the substrate.
US08592954B2
A semiconductor element includes a semiconductor layer, an electrode, an adhesion layer, and an insulating layer. The electrode is disposed over the semiconductor layer and has a first upper surface and a second upper surface disposed further away from the semiconductor layer than the first upper surface. The adhesion layer is disposed on the first upper surface of the electrode so that the second upper surface of the electrode is disposed further away from the semiconductor layer than an upper surface of the adhesion layer. The insulating layer covers from the upper surface of the adhesion layer to the semiconductor layer.
US08592951B2
A method of manufacturing a semiconductor device forms the semiconductor device in a device region of a semiconductor substrate simultaneously with forming a monitor semiconductor device that includes a gate electrode made of silicon containing material arranged on a gate insulating film in a monitor region of the semiconductor substrate, a source electrode and a drain electrode formed on the semiconductor substrate on corresponding sides of the gate electrode. The gate electrode is removed without removing a gate insulating film by applying pyrolysis hydrogen generated by pyrolysis on the monitor semiconductor device in the monitor region, and the gate insulating film is removed by a wet process. Impurities distribution of a silicon active region appearing after the gate electrode is removed is measured and fed back to a semiconductor manufacturing process.
US08592950B2
A semiconductor device is made by providing a first semiconductor wafer having semiconductor die. A gap is made between the semiconductor die. An insulating material is deposited in the gap. A portion of the insulating material is removed to form a first through hole via (THV). A conductive lining is conformally deposited in the first THV. A solder material is disposed above the conductive lining of the first THV. A second semiconductor wafer having semiconductor die is disposed over the first wafer. A second THV is formed in a gap between the die of the second wafer. A conductive lining is conformally deposited in the second THV. A solder material is disposed above the second THV. The second THV is aligned to the first THV. The solder material is reflowed to form the conductive vias within the gap. The gap is singulated to separate the semiconductor die.
US08592948B2
The present invention provides a substrate formed at a low cost and having a controlled plate shape, an epitaxial layer provided substrate obtained by forming an epitaxial layer on the substrate, and methods for producing them. The method for producing the substrate according to the present invention includes an ingot growing step serving as a step of preparing an ingot formed of gallium nitride (GaN); and a slicing step serving as a step of obtaining a substrate formed of gallium nitride, by slicing the ingot. In the slicing step, the substrate thus obtained by the slicing has a main surface with an arithmetic mean roughness Ra of not less than 0.05 μm and not more than 1 μm on a line of 10 mm.
US08592947B2
A structure and method of fabricating the structure includes a semiconductor substrate having a top surface defining a horizontal direction and a plurality of interconnect levels stacked from a lowermost level proximate the top surface of the semiconductor substrate to an uppermost level furthest from the top surface. Each of the interconnect levels include vertical metal conductors physically connected to one another in a vertical direction perpendicular to the horizontal direction. The vertical conductors in the lowermost level being physically connected to the top surface of the substrate, and the vertical conductors forming a heat sink connected to the semiconductor substrate. A resistor is included in a layer immediately above the uppermost level. The vertical conductors being aligned under a downward vertical resistor footprint of the resistor, and each interconnect level further include horizontal metal conductors positioned in the horizontal direction and being connected to the vertical conductors.
US08592945B2
An integrated circuit device and methods of manufacturing the same are disclosed. In an example, integrated circuit device includes a capacitor having a doped region disposed in a semiconductor substrate, a dielectric layer disposed over the doped region, and an electrode disposed over the dielectric layer. At least one post feature embedded in the electrode.
US08592938B2
A method for fabricating a III-nitride semiconductor device includes providing a III-nitride substrate having a first surface and a second surface opposing the first surface, forming a III-nitride epitaxial layer coupled to the first surface of the III-nitride substrate, and removing at least a portion of the III-nitride epitaxial layer to form a first exposed surface. The method further includes forming a dielectric layer coupled to the first exposed surface, removing at least a portion of the dielectric layer, and forming a metallic layer coupled to a remaining portion of the dielectric layer such that the remaining portion of the dielectric layer is disposed between the III-nitride epitaxial layer and the metallic layer.
US08592924B2
A semiconductor device includes a semiconductor substrate having a semiconductor layer, a gate electrode, a source region, a drain region, an element separation insulating film layer and a wiring. The gate electrode include a laminated structure having a gate insulating film formed on the semiconductor layer, a metal or a metallic compound formed on the gate insulating film and a polycrystalline silicon layer formed on the metal or metallic compound. The source region and drain region are formed on a surface portion of the semiconductor substrate and sandwich the gate electrode therebetween. The element separation insulating film layer surrounds the semiconductor layer. The wiring is in contact with the metal or metallic compound of the gate electrode.
US08592910B2
A semiconductor body includes a protective structure. The protective structure (10) includes a first and a second region (11, 12) which have a first conductivity type and a third region (13) that has a second conductivity type. The second conductivity type is opposite the first conductivity type. The first and the second region (11, 12) are arranged spaced apart in the third region (13), so that a current flow from the first region (11) to the second region (12) is made possible for the limiting of a voltage difference between the first and the second region (11, 12). The protective structure includes an insulator (14) that is arranged on the semiconductor body (9) and an electrode (16) that is constructed with floating potential and is arranged on the insulator (14).
US08592903B2
A bipolar semiconductor device and manufacturing method. One embodiment provides a diode structure including a structured emitter coupled to a first metallization is provided. The structured emitter includes a first weakly doped semiconductor region of a first conductivity type which forms a pn-load junction with a weakly doped second semiconductor region of the diode structure. The structured emitter includes at least a highly doped first semiconductor island of the first conductivity type which at least partially surrounds a highly doped second semiconductor island of the second conductivity type.
US08592900B2
An integrated circuit containing a diode with a drift region containing a first dopant type plus scattering centers. An integrated circuit containing a DEMOS transistor with a drift region containing a first dopant type plus scattering centers. A method for designing an integrated circuit containing a DEMOS transistor with a counter doped drift region.
US08592880B2
In each photosensitive cell, a photodiode 101, a transfer gate 102, a floating diffusion layer section 103, an amplifier transistor 104, and a reset transistor 105 are formed in one active region surrounded by a device isolation region. The floating diffusion layer section 103 included in one photosensitive cell is connected not to the amplifier transistor 104 included in that cell but to the gate of the amplifier transistor 104 included in another photosensitive cell adjacent to the one photosensitive cell in the column direction. A polysilicon wire 111 connects the transfer gates 102 arranged in the same row, and a polysilicon wire 112 connects the reset transistors 105 arranged in the same row. For connection in the row direction, only polysilicon wires are used.
US08592879B2
Described is a method for manufacturing a semiconductor device. A mask is formed over an insulating film and the mask is reduced in size. An insulating film having a projection is formed using the mask reduced in size, and a transistor whose channel length is reduced is formed using the insulating film having a projection. Further, in manufacturing the transistor, a planarization process is performed on a surface of a gate insulating film which overlaps with a top surface of a fine projection. Thus, the transistor can operate at high speed and the reliability can be improved. In addition, the insulating film is processed into a shape having a projection, whereby a source electrode and a drain electrode can be formed in a self-aligned manner.
US08592870B2
The present invention discloses a pseudo buried layer, a deep hole contact and a bipolar transistor, and also discloses a manufacturing method of a pseudo buried layer, including: etching a silicon substrate to form an active region and shallow trenches; sequentially implanting phosphorous ion and arsenic ion into the bottom of the shallow trenches to form phosphorus impurity regions and arsenic impurity regions; conducting thermal annealing to the phosphorus impurity regions and arsenic impurity regions. The implantation of the pseudo buried layer, adopting phosphorous with rapid thermal diffusion and arsenic with slow thermal diffusion, can improve the impurity concentration on the surface of the pseudo buried layers, reduce the sheet resistance of the pseudo buried layer, form a good ohmic contact between the pseudo buried layer and a deep hole and reduce the contact resistance, and improve the frequency characteristic and current output of triode devices.
US08592869B2
Disclosed is a semiconductor device. More specifically, disclosed are a nitride-based heterojunction semiconductor device and a method for producing the same. The nitride-based heterojunction semiconductor device includes a nitride semiconductor buffer layer, a barrier layer disposed on the buffer layer, a cap layer discontinuously disposed on the barrier layer, a source electrode and a drain electrode that contact at least one of the barrier layer and the cap layer, and a gate electrode that Schottky-contacts at least one of the barrier layer and the cap layer and is disposed between the source electrode and the drain electrode.
US08592866B2
A transistor includes a first semiconductor layer formed on a substrate, a second semiconductor layer formed on the first semiconductor layer and has a band gap larger than that of the first semiconductor layer, a control layer formed on the second semiconductor layer and contains p-type impurities, a gate electrode formed in contact with at least part of the control layer and a source electrode and a drain electrode formed on both sides of the control layer, respectively. A third semiconductor layer made of material having a lower etch rate than that of the control layer is formed between the control layer and the second semiconductor layer.
US08592861B2
It is an object of the present invention to provide a technique to manufacture a highly reliable display device at a low cost with high yield. A display device according to the present invention includes a semiconductor layer including an impurity region of one conductivity type; a gate insulating layer, a gate electrode layer, and a wiring layer in contact with the impurity region of one conductivity type, which are provided over the semiconductor layer; a conductive layer which is formed over the gate insulating layer and in contact with the wiring layer; a first electrode layer in contact with the conductive layer; an electroluminescent layer provided over the first electrode layer; and a second electrode layer, where the wiring layer is electrically connected to the first electrode layer with the conductive layer interposed therebetween.
US08592852B2
To provide a light-emitting device from which uniform light emission can be obtained by providing an auxiliary wiring; a light-emitting device in which a short circuit between electrodes or between an electrode and an auxiliary wiring, which is attributed to a step caused by the auxiliary wiring, hardly occurs; and a light-emitting device which has high reliability by preventing a short circuit. In an EL light-emitting device including an auxiliary wiring, by covering a step caused by the auxiliary wiring is covered with an insulator, a short circuit between electrodes or between an electrode and the auxiliary wiring, which is attributed to the step caused by the auxiliary wiring, is prevented. Thus, the above objects are achieved.
US08592848B2
The light emitting device, and corresponding method of manufacture, the light emitting device including a second electrode layer; a second conductive type semiconductor layer formed on the second electrode layer; an active layer formed on the second conductive type semiconductor layer; a first conductive type semiconductor layer formed with a first photonic crystal that includes a mask layer and an air gap formed on the active layer; and a first electrode layer formed on the first conductive type semiconductor layer.
US08592846B2
A light emitting diode includes a conductive layer, an n-GaN layer on the conductive layer, an active layer on the n-GaN layer, a p-GaN layer on the active layer, and a p-electrode on the p-GaN layer. The conductive layer is an n-electrode.
US08592845B2
A wire-piercing light-emitting diode (LED) a lead frame having a first lead and a second lead. The first lead has a first transition portion and a first bottom portion with a first cutting member, and the second lead having a second transition portion and a second bottom portion with a second cutting member.
US08592833B2
An organic light emitting diode (OLED) display including a microlens array is disclosed. In one embodiment, the OLED includes a substrate and an organic light emitting diode including a first electrode formed on the substrate, an organic emission layer formed on the first electrode, and a second electrode formed on the organic emission layer. The OLED also includes an encapsulation layer covering the organic light emitting diode, wherein part of the encapsulation layer contacts the substrate, and a microlens array neighboring the encapsulation layer. In one embodiment, the distance between the organic emission layer and the microlens array is about 0.5 μm to about 300 μm.
US08592829B2
A phosphor blend for an LED light source is provided wherein the phosphor blend comprises from about 7 to about 12 weight percent of a cerium-activated yttrium aluminum garnet phosphor, from about 3 to about 6 weight percent of a europium-activated strontium calcium silicon nitride phosphor, from about 15 to about 20 weight percent of a europium-activated calcium silicon nitride phosphor, and from about 55 to about 80 weight percent of a europium-activated calcium magnesium chlorosilicate phosphor. An LED light source in accordance with this invention has a B:G:R ratio for a 3200K tungsten balanced color film of X:Y:Z when directly exposed through a nominal photographic lens, wherein X, Y and Z each have a value from 0.90 to 1.10.
US08592811B2
An active matrix substrate (20a) includes a plurality of pixel electrodes (18a) arranged in a matrix, and a plurality of TFTs (5) each connected to a corresponding one of the pixel electrodes (18a), and each including a gate electrode (11a) provided on an insulating substrate (10a), a gate insulating film (12a) covering the gate electrode (11a), a semiconductor layer (16a) provided on the gate insulating film (12a) and having a channel region (C) overlapping the gate electrode (11a), and a source electrode (15aa) and a drain electrode (15b) of copper or copper alloy provided on the gate insulating film (12a) and separated from each other by the channel region (C) of the semiconductor layer (16a). The semiconductor layer (16a) is formed of an oxide semiconductor and covers the source electrode (15aa) and the drain electrode (15b).
US08592809B2
An organic light-emitting display device includes a substrate, a plurality of thin-film transistors on the substrate, each thin-film transistor including an active layer, a planarization layer on the thin-film transistors, a first electrode on the planarization layer and electrically connected to a thin-film transistor, and an ion blocking layer on the planarization layer, the ion blocking layer overlapping the active layer.
US08592805B2
A compound for an organic thin film transistor having a structure shown by the following formula (1): X1-L-Ar-L-X2 (1) wherein L is —C≡C—, or —CH═CH— in a trans configuration, X1 and X2 are independently a substituted or unsubstituted aromatic heterocyclic group having 5 to 60 ring atoms, and their bonding positions to L are in heterocycles, Ar is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 60 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 60 ring atoms, and at least one of X1, X2 and Ar is a bi- or higher-fused ring.
US08592791B2
In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.
US08592785B2
An multi-ion beam implantation apparatus and method are disclosed. An exemplary apparatus includes an ion beam source that emits at least two ion beams; an ion beam analyzer; and a multi-ion beam angle incidence control system. The ion beam analyzer and the multi-ion beam angle incidence control system are configured to direct the emitted at least two ion beams to a wafer.
US08592783B2
An improved plasma processing chamber is disclosed, wherein some or all of the components which are exposed to the plasma are made of, or coated with, titanium diborane. Titanium diborane has a hardness in excess of 9 mhos, making it less susceptible to sputtering. In addition, titanium diborane is resistant to fluoride and chlorine ions. Finally, titanium diborane is electrically conductive, and therefore the plasma remains more uniform over time, as charge does not build on the surfaces of the titanium diborane components. This results in improved workpiece processing, with less contaminants and greater uniformity. In other embodiments, titanium diborane may be used to line components within a beam line implanter.
US08592779B2
An ionizing device 2 includes an ionization chamber 2a having an ionization space 2b for ionizing sample molecules A, filaments 23a and 23b to have an electron impact on the sample molecules A in the ionization space 2b, to ionize the sample molecules A, and an electric discharge tube 29 to irradiate the sample molecules A in the ionization space 2b with ultraviolet light, to ionize the sample molecules A.
US08592770B2
Apparatus and method for transmittance mapping of an object which is at least partially transparent to deep ultraviolet radiation. The method comprises directing a wide-band deep ultraviolet radiation so as to illuminate different areas of an array of successive areas of the object; using an optical detector positioned on an opposite side of the object with respect to the radiation source detecting the wide-band deep ultraviolet radiation that emerges from the object; and processing signals from the optical detector to determine the transmittance of the radiation through the different areas of the array of successive areas of the object.
US08592766B2
A display device is applied to a light sensing system. The display device includes a display module and a pattern layer. The pattern layer is made of optical material capable of either fully or partially reflecting or absorbing invisible light of specific wavelength emitted from the display module, and is formatted on the display module, thus defining gaps through which invisible light can pass. A light sensor is utilized to sense the pre-determined pattern defined by the invisible light passing through the pattern layer. Based on the light sensing result, the light sensor can recognize the corresponding pattern. The optical material of the pattern layer may be arranged to incorporate locational varying invisible light transmittance to define the pre-determined pattern at a finer degree, thus further increasing sensing accuracy.
US08592765B2
A thermal infrared sensor is provided in a housing with optics and a chip with thermoelements on a membrane. The membrane spans a frame-shaped support body that is a good heat conductor, and the support body has vertical or approximately vertical walls. The thermopile sensor structure consists of a few long thermoelements per sensor cell. The thermoelements being arranged on connecting webs that connect together hot contacts on an absorber layer to cold contacts of the thermoelements. The membrane is suspended by one or more connecting webs and has, on both sides of the long thermoelements, narrow slits that separate the connecting webs from both the central region and also the support body. At least the central region is covered by the absorber layer.
US08592762B2
A method of using a direct electron detector in a TEM, in which an image with a high intensity peak, such as a diffractogram or an EELS spectrum, is imaged on said detector. As known the high intensity peak may damage the detector. To avoid this damage, the center of the image is moved, as a result of which not one position of the detector is exposed to the high intensity, but the high intensity is smeared over the detector, displacing the high intensity peak before damage results.
US08592757B2
A mass spectrometer for analyzing isotopic signatures, with at least one magnetic analyzer and optionally with an electric analyzer as well, with a first arrangement of ion detectors and/or ion passages and, arranged downstream thereof in the direction of the ion beam, a second arrangement of ion detectors, with at least one deflector in the region of the two arrangements of ion detectors or between these arrangements. Additionally, a multi-collector arrangement, special uses and a method for analyzing isotopes in a sample. The mass spectrometer according to the invention has a control for the at least one deflector such that ion beams of different isotopes can be routed to at least one ion detector in the second arrangement.
US08592746B2
Systems and methods for driving an optical modulator are provided. In one embodiment, a modulation drive circuit comprises: a balanced impedance network having a first and a second output generated from a first input, and a third and a fourth output generated from a second input, wherein the first and second outputs are balanced with one another, and the third and fourth outputs are balanced with one another; a first differential amplifier, wherein an inverting input of the first differential amplifier couples to the first output of the distribution network and a non-inverting input of the first differential amplifier couples to the third output of the distribution network; and a second differential amplifier, wherein an inverting input of the second differential amplifier couples to the fourth output of the distribution network and a non-inverting input of the second differential amplifier couples to the second output of the distribution network.
US08592745B2
A method and system for optoelectronic receivers utilizing waveguide heterojunction phototransistors (HPTs) integrated in a CMOS SOI wafer are disclosed and may include receiving optical signals via optical fibers operably coupled to a top surface of the chip. Electrical signals may be generated utilizing HPTs that detect the optical signals. The electrical signals may be amplified via voltage amplifiers, or transimpedance amplifiers, the outputs of which may be utilized to bias the HPTs by a feedback network. The optical signals may be coupled into opposite ends of the HPTs. A collector of the HPTs may comprise a silicon layer and a germanium layer, a base may comprise a silicon germanium alloy with germanium composition ranging from 70% to 100%, and an emitter including crystalline or poly Si or SiGe. The optical signals may be demodulated by communicating a mixer signal to a base terminal of the HPTs.
US08592741B2
An image sensor cell (100) is presented for use in an imaging device, for example of a night vision type. The image sensor cell (100) comprises an electrodes' assembly and a control unit (118). The electrodes' assembly is configured and operable to receive an input light signal and produce a corresponding electrical signal. The electrodes' assembly comprises a photocathode (112) having an active region capable of emitting electrons in response to incident light; and at least one electrode (114, 116) in a path of electrons emitted from the photocathode (112). The control unit (118) is configured and operable for controlling an electric field profile in said path so as to selectively cause the electrons' capture on said at least one electrode (114,116) resulting in accumulation of charge on said at least one electrode (114,116) corresponding to the input electromagnetic signal indicative of an acquired image, thereby enabling direct reading of the accumulated charge. The image sensor cell (100) thus provides for direct conversion of a light signal into an electric signal indicative thereof.
US08592735B2
An induction heating apparatus for controlling the temperature distribution for heating a metal plate irrespective if it has a small thickness, is magnetic or nonmagnetic, and capable of coping with a change in the width of the plate, or meandering of the plate. The apparatus heats a metal plate 1 by induction heating, which passes through the inside of induction coils 2, wherein in a vertical projected image of the conductors on the metal plate 1, the conductors 2a and 2b, parts of the induction coil, placed on the front surface side and the back surface side of the metal plate 1, the conductors 2a and 2b on the front surface side and the back surface side are arranged so as to be deviated from each other in the lengthwise direction of the metal plate 1, the edge portion of at least either the conductor 2a on the front surface side of the metal plate 1 or the conductor 2b on the back surface side thereof is arranged aslant or arcuately, and magnetic cores 10 are arranged at the outer sides of the induction coils 2.
US08592733B2
The present invention provides a method and device for inductively heating a first and second surface to form a closure assembly. A method contemplated by the present invention includes spacing an upper die from a lower die for receipt of the first surface and the second surface configured in an overlying orientation, securing one end of the first surface to an end of the second surface and compressing the first surface toward the second surface to form a compressed arrangement which is inductively heated into a closure assembly.
US08592730B2
Disclosed is a heater device for thermally welding suture strands, including: a substrate extending from a first end to a second end along a substrate axis, and having a substantially planar heater support surface; a joinder layer disposed on the heater support surface; a heater element extending from a first end to a second end along a heater axis thereof and disposed on the joinder layer, the heater element being a layer and being coupled to the support surface by the joinder layer; an electrical interface including a first electrically conductive element coupled to the first end of the heater element, and a second electrically conductive element coupled to the second end of the heater element. In some embodiments, the heater element is elongated along the heater axis.
US08592721B2
A controller for a welding system adapted to determine a value of a weld secondary parameter across a weld secondary component based on a sensed parameter is provided. The controller may also be adapted to compare the determined value to a reference value range and to alert a user to a presence and location of a weld secondary error when the determined value is outside the referenced value range.
US08592704B2
An exemplary electronic device includes a casing, a first switch, a second switch and a switch control unit. The second switch is connected in parallel with the first switch. The casing includes a side plate and a top plate detachably connected with a top end of the side plate. The first switch is turned on when the top plate mounted to the side plate and turned off when the top plate detached from the side plate. The switch control unit includes a sliding member mounted at the second switch. The sliding member includes a pressing plate and is moveable relative to the side plate between a first position in which the pressing plate aligned with and pressing the second switch to turn on the second switch and a second position in which the pressing plate is staggered with the second switch to turn off the second switch.
US08592697B2
A multi-stimulus controller for a multi-touch sensor is formed on a single integrated circuit (single-chip). The multi-stimulus controller includes a transmit oscillator, a transmit signal section that generates a plurality of drive signals based on a frequency of the transmit oscillator, a plurality of transmit channels that transmit the drive signals simultaneously to drive the multi-touch sensor, a receive channel that receives a sense signal resulting from the driving of the multi-touch sensor, a receive oscillator, and a demodulation section that demodulates the received sense signal based on a frequency of the receive oscillator to obtain sensing results, the demodulation section including a demodulator and a vector operator.
US08592693B2
An electronic device housing includes a first housing, a second housing, a plurality of frames, and a plurality of fixing members. The first housing includes a bottom plate and a side plate extending from an edge of the bottom plate. The side plate is welded to the second housing. The frames are welded to the first housing. The fixing members fix the second housing to the frames.
US08592682B1
An electrical device cover assembly configured for mounting over an electrical device is described. The electrical device cover assembly comprises a base comprising an opening large enough to receive an electrical device. A lid comprising a lid face, a lid ring, and an expansion section between the lid face and the lid ring, the lid coupled to the base and comprising an inside surface and an expansion section, the expansion section expandable from a first depth to a second depth at least twice as deep as the first depth is provided. An expansion arm moveable between a first collapsed position when the expansion section is at its first depth and an second expanded position when the expansion section is at its second depth, wherein in the second position the expansion arm is in contact with and supports the lid at its second depth is also provided.
US08592679B2
An electronic device module comprising: A. At least one electronic device, e.g., a solar cell, and B. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising (1) a polyolefin copolymer with at least one of (a) a density of less than about 0.90 g/cc, (b) a 2% secant modulus of less than about 150 megaPascal (mPa) as measured by ASTM D-882-02), (c) a melt point of less than about 95 C, (d) an ∀-olefin content of at least about 15 and less than about 50 wt % based on the weight of the polymer, (e) a Tg of less than about −35 C, and (f) a SCBDI of at least about 50, (2) optionally, free radical initiator, e.g., a peroxide or azo compound, or a photoinitiator, e.g., benzophenone, and (3) optionally, a co-agent. Typically, the polyolefin copolymer is an ethylene/∀-olefin copolymer. Optionally, the polymeric material can further comprise a vinyl silane and/or a scorch inhibitor, and the copolymer can remain uncrosslinked or be crosslinked.
US08592677B2
A substrate includes a semiconductor layer, a plurality of dielectric layers disposed on one side of the semiconductor layer and separated from each other and a photoactive layer disposed between the dielectric layers and including a compound of a Group III element and a Group V element. Also disclosed are a solar cell including the same and a manufacturing method thereof.
US08592673B2
A solar concentrator including a housing having a receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall, an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.
US08592672B2
A foldable solar energy collector has a base and a panel body. The base has an elevatable telescopic shaft mounted thereon. The panel body has a bottom board and multiple side panels pivotally mounted around a perimeter of the bottom board. Two foldable panels are respectively and pivotally mounted on two edges of each side panel. A link assembly is pivotally mounted between the panel body and the telescopic shaft and has multiple inside and outside links pivotally connected to each other. One end of each inside link away from a corresponding outside link is pivotally mounted on the telescopic shaft. One end of each outside link away from a corresponding inside link is pivotally mounted between adjacent two of the foldable panels. When the telescopic shaft is elevated, the link assembly is pulled to drive the panel body to unfold or fold, rendering convenience in operation and storage.
US08592670B2
Processor-implemented methods and systems for polyphonic note detection are disclosed. The method includes converting a portion of a polyphonic audio signal from a time domain to a frequency domain. The method includes detecting a fundamental frequency peak in the frequency domain. The method then detects a defined number of integer-interval harmonic partials. If a defined number of integer-interval harmonic partials relative to the fundamental frequency peak are detected the fundamental frequency is recorded as a detected note. This process is repeated for each fundamental frequency until each note in the polyphonic audio signal has been detected. For example, this method allows detection of each note in a strummed guitar chord to provide feedback on the tuning of each string in a strummed chord or allows detection and feedback of the timing and pitch errors for guitar chords played along with a reference track.
US08592664B1
A novel maize variety designated X18B745 and seed, plants and plant parts thereof, produced by crossing Pioneer Hi-Bred International, Inc. proprietary inbred maize varieties. Methods for producing a maize plant that comprises crossing hybrid maize variety X18B745 with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into X18B745 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. This invention relates to the maize variety X18B745, the seed, the plant produced from the seed, and variants, mutants, and minor modifications of maize variety X18B745. This invention further relates to methods for producing maize varieties derived from maize variety X18B745.
US08592663B2
The present invention features tobacco nicotine demethylase nucleic acid and amino acid sequences, tobacco plants and plant components containing such sequences, including tobacco plants and plant components having reduced expression or altered enzymatic activity of nicotine demethylase, methods of use of nicotine demethylase sequences to create plants having altered levels of nornicotine or N′-nitrosonornicotine (“NNN”) or both relative to a control plant, as well as tobacco articles having reduced levels of nornicotine or NNN.
US08592656B2
A soybean cultivar designated S070142 is disclosed. The invention relates to the seeds of soybean cultivar S070142, to the plants of soybean S070142, to plant parts of soybean cultivar S070142, and to methods for producing a soybean plant produced by crossing soybean cultivar S070142 with itself or with another soybean variety. The invention also relates to methods for producing a soybean plant containing in its genetic material one or more transgenes and to the transgenic soybean plants and plant parts produced by those methods. This invention also relates to soybean cultivars, or breeding cultivars, and plant parts derived from soybean variety S070142, to methods for producing other soybean cultivars, lines or plant parts derived from soybean cultivar S070142, and to the soybean plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid soybean seeds, plants, and plant parts produced by crossing the cultivar S070142 with another soybean cultivar.
US08592653B2
The invention provides DNA compositions that relate to transgenic insect resistant maize plants. Also provided are assays for detecting the presence of the maize DAS-59122-7 event based on the DNA sequence of the recombinant construct inserted into the maize genome and the DNA sequences flanking the insertion site. Kits and conditions useful in conducting the assays are provided.
US08592651B2
The subject invention pertains to methods and materials for enhancing microbial resistance in plants. Specifically exemplified herein are grapevines transformed with polynucleotides that express a peptide which confers antimicrobial activity.
US08592649B2
The present invention provides methods and compositions relating to altering NT activity, nitrogen utilization efficiency and/or uptake in plants. The invention relates to a method for the production of plants with maintained or increased yield under low nitrogen fertility. The invention provides isolated nitrate transporter variant (NT variant) nucleic acids and their encoded proteins. The invention further provides recombinant expression cassettes, host cells, and transgenic plants. Plants transformed with nucleotide sequences encoding the NT variant enzyme show improved properties, for example, increased yield.
US08592643B2
An object of the present invention is to provide a method for introducing a gene into an embryo for production of a human disease model primate animal using a non-human primate animal such as a marmoset. The present invention relates to a method for introducing a foreign gene into an early embryo of a non-human primate animal, which comprises placing early embryos of a non-human primate in a 0.2 M to 0.3 M sucrose solution, so as to increase the volume of the perivitelline spaces, and then injecting a viral vector containing a human foreign gene operably linked to a promoter into the perivitelline spaces of the early embryos.
US08592642B2
Disclosed is an evaluation method which can rapidly discriminate a Dao−/− homozygote from a large number of animals produced in a mating experiment between a DAO enzyme deficient mouse and other disease model mice, to rapidly perform a quantitative measurement of the D-amino acids contained in a large number of samples. The invention provides a method for evaluating the effect of a test condition on a mouse tissue, or cultured tissue cells derived from the tissue. The method comprises the steps of: providing a Dao1−/− mouse or the like; exposing the tissue from the Dao1−/− mouse or the like, to the test condition; and analyzing the effect of exposing the tissue from the Dao1−/− mouse or the like, to the test condition.
US08592637B2
The present invention relates to a process for continuously preparing a mononitrated organic compound, especially a process for preparing mononitrobenzene. The invention relates more particularly to an improved continuous adiabatic process for preparing nitrobenzene.
US08592630B2
Disclosed are processes for reacting a perfluorinated olefin with an alcohol, an alkali metal hydroxide, and water in the presence of a phase transfer catalyst to form a reaction product mixture that separates into an aqueous phase and an organic phase. Alcohol may be present in an effective amount sufficient to form a third phase comprising at least 50% of the phase transfer catalyst. The third phase can be separated from the organic phase. Also disclosed are methods for recovering and recycling the phase transfer catalyst used in the reaction.
US08592629B2
This invention relates to sulfonamide derivative of formula (I), to their use in medicine, to compositions containing them, to processes for their preparation, and to intermediates used in such processes. These compounds are inhibitors of Nav1.7.
US08592623B2
Polyester polyols are produced from at least one carboxylic acid hydride and diethylene glycol by a process in which the formation of 1,4-dioxane is suppressed. These polyester polyols are useful for producing polyurethane (PUR) and polyisocyanurate (PIR) foams and metal composite elements containing these PUR or PIR foams.
US08592621B2
A description is given of precursor compounds of sweet taste receptor antagonists for the prevention or treatment of disease, in particular for the prevention or treatment of Type 2 diabetes.A description is also given of uses of these precursor compounds and edible compositions, preparations for nutrition or pleasure or semi-finished products and pharmaceutical preparations, containing such precursor compounds.
US08592617B2
The present application is generally directed to ruthenium or osmium containing complexes and their use as redox mediators in electrochemical biosensors.
US08592607B2
The present invention relates to crystalline forms of the mono-sodium salt of D-isoglutamyl-D-tryptophan, pharmaceutical compositions comprising them, their use in the treatment of various diseases and conditions, and processes for their preparation. In particular, the present invention relates the crystal modification 1 (polymorphic form F) of the mono-sodium salt of D-isoglutamyl-D-tryptophan.
US08592602B2
The present invention relates to a process of providing the 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid in substantially free form (Compound 1).
US08592601B2
A precursor phase of the magnesium tetrahydrate salt of an omeprazole enantiomer, and also processes for preparing it and its use for the preparation of the magnesium tetrahydrate salt are described. Crystals of the magnesium tetrahydrate salt thus obtained, and their uses, especially in the synthesis of the dihydrate form A of the magnesium salt of the enantiomer or as medicament are also disclosed.
US08592590B2
The present invention provides certain tetrahydrotriazolopyridine derivatives, pharmaceutical compositions thereof, methods of using the same and processes for preparing the same. Formula (I) wherein R1 is hydrogen, fluoro, chloro, or methyl; and R2 is C4-CS branched alkyl.
US08592582B2
The present invention provides a method for producing a pyrimidinylpyrazole compound (1), wherein aminoguanidine (2) or its salt is reacted with a β-diketone compound (3) to produce the pyrimidinylpyrazole compound: wherein R1 and R3 are each independently an alkyl group having 1 to 4 carbon atoms, and R2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. The method is excellent in the environmental compatibility and economic efficiency.
US08592574B2
The present invention relates to a beta-glucan-based scaffold for biological tissue engineering using radiation fusion technology, and to a production method therefor. According to the production method of the present invention for beta-glucan-based scaffold, radiation fusion tissue engineering, a beta-glucan-aqueous solution is cast and is then irradiated in a crosslinking reaction in such a way as to form a gel or solid scaffold, thereby facilitating cell attachment and making it easy to create a biomimetic environment coinductive to the growth and differentiation of stem cells. Consequently, the beta-glucan-based scaffold according to the present invention can be usefully employed as a filler for tissue regeneration, cell culturing and plastic surgery, as a filler for voids in biological tissue, as a scaffold for reconstructive and corrective plastic surgery, and for cell transplantation and drug delivery.
US08592570B2
This invention relates to double-stranded ribonucleic acid (dsRNA), and its use in mediating RNA interference to inhibit the expression of an RNA from the West Nile virus (WNV), and the use of the dsRNA to treat pathological processes mediated by WNV infection, such as viral encephalitis.
US08592569B2
An object of the present invention is to construct an mRNA which specifically responds to a short RNA sequence and can activate, repress, and regulate the translation of the desired gene, and to construct an artificial cell model system using a liposome comprising the mRNA and a cell-free translational system encapsulated therein. The present invention provides: an mRNA comprising a target RNA-binding site located immediately 5′ to the ribosome-binding site, and a nucleotide sequence located 5′ to the target RNA-binding site, the nucleotide sequence being complementary to the ribosome-binding site; an mRNA comprising a small RNA-binding site located 3′ to the start codon, and a nucleotide sequence located 3′ to the small RNA-binding site, the nucleotide sequence encoding a protein; and a liposome comprising any of these mRNAs encapsulated therein.
US08592563B2
The present invention provides antibodies, as well as molecules having at least the antigen-binding portion of an antibody, against agonist pro-angiogenic, pro-permeability, vasodilatory isoforms of VEGF. Disclosed antibodies and antibody fragments are characterized by being capable of binding to and neutralizing pro-angiogenic forms of VEGF while not effecting isoforms of VEGF which are anti angiogenic. Methods of production and use in therapy and diagnosis, of such antibodies and antibody fragments are also provided.
US08592561B2
The present invention is directed to antibodies having specificity for a heavy chain class at the same time as having specificity for a first light chain. Such antibodies can be used in a method of detecting or monitoring a malignant plasma cell disease comprising determining in a sample the ratio between the relative amounts of immunoglobulins having: (i) a heavy chain class bound to λ light chains; and (ii) immunoglobulins having the same heavy chain class but bound to κ light chains. More particularly, in one embodiment the ratio is determined after measuring the relative amounts of the respective immunoglobulins using: an antibody, or a fragment thereof, having specificity for a heavy chain class at the same time as having specificity for a first light chain in combination with either: (i) an antibody, or a fragment thereof, having specificity for the heavy chain class at the same time as having specificity for the second light chain; or (ii) an antibody, or fragment thereof, having specificity for the heavy chain and a further antibody, or fragment thereof, having specificity for the second light chain.
US08592556B2
The invention encompasses phage φmru including phage induction, phage particles, and the phage genome. Also encompassed are phage polypeptides, as well as polynucleotides which encode these polypeptides, expression vectors comprising these polynucleotides, and host cells comprising these vectors. The invention further encompasses compositions and methods for detecting, targeting, permeabilising, and inhibiting microbial cells, especially methanogen cells, using the disclosed phage, polypeptides, polynucleotides, expression vectors, or host cells.
US08592553B2
The invention relates to nucleotides and amino acid sequences encoding Glucagon-like peptide-2 receptors, recombinant host cells transformed with such nucleotides, and methods of using the same in drug screening and related applications.
US08592549B1
A method of forming a polyamide composition includes melt blending specific amounts of a poly(phenylene ether) masterbatch, a first polyamide, glass fibers, and a flame retardant that includes a metal dialkylphosphinate. The poly(phenylene ether) masterbatch is prepared by melt blending specific amounts of a poly(phenylene ether) and a second polyamide. The method provides a polyamide composition with a desirable balance of flame retardancy, melt flow, heat resistance, and mechanical properties, while reducing the amount of metal dialkylphosphinate required by corresponding compositions without the poly(phenylene ether) masterbatch. A corresponding polyamide composition is described, as are the poly(phenylene ether) masterbatch, and a method of reducing the metal dialkylphosphinate content of a flame retardant polyamide composition.
US08592547B2
An organopolysiloxane having a main chain composed of the following repeating units (I), 2 to 199 side chain units (II) and 1 to 50 crosslinkage units (III) per 100 SiO units in the main chain, provided that the organopolysiloxane has at least 2, on average, crosslinkage units (III):
US08592543B2
Provided herein are polyfarnesenes derived from a farnesene and at least two different vinyl monomers. Also provided herein are polyfarnesenes derived from a farnesene; at least two different vinyl monomers, such as (meth)acrylic acid, (meth)acrylic esters, styrene, and substituted styrenes; and at least one functional comonomer such as maleic anhydride.
US08592541B2
Gypsum wallboard can be made lighter and less dense, without sacrificing strength, by adding to the gypsum slurry used in making the board a styrene butadiene polymer latex substantially stable against divalent ions in which the styrene butadiene polymer includes at least 0.25 wt. % of an ionic monomer.
US08592540B2
There is disclosed a fluorine-containing polymer compound comprising a repeating unit (a) of the following general formula (2) and having a weight-average molecular weight of 1000 to 1000000 where R1 represents a polymerizable double bond-containing group; R2 represents a fluorine atom or a fluorine-containing alkyl group; R3 represents a hydrogen atom, an acid labile group, a cross-linking site or the other monovalent organic group; and W1 represents a linking moiety. When the fluorine-containing polymer compound is used in a resist compound for pattern formation by high energy radiation of 300 nm or less wavelength or electron beam radiation, it is possible to form a resist pattern with a good rectangular profile.
US08592538B2
Azeotropic or azeotrope-like compositions of the present technology include methyl chloride and at least one hydrofluorocarbon or hydrofluoro-olefin. In some examples, the at least one hydrofluorocarbon or hydrofluoro-olefin can be selected from the group consisting of 1,1,1,2-tetrafluoroethane and 1,3,3,3-tetrafluoropropene. The azeotropic or azeotrope-like compositions can be used as solvents or diluents in polymerization processes, including slurry polymerization processes.
US08592535B2
Processes of forming catalyst systems, catalyst systems and polymers formed therefrom are described herein. The processes generally include providing a first compound including a magnesium dialkoxide, contacting the first compound with a second compound to form a solution of reaction product “A”, wherein the second compound is generally represented by the formula: Ti(OR1)4; wherein R1 is selected from C1 to C10 linear to branched alkyls, contacting the solution of reaction product “A” with a first metal halide to form a solid reaction product “B”, contacting solid reaction product “B” with a second metal halide to form reaction product “C” and contacting reaction product “C” with reducing agent to form a catalyst component.
US08592532B2
The present invention relates to a method for producing an organopolysiloxane compound having a structure in which a poly(N-acylalkylene imine) segment containing a repeating unit represented by the following general formula (1) is bonded to a terminal end and/or a side chain of an organopolysiloxane segment, the method including the steps of (a) subjecting a cyclic iminoether compound represented by the following general formula (I) to ring opening polymerization in a solvent to prepare a solution of a terminal-reactive poly(N-acylalkylene imine); (b) mixing a modified organopolysiloxane containing an amino group bonded to a terminal end and/or a side chain of a molecular chain thereof with a solvent to prepare a solution of the modified organopolysiloxane; (c) mixing the terminal-reactive poly(N-acylalkylene imine) solution prepared in the step (a) with the modified organopolysiloxane solution prepared in the step (b) to react the amino group contained in the modified organopolysiloxane with the terminal-reactive poly(N-acylalkylene imine); (d) adding a basic substance to a reaction product obtained in the step (c); and (e) removing the solvents from a mixture obtained after the addition in the step (d) at a temperature of from 100 to 200° C.: wherein R1 is a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, an aralkyl group or an aryl group; and n is a number of 2 or 3.
US08592527B2
Provided herein are vinyl ether end-functionalized polyolefins and methods for producing the same.
US08592522B2
The object of the present invention is to provide an oxygen-absorbing resin composition having a high oxygen absorbability and capable of absorbing oxygen for a long period of time. The present invention provides an oxygen-absorbing resin composition comprising polyolefin resin (A) obtained by polymerizing an olefin having 2 to 8 carbon atoms, resin (B) which is other than resin (A) and which acts as a trigger for the oxidation of resin (A), and transition metal catalyst (C), wherein resin (B) is dispersed in the matrix of resin (A) so that the oxidation reaction of matrix resin (A) is caused and thus oxygen is absorbed when the oxygen-absorbing resin composition is brought into contact with oxygen. This oxygen absorbing resin composition has a high oxygen absorbability and is advantageous in cost because oxygen is absorbed in resin (A).
US08592507B2
A polymeric flocculant is added to an aqueous solution comprising an organic acid and a basic compound to form a water-soluble fluid suitable for use in machining of rare earth magnet.
US08592496B2
Methods of forming hybrid aerogels are described. The methods include forming a hybrid aerogel from a metal oxide precursor and a branched telechelic copolymer, e.g., co-hydrolyzing and co-condensing the metal oxide precursor and the branched telechelic copolymer. Aerogels and aerogel articles, including hydrophobic aerogels and hydrophobic aerogel articles are also described.
US08592493B2
Articles that contain a solid support with a grafted chain extending from the solid support, methods of making these articles, and various uses of the articles are described. More specifically, the grafted chain has a functional group that can react with or interact with target compound. Alternatively, the functional group on the grafted chain can react with a modifying agent to provide another group that can react with or interact with the target compound. The grafted chains are attached to the solid support through a ring-opened azlactone group. The articles can be used to purify the target compound or to separate the target compound from other molecules in a sample.
US08592491B2
A particulate subcomponent for a barium titanate dielectric is obtained from a sol in which a rare earth metal compound is dispersed in water. The rare earth metal compound includes a carboxylic acid having at least three carbonyl groups and at least one rare earth metal which can be Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu so that the molar ratio (carbonyl group/rare earth metal) is in the range of 1.2 to 3. A method of making the sol and a method of using the sol to make a ceramic powder is described.
US08592483B2
The present invention provides a novel fatty acid derivative. The present invention also provides a method for treating schizophrenia in a mammalian subject, which comprises administering to the subject in need thereof an effective amount of a fatty acid derivative.
US08592482B2
Provided are methods and compositions for the treatment or prevention of ocular angiogenesis and neovascularization. Administration of inhibitors of the CCR3 receptor or its ligands eotaxin (CCL11), eotaxin-2 (CCL24) or eotaxin-3 (CCL26) inhibits ocular angiogenesis.
US08592479B2
The invention encompasses compositions for enhancing the ability of a companion animal to resist and/or overcome viral infections. The compositions of the invention include an amount of lipoic acid that is effective in enhancing the antiviral immunity of a companion animal.
US08592478B2
A food composition comprises an antioxidant component comprising at least one of alpha-lipoic acid and L-carnitine, said composition meeting ordinary nutritional requirements for an adult canine or feline.
US08592476B2
Dihydroxyaryl compounds and pharmaceutically acceptable esters, their synthesis, pharmaceutical compositions containing them, and their use in the treatment of β-amyloid diseases, such as observed in Alzheimer's disease, and synucleinopathies, such as observed in Parkinson's disease, and the manufacture of medicaments for such treatment.
US08592458B2
The invention relates to the design and synthesis of 3-arylidene-anabaseine compounds that exhibit enhanced selectivity toward alpha7 nicotinic receptors. The compounds are expected to be useful in treating a wide variety of conditions, including neurodegenerative conditions such as Alzheimer's Disease, neurodevelopmental diseases such as schizophrenia, and certain peripherally located inflammations mediated by macrophage infiltration.
US08592456B2
The present invention relates to compounds of the general formula (I), and the pharmaceutically acceptable salt or solvate thereof, as anti-inflammatory and immunomodulatory agents.
US08592451B2
The invention provides neuromuscular blockade agents of the non-depolarizing type with few if any circulatory effects. Compounds of the invention include bis(isoquinolylalkanol) diesters of fumaric, maleic, succinic, and acetylenedicarboxylic acids; compositions suitable for parenteral administration of these compounds as a surgical adjunct to anesthesia, and methods of preparation of the compounds. Compounds of the invention can produce neuromuscular blockade of short or intermediate duration, which for various compounds can be reversed by administration of a thiol compound such as L-cysteine, D-cysteine or glutathione. For various compounds of the invention, the neuromuscular blockade effect can be reversed quickly, efficiently, and without notable side-effects.
US08592449B1
The present invention relates to radiolabelled PDE10A ligands which are useful for imaging and quantifying the PDE10A enzyme using positron emission tomography (PET).
US08592446B2
The present invention relates to a new family of [1,10]-phenantroline derivatives of formula (I), which are useful for the treatment or profilaxis of a neurodegenerative or haematological disease or condition, their use as a medicament, especially for treating a treatment neurodegenerative or haematological disease or condition, and a pharmaceutical composition comprising the compounds.
US08592443B2
The present invention relates to the use of 4-cyclopropylmethoxy-N-(3,5-dichloro-1-oxidopyridin-4-yl)-5-(methoxy)pyridine-2-carboxamide, in the form of a hydrate, of a solvate, of a base or of an addition salt with an acid, for the preparation of a medicament for use in the treatment of spinal cord traumas.
US08592442B2
Crystalline forms of Nilotinib HCl are described.
US08592438B2
A plant disease control composition comprising, as an active ingredient, a compound of formula (I) or a salt thereof, and one or more anilinopyrimidine compounds selected from the group consisting of 4,6-dimethyl-N-phenyl-2-pyrimidinamine, 4-methyl-N-phenyl-6-(1-propynyl)-2-pyrimidinamine and 4-cyclopropyl-6-methyl-N-phenyl-2-pyrimidinamine has an excellent plant disease control effect.
US08592436B2
The present invention discloses a series of pyrimidone derivatives represented by formula (I) or a salt thereof, or a solvate thereof or a hydrate thereof: Wherein X, Z, R1, R2, R3, R4, R5, R6, R7, n and m are as defined herein. Also disclosed herein are the methods of preparation of compounds of formula (I), intermediates therefor and their utility in treating a variety of disease conditions.
US08592433B2
The invention provides a novel class of compounds having the structure of Formula I, pharmaceutical compositions comprising such compounds and methods of using such compounds to treat or prevent diseases or disorders associated with abnormal or deregulated kinase activity, particularly diseases or disorders that involve abnormal activation of the Abl, Bcr-Abl, Aurora-A, Axl, BMX, CHK2, c-RAF, cSRC, Fes, FGFR3, Flt3, IKKα, IR, JNK2α2, Lck, Met, MKK6, MST2, p70S6K, PDGFRα, PKA, PKD2, ROCK-II, Ros, Rsk1, SAPK2α, SAPK2β, SAPK3, SAPK4, Syk, Tie2 and TrkB kinases:
US08592432B2
The invention provides novel pyrimidine derivatives and pharmaceutical compositions thereof, and methods for using such compounds. For example, the pyrimidine derivatives of the invention may be used to treat, ameliorate or prevent a condition which responds to inhibition of anaplastic lymphoma kinase (ALK) activity, c-ros oncogene (ROS), insulin-like growth factor (IGF-1R), and/or insulin receptor (InsR) or a combination thereof.
US08592431B2
Provided is a novel compound represented by the following formula Wherein each symbol is as defined in the specification, or a salt thereof, which has an angiotensin II receptor antagonistic activity and a peroxisome proliferator-activated receptor γ agonistic activity, and is useful as an agent for the prophylaxis or treatment of circulatory diseases such as hypertension and the like and/or metabolic diseases such as diabetes and the like, and the like.
US08592426B2
The invention provides novel compounds having the general formula (I) wherein R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, A1, A2 and n are as described herein, compositions including the compounds and methods of using the compounds.
US08592425B2
The invention encompasses imidazo[1,2-a]pyridine and imidazo[1,2-b]pyridazine derivatives which selectively inhibit microtubule affinity regulating kinase (MARK) and are therefore useful for the treatment or prevention of Alzheimer's disease. Pharmaceutical compositions and methods of use are also included.
US08592421B2
The invention relates to cyclic bioisosteres of derivatives of a purine system having a general structural formula where R=Li, Na, K, R1=—H, —NH2, —Br, —Cl, —OH, —COOH, B=—N═, —CH═, Z=—CH═, —N═, A=—N═ at B=—N═, Z=—CH—, A=—CH═ at B=—N═, Z=—CH—, A=—CH═ at B=—N═, Z=—N═, A=—CH═ at B=—CH═, Z=—CH═, A=—CH═ at B=—CH═, Z=—N═, and their pharmacologically acceptable salts having a normalizing effect on endocellular processes, in particular, it is capable eliminating endocellular metabolic acidosis and capable of binding excessively formed free radicals, in particular, free-radical forms of oxygen, capable of normalizing the nitrergic mechanisms of the cells, and also capable of interreacting with adenosine-sensitive receptors on the membrane of non-nuclear cells and in nuclei-containing cells to decrease the aggregation of thrombocytes. The compounds according to the invention have hepatoprotective effect and can be used for producing pharmaceutical compositions on their base.
US08592419B2
The invention provides the compounds of formula (): and pharmaceutically acceptable salts thereof, wherein R1, R2, R3, R4, A, X, Y, a, b and n are as defined herein. Also disclosed are methods for making the compounds of formula (I) and their use in treating or preventing diseases associated with cell overproliferation and dysfunctional sphingolipid signal transduction. The invention also encompasses the use of the compounds in combination with an apoptosis-signaling ligand, such as Fas ligand. Preferably, the Fas ligand is administered in the form of a gene therapy agent.
US08592401B2
Methods and compositions comprising 1,25-dihydroxyvitamin D2 are disclosed. A method for lowering or maintaining lowered serum parathyroid hormone in human patients including administering to said patients an effective amount of 1,25-dihydroxyvitamin D2 to lower or maintain lowered serum parathyroid hormone levels is disclosed. Dosage forms and dosing regimens are also disclosed.
US08592381B2
The present invention is directed to methods for treating rhinitis or sinusitis in a subject. In one embodiment, the method comprises the steps of: identifying a subject in need thereof, and administering intranasally to the subject a formulation comprising an only active ingredient of an effective amount of rhamnolipid. In another embodiment, the method comprises the steps of: identifying a subject in need thereof, and administering intranasally to the subject a first active ingredient of an effective amount of a rhamnolipid and a second active ingredient of an effective amount of a corticosteroid, an antihistamine, a leukotriene antagonist, cromylin, an antibiotic, a sphingolipid, or a decongestant.
US08592380B2
Described herein are emulsions and compositions for the treatment of acne vulgaris. The emulsions may be formulated as aerosol compositions. The aerosol propellant may be a hydrofluoroalkane propellant. The emulsions or compositions may comprise clindamycin phosphate and a buffer salt, and may exhibit decreased rates of clindamycin phosphate hydrolysis. Also described are methods of treating acne vulgaris, comprising the step of applying to an affected area of a subject in need thereof a therapeutically-effective amount of an inventive emulsion or aerosol composition.
US08592378B2
The present invention relates to a new compound useful as a modulator of melanocortin receptors. In particular, the present invention relates to a compound WS727713, a process for production of the compound by culturing, in a culture medium, a WS727713-producing strain belonging to Pseudonocardia and recovering the compound from a culture broth, a pharmaceutical composition containing the compound, and uses of the compound.
US08592375B2
This invention is directed to multifunctional, context-activated protides that have two or more effectors with individually distinct biological functions and one or more corresponding activator sites that can each initiate or amplify the biological function of one or more effectors upon context-activation. The context-activated protides of the invention are useful in the diagnosis, prophylaxis, and therapy of a broad range of pathological conditions.
US08592374B2
The present invention relates to a neurotrophic peptide having an amino acid sequence of VGDGGLFEKKL (SEQ ID NO:1), EDQQVHFTPTEG (SEQ ID NO:2) or IPENEADGMPATV (SEQ ID NO:3), and comprising an adamantyl group at the C- and/or N-terminal end.
US08592372B2
The present document describes a pharmaceutical composition as well as methods to improve organ function using a high dose of insulin and maintaining normal glycemia. Methods of intensive insulin therapy using the pharmaceutical composition are also described.
US08592342B2
A thermal paper is described for the formation of images in thermal printing equipment and their manufacturing process, using high smoothness paper as a base or substrate. The thermal paper object of this invention is more economical and has a fully-acceptable performance. The high smoothness non-coated base paper has a greater high smoothness superficial finish than uncoated paper, and this development had not previously been used industrially for this purpose, since on trying to use the state of art of the process coupled with uncoated paper characteristics, the result was a low quality product. Hence, until now base papers had to be used with a previous coating the preparation of which increased production costs due to finished product characteristics, such as heavier weight (weight by square meter) and also a higher caliber.
US08592339B2
High-quality bimetallic PtxCu100-x (x=54-80 at. %) nanocubes can be prepared from a hot organic solution. Synthetic conditions, such as the ratio of oleylamine/tetraoctylammonium bromide as well as the doses of 1-dodecanethiol and 1,2-tetradecanediol have been optimized to ensure a formation of Pt—Cu nanocubes. Electrochemical evaluation shows that the catalytic activity of Pt60Cu40 nanocubes for methanol oxidation is superior, in comparison with those of spherical Pt60Cu40 nanocubes and Pt nanocubes with similar sizes, implying that the {100}-terminated Pt60Cu40 nanocubes offer a higher activity for methanol oxidation reaction than those with mixed crystallographic facets do. As another example, it was identified that Pt80Cu20 nanocubes is the best electrocatalyst on the basis of the maintainable electrocatalytic activity (which is even slightly superior to that of pure Pt nanocubes) and remarkable long-term stability (˜300 hours vs 3 hours for Pt nanocubes) when being performed towards formic acid oxidation reaction.
US08592337B2
Nitrogen oxide storage materials and methods of manufacturing nitrogen oxide storage materials are disclosed. The nitrogen oxide storage materials can be used to manufacture catalytic trap disposed in an exhaust passage of an internal combustion engine which is operated periodically between lean and stoichiometric or rich conditions, for abatement of NOx in an exhaust gas stream which is generated by the engine. In one embodiment, the nitrogen oxide storage material comprises alkaline earth material supported on ceria particles having a crystallite size of between about 10 and 20 nm and the alkaline earth oxide having a crystallite size of between about 20-40 nm.
US08592328B2
Described are methods of making silicon nitride (SiN) materials on substrates. Improved SiN films made by the methods are also included. One aspect relates to depositing chlorine (Cl)-free conformal SiN films. In some embodiments, the SiN films are Cl-free and carbon (C)-free. Another aspect relates to methods of tuning the stress and/or wet etch rate of conformal SiN films. Another aspect relates to low-temperature methods of depositing high quality conformal SiN films. In some embodiments, the methods involve using trisilylamine (TSA) as a silicon-containing precursor.
US08592318B2
A method for etching an etch layer disposed over a substrate and below an antireflective coating (ARC) layer and a patterned organic mask with mask features is provided. The substrate is placed in a process chamber. The ARC layer is opened. An oxide spacer deposition layer is formed. The oxide spacer deposition layer on the organic mask is partially removed, where at least the top portion of the oxide spacer deposition layer is removed. The organic mask and the ARC layer are removed by etching. The etch layer is etched through the sidewalls of the oxide spacer deposition layer. The substrate is removed from the process chamber.
US08592308B2
A method of forming a semiconductor device includes forming a silicide contact region of a field effect transistor (FET); forming a shallow impurity region in a top surface of the silicide contact region; and forming a stressed liner over the FET such that the shallow impurity region is located at an interface between the silicide contact region and the stressed liner, wherein the shallow impurity region comprises one or more impurities, and is configured to hinder diffusion of silicon within the silicide contact region and prevent morphological degradation of the silicide contact region.
US08592303B2
There are provided with a wiring structure and a method for manufacturing the same wherein in a wiring structure of multi-layered wiring in which a metal wiring is formed on a substrate forming a semiconductor element thereby obtaining connection of the element, no damage to insulation property between the abutting wirings by occurrence of leakage current and no deterioration of insulation resistance property between the abutting wirings are achieved in case that fine metal wiring is formed in a porous insulation film. The insulation barrier layer 413 is formed between an interlayer insulation film and the metal wiring, in the metal wiring structure on the substrate forming the semiconductor element. The insulation barrier layer enables to reduce leakage current between the abutting wirings and to elevate the insulation credibility.
US08592298B2
A method for fabricating edge termination structures in gallium nitride (GaN) materials includes providing a n-type GaN substrate having a first surface and a second surface, forming an n-type GaN epitaxial layer coupled to the first surface of the n-type GaN substrate, and forming a growth mask coupled to the n-type GaN epitaxial layer. The method further includes patterning the growth mask to expose at least a portion of the n-type GaN epitaxial layer, and forming at least one p-type GaN epitaxial structure coupled to the at least a portion of the n-type GaN epitaxial layer. The at least one p-type GaN epitaxial structure comprises at least one portion of an edge termination structure. The method additionally includes forming a first metal structure electrically coupled to the second surface of the n-type GaN substrate.
US08592289B2
A gallium nitride based semiconductor device is provided which includes a gallium nitride based semiconductor film with a flat c-plane surface provided on a gallium oxide wafer. A light emitting diode LED includes a gallium oxide support base 32 having a primary surface 32a of monoclinic gallium oxide, and a laminate structure 33 of Group III nitride. A semiconductor mesa of the laminate structure 33 includes a low-temperature GaN buffer layer 35, an n-type GaN layer 37, an active layer 39 of a quantum well structure, and a p-type gallium nitride based semiconductor layer 37. The p-type gallium nitride based semiconductor layer 37 includes, for example, a p-type AlGaN electron block layer and a p-type GaN contact layer. The primary surface 32a of the gallium oxide support base 32 is inclined at an angle of not less than 2 degrees and not more than 4 degrees relative to a (100) plane of monoclinic gallium oxide. Owing to this inclination, the gallium nitride based semiconductor epitaxially grown on the primary surface 32a of the gallium oxide support base has a flat surface.
US08592282B2
Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
US08592273B2
In a non-volatile memory device and method of manufacturing the same, a device isolation pattern and an active region extend in a first direction on a substrate. A first dielectric pattern is formed on the active region of the substrate. Conductive stack structures are arranged on the first dielectric pattern and a recess is formed between a pair of the adjacent conductive stack structures. A protection layer is formed on a sidewall of the stack structure to protect the sidewall of the stack structure from over-etching along the first direction. The protection layer includes an etch-proof layer having oxide and arranged on a sidewall of the floating gate electrode and a sidewall of the control gate line and a spacer layer covering the sidewall of the conductive stack structures.
US08592268B2
An improved semiconductor device manufactured using, for example, replacement gate technologies. The method includes forming a dummy gate structure having a gate stack and spacers. The method further includes forming a dielectric material adjacent to the dummy gate structure. The method further includes removing the spacers to form gaps, and implanting a halo extension through the gaps and into an underlying diffusion region.
US08592261B2
A semiconductor device may be designed in the following manner. A stacked layer of a silicon oxide film and an organic film is provided over a substrate, deuterated water is contained in the organic film, and then a conductive film is formed in contact with the organic film. Next, an inert conductive material that does not easily generate a deuterium ion or a deuterium molecule is selected by measuring the amount of deuterium that exists in the silicon oxide film.
US08592258B2
A method of mounting a semiconductor die on a substrate with a solder mask on a first surface includes placing a die on the solder mask, and mounting the die to the substrate by applying pressure and heat. The applied pressure ranges from a bond force of approximately 5 to 10 kgf, the heat has a temperature range from approximately 150 to 200° C. and the pressure is applied for a range of approximately 1 to 10 seconds.
US08592257B2
A method for fabricating a semiconductor module includes: bonding a semiconductor substrate onto a first insulating resin layer; dicing the semiconductor substrate into a plurality of individual semiconductor devices; widening the spacings between the adjacent semiconductor devices by expanding the first insulating resin layer in a biaxially stretched manner; fixing the plurality of semiconductor devices to a flat sheet, with a second insulating resin layer held between the plurality of semiconductor devices and the flat sheet, and removing the first insulating resin layer; stacking the plurality of semiconductor devices, a third insulating resin layer, and a metallic plate, in this order, so as to form a laminated body having electrodes by which to electrically connect the device electrodes to the metallic plate; forming a wiring layer by selectively removing the metallic plate and forming a plurality of semiconductor modules; and separating the semiconductor modules into individual units.
US08592253B2
A method for protecting an electronic device comprising an organic device body. The method involves the use of a hybrid layer deposited by chemical vapor deposition. The hybrid layer comprises a mixture of a polymeric material and a non-polymeric material, wherein the weight ratio of polymeric to non-polymeric material is in the range of 95:5 to 5:95, and wherein the polymeric material and the non-polymeric material are created from the same source of precursor material. Also disclosed are techniques for impeding the lateral diffusion of environmental contaminants.
US08592248B2
The present invention relates to a chemical etching method to electrically isolate the edge from the interior of a thin-film photovoltaic panel comprising a substrate and a photovoltaic laminate. The method comprises a step to dispense an etching paste comprising two or more acids on the laminate periphery; an optional step to apply heat to the laminate; and a step to remove the etching paste. The method is further characterized by the chemical removal of at least two chemically distinctive layers of the laminate at the periphery where the etching paste is applied. The method may be used to produce a thin-film photovoltaic panel.
US08592247B2
A method includes: forming an epitaxy wafer by growing a light absorbing layer, a grading layer, an electric field buffer layer, and an amplifying layer on the front surface of a substrate in sequence; forming a diffusion control layer on the amplifying layer; forming a protective layer for protecting the diffusion control layer on the diffusion control layer; forming an etching part by etching from the protective layer to a predetermined depth of the amplifying layer; forming a first patterning part by patterning the protective layer; forming a junction region and a guardring region at the amplifying layer by diffusing a diffusion material to the etching part and the first patterning part; removing the diffusion control layer and the protective layer and forming a first electrode connected to the junction region on the amplifying layer; and forming a second electrode on the rear surface of the substrate.
US08592227B2
Embodiments of the present disclosure include hybrid quantum dot/protein nanostructure, hybrid quantum dot/protein nanostructure systems, methods of using hybrid quantum dot/protein nanostructures, and the like.
US08592220B2
The present invention discloses an apparatus and method for rapid analysis of members of a combinatorial library. The apparatus includes a plurality of reactor vessels for containing individual library members, a fluid handling system that apportions a test fluid about equally between each of the vessels and a housing for enclosing the reactor vessels, the housing defining a pressure chamber, wherein the housing is configured to sustain a pressure substantially above atmospheric pressure. This allows for simultaneous screening of library members at high pressure by providing a small pressure differential on reactor components. The disclosed apparatus is especially useful for screening library members based on their ability to catalyze the conversion of fluid reactants.
US08592218B2
Methods for determining the amount of vitamin D compounds in a sample are provided. The methods can employ LC-MS/MS techniques and optionally the use of deuterated internal standards. Methods for diagnosing vitamin D deficiencies are also provided.
US08592216B2
The present invention provides methods for enhancing the fragmentation of peptides for mass spectrometry by modifying the peptides with a tagging reagent containing a functional group, such as a tertiary amine, having a greater gas-phase basicity than the amide backbone of the peptide. These high gas-phase basicity functional groups are attached to a peptide by reacting the tagging reagent to one or more available carboxylic acid groups of the peptide. Linking these high gas-phase functional groups to the peptides leads to higher charge state ions from electrospray ionization mass spectrometry (ESI-MS), which fragment more extensively during fragmentation techniques, particularly non-ergodic fragmentation techniques such as electron capture dissociation (ECD) and electron transfer dissociation (ETD).
US08592211B2
PiggyBac transposons and transposases with enhanced transposition activity in cells are provided. Also provided are associated methods and kits for both introducing exogenous DNA inserts into the genomes of host cells as well as for the removal of the inserts from the host cell genomes. Cells obtained by use of the compositions, methods and kits are also provided.
US08592205B2
The invention relates to an infectious arenavirus particle that is engineered to contain a genome with the ability to amplify and express its genetic information in infected cells but unable to produce further infectious progeny particles in normal, not genetically engineered cells. One or more of the four arenavirus open reading frames glycoprotein (GP), nucleoprotein (NP), matrix protein Z and RNA-dependent RNA polymerase L are removed or mutated to prevent replication in normal cells but still allowing gene expression in arenavirus vector-infected cells, and foreign genes coding for an antigen or other protein of interest or nucleic acids modulating host gene expression are expressed under control of the arenavirus promoters, internal ribosome entry sites or under control of regulatory elements that can be read by the viral RNA-dependent RNA polymerase, cellular RNA polymerase I, RNA polymerase II or RNA polymerase III. The modified arenaviruses are useful as vaccines and therapeutic agents for a variety of diseases.
US08592202B2
The invention generally provides molecular biosensors. In particular, the invention provides molecular biosensors having one or more aptamers. The molecular biosensors are useful in several methods including in the identification and quantification of target molecules.
US08592190B2
The present invention is directed to improvements in gasification for use with synthesis gas fermentation. Further, the present invention is directed to improvements in gasification for the production of alcohols from a gaseous substrate containing at least one reducing gas containing at least one microorganism.
US08592189B2
The invention provides a non-naturally occurring microbial organism having an adipate, 6-aminocaproic acid or caprolactam pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective adipate, 6-aminocaproic acid or caprolactam pathway. The invention additionally provides a method for producing adipate, 6-aminocaproic acid or caprolactam. The method can include culturing an adipate, 6-aminocaproic acid or caprolactam producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding an adipate, 6-aminocaproic acid or caprolactam pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce adipate, 6-aminocaproic acid or caprolactam.
US08592186B2
An innovative method is described for the production of chondroitin at high concentration, by fermentation of genetically mutated bacteria.
US08592177B2
The invention relates to a recombinant coryneform bacterium which secretes an organic chemical compound and in which the sugR gene which codes for a polypeptide having the activity of an SugR regulator has been attenuated. The invention further relates to a processes for using this bacterium for the fermentative preparation of organic chemical compounds.
US08592171B1
Embodiments described herein include methods and assays for detecting an analyte in a sample using a plurality of control zone capture agents. Some embodiments include detection of multiple analytes in a sample utilizing a plurality of analyte binders and a control zone containing multiple control zone capture agents. In some embodiments, the multiple control zone capture agents capture a plurality of binders within one control zone. Test results are determined by comparison of the control zone signal to a test zone signal.