A heating device is provided, comprising a shaped body, which has at least two regions comprising different compositions of a ceramic material with a positive temperature coefficient of electrical resistance. A method for manufacturing a heating device is furthermore specified.
Communication systems and methods in a communication system for allocating an amount of baseband resource in one of a plurality of digital units to a radio unit serving a cell are provided. The methods include estimating the amount of the baseband resource to be allocated to the radio unit, identifying a digital unit of the plurality of digital units on which a neighbor radio unit, serving a neighbor cell, situated in a geographical vicinity of the cell is allocating baseband resource, determining that the digital unit has available baseband resource of the estimated amount, and if so, allocating the estimated amount of baseband resource in the digital unit to the radio unit.
Methods and apparatus are disclosed that facilitate discontinuous reception via a primary cell and one or more secondary cells that have different TDD UL/DL subframe configurations including overlapping subframes, such as in an instance in which a UL subframe of a secondary cell overlaps with a corresponding DL subframe of the primary cell. A method may define an active state of a primary cell to be larger than an active state of a secondary cell in a TDD network that supports carrier aggregation. The method may also provide for discontinuous reception via the primary cell and the secondary cell in accordance with different TDD UL/DL subframe configurations and also in accordance with the respective active states of the primary and secondary cells.
The present invention provides a method for maintaining a large number of connections. The method comprises: when there is no data transmission between a User Equipment (UE) and a network, a network device deletes a radio bearer and reserves UE context information related to link restoration and a default bearer; when data needs to be transmitted between the UE and the network, the network device establishes a bearer connection with the UE according to the reserved UE context information related to link restoration. At the same time, the present invention provides a UE and system for maintaining a large number of connections. By using the method, the UE and the system of the present invention, a large number of UE connections can be maintained effectively, the network load can be reduced and the connection recovery process can be accelerated.
A method for performing a random access procedure by a Node-B with a specific user equipment (UE) within a cell in which a plurality of UEs are located together. System information is transmitted for at least one of a basic sequence index and a length of a zero correlation zone (ZCZ) to the specific UE. A preamble sequence is received from the specific UE over a random access channel. The preamble sequence is generated from Constant Amplitude Zero Auto-Correlation (CAZAC) sequences distinguishable by at least one of the basic sequence index and a length of a Cyclic Shift (CS) applied to the preamble sequence. The length of the CS applied to the preamble sequence is given by one among a plurality of application lengths determined based on the length of the ZCZ. A number of the plurality of lengths are differently given based on a type of the specific UE.
The present invention relates to a communication method in a heterogeneous network environment using the same frequency band. The method includes: transmitting by a transmitting station a message for using an arbitrary channel in the frequency band to a base station or a heterogeneous terminal using a heterogeneous communication technique; and performing by the transmitting station a data communication with a receiving station through the arbitrary channel. The message includes a time in which the transmitting station uses the arbitrary channel for the data communication. The message is a message with which the heterogeneous base station or the heterogeneous terminal, which receives the message, stops the data communication using the arbitrary channel for the time. Additionally, in this specification, a mobile communication terminal in a heterogeneous network environment using the same frequency band includes: a wireless communication unit for transmitting/receiving a wireless signal to/from outside; and a processor for controlling the wireless communication unit to transmit a message for using an arbitrary channel in the frequency band to a base station or a heterogeneous terminal, which uses a heterogeneous communication technique. The message includes a time that the terminal uses the arbitrary channel for the data communication. The message is a message with which the heterogeneous base station or the heterogeneous terminal, which receives the message, stops the data communication using the arbitrary channel for the time.
A method and an apparatus for adaptively allocating available bandwidth for network users. The method is particularly beneficial in improving a viewing experience for mobile devices accessing the network, while also maximizing the number of supported users within the network. An adaptively adjusted control parameter is used in conjunction with a utility function to assign a provisional rate for users entering the network. Based on the assigned provisional rate, the method then admits prospective new network users, if enough free capacity exists to service the new user at the provisional rate.
A technique for distributing channel allocation information in a demand access communication system. Multiple access codes are used that have a defined code repeat period or code epoch. For each such epoch duration, a schedule of assignment of traffic channels to active terminals for each epoch is determined. For each terminal designated as active during the epoch, a list of active channels for such terminal unit is assigned. Prior to the start of each epoch, a channel set up message is sent on one of the forward link channels, such as a paging channel, indicating the lists of active channels for epochs of the associated traffic channel(s) that are to follow.
Disclosed in the present invention is a method for a terminal to transceive a base station and a signal in a wireless communication system having a carrier aggregation technique applied thereto. More particularly, the present invention comprises the steps of: receiving a preamble from the base station through a specific component carrier; determining the use of either an uplink or a downlink of a corresponding subframe, on the basis of the preamble; and executing either the transmission of an uplink signal to the base station through the specific component carrier, or the reception of a downlink signal from the base station through the specific component carrier, according to the result of the determining step.
Methods and devices may be provided for aggregating component carriers in the licensed spectrum with at least one component carriers in the licensed exempt spectrum. Control information may be processed in a wireless transmit/receive unit (WTRU) while receiving and sending information on a primary component carrier (PCC) and a supplementary component carrier (SuppCC). A PCC subframe with a control portion and a data portion may be received. Resource assignment information associated with a downlink shared channel on the PCC may be embedded in the control portion of the subframe. Based on the resource assignment information on the PCC, resource assignment information associated with a downlink shared channel on the SuppCC may be identified in the data portion of the PCC subframe. A SuppCC subframe of the shared channel on the SuppCC may be processed as per the identified resource assignment information associated with the downlink shared channel on the SuppCC.
A broadcast signal receiver according to the present invention comprises: a demodulator for performing OFDM demodulation on a received broadcast signal including a frame for the delivery of a broadcast service: a frame demapper for outputting the frame, the frame including a preamble that contains first signaling information, and a plurality of link-layer-pipes (LLPs) that contain PLP data, second signaling information and third signaling information, with the PLP data including a base layer and an enhancement layer of the broadcast service; and a decoder for decoding the first signaling information, for decoding the second and third signaling information, and for selectively decoding the PLP data by using the third signaling information.
A method, an apparatus, and a computer program product for wireless communication are provided in which at least one bit rate for allocating network resources from a broadcast-multicast service center (BM-SC) is received. The network resources are then allocated based on the at least one bit rate. Moreover, all evolved Node Bs (eNBs) in a broadcast/multicast area are informed of the network resource allocation. Additionally, the network resources are allocated for a session based on a first bit rate, wherein the first bit rate is greater than a guaranteed bit rate (GBR), and the network resource allocation is adjusted to a second bit rate based on the occurrence of an event, wherein the second bit rate is equal to GBR.
Techniques are provided for reducing interference in a wireless network. A user equipment device in a first wireless coverage area of a wireless network using a time division duplex transmission scheme to designate a maximum timing advance value for uplink transmissions based on potential interference between uplink transmissions made by the user equipment device in the first wireless coverage area or at least one other user equipment device in the first wireless coverage area, and downlink transmissions intended for at least one user equipment device in a second wireless coverage area of the wireless network. The maximum timing advance value may be based on relative cell radii or other cell properties of the first and second wireless coverage areas. A base station may determine the maximum timing advance and transmit the maximum timing advance to the user equipment device.
The present invention relates to a random access process in a cellular communications system and to a user equipment (UE) and a NodeB adapted for performing the process. A problem with the random access is that the time slot for receiving a random access request (RA-request) has a long unused guard portion. When the UE transmits the RA-request, the distance to the receiving NodeB is unknown, and the purpose of the guard portion is to accommodate for propagation delay. The disadvantage is the inefficient use of the random access channel which results in long delays for UEs to access the network. The present invention solves the problem with a method in which the UE position is determined and the distance and propagation delay between the UE and NodeB is calculated before the transmission of the RA-request, and the timing of the transmission is advanced by the propagation delay.
The present invention provides methods, apparatuses and a program relating to fast recovering for network listening schemes in synchronization over air for small cells. The present invention includes tracking, at a first base station, a reference signal of a second base station, determining, whether the reference signal can be tracked, if it is determined that the reference signal can be tracked, adjusting, at the first base station, a system clock of the first base station based on the reference signal of the second base station, and estimating and storing parameters relating to a frequency difference between the system clock of the first base station and a system clock of the second base station, and if it is determined that the reference signal cannot be reliably tracked, adjusting the system clock of the first base station based on the stored parameters.
Automatic provisioning of an access point base station or femtocell. The method may include the femtocell transmitting first information (e.g., location information, signal measurement information, capability information, etc.) to a service provider (e.g., over an IP network). The femtocell may receive second information from the service provider, where the second information includes one or more operational parameters. The operational parameters may include hand-off parameters, admission policy parameters, PN or scrambling codes, power parameters, and/or other parameters. The femtocell may operate according to the received parameters to provide access for a plurality of access terminals in a local area.
Described herein are implementations related to communication in a wireless communication system. In one implementation, serving signals from serving base stations and interfering signals from neighbor base stations are split into multiple substreams. A power allocation algorithm is used to calculate the power amplitude factor of the substreams communicated from the serving based stations coupled to corresponding wireless devices. A control signaling related to this implementation is described.
The present invention relates to a method implemented by a wireless device in a wireless communication system, for adjusting a maximum output power level of the wireless device. The method comprises obtaining (310) an indication indicating a current level of criticality in the system in which a network node serving the wireless device is operating, and adjusting (320) the maximum output power level based on the current level of criticality indicated by the obtained indication.
Methods and systems are disclosed herein that may be used to share transmit-power information between mobile stations. An exemplary method involves a first mobile station: (i) determining a verified transmit power (VTP) for the first mobile station; (ii) using the VTP to generate a transmit-power message, wherein the transmit-power message is usable to determine an initial transmit power (ITP) for the second mobile station; and (iii) the first mobile station sending the transmit-power message to at least the second mobile station. For instance, the first mobile station may set the ITP for the second mobile station equal to the VTP for the first mobile station, and include an indication of the ITP in the transmit-power message. Alternatively, the first mobile station may calculate the ITP for the second mobile station by adjusting its VTP according to the ratio of the distance between the second mobile station and the serving base station, and the distance between the first mobile station and the serving base station.
Certain aspects of the present disclosure provide methods and apparatus for subframe muting and/or discontinuous reception (DRX) mode related to sleep mode for user equipment (UE) relays. One method generally includes measuring, at a UE functioning as a relay (i.e., a UE relay), signals of one or more other UEs functioning as relays during one or more particular subframes and reporting the measurements of the signals to an apparatus. Another method generally includes determining, at a first UE functioning as a relay, that no UEs are being served by the first UE; based on the determination, increasing an interval between broadcast signals; and transmitting the broadcast signals according to the increased interval.
A system and method dynamically scale power consumed by the circuitry of an electronic device based on channel state and/or data rate. The electronic device then operates according to the power scaling. The scaling may be in accordance with an effective data rate, a number of multiple input multiple output (MIMO) layers, receiver type, a cell scenario, or a number of carriers. A number of MIMO layers can be predicted based on at least one of channel conditions or a channel quality index (CQI).
Wireless device information comprising a power level of a successful access probe sent by wireless devices to an access node and a location of each of the wireless devices relative to the access node is acquired. Based on the wireless device information, a first access probe power level is determined. The determined first access probe power level is provided to a new wireless device and an access probe is received from the new wireless device using the first access probe power level.
A method of selecting a cellular network entails detecting a Wi-Fi signal, obtaining a country code from the Wi-Fi signal, prioritizing cellular network frequency bands based on the country code to define a band priority, and selecting a cellular network based on the band priority. The country code may be an IEEE 802.11d Country Code Information Element.
An app designed to prevent using distracting phone functionality, including texting, on a mobile phone while driving a vehicle is disclosed. The app detects and measure attributes including the phone's orientation and change of orientation and expresses them in a coordinate system relative to the direction of motion of the vehicle. If the phone orientation is found to be consistent with a change in direction of the vehicle, or the axis of rotation of the phone is found to be consistent with itself over time, the distracting phone functionality is disabled.
A user equipment (UE) speed up handover/redirection when the user equipment is in a coverage area of multiple radio access technologies (RATs). In one instance the user equipment determines whether to transmit an uplink (UL) reconfiguration message. The user equipment delays transmission of the uplink reconfiguration message when a transition from a serving radio access technology to a non-serving preferred radio access technology has been initiated while the UE is on a packet switched (PS) data call.
A method and an apparatus for balancing a load by taking into consideration a load of each mobile communication network (Public Land Mobile Network (PLMNs)) of a network sharing architecture are provided. A base station apparatus of a communication system having a network sharing architecture capable of serving at least one mobile terminal via at least two PLMNs is provided. The apparatus includes a load calculator and a load balancing controller. The load calculator is configured to calculate respective loads of the PLMNs. When a first network of the PLMNs is overloaded, the load balancing controller is configured to balance an overload to the first network included in cells neighboring a serving cell.
A heterogeneous network comprising macro network devices and micro network devices operates to maintain a dynamic data set of neighbor relations for a potential transfer of a User Equipment (UE) device from one network zone to another network zone. In response to detecting a failure of a macro network device to establish a network connection with a network device, a dynamic management of the data set initiates. A capacity number of network connections is determined for the macro network device (e.g., macro eNB sector carrier) based on the data set of neighbor relations. A threshold number is determined from the network neighbor device data, representing the set of micro network devices with which the macro network device is operable to establish the network. A defined number of micro network devices is maintained that is less than the threshold number of the network neighbor device data.
An in-device coexistence interference report control method of a network for terminal to inform the network of interference among heterogeneous radio communication modules coexisting in the terminal is provided. The method includes determining, at a terminal when a terminal capability enquiry message is received from a base station, whether the base station supports an In-Device Coexistence (IDC) interference report, transmitting, when the IDC interference report is supported, a terminal capacity information message to the base station, receiving a Radio Resource Control (RRC) connection reconfiguration message including information on whether terminal's IDC interference indicator transmission is permitted from the base station; and transmitting an RRC connection reconfiguration complete message to the base station in response to the RRC connection reconfiguration message. The in-device coexistence interference indication control method is advantageous in preventing the UE from transmitting useless in-device coexistence interference indication messages, resulting in reduction of unnecessary signaling.
A modem and a method for handing over Internet protocol (IP) multimedia subsystem (IMS) sessions from a packet-switched network to a circuit-switched network. One embodiment of the modem includes: (1) a physical layer through which IMS packets for a plurality of IMS sessions are transmittable and receivable, and (2) a control layer configured to gain access to respective IMS session data for the plurality of IMS sessions, the respective IMS session data originating from a host IMS application.
A system comprises a constellation of satellites placed in non-geostationary orbit, user terminals located in a coverage area, and N anchor stations able to ensure bidirectional communications with the user terminals by way of at least one satellite. The system furthermore comprises a network of routers interconnected with one another and to the Worldwide Internet Network, each anchor station is connected to the Worldwide Internet Network by way of a router, and each anchor station comprises a management device for managing the handovers to ensure service continuity for the communications. This management device is able to control the handovers between the successive orbiting satellites progressing over the coverage area, the handovers between anchor stations, or the handovers between simultaneously successive satellites and anchor stations.
A mobile device capable of connecting to a hybrid telecommunications network using different connection types is configured to implement various mitigations to audio disruptions that may occur during the performance of a call handover between connections. Negligible audio disruptions that do not impact the conversation between parties to the call are not mitigated at all, while relatively short audio disruptions are mitigated in a passive manner by playing background white noise or comfort sounds on the mobile device. Relatively longer duration disruptions are dealt with using more active mitigations in which audio tones are played and the mobile device's graphical user interface (GUI) is configured to indicate to the user that a handover is in progress. Audio disruptions which are irrecoverable are handled by disconnecting the call and providing options through the GUI to either call the other party back, send a message, or set a callback reminder.
Network architectures, apparatus, methods, and processes related to WiFi enabled devices (e.g., tablets and cellular phones) and wireless local area networks. In certain non-limiting embodiments, network architectures, apparatus, methods, and processes for providing or handling data offloading from congested cellular networks. In other non-limiting embodiments, network architectures, apparatus, methods, and processes pertaining to shared WiFi networks and/or infrastructures.
Mobile communication devices, such as user equipment (UE) using 3GPP-LTE or LTE Advanced, may communicate directly with another UE through a system called Device-to-Device (D2D) communication. The establishment of a D2D communication session may involve having one of the UEs trigger the signaling procedures. In particular, a D2D resource re-allocation method may be used to optimize the D2D communication resource utilization efficiency in a dynamic manner, which is fully controlled by one of the D2D pair (termed the master UE or M-UE). The M-UE may be arranged to re-allocate resources based on the buffer status report (BSR) of the UEs in the D2D communication session. The M-UE may be further arranged to dynamically change the configuration of the transmission window based on characteristics of the D2D communication session.
A wireless communication method and apparatus are provided for selecting quality-reporting sub-carrier bands based on sub-carrier band quantity information received from a base station. The method includes generally four steps. First, from a base station, information indicating quantity of sub-carrier bands is acquired. Second, channel quality of each of a plurality of sub-carrier bands within a communication band is measured from a received signal. Third, sub-carrier bands are selected from the plurality of sub-carrier bands, wherein quantity of the selected sub-carrier bands corresponds to the quantity of sub-carrier bands indicated by the acquired information. Fourth, information indicating channel quality of the selected sub-carrier bands is reported to the base station.
At the start of a method for analyzing a communications signal with a frequency-mask trigger unit and a selection unit, a mask which describes a trigger range for the frequency-mask trigger unit is defined in the frequency domain, in frequency and amplitude. Furthermore, within the selection unit, an application is allocated to the mask. The frequency-mask trigger unit then checks whether the spectrum of the communications signal violates the mask. Finally, the signal component of the communications signal which violates the mask is transferred to the application for a further evaluation by the selection unit.
Methods, apparatuses and computer readable media are described that determine a connection state between a mobile wireless device and a wireless network upon detection of an interruption of a connection between the mobile wireless device and the wireless network. The mobile wireless device transmits an uplink resource allocation message to the wireless network, and when receiving no response to the uplink resource allocation message, transmits a random access message to the wireless network. When receiving no response from the wireless network to the random access message, the mobile wireless device executes a radio link failure procedure. In an embodiment, the uplink resource allocation message includes a unique identifier for an existing radio resource control connection between the mobile wireless device and the wireless network.
Embodiments herein use a real-time closed-loop system to optimize a wireless network. The system includes a drone controlled by a self-organizing network (SON) to retrieve RF data corresponding to the wireless network. In one embodiment, the SON provides the drone with a predetermined path through the coverage area of the wireless network. As the drone traverses the path, a RF scanner mounted on the drone collects RF data. The drone transmits this data to the SON which processes the RF data to identify problems in the wireless network (e.g., cell tower interference). The SON generates one or more actions for correcting the identified problem and transmits these actions to a wireless network controller. Once the wireless network controller performs the action, the SON instructs the drone to re-traverse the portion of the path to determine if the problem has been resolved.
Methods and systems described herein relate to enhancing security on a mobile device. Systems and methods for mobile device security include restricting access to network resources via an in-location access point device, based on whether the mobile device is in proximity of the in-location access point device.
Examples disclosed herein provide systems, methods, and software for monitoring wireless communication devices within a geographic area of interest. In one example, a method of operating a location analytics system includes identifying a geographic area of interest. The method further includes identifying wireless sectors within the geographic area of interest, and identifying wireless communication devices within the wireless sectors. The method also includes generating mapping information for the geographic area of interest based on the identification of the wireless communication devices, and providing the mapping information to emergency action system to provide information to the devices.
A distribution device according to the present application includes a receiving unit, a calculation unit, and a distribution unit. The receiving unit receives location information from a terminal device owned by a user. The calculation unit calculates, once the receiving unit receives the location information, an expected time within which the user arrives from a first coverage region in which communication is possible by way of an out-of-coverage region in which communication is impossible to a second coverage region. The distribution unit distributes an alert to a predetermined distribution destination if the location information of the second coverage region is not received from the terminal device within the expected time calculated by the calculation unit.
In one version, the system uses a mesh of wireless nodes that form a tree shaped network. One of the nodes is a root node that has a connection to an external network, with other network participants being chirp clients, and wireless network clients. The chirp clients are low cost devices that transmit short duration messages that are scheduled using a chirp scheduling technique. At least one wireless node of the tree shaped network is designated as chirp-aware and has a bridge between the short duration messages and IP based devices. The bridge includes a wireless receiver and is connected to the external network. All nodes other than the root node disregard the short duration messages using adaptive filtering. Each node has two logical radios and a service radio, the nodes' uplink and downlink operating on non-conflicting frequencies. Wireless network clients communicate with the nodes using the service radios.
A method includes: an AP sets a broadcast/multicast indication bit that associates the service network and/or multicast group to the valid state and sends frames that carry the broadcast/multicast indication bit to a STA; the STA determines whether there is broadcast/multicast frame buffered in the AP according to the associated service network and/or multicast group and the received broadcast/multicast indication bit.
A method and a system for providing a vehicle service to a vehicle based on the location data of a mobile device. The method carried out by the system includes a step of receiving at a call center vehicle location data from a vehicle. After receiving vehicle location data, the method may then include receiving at the call center mobile device location data from the mobile device. The method may include determining whether the mobile device is located within the vehicle based upon the vehicle location data and the mobile device location data. And if the mobile device is located within the vehicle, the method may include initiating at least one vehicle service from the call center in response to the determination.
Systems, methods, apparatuses, and computer-readable media for providing radio frequency interference (RFI) awareness assistance data to global navigation satellite system (GNSS) receivers are described. In some embodiments, a first method includes receiving at a location server RFI situational information. The first method further includes maintaining at least one time and location dependent database of an RFI situation. The first method further includes sending at least one assistance data message to at least one receiver including the RFI situational information. In another embodiment, a second method includes receiving RFI awareness assistance data from a location server. The second method further includes adapting a position location measurement according to the received RFI awareness assistance data. The second method further includes calculating a location of the receiver based at least in part on the adapted position location measurement.
A system and method shares content with third parties based on the location of the third parties at the time the content was created. The third parties with which content is shared are selected by identifying those third parties which were within a zone of geographic proximity around the location at which the content was created at the time of its creation.
Methods and systems for providing and obtaining a geo-fence without a network download are disclosed. An embodiment generates geo-fence parameters and encodes the geo-fence parameters on a portable storage media, wherein the geo-fence parameters are transferred to a location-enabled mobile device when the location-enabled mobile device scans the portable storage media. An embodiment scans, by a location-enabled mobile device, a portable storage media, wherein the portable storage media stores geo-fence parameters, and wherein scanning the portable storage media transfers the geo-fence parameters to the location-enabled mobile device. An embodiment includes a non-transitory portable storage media comprising geo-fence parameters, including a perimeter of a geo-fence and one or more alert conditions associated with the perimeter of the geo-fence, wherein scanning the portable storage media transfers the geo-fence parameters to a location-enabled mobile device.
A rack server system and a wireless communication method are disclosed. The rack server system includes a rack management control unit and a server node. The rack management control unit includes a rack management control module and a first ZigBee communication module. The server node includes a first baseboard management control module and a second ZigBee communication module. The rack management control module generates a first serial communication signal. The first ZigBee communication module is electrically coupled with the rack management control module and transforms the first serial communication signal into a first wireless signal. The first baseboard management control module generates a second serial communication signal. The second ZigBee communication module is electrically coupled with the first baseboard management control module and transforms the second serial communication signal into a second wireless signal.
Probabilities are trained herein to test a wireless network system based on normal and faulty node conditions. The probability information is then used to identify normal and faulty networks during testing, which generates an indication of faulty nodes or an indication of a normal transmission path.
A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately.
Embodiments consistent with the present disclosure provide an LED lighting device and speaker. The LED lighting device and speaker may include an LED lighting unit, a speaker, an outer casing, and a power supply module. The LED lighting unit and the speaker are placed on the outer casing. There is also a sound guiding tube on the outer casing. The sound guiding tube on the outer casing may expand the audio bandwidth, enhance bass quality, reduce speaker vibration displacements, and protect the speaker. Further, the gap between the sound guiding tube and the bottom of the outer casing provides a heat dissipation path for the heat generated by the power supply module. In addition, the sound guiding tube and the hollowed lampshade forms a path that increases the air circulation between the interior and exterior of the LED lighting device and speaker. Finally, the sound guiding tube adds to the heating dissipating surface of the LED lighting device and speaker and therefore improves the efficiency of heat dissipation.
An acoustic port of acoustic device is covered with a mesh and/or other structure that resists entry of liquid and/or other materials into the acoustic device. Apertures of a housing that are separated by an umbrella section are coupled to the acoustic port such that the umbrella section may cover the acoustic port. In this way, when liquid enters one or more of the apertures, the umbrella section may direct the liquid away from the mesh such that pressure from the liquid upon the mesh may be reduced. As such, potential damage to the mesh and/or internal acoustic device components may be mitigated. In some implementations, the apertures may be covered with an additional mesh. Such additional mesh may further reduce the pressure of entering liquid on the mesh covering the acoustic port of the acoustic device.
A system, method, and article of manufacture for controlling home network devices using a multicast enabled remote control. The system includes a plurality of home network devices capable of receiving and/or transmitting multicast input and/or output signals and a home gateway to receive audio/video signals generated outside of the home and to transform the audio/video signals into multicast output signals. The system also includes a multicast enabled remote control to detect, aggregate, store and display all audio/video multicast output signals on the multicast enabled remote control, to enable a user to redirect an audio/video multicast output signal to one or more of the plurality of home network devices capable of receiving multicast input signals, and to control the plurality of home network devices capable of receiving and/or transmitting multicast input and/or output signals. Other embodiments may be described and claimed.
There is described a computer-implemented method for authorizing a user device, comprising: use of a processor for receiving an extracted identifier transmitted by a secondary device to be authorized over a telecommunication network, the extracted identifier being previously extracted by the secondary device to be authorized from an acoustic signal generated by an authorized main device, the acoustic signal corresponding to a transmitted audio signal received by the authorized main device and having a reference identifier embedded therein; use of the processor for validating the received identifier; and upon successful validation, use of the processor for transmitting an authorization confirmation to the secondary device.
An interactive television program guide system with digital storage is provided. The program guide gives users the ability to store information associated with recorded programs in a directory in the digital storage device thereby providing easy access to program information. The program guide may also provide a global media library for indicating the programs stored on removable storage media used with the program guide. The guide may also allow the user to manage and maintain a user media library to do the same. Non-time-sensitive data associated with recorded programs may be stored in a way that allows the user to interact with the data on playback as if the program were being originally aired. The program guide also allows the user to define “super-programs” for playback of a sequence of stored programs or program segments.
There is provided an information processing apparatus including an operation section which performs remote control of a television receiver, and a content information acquisition section which acquires content information related to content provided by the television receiver, and causes a storage section to store the content information.
Methods and systems are described herein for a media guidance application that adjusts the amount of time required to consume a media asset based on a current trip of a user. For example, the media guidance application may determine, based on the current progress of the user in the media asset, whether or not the user with complete the media asset before the end of a current trip.
Methods and system for providing content based on an embedded signal are disclosed. A method can comprise generating a placement signal based on an event, repeatedly embedding the placement signal into a data stream, and transmitting the data stream comprising the repeatedly embedded placement signal.
Disclosed is a method for four-path tree structured vector quantization, comprising: (a) placing codebook vectors where magnitudes of vectors are arranged in order at lowermost nodes; (b) configuring upper nodes by averaging vector values of the lowermost adjacent four nodes; (c) calculating mean square errors to paths of the upper nodes (A, B, C, and D) corresponding to four paths from an input vector ‘X’; (d) presetting a threshold between 0 and 1 after the ‘(c)’; (e) calculating thresholds between the input vector ‘X’ and four paths ‘A’, ‘B’, ‘C’, and ‘D’, based on the mean square errors; and (f) comparing the thresholds calculated in the ‘(d)’ with the preset threshold to select a path having a threshold greater than the preset threshold, in which dynamic four-path tree structured vector quantization is used instead of conventional dynamic two-path tree structured vector quantization, thereby more efficiently and quickly searching a codebook.
In a first inter-image prediction mode in which information on a motion vector is used, a first mode detection unit constructs a first candidate list from a plurality of reference block candidates based on a first predetermined order, assigns indices for designating reference block candidates added in the first candidate list, and outputs the indices of the plurality of reference candidate blocks. In a second inter-image prediction mode in which is used a motion vector difference between a motion vector predictor based on information on a motion vector, and a motion vector of a coding target block, a second mode detection unit constructs a second candidate list from a plurality of reference block candidates based on a second predetermined order, assigns indices for designating reference block candidates added in the second candidate list, and outputs the indices of the plurality of reference block candidates and motion vector differences.
Provided is an image encoding/decoding apparatus and method. The image encoding apparatus may include a motion vector prediction unit to perform a prediction with respect to an arbitrary motion vector of a current block within an image, using at least one of vector information of a motion vector corresponding to an adjacent block and vector information of a previous motion vector of the current block, and a differential determination unit to determine differential information of a motion vector of the current block based on the motion vector predicted in the motion vector prediction unit and an actual motion vector of the current block.
A method and apparatus for a multi-core video decoder for decoding a single bitstream are disclosed. The multi-core video decoder comprises a first video decoder configured to receive the bitstream, parse header information to determine buffer management for a plurality decoding jobs based on the header information, and assign decoding jobs based upon the buffer management. A second video decoder configured to receive the bitstream and decode the bitstream based on an assigned decoding job from the first video decoder.
A specification defining allowable luma and chroma code-values is applied in a region-of-interest encoding method of a mezzanine compression process. The method may include analyzing an input image to determine regions or areas within each image frame that contain code-values that are near allowable limits as specified by the specification. In addition, the region-of-interest method may comprise then compressing those regions with higher precision than the other regions of the image that do not have code-values that are close to the legal limits.
In a case where a partition mode in which luma signals are partitioned horizontally and vertically is set when an intra prediction of a picture signal is made in units of minimal coding blocks set in advance, an intra prediction unit is configured to make an intra prediction of a chroma signal in units of prediction blocks of the intra prediction of chroma signals within the minimal coding block set in accordance with a chroma format. A second bitstream constructing unit constructs a bitstream of information relating to a luma intra prediction mode of a prediction block of luma signals and information relating to a chroma intra prediction mode of a prediction block of chroma signals.
Disclosed are a method for determining a color difference component quantization parameter and a device using the method. Method for decoding an image can comprise the steps of: decoding a color difference component quantization parameter offset on the basis of size information of a transform unit; and calculating a color difference component quantization parameter index on the basis of the decoded color difference component quantization parameter offset. Therefore, the present invention enables effective quantization by applying different color difference component quantization parameters according to the size of the transform unit when executing the quantization.
An apparatus and method for displaying a three-dimensional (3D) image is disclosed. On a display panel, red, green and blue subpixels are alternately arranged in a row direction and subpixels having the same color are arranged in a column direction. A 3D image filter is disposed ahead of the display panel and includes a transparent area and a non-transparent area arranged alternately. An edge defining the width of the non-transparent area is inclined with respect to a vertical axis of the display panel. A controller assigns a view image to be displayed at a subpixel of the display panel according to an inclination angle of the edge.
Projector methods, devices, software are described for a high decrease of the black level without decrease or a limited decrease of the luminance of the bright pixels for use with high contrast and high dynamic range projectors, e.g. based on RGB lasers or phosphor converted lasers. Such projectors can be used in a digital cinema, in a home theatre, in virtual reality systems, in simulators for training, for example. The projector optical system is adapted to vary, according to an average picture level, an effective étendue of the light source and to keep light power confined within a varying cone angle, whereby at the imaging system the projector étendue is matched to the effective étendue of the light source, the effective light source étendue and the projector étendue being controlled to the average picture level.
Pixels constituting the imaging element include at least four types of the determination pixels for which color filter patterns of adjacent pixels thereof are different from one another. At least one of pixels, which are adjacent to each determination pixel, is a first color pixel that has a color filter with a first color. Further, among the pixels which are adjacent to each determination pixel, a pixel, which is opposed to the first color pixel with the determination pixel interposed therebetween, has a color filter other than the color filter with the first color. Abnormal oblique incident light, which is incident into the imaging element, is detected on the basis of average values of the respective pixel data pieces corresponding to the types of these determination pixels.
A method to enforce watermarking instructions by a security module in a receiving device, comprising the steps of receiving a security message by—a security module, comprising at least a content key, watermark instructions and security message signature, said watermark instruction activates or deactivates a watermarking module, decrypting—a security message with a transmission key, verifying—a security message signature, and in case of successful verification, reading a watermarking data from the watermarking module, verifying the authenticity of the watermarking data, and in case of successful verification, transmitting the watermark instructions to the watermark module and the content key to a descrambling module.
A system for processing a media content comprising an application space, a media control mechanism operating in the application space, the media control mechanism controlling the operation of the system, a user interface adapted to provide input to the media control mechanism, a protected space distinct from the application space, and a protected media pipeline operating in the protected space, the protected media pipeline coupled to the media control mechanism, the protected media pipeline adapted to access the media content, process the media content, and output the media content.
A transmission management system receives a request for starting communication with a counterpart terminal from a terminal, which includes counterpart terminal identification information for identifying the counterpart terminal. In response to receiving the request, the transmission management system stores the counterpart terminal identification information of the counterpart terminal in association with terminal identification information of the terminal that sends the request to update candidate counterpart terminal identification for the terminal.
The invention relates to a device for the distributed mixing of data streams, including a main multimedia server (10) capable of receiving at least one incoming data stream (A, B, C) and of outputting at least one outgoing data stream (A′, B′, C′), and at least one secondary multimedia server (20) capable of receiving at least one incoming data stream (D, E, F) and of outputting at least one outgoing data stream (D′, E′, F′), the main multimedia server including a selection module (11) arranged so as to select a plurality of data streams (A, B, E, F) from the incoming data streams and a global mixing module (13) arranged so as to mix the selected data streams in order to obtain an aggregated stream (S), and the secondary multimedia server including a local mixing module (21) arranged so as to mix at least two incoming data streams (E, F) received by the secondary multimedia server and selected by the selection module of the main multimedia server in order to obtain an incoming intermediate stream (T) capable of being used by the global mixing module of the main multimedia server to obtain the aggregated stream. The invention also relates to a corresponding distributed mixing method.
When an accepting section 102 accepts an order to acquire image data, an image data acquirer 104 acquires image data from a memory section 130 and compresses it in the JPEG format. An orientation identifier 122 identifies orientation information of an image processing device 10 by using a detection value of an acceleration sensor. A direction identifier 124 identifies the azimuthal angle of a lens optical axis by using a detection value of a geomagnetic sensor and orientation information identified by the orientation identifier 122. If it is determined by the orientation identifier 122 that the image processing device 10 is in a horizontal orientation, the direction identifier 124 identifies the azimuthal angle of the lens optical axis from a predetermined direction in the image processing device 10 and the detection value of the geomagnetic sensor without using the lens optical axis direction.
A rear projection display system for a vehicle including a pico projector; and, a retractable pico rear projector screen operatively connected to the pico projector. In one embodiment, a common housing contains the pico projector and the retractable pico rear projector screen. In another embodiment the pico projector is mounted within the protective covering. In some embodiments the rear projector screen is motor driven and in other embodiments it operated by hand. The present invention is particularly advantageous in an aircraft environment where size and weight considerations are imperative.
According to one embodiment, an electronic apparatus includes a housing and a component. The housing includes a synthetic resin portion and a metal portion. The synthetic resin portion includes a first portion exposed to an outside of the electronic apparatus and a second portion including a nip portion. The metal portion overlaps the second portion from an outer side and covers the nip portion. The component is in the housing and faces the nip portion.
The present technique relates to a solid-state imaging device, a solid-state imaging device manufacturing method, and an electronic apparatus that are capable of providing a solid-state imaging device that can prevent generation of RTS noise due to miniaturization of amplifying transistors, and can achieve a smaller size and a higher degree of integration accordingly.A solid-state imaging device (1-1) includes: a photodiode (PD) as a photoelectric conversion unit; a transfer gate (TG) that reads out charges from the photodiode (PD); a floating diffusion (FD) from which the charges of the photodiode (PD) are read by an operation of the transfer gate (TG); and an amplifying transistor (Tr3) connected to the floating diffusion (FD). More particularly, the amplifying transistor (Tr3) is of a fully-depleted type. Such an amplifying transistor includes an amplifier gate (AG) (gate electrode) extending in a direction perpendicular to convex strips (33) formed by processing a surface layer of a semiconductor layer (11), for example.
An apparatus is configured to perform a method of parallax tolerant video stitching. The method includes determining a plurality of video sequences to be stitched together; performing a spatial-temporal localized warping computation process on the video sequences to determine a plurality of target warping maps; warping a plurality of frames among the video sequences into a plurality of target virtual frames using the target warping maps; performing a spatial-temporal content-based seam finding process on the target virtual frames to determine a plurality of target seam maps; and stitching the video sequences together using the target seam maps.
An information processing device including a control unit that, based on a specific subject that is an imaging target of a during-exposure zoom imaging operation, performs control decide control details for a zoom lens in the during-exposure zoom imaging operation.
A system and camera wherein the camera comprises in the light path a diffuser (4). The system or camera comprises a means (6) to modulate the diffusing properties of the diffuser (4) on an image projected by the lens on the sensor during exposure of the image. To the captured blurred image (10) an inverse point spread function is applied to deconvolute (24) the blurred image to a sharper image. Motion invariant image can so be achieved.
A lens barrel includes: a motor; an input transmission ring that is rotated by the motor and is rotatable around the optical axis; and a lens drive cylinder connected to the input transmission ring so that rotating force can be transmitted from the input transmission ring, the lens drive cylinder moving a lens in the optical axis direction and being rotatable. The lens drive cylinder is placed on one side of the motor in the optical axis direction, and the input transmission ring is placed on the same side of the motor as the lens drive cylinder.
An imaging apparatus includes an imaging plane phase-difference type first focus detecting unit and a contrast type second focus detecting unit. A saturation detecting unit detects saturation of focus detecting pixels or imaging pixels provided in an imaging element. A brightness detecting unit detects the brightness of an object. If the number of pixels detected by the saturation detecting unit exceeds a predetermined value or the brightness of an object detected by the brightness detecting unit is less than a predetermined value, a CPU controls a focus adjustment operation only using a first detection amount. Alternatively, the CPU controls a focus adjustment operation based on the result obtained by weighting processing of a first detection amount and a second detection amount in response to an increase in the number of pixels of which saturation of the outputs has been detected or a decrease in the brightness of an object.
A device and method incorporates features of a temporal contrast sensor with a camera sensor in an imager. The method includes registering the camera sensor with the temporal contrast sensor as a function of a calibration target. The method includes receiving camera sensor data from the camera sensor and temporal contrast sensor data from the temporal contrast sensor. The method includes generating a plurality of images as a function of incorporating the temporal contrast sensor data with the camera sensor data.
A color conversion method includes: a step (a) of obtaining paper white information including a spectral reflectance and a scanner response value of a paper white portion of a document, a step (b) of searching for a registered scanner profile corresponding to paper white information the same as or similar to the paper white information, from a plurality of registered scanner profiles for paper types, and a step (c) of determining whether a new scanner profile needs to be created corresponding to the paper white information obtained in the step (a), according to a result of searching in the step (b).
An information processing system includes an operation terminal and an input/output device connected to each other. The operation terminal includes a notification unit configured to send a notification based on information from the input/output device indicating that communication is possible with the input/output device. The input/output device includes an imaging unit, a detection unit for detecting the operation terminal capable of communicating with the input/output device, a transmission unit for to transmitting the information indicating that communication is possible with the input/output device, to the detected operation terminal, a determination unit for determining whether the imaging unit has taken an image of a predetermined action after the information has been sent, and an authentication unit for acquiring terminal information from the detected operation terminal, and performing authentication based on the terminal information, when the image of the predetermined action is determined to have been taken by the determination unit.
A method is disclosed. The method includes applying a human visual system (HVS) model to a Continuous Tone Image (CTI) and a initial Half Tone Image (HTI) to generate a perceived CTI and a perceived HTI and computing a change in pixel error for a first pixel by toggling the first pixel with all the possible output states and swapping the first pixel with all neighbor pixels.
A method and apparatus for automatically categorizing images in a digital camera is provided. In one aspect, image data is captured by a digital camera. Image data analysis is performed on the captured image data by the digital camera to automatically generate a category tag to which the captured image data may relate. The generated category tag is stored in association with the captured image data for categorizing the captured image data.
Provided is a light source unit that emits linear light to an original, the light source unit including: light sources that emit light; a light guide that is formed in a rod shape and that guides the light from the light sources to the original; a frame that houses the light sources and the light guide; and a circuit board including a conduction portion electrically connected to the light sources, wherein the circuit board is provided with a slit in a longitudinal direction of the light guide, the slit is disposed closer to the original than the light guide, and the light from the light guide is emitted to the original through the slit.
When it is determined that transmission of an execution history corresponding to at least one job to an external apparatus can be completed before a transition time at which a transition from a first operation mode, in which a job can be executed, to a second operation mode, in which the power consumption amount is less than that of the first operation mode, transmission control is performed such that transmission of the execution history to an external apparatus is started.
A conversion device may be configured to communicate with an image processing device, a first information processing device, and a second information processing device. The conversion device may receive first data, and store the received first data in a memory. The conversion device may send conversion device access information to the first information processing device, the second information processing device, or the image processing device. The conversion device access information may be to be used for accessing the conversion device, and may be sent so that message information including the conversion device access information is to be sent to the first information processing device directly from the conversion device, or through a relay of the second information processing device. The conversion device may send second data to the first information processing device. The second data may be converted from the first data.
A system and method for a caller identification voice announce. The caller identification voice announce is associated with a calling party. An identifier of an incoming calls is translated to the associated caller identification voice announce. The caller identification voice announce associated with the calling party is played in response to receiving the incoming call from the calling party.
In one embodiment, a phone number is used in connection with an advertising or marketing campaign. The account associated with the phone number may be configured to specify the type of information and the type of actions to be taken when a phone call is placed to the phone number. After the call that has placed to the phone number has completed, information relating to the call is compiled. Upon compilation, the information is transmitted by a network-enabled device using a protocol, where in one embodiment, the protocol is HTTP.
A private branch exchange (PBX) (or network hosted device) is described herein that is capable of obtaining information (e.g., in-a-conference presence state) that indicates a user is participating in a multi-party conference call which is being hosted by an external conference/collaboration bridge and is further capable of disabling a music-on-hold feature on an extension associated with a device belonging to the user such that if the user places the device on-hold then no sound (e.g., music, radio) will be injected into the multi-party conference call.
A method, computer-readable medium and system for interacting using content are disclosed. A web response may be executed on a first computer system and/or another computer system associated with the first computer system responsive to the initiation of a call over a voice channel between the first computer system and a second computer system. The web response may include automatically downloading content over a data channel so that it can be automatically presented at the first computer system and/or another computer system associated with the first computer system. The content may include video, audio, information from a social networking website, a blog, other content, some combination thereof, etc. In this manner, more and/or different types of content can be used to communicate with callers by causing content to be presented in conjunction with communication over a voice channel.
Described herein is a technique for customizing device behavior based on evaluated relationships between a user and the user's environment. User conduct is analyzed based on available sensors, which may include user-facing cameras. The user's environmental context is similarly evaluated based on the available sensors. Conduct and context, as well as any identified relationships between such conduct and context, may be reported to application programs, and may form the basis for customized device behavior.
A mobile terminal and a method of controlling the same are provided. In a state where a message application is executed, when a view mode of the mobile terminal is converted to a landscape view mode, the mobile terminal displays at least one selectable item related to the message application in a partial area of a screen.
An apparatus and a method for reading an image in a mobile terminal to establish a connection with a neighbor apparatus corresponding to the read image are provided. The apparatus includes an apparatus connector. The apparatus connector determines a neighbor apparatus to which a user desires to connect by reading a corresponding image, and establishes a connection with the determined neighbor apparatus.
According to the present invention, a mobile terminal includes a main body including a front side with which a display unit is combined, a first antenna mounted on the main body, extended in a first direction and including a first slot of which one end is closed and another end is opened, a second antenna mounted on the main body, extended in a second direction corresponding to a direction opposite to the direction to which the first slot is extended and including a second slot of which one end is closed and another end is opened, a power supply unit mounted in the inside of the main body, a first feeder configured to supply power to the first antenna from the power supply unit and a second feeder configured to supply power to the second antenna from the power supply unit.
Provided are systems and methods for network management and configuration. Exemplary methods can comprise communicating a first message to a network device. The first message can specify one of a first protocol or a second protocol. Methods can comprise configuring a first logical address for the network device based at least on the first message. Methods can comprise communicating a second message to the network device. The second message can specify one of a first mode, directing the network device to use the first protocol to connect to a network, or a second mode, directing the network device to use the second protocol to connect to the network. Methods can also comprise receiving a notification to release the first logical address from the network device. Methods can further comprise configuring a second logical address for the network device that can be defined according to the second message.
Approaches for staged data compression are provided, where each stage reflects a progressive increase in granularity, resulting in a scalable approach that exhibits improved efficiency and compression performance. The first stage comprises a long-range block-level compressor that determines redundancies on a block-level basis (based on entire data blocks, as opposed to partial segments within data blocks). The second stage comprises a long-range byte-level compressor that compresses an uncompressed block based on byte segments within the block that match previously transmitted segments. The duplicate segments are replaced with pointers to matching segments within a decompressor cache. Nonmatching segments of the data block are left uncompressed and passed to a third stage short-range compressor (e.g., a grammar-based compressor). The staged progression in granularity provides advantages of maximizing the compression gain while minimizing processing and storage requirements of the compressor and decompressor.
A computerized method of presenting information from a variety of sources on a display device. Specifically the present invention describes a graphical user interface for organizing the simultaneous display of information from a multitude of information sources. In particular, the present invention comprises a graphical user interface which organizes content from a variety of information sources into a grid of tiles, each of which can refresh its content independently of the others. The grid functionality manages the refresh rates of the multiple information sources. The present invention is intended to operate in a platform independent manner.
A data allocation method executed by a data allocation system. The data allocation method includes allocating to a first processing apparatus included among a plurality of processing apparatuses and allocating based on a first communication speed of the first processing apparatus, data having communication amount information on a frequency at which the processing apparatuses access the data, and further supplying first priority level information to the first processing apparatus; and exchanging based on variation of a communication speed of at least one processing apparatus among the processing apparatuses, the data or the first priority level information, and data or second priority level information allocated to a second processing apparatus included among the processing apparatuses and having a second communication speed.
A method for notifying users of an online social network of an activity performed within a web site that is external to the online social network by an individual who is a registered user of the online social network and the web site. The method comprises the steps of receiving a notification package from the external web site, the notification package including a notification message that describes the activity performed, parsing the notification package to extract a list of recipients, each of whom is to receive the notification message, and issuing the notification message to each of the recipients.
A method, system, and computer program product for optimizing storage of Web storage attributes through analytics is provided. The method includes identifying and storing in memory of a computer, utilization of different Web storage attributes by different end users across different Web application sessions from different Web browsers and analyzing the stored utilization of different Web storage attributes to identify a past scope of utilization for each of the different Web storage attributes. The method further includes, responsive to receiving a request from a requestor for an optimal storage location of a particular Web storage attribute, determining an identified past scope of utilization for the particular Web storage attribute, mapping the determined identified past scope of utilization for the particular Web storage attribute to the optimal storage location, and returning an indication of the mapped optimal storage location of the particular Web storage attribute to the requestor.
An information processing apparatus including plural operation processing apparatuses and plural disk apparatuses, which are connected to each other via a switch. A management apparatus provides, in response to a loan request from a terminal, a first operation resource and a first storage resource of a first processing apparatus in which a first operation processing apparatus and a first disk apparatus are connected with each other through the switch, to the terminal through a network. The management apparatus releases the connection between the first operation processing apparatus and the first disk apparatus through the switch in response to a return request from the terminal and provides the first storage resource and a second operation resource of a second processing apparatus in which a second operation processing apparatus and the first disk apparatus are connected with each other through the switch, to the terminal through the network.
Systems and methods provide for managing subscriptions to changes in resources in a Machine-to-Machine (M2M) system at a communications node. A method for such includes receiving, at an interface, a first subscription request from a first user to an application event; determining, by a processor, if other devices are subscribed to the application event; reading, by the communications node, the first subscription request including data, semantics and syntax; storing, in a memory, binding information for the first user and the application event; and transmitting, by the interface, if, based on said step of determining, no other devices are subscribed to the application event a second subscription message toward an M2M application server (AS).
A system, method, and computer program for compressing packet data is provided. In exemplary embodiments, one or more prefix arrays may be generated for retrieved data, and used as the basis for predicting subsequent data. The packet data may be compressed based, at least partially, on the predicted subsequent data. Accordingly, the compressed packet data may be transferred over a communication network.
A management server which manages a tenant pattern being information for forming a tenant being an application system for executing a predetermined application by using computer resources within a computer system, the tenant pattern including a configuration item and an ID pool, the management server having: pattern parts information for managing the configuration item as a pattern part that forms the tenant pattern; validation rule information for storing a detail of validation processing for a composition of the tenant pattern; and the management server further comprising: a tenant pattern generation unit; a tenant designing unit for designing a composition of the tenant, and generating a configuration detail for actually building the tenant on the computer system; and a validation execution unit for executing the validation processing for the tenant pattern and the configuration detail based on the validation rule information.
A system 100 stores policy information in which role identification information, resource group identification information and action information are associated with each other (101), stores user identification information and role identification information in association with each other (102), receives an access request including user identification information for identifying a user of a client device (103), generates access control information based on the policy information and transmits the generated access control information to an access target device (104), acquires address information of a transmission source of the access request (105), and generates communication filter information representing permission for communication relating to an address represented by the acquired address information and transmits the generated communication filter information to a communication filter device specified based on the policy information (106).
According to one embodiment, a computerized method comprises receiving a set of indicators of compromise (IOCs) associated with a known malware of a first message type from a first source and receiving one or more IOCs (IOC(s)) from a second source that is different from the first source. Thereafter, a determination is made as to whether the received IOC(s) from the second source correspond to the set of IOCs received from the first source. If so, information associated with at least the set of IOCs is used to locate a malware of the first message type that is undetected at the second source.
The disclosed subject matter provides a response to a cyber attack on a carrier network. The response can be based on inspection of traffic flowing through a carrier network. The response can automatically adapt the traffic flow in response to a perceived threat. Traffic can be adapted by dynamically updating permission variables related to allowing access for user equipment (UE) to a carrier network, withdrawing or denying access to the carrier network for selected UEs. In other embodiments, signaling can be initiated at the carrier network to cause selected UEs to disable transmission of traffic contributing to the traffic flow. Determining a cyber attack condition can be based on predetermined rules associated with the traffic flow. Further, the determination can be performed at a front end of the carrier network to limit exposure of the carrier network to a detected cyber attack.
Techniques are disclosed for authenticating users accessing computing applications, e.g., applications hosted in a cloud environment accessed using a variety of computing systems. As disclosed, an authentication process is performed using a certificate and private key installed on a mobile device and a nonce generated on the server. To authenticate a user, a server generates a nonce, encrypts the nonce with a public key associated with the user, and encodes the encrypted nonce in a barcode graphic (e.g., a QR code). The resulting barcode graphic is displayed to the user, and a mobile device scans the barcode graphic to recover the encrypted nonce. The encrypted nonce is decrypted using a private key stored on the mobile device. The clear text nonce is then displayed on the screen of the mobile device and used as a one-time password (OTP) for authentication.
Apparatuses, systems, methods, and computer program products are disclosed for user authentication in separate authentication channels. A token module is configured to create a unique token in response to receiving user credentials from an unknown user for a secure interface of a third party system. An identity module is configured to log into the secure interface using the received user credentials, and submit the unique token to a private input element located behind the secure interface. A match module is configured to receive the unique token from the private input element and a user identifier associated with the unknown user from the third party system. The match module is configured to associate the received user credentials with the user identifier based on the unique token. An access module is configured to display information associated with the user identifier to the unknown user.
Embodiments of software-supervised pairing processes are provided. The processes enable a user to pair a mouse and keyboard with a Bluetooth transceiver without having to use a second mouse and keyboard. At least two separate processes are provided, including a long transition for initial pairing or re-pairing and a short transition for re-establishing a connection after devices have already been paired.
In implementations of a hub coordination service, a device includes a communication interface for communication coordination with one or more associated devices of the device, and the associated devices correspond to hub members. A hub manager is implemented to receive a task input to create a task for one or more of the hub members to complete. The hub manager can register the task in a hub that is a private, shared space of the hub members, and then initiate communication of the task to respective associated devices of the one or more hub members for notification of the task to be completed.
A computer system and method for securing files in a file system equipped with storage resources that are accessible to an authenticable user operating with an untrusted client device under the semi-trusted client threat model. The file to be secured is stored in one or more blocks belonging to the storage resources along with symmetric per-block key(s) KBi assigned to each of the blocks in the file. The blocks are encrypted with the symmetric per-block keys to obtain encrypted blocks. The user is assigned user key(s) and each per-block key that was used for encryption is in turn encrypted with one of the user's keys to derive wrapped key(s) for each encrypted block. Wrapped key(s) are placed in encrypted block headers and introduce a level of indirection to encrypted file(s) that is appropriate for the semi-trusted client threat model.
In accordance with embodiments disclosed herein, there are provided systems, apparatuses, and methods for implementing cryptographic enforcement based on mutual attestation for cloud services. For example, in one embodiment, such means may include receiving, at the service provider, a request from a client, the request being for services from the service provider to the client; sending to a trust broker, from the service provider, a trust policy of the service provider against which trustworthiness attributes and capabilities of both the service provider and the client are to be evaluated by the trust broker; receiving, at the service provider, a certificate from the trust broker attesting to compliance of the service provider with the trust policy; sending the certificate from the service provider to the client for affirming mutual attestation of both the service provider and the client in compliance with the trust policy according to evaluation by the trust broker; establishing a connection between the service provider and the client for the service provider to render the requested services to the client; and encrypting information exchanged between the service provider and the client in fulfillment of the request for services from the client. Other related embodiments are further described.
Method, system, and programs for reducing network latency in a network. A first connection is established between a relay and a host in the network. The relay receives non-confidential information from the host over the first connection. A second connection is then established between the relay and a node in the network. The relay then communicates with the node, over the second connection, non-confidential information on behalf of the host based on the received non-confidential information from the host. The relay also forwards, over the first and second connections, confidential information between the node and the host.
Enabling recipients to share tags that they associate with received e-mails includes receiving an e-mail from a sending user addressed to a receiving user, the e-mail including a header and a body and being capable of supporting attachments to the e-mail that are distinct of the body. The receiving user is enabled to perceive the e-mail and associate at least one tag with the e-mail, the at least one tag being a textual descriptor for the received e-mail distinct from the header, body, and attachments of the received e-mail. The received e-mail and the at least one tag are stored in a data store associated with the receiving user. The at least one tag is propagated to at least one of the sending user and another recipient of the e-mail to whom the sender sent the e-mail.
In one kind of DoS attack, malicious customers may try to send a large number of filter requests against an innocent customer. In one implementation, a Filter Request Server (FRS) may allow a customer against who a filter request is made to dispute the implicit accusation of the filter request or stop sending malicious traffic. If the customer claims innocence, the FRS may log destination addresses of data packets sent by the customer and identify and ignore false filter requests if these filter requests come from customers who do not correspond to one or more of the destination addresses that have previously been logged by the FRS.
The present disclosure provides a source specific multicast service that maps multicast group addresses to corresponding source addresses. A boundary routing element can be configured to determine whether a received join request includes a mapped group address. If the join request does not include a mapped group address, boundary routing element can be configured to perform normal join request processing of the join request. If the join request includes a mapped group address, the boundary routing element can be configured to generate a corresponding source address using the mapped group address. The boundary routing element can also be configured to perform alternative join request processing as if the join request were an SSM join request that specified both a source address and a multicast group address.
A computer-implemented method, computer program product, and computer system for double IP address recovery. Double IP address is a situation of a same IP address for different hosts in a network, and the double IP address recovery resolves the double IP address. In the invention, the hosts exchanges rules and system state information. Each of the hosts determines its own action of the double IP address recovery based on the same rules and the system state information of the different hosts. Each of the hosts executes its own action, either to continue or to alter an IP address.
In one embodiment, a method includes building an address resolution cache for a layer-3 router in a first layer-2 datacenter, where the address resolution cache includes a plurality of entries, each of the entries containing a host network address, a host hardware address, and a switch identifier for a switch serving a host, intercepting an address resolution flood within the first layer-2 datacenter that seeks address resolution for a host in a second layer-2 datacenter, and generating a response to the address resolution flood that indicates a source in the second layer-2 datacenter, where data indicating the source in the second layer-2 datacenter is accessed from the address resolution cache.
Arrangements described herein relate to indicating in an electronic message whether a user has previously accessed content provided by a resource. An electronic message can be received. The electronic message can include at least one uniform resource identifier. A determination can be made as to whether a user to whom the electronic message is sent has previously accessed content provided by a resource identified by the uniform resource identifier. In the electronic message, whether the user has previously accessed the content provided by the resource identified by the uniform resource identifier can be indicated.
A system and method supporting instant messaging which removes many of the problems and harriers to the use of instant messaging through the use of universally unique identifiers to web pages for instant messaging sessions, with recipients invited to the instant messaging session via email.
A network control system for managing a plurality of managed switching elements that implement a plurality of logical datapath sets. The network control system includes a first controller instance that manages the logical datapath sets by generating, based on logical forwarding plane data, physical control plane data. The network control system also includes a second controller instance that manages the managed switching elements by receiving physical control plane data and sending the physical control plane data to the switching elements.
Systems, methods and computer readable media for providing low-latency scheduling on upstream channels. Systems and methods can include a low-latency scheduler and a network interface. The low-latency scheduler can assign a first group of upstream channels for standard communication of packets on a network, and to assign a second group of upstream channels for communication of small upstream packets on the network. The network interface can communicate transmission opportunities identified by the low-latency scheduler to the subscriber devices. The transmission opportunities for subscriber devices are assigned such that devices with a threshold amount of traffic receive transmission opportunities in the first group of upstream channels, and subscriber devices with less than the threshold amount of traffic receive transmission opportunities in the second group of upstream channels.
A method and tangible medium embodying code for allocating resource units of an allocatable resource among a plurality of clients in a computer is described. In the method, resource units are initially distributed among the clients by assigning to each of the clients a nominal share of the allocatable resource. For each client, a current allocation of resource units is determined. A metric is evaluated for each client, the metric being a function both of the nominal share and a usage-based factor, the usage-based factor being a function of a measure of resource units that the client is actively using and a measure of resource units that the client is not actively using. A resource unit can be reclaimed from a client when the metric for that client meets a predetermined criterion.
The present invention is provided with: a data-driven processor comprising at least a firing control which determines whether or not firing conditions have been met by determining whether or not all packets necessary for instruction execution have been received when a packet that convey a part of partitioned data to be processed has been input, and a data processing unit for performing processing corresponding to the packets transmitted from the firing control if the firing conditions have been met; a power supply circuit for supplying power to the data-driven processor; and overload avoidance means for refusing input of the packets to the data-driven processor, if a determination has been made that a data processing load in the data-driven processor may reach an overloaded state in which the data processing may stall, on the basis of current consumption in the data-driven processor. Accordingly, power consumption in a networking system is reduced.
It is presented a service access apparatus arranged to selectively initiate communication with a network node providing a service. The service access apparatus comprises: a data obtainer arranged to obtain a multilevel hierarchical identifier associated with a user of the service access apparatus and when the multilevel hierarchical identifier does not have a lower level first, reversing the multilevel hierarchical identifier; a concatenator arranged to determine a combined domain name; a domain name lookup client arranged to perform a domain name lookup using the combined domain name, and receiving a response of the domain name lookup; and a communication initiator arranged to, when the response comprises a valid resource record for the network node, initiate communication with the network node using a node pointer in the resource record. A corresponding method, computer program and computer program product are also presented.
Stacked (i.e., hierarchically arranged) rate wheels schedule traffic flows in a network. A first rate wheel operates to efficiently schedule traffic flows in which traffic shaping parameters may be applied to individual traffic flows. A second rate wheel schedules group of the traffic flows in which traffic shaping parameters may be applied at the group level. In the context of an ATM network, the first rate wheel may operate at the virtual circuit level and the second rate wheel may operate at the virtual path level.
A method is described in a network element for supporting flexible lookup keys in a software-defined network. The method includes receiving a packet to be forwarded and determining a next hop for the packet, which includes parsing the packet to identify a superkey comprising a plurality of header field values of the packet; identifying a superkey mask value and a superkey offset value for a first lookup table of a set of one or more lookup tables; generating a table key for the first lookup table based upon the superkey mask value, the superkey offset value, and the superkey; and performing a lookup in the first lookup table using the table key. The lookup identifies an entry of the first lookup table indicating the next hop for the packet. The packet may then be forwarded to the next hop.
A combination of an independent key routing (IKR) method and a data proxy architecture (DPA) method may be used to route communication messages in a telecommunication network to achieve improved data locality and reduce secondary key lookups. A processor may receive a first communication message that includes subscriber identifiers that uniquely identify a subscriber, generate a plurality of keys for a plurality of message types, identify a first logical scalable unit (LSU) that includes a first memory that stores a first type of data via a database API and a first key, identify a second LSU that includes a second memory that stores a second type of data relating to the subscriber via the database API and a second key of the plurality of keys, store the first communication message and the first key in the first database memory, and store the first key in the second database memory.
Embodiments of the present invention provide a method and system for establishing a network communication path between a source node and a destination node. A destination geographic area of the destination node is determined. An intermediate node located in an intermediate geographic area that is adjacent to a source geographic area of the source node and is in a direction that is toward the destination geographic area is determined based at least in part on the destination geographic area. Connectivity with the intermediate node is requested or established. A determination is made as to whether the adjacent intermediate geographic area is the destination geographic area. If the determined adjacent intermediate geographic area is not the destination geographic area, a next intermediate node in another intermediate geographic area that is adjacent to the intermediate geographic area and is in a direction that is toward the destination geographic area is determined.
For dynamically determining packet sampling rates, a method including setting a packet sampling rate for one or more switch ports, collecting for an interval of time a plurality of statistics for the one or more switch ports, and adjusting the packet sampling rate in response to one or more of the plurality of statistics.
Systems and methods are provided for programmatically simulating one or more system conditions for a network resource using one or more services. In one implementation, a server receives a request to initiate a treatment. The request identifies a treatment definition. The server determines, based on the treatment definition, the one or more services and deploys the one or more services to the network resource. The one or more services simulate the one or more system conditions.
A method for analyzing and reporting gateway configurations and rules includes receiving configuration data from gateway devices providing access to an enterprise network. The gateway devices may be associated with multiple vendors. At least one computer processor parses the configuration information associated with each of the gateway devices to identify configuration output data for each of the gateway devices. The configuration output data for each of the gateway devices is stored in a single data structure. The configuration output data stored in the single data structure is indexed to generate one or more optimized data tables.
Troubleshooting, training, and other services that can be provided remotely to a user of an application, Web page, or similar component can take advantage of a lightweight approach to monitoring, viewing, and/or control. A page being viewed by a user can have client executable code contained therein, wherein actions of the user with respect to the page can generate events that can be sent to a remote queue, service, server, etc. A local copy of the page can be created that can be viewed and/or operated by a person providing the service to the user. A listener component can be configured to retrieve events from the queue, etc., and send those events to the local device such that the local copy can be updated, causing the local copy to accurately reflect what the user is seeing and doing with respect to the page.
Distributed application of enterprise policies to WebRTC interactive sessions, and related methods, systems, and computer-readable media are disclosed. In this regard, in one embodiment, a method for applying an enterprise policy to a WebRTC interactive session comprises receiving, by a distributed policy enforcement agent of a recipient device, a WebRTC session description object directed to the recipient device originating from a sender device via a secure network connection. The method further comprises determining, by the distributed policy enforcement agent, one or more enterprise policies based on the WebRTC session description object. The method additionally comprises applying the one or more enterprise policies to the WebRTC session description object. In this manner, an enterprise may permit establishment of a WebRTC interactive session that crosses an enterprise network boundary, while at the same time ensuring that the WebRTC interactive session complies with the one or more enterprise policies.
A method, system and computer program product for maximizing throughout of streaming media. The client device simultaneously establishes multiple independent network connections with a server (e.g., streaming video server) to access various segments of a file (e.g., video file). The client device requests a different segment of the file to be downloaded from the server across each of these network connections based on the throughput of each network connection. The received segments of the file are buffered and combined to provide continuous uninterrupted access to the received segments of the file. In this manner, the user will be able to view the contents of the file without any interruptions or pauses while at the same time without requiring any coordination between the client device and the server and without any degradation in the quality of the viewed content of the file.
A blind phase tracking method for an FBMC receiver. The frequency components of the received signal, after translation into baseband and filtered by an analysis filter bank, is processed by a phase estimation module. The latter estimates for each subcarrier the data carried and, where appropriate, the interference generated by the other data. A simplified symbol is then constructed with the sign of the data thus estimated and, where appropriate, the sign of the interference thus estimated. The phase estimation module determines the phase from the frequency components and simplified symbols. The phase correction is performed by multiplication by a phase correction factor.
A transmission apparatus includes a plurality of orthogonal frequency division multiplexing (OFDM) modulation signal generators, which generate a first OFDM modulation signal and a second OFDM modulation signal. The transmission apparatus also includes a transmitter that transmits the first OFDM modulation signal from a first antenna and the second OFDM modulation signal from a second antenna, in an identical frequency band. A reception apparatus is provided, which includes a plurality of antennas that receive a plurality of OFDM modulation signals; a plurality of OFDM demodulators that transform the plurality of OFDM modulation signals to a plurality of reception signals using Fourier transform; an estimator that outputs a distortion estimation signal using one or more symbols for demodulation included in the plurality of reception signals; and a demodulator that compensates for distortion of the reception signals using the distortion estimation signal and demodulates a data symbol included in the reception signals.
Disclosed are a method and apparatus for transmitting a training field. The method for transmitting a training field in a wireless LAN system comprises the steps of: transmitting additional long training field (LTF) indication information; and transmitting a frame including the additional LTF and partitioned data fields. The additional LTF comprises a field for demodulating the partitioned data fields included in the frame, the additional LTF indication information includes information on the location of the additional LTF included in the frame, and the partitioned data field includes at least one sub-field. Accordingly, the present invention can enhance channel estimation performance.
A method of FSK decoding includes generating a pulse waveform (R'Edge) from a received FSK encoded signal (FSK signal) and a system clock (Sys_clk). From R'Edge and Sys_clk clocks are generated including a first clock and second clock framing a logic ‘0’ level of the FSK signal, and a third clock and fourth clock framing a logic ‘1’ level of the FSK signal. At least four frequency envelopes are generated from the clocks including a logic ‘0’ envelope, a logic ‘1’ envelope, a lower frequency envelope below the logic ‘0’ envelope, and an upper frequency envelope above the logic ‘1’ envelope. R'Edge is compared to the four envelopes, and a decoded output is produced, logic ‘0’ if the R'Edge overlaps the logic ‘0’ envelope, logic ‘1’ if R'Edge overlaps the logic ‘1’ envelope, and a previous output state if R'Edge does not overlap the logic ‘0’ or logic ‘1’ envelope.
A receiver is disclosed that includes a slicer having an input to receive a sequence of symbols exhibiting inter-symbol-interference (ISI). The slicer determines a state associated with each symbol based on a threshold. A feedback equalization unit is coupled to the slicer to apply equalization to the symbol fed to the slicer input based on prior detected symbol states. A Least-Mean-Square (LMS) unit cooperates with the slicer and feedback equalization unit to estimate a channel impulse response based on the equalized symbols. The LMS unit feeds the estimated channel impulse response to a Maximum-Likelihood-Sequence-Estimation (MLSE) unit to generate an estimated sequence of bits based on the estimated channel impulse response.
A method for evaluating quality of radio links for a wireless body area network includes first and second wireless devices forming a body area network and configured to communicate with each other. One of the two wireless devices is mobile relative to the other, The method includes exploiting messages received by one of the wireless devices to measure instantaneous quality of a corresponding radio link and to estimate times during and between which a radio link is reliable, calculating an estimated times reliability indicator, and classifying the radio links as a function of the reliability indicator into at least first and second categories. One of these categories is a category relating to intermittently reliable radio links taking into account the mobility of the wireless devices of the body area network.
A method for performing communication of a machine to machine (M2M) device with a base station comprises the steps of receiving a paging message from the base station; and receiving multicast data from the base station on the basis of the paging message, wherein the paging message includes time information indicating the time when the base station transmits the multicast data to the M2M device.
Systems, methods, and software for operating communication systems are provided herein. In one example, method of operating a communication system to establish secure communications between a first user device communicating in a first communication network and a second user device communicating in a second communication network is presented. The method includes, responsive to a communication request received from the first user device, establishing a secure communication link between the first user device and a first security node. When a second security node has a security relationship established with the first security node, the method includes establishing the secure communication link for the secure communications between the first user device and the second user device using at least the security relationship between the first security node and the second security node, and exchanging the secure communications over the secure communication link.
Network communication and provisioning systems and methods are provided to enable automatic provisioning of an appliance to provide encryption services for email messages and other types of electronic messages addressed to or from an email domain.
A license administration device manages grant or denial of each optional function in a plurality of licensee devices. The licensee device stores key information encrypted with a cipher key so as to issue a license change request activating or restricting the predetermined optional function. Upon receiving a license change request restricting the predetermined optional function, the license administration device overwrites the key information of the licensee device with a default key. Subsequently, upon receiving a license change request activating the predetermined optional function, the license administration device applies an upgrade key to the key information of the licensee device. The default key or the upgrade key can be decrypted using a cipher key unique to the licensee device. The license administration device manages the licensed maximum for the predetermined optional function and reflects an increment or decrement to the licensing maximum by applying the default key or the upgrade key.
Space-efficient key allocations in broadcast encryption systems are provided. In some embodiments, a key bundle is read. The key bundle includes a first cryptographic key, an associated first key identifier, and an associated first cryptographic function identifier. Encrypted content is received. A plurality of encrypted keys is received. Each encrypted key has an associated identifier. A first encrypted key is selected from the plurality of encrypted keys such that the key identifier of the first encrypted is equivalent to the first key identifier. A first cryptographic function is determined corresponding to the first cryptographic function identifier. The first cryptographic function is applied to the first encrypted key using the first cryptographic key to obtain a first intermediate cryptographic key. A content cryptographic key is determined using the first intermediate cryptographic key. The content cryptographic key is applied to the encrypted content to obtain decrypted content.
Described herein is a low power squelch circuit which comprises a clock generation unit to generate first and second phases of a clock signal; a sampling unit to sample a differential input signal according to the first and second phases of the clock signal, the sampler to generate a sampled differential signal; and a differential amplifier to amplify the sampled differential signal.
In a communication system, activity of a transmitter, e.g., a UE, is controlled in response to a deactivation command. The transmitter receives data on at least one transmission carrier and, if a received transmission of data is found to be defective, may send a repeat request to trigger a retransmission of the data. In response to receiving the deactivation command, the transmitter performs a check whether a retransmission is expected on the at least one transmission carrier. If a retransmission is expected, execution of the deactivation command to deactivate the transmission carrier is delayed until the retransmission is received or a timer has expired.
A method of wireless communication including a plurality of fixed basestations and a plurality of mobile user equipment with each basestation transmitting to any user equipment within a corresponding cell a sounding reference signal sub-frame configuration indicating sub-frames when sounding is permitted. Each user equipment recognizes the sounding reference signal sub-frame configuration and sounds only at permitted sub-frames. Differing user equipment may have differing sounding reference signal sub-frame configurations. There are numerous manners to encode the transmitted information.
A wireless charging in-band communication system includes a transmitter module that formats a message using CRC calculation and attaches the results of the CRC calculation to the message for message error detection. The transmitter includes channel encoding for message error correction. A modulation module performs biphase modulation for DC balanced signals and impedance switching to change reflected impedance seen by the source. A synchronization module prepending the message with a synchronization sequence having Golay complementary codes. Moreover, the in-band communication includes a receiver module that receives the message from the transmitter module. The receiver module includes an impedance sensing circuit to detect changes in the reflected impedance of the transmitter module. The receiver module includes a front end filter used for pulse shaping and noise rejection. A preamble detection block includes a Golay complementary code correlator used for message detection, synchronization, and equalization coefficient estimation and selection. A decoding module performs biphase demodulation with error correction with a DC offset being estimated as the average value of the signal over the length of the message before channel decoding Also, the decoding module performs equalization, error correction channel decoding,and error detection (CRC).
The present invention relates to an optical transmitter for transmitting data. The optical transmitter includes a pulse generator for generating N data streams overlapping in time from a de-multiplexed data source. Each respective data stream has pulses with shapes unique to that respective data stream. The transmitter also includes an optical source optically transmitting an output pulse that is generated by summing the uniquely shaped pulses from each respective data stream that are overlapping in time. Each output pulse represents N bits of the data source, where N>1.
A signal propagation system for communicating timing information comprises a processing resource (300) arranged to generate a first timing signal for communicating the timing information, the first timing signal having a first frequency spectrum associated therewith. An electronic circuit (110) is provided having an input for receiving the timing information. An electrical connection (310) between the processing resource (300) and the electronic circuit (110) is also provided. A signal transformation module (304) for communicating the timing information, and the signal transformation module (304) is arranged to translate the first timing signal into a second timing signal for communicating the timing information. The second timing signal has a second frequency spectrum associated therewith that comprises fewer harmonics than the first timing signal, thereby reducing electromagnetic energy emitted by the electrical connection.
A receiver optical module to facilitate the assembling is disclosed. The receiver optical module includes an intermediate assembly including the optical de-multiplexer and the optical reflector each mounted on the upper base, and the lens and the PD mounted on the sub-mount. The latter assembly is mounted on the bottom of the housing; while, the former assembly is also mounted on the bottom through the lower base. The upper base is apart from the bottom and extends in parallel to the bottom to form a surplus space where the amplifying circuit is mounted.
A communication device includes a resource allocation module to allocate coax resources for signals to be transmitted over a cable plant and a coax physical layer device to transmit the signals over the cable plant using the allocated coax resources. The communication device also includes a media access controller, coupled to the multi-point control protocol implementation and the coax physical layer device, to provide to the coax physical layer device a bitstream that includes data for the signals and also includes information specifying the allocated coax resources.
A coaxial line terminal (CLT) comprising an optical port configured to couple to an optical line terminal (OLT) via an optical distribution network (ODN), an electrical port configured to couple to a coaxial network unit (CNU) via an electrical distribution network, and a processor coupled to the optical port and the electrical port, wherein the processor is configured to receive from the OLT a plurality of first frames addressed to the CNU, receive from the OLT a plurality of second frames not addressed to the CNU, forward the first frames to the CNU, and prohibit the second frames from being forwarded to the CNU.
A method of controlling a function of a mobile terminal is provided. The method includes placing the mobile terminal within a communication range of a Bluetooth Low Energy (BLE) device previously registered in the mobile terminal, receiving identification information of the BLE device from the BLE device, extracting function information corresponding to the received identification information of the BLE device, and performing a previously set function corresponding to the extracted function information.
A relay device in a system in which a transmission signal of a base station is relayed via a plurality of relay devices, includes: a first antenna configured to receive the transmission signal; a second antenna configured to communicate a target relay device being a relay destination relay device for the transmission signal; a communication unit configured to perform notification of setting information of the first and second antennas to other relay devices including the target relay device, and communication for acquiring setting information of the other relay devices; and an analysis unit configured to analyze a cause of a relay status lower than a criterion when the relay status of the transmission signal is lower than the criterion.
A method for performing hierarchical beamforming in a wireless access system and a device therefor are disclosed. Particularly, the method comprises: an initial step for allowing a base station to transmit a plurality of first beams, to which different steering vectors are applied, to a terminal through corresponding reference signals, and a repetition step for allowing the base station to transmit a plurality of second beams, to which different steering vectors are applied, to the terminal through corresponding reference signals by considering feedback information that contains an index of one or more beams received from the terminal, wherein the repetition step can be repeated up to a predetermined number of times.
The present invention relates to transmit power allocation in multi-carrier, multiplexing MIMO communication systems. The present invention especially relates to a MIMO communication device, a method of assigning transmit power to two or more communication channels and a software program product. A multiple-input-multiple-output, MIMO, communication device according to the present invention comprises a link controller adapted to assign transmit power to two or more transmission channels, each of said transmission channels having preassigned a portion of transmit power for each of a group of subcarriers, said link controller being further adapted to assign, for each subcarrier of said group of subcarriers, at least part of the preassigned transmit power portion of a transmission channel that is not used for transmitting information at the subcarrier, to one or more transmission channels that are used for transmitting information at the subcarrier.
Spatial Multiplexing (SM) with Multiple Input Multiple Output (MIMO) is used in many communication systems for providing high data rates. While SM-MIMO is a powerful technique for increasing the data rate and bandwidth efficiency, the decoders for SM-MIMO are highly complex. The complexity grows exponentially for optimum decoders as the number of multiplexed layers in SM-MIMO increases. Many reduced complexity suboptimal methods are used in practice that have close to optimum performance but they remain highly complex causing high power consumption which is not desirable for battery operated client terminals. Due to the parallel architecture of many of the SM-MIMO decoders, they involve computations that may eventually turn out to be redundant. A method and apparatus may include identifying and eliminating potentially redundant computations in SM-MIMO decoders based on the technique referred herein as precomputation. The removal of redundant computations enables reduced power consumption for SM-MIMO decoders.
The present invention is directed to methods and apparatuses for performing concurrent vectoring of systems having communications performed at different symbol rates. In embodiments, where a common binder includes different sub-groups of lines having corresponding different symbol rates, the invention includes methods and apparatuses for managing and concurrently vectoring all the lines of the different sub-groups.
The present disclosure provides a dielectric fluid composed of a genetically engineered microbial oil (GEMO) and an antioxidant. The GEMO includes a triglyceride and an amount of small glyceride. The amount of small glyceride is within a range from 0.1 wt % to 30 wt %, based upon the GEMO weight.
In one embodiment, the present invention is a method for performing incremental preamble detection in a wireless communication network. The method processes non-overlapping chunks of incoming antenna data, where each chunk is smaller than the preamble length, to detect the signature of the transmitted preamble. For each chunk processed, chips of the chunk are correlated with possible signatures employed by the wireless network to update a set of correlation profiles, each profile comprising a plurality of profile values. Further, an intermediate detection is performed by comparing the updated profile values to an intermediate threshold that is also updated for each chunk. Upon receiving the final chunk, the correlation profiles are updated, and a final preamble detection is made by comparing the updated profile values to a final threshold. Detections are performed on an incremental basis to meet latency requirements of the wireless network.
A wireless local area network (WLAN) includes a server and receiver in communication with the server as a network client. A plurality of radio frequency (RF) front-end circuits are each configured for receiving wireless signals from mobile nodes within the WLAN along an allocated channel specific for a front-end circuit. A plurality of baseband processors each specific to an allocated channel are connected to a respective front-end circuit for the allocated channel and capture a desired signal specific to the allocated channel. A system controller is connected to each baseband processor for configuring each baseband processor and processing the desired signal and obtaining message data and signal metrics for each allocated channel that are communicated to the server.
Systems and methods are described for transmitting data over physical channels to provide a high bandwidth, low latency interface between integrated circuit chips with low power utilization. Communication is performed using group signaling over multiple wires using a vector signaling code, where each wire carries a low-swing signal that may take on more than two signal values.
A radio module is disclosed that includes a baseband device, a layer device, and a multi radio antenna. The baseband device is arranged to perform digital modulation and/or demodulation. The baseband device provides a data connection available to a digital system using the radio module for radio communication. The multi radio antenna includes an analog radio device arranged to perform analog signal processing, and an antenna array connected to the analog radio device. The layer device is arranged to map each baseband device to one or more of the at least one multi radio antennas, and the radio module is connectable to a second equivalent radio module. A corresponding radio assembly and method are also disclosed.
A protective case for an electronic device having an antenna includes a first case member and a second case member. The first case member includes at least two metallic case portions joined to each other by at least one electrical insulator segment that electrically isolates the at least two metallic case portions from each other to reduce electromagnetic interference between the first case member and the antenna of the electronic device. The second case member that attaches to the first case member to form an enclosure that at least partially encloses the electronic device when the electronic device is installed in the protective case.
The invention comprises a method and apparatus for providing a connection method to digital devices connecting and disconnecting an exo-skeleton, impact protection, wearable computing and ergonomic texturing for digital devices. The invention increases the devices functionality, while providing a secondary quick release mounting method that allow the fast attachment and release of various accessories to the digital device or other objects, as well as providing mounting surfaces that allows for connection of various accessories. The secondary quick release mounting method can be integrated into any object independently, allowing a magnitude of possibilities. The device is made in variety of materials and methods, with an integrated spring mechanism, which allow for preloading and locking of the chucked arms against the digital device for a firm, secure protection of the device's fragile structure against impact as well as providing a connection standard.
A stand for an electronic device having a camera at one end, where the stand includes: an elongate base having a target end, a device end, a first side, and a second side; a tray disposed on a top surface of the target end adjacent to the first side of the base; a foot extending from the device end; and a device support extending upward from the base between the device end and the target end of the base. The device support has a height and a distance from the foot such that a camera of an electronic device can capture an image of an object or document located in the tray when the device is resting on the foot and the device support.
A microwave radio receiver includes a first down-converter, a second down-converter, and a combined receiver signal level (RSL) and interference detector. The first down-converter is configured to convert a RF signal into a first IF signal. The second down-converter is configured to convert the first IF signal into a second IF signal. The combined RSL and interference detector is configured to determine one or more RSLs and generate an interference indicator based on the first IF signal from the first down-converter and a control signal from the second down-converter.
A voltage controlled oscillator outputs an output signal whose frequency corresponds to inputted control voltage. A distributor distributes the output signal outputted from the voltage controlled oscillator. A plurality of injection-locked oscillators regulate self-oscillation frequencies according to the above frequency and output signals obtained by frequency-multiplying signals distributed by the distributor. A combiner combines and outputs the signals outputted from the plurality of injection-locked oscillators. This makes it possible to increase output power while preventing an operating band from narrowing.
A concatenated encoder is provided that includes an outer encoder, a symbol interleaver and a polar inner encoder. The outer encoder is configured to encode a data stream using an outer code to generate outer codewords. The symbol interleaver is configured to interleave symbols of the outer codewords and generate a binary stream. The polar inner encoder is configured to encode the binary stream using a polar inner code to generate an encoded stream. A concatenated decoder is provided that includes a polar inner decoder, a symbol de-interleaver and an outer decoder. The polar inner decoder is configured to decode an encoded stream using a polar inner code to generate a binary stream. The symbol de-interleaver is configured to de-interleave symbols in the binary stream to generate outer codewords. The outer decoder is configured to decode the outer codewords using an outer code to generate a decoded stream.
A sorting decoder captures the rank-order of a set of input analogue signals in the digital domain using simple logic components such as self-timed first state elements, without requiring conventional analogue-to-digital signal converters. The analogue signals are each compared against a monotonic dynamic reference and the resulting comparisons are snapshot by a self-timed first state element for each input signal, or the last member of a sorted collection of input signals, at the time when it reaches the reference signal, so that a different snapshot representing the signal value ranking relative to the other signal values is produced for each input signal. The resulting rank-order estimation snapshots are binary signals that can then be further processed by a simple sorting logic circuit based on elementary logic components.
A parallel sample-and-hold circuit includes a sampling switch and a hold capacitor for each of the ADC and MDAC of a converter stage for a pipelined ADC. Each sampling switch couples the analog input of the first converter stage to its hold capacitor at the time a sample is desired to be taken. After the sample is placed on the hold capacitor, the sampling switch is opened and the hold capacitor stores the sample. To compensate for mismatches in the signal paths of these sample-and-hold circuits, a compensation switch is further used. The compensation switch couples the terminals of the hold capacitors together, creating a parallel sample-and-hold circuit. The compensation switch is controlled such that it is closed after the sampling switches are opened to equalize a voltage of the samples.
A delay circuit includes units each of which includes a first delay element having a first input node and a first output node, a second delay element having a second input node and a second output node, and a third delay element between the first and second delay elements. The first output node of a first unit of the units is connected to the first input node of a second unit of the units. The second input node of the first unit is connected to the second output node of the second unit. A signal on the first input node of the first delay element of the first unit is output from the second output node of the second delay element of the first unit through the third delay element of the second unit.
The present invention provides a correction circuit. The correction circuit includes a frequency dividing circuit, a frequency dividing coefficient operation circuit, a built-in temperature collection circuit, and a power-on and power-off detection circuit. The built-in temperature collection circuit is configured to collect a temperature of the chip; the power-on and power-off detection circuit is configured to detect power-on and power-off of the chip; the frequency dividing coefficient operation circuit is configured to calculate, according to the temperature of the chip collected by the built-in temperature collection circuit when the power-on and power-off detection circuit detects that the chip is powered off, a frequency dividing coefficient, and output the frequency dividing coefficient to the frequency dividing circuit; and the frequency dividing circuit is configured to provide, according to the frequency dividing coefficient output by the frequency dividing coefficient operation circuit, a timing pulse for a real-time clock.
The invention relates to a programmable interconnection device, comprising: first rows of functional blocks, each functional block having inputs and outputs; second rows of programmable interconnection cells; horizontal connections, each connecting a programmable interconnection cell of the second row with only one other cell of that row; and connection bundles comprising transverse connections connecting a given programmable interconnection cell with functional blocks of the neighboring first row; the cells being suitable together for interconnecting the inputs and the outputs of each functional block of each first row with the outputs and the inputs of all of the other functional blocks of the same row.
In various embodiments, a circuit arrangement may be provided. The circuit arrangement may include a level shifting stage configured to be coupled to a first reference voltage, the level shifting stage having an output node. The circuit arrangement may further include a first input electrode in electrical connection with the level shifting stage. The circuit arrangement may also include a second input electrode in electrical connection with the level shifting stage. The circuit arrangement may further include a load having a first end and a second end, the first end coupled to the level shifting stage and the second end for coupling to a second reference voltage. In addition, the circuit arrangement may include a bypass circuit element connected in parallel to the load. The bypass circuit element may be configured to allow current to flow through upon application of an external voltage for bypassing the load.
A low voltage differential signaling generating circuit, which comprises a current source a pair of output nodes for providing a differential signal by virtue of a voltage difference therebetween, first and second differential switch circuitries and a bypass circuitry. The first differential switch circuitry selectively connects the current source to the first output node based on a control signal to cause a current flow from the first output node to the second one. The second differential switch circuitry selectively connects the current source to the second output node based on the control signal to cause a current flow from the second output node to the first one. The bypass circuitry is arranged in parallel to the first and second differential switch circuitries and is selectively switched based on an idle mode signal to prevent a current between the output nodes.
In an integrated clock gating (ICG) cell a latch is coupled to a NOR gate. The NOR gate receives an enable signal. The latch is configured to generate a latch output in response to the state of the enable signal. The latch includes a tri-state inverter. A NAND gate is coupled to the latch and the NAND gate is configured to generate an inverted clock signal in response to the latch output and a clock input.
A system having a power on reset circuit including a voltage divide), a multiplexer coupled to two outputs of the voltage divider, a first comparator coupled to the multiplexer and a reference, a logic gate coupled to the first comparator, a second comparator coupled to one of the two outputs of the voltage divider, and an emulation gate coupled to the second comparator.
An electronic component includes a switching device comprising a source, a gate, and a drain, the switching device having a predetermined device switching rate. The electronic component further includes a gate driver electrically connected to the gate and coupled between the source and the gate of the switching device, the gate driver configured to switch a gate voltage of the switching device at a gate driver switching rate. The gate driver is configured such that in operation, an output current of the gate driver cannot exceed a first current level, wherein the first current level is sufficiently small to provide a switching rate of the switching device in operation to be less than the predetermined device switching rate.
A switching unit serves for the arithmetic linking of at least two input signals supplied to the switching unit. For this purpose, the switching unit provides a switching matrix to which the at least two input signals are supplied. The switching matrix applies at least one summation operation to at least two input signals and/or at least one multiplication operation to at least one input signal. Additionally or alternatively, the switching matrix can also connect at least one input signal directly through to a first output. The switching matrix comprises for this purpose several current switches.
Apparatus and methods for switch-coupled oscillators are disclosed. In certain implementations, an oscillator system includes a primary oscillator, one or more auxiliary oscillators, one or more switching circuits, and an oscillator control circuit. The oscillator control circuit can be used to control the one or more switching circuits to selectively couple the primary oscillator to all or a portion of the one or more auxiliary oscillators. The oscillator control circuit can also disable any auxiliary oscillators that are decoupled from the primary oscillator to reduce power consumption. By selecting a number of auxiliary oscillators to couple to the primary oscillator, the oscillator system can have a configurable phase noise versus power consumption profile.
The purpose of this invention is to increase reliability of a switching element while reducing consumption power. In the vertical blanking period, an end pulse signal (ED) changes from the low level to the high level. The potential of first nodes (N1) in the first stage to (m−1)th stage of cascade-connected m-stage bistable circuits included in a shift register of the scanning signal drive circuit is reliably maintained at the low level, and the potential of second nodes (N2) in the first stage to the (m−1)th stage changes from the high level to the low level. In a bistable circuit in the m-th stage, the potential of the first node (N1) in the m-th stage changes from the high level to the low level, and the potential of the second node (N2) in the m-th stage is maintained at the low level. The supply to a bistable circuit of clock signals (CKA, CKB) is stopped. Until a write period in the subsequent vertical scanning period, the potential of the first node (N1) and the potential of the second node (N2) in each stage are maintained at the low level.
A bandpass filter is provided that prevents clock leakage to the input side of an amplifier circuit and has excellent out-of-passband signal attenuation. It includes an amplifier (102) connected between an input terminal and an output terminal, an impedance frequency conversion circuit (101) that is connected between an output of the amplifier and ground and changes impedance depending on whether or not the frequency of a signal output from the amplifier is within a predetermine passband, and a feedback circuit (103) connected between the output and an input of the amplifier.
The invention relates to a micro-acoustic filter having a first and a second converter, in which the electromagnetic and capacitive cross-talk between the first and second converters is compensated for by providing additional coupling capacitors and additional current loops. Additional coupling capacitors and current loops are arranged in such a manner that they can counteract the sign of the natural coupling specified by the design and thus completely compensate for said coupling.
A multi-stage signal handling circuit. Operating as a combiner or splitter, first stage transformers match low input impedance at a first set of differential terminals, and second stage transformers match expected higher impedance at second terminal(s). Transformer windings are mirror image, vertically aligned, meandering conductive tracks disposed on opposite sides of a PCB. Air columns above or below the conductive tracks reduce ground plane effects. A capacitor provided across the differential input terminals of each transformer is chosen to further match the power amplifier output, including consideration of inherent inductance presented by the circuit tracks and vias between transformer sections.
A noise filter device includes a ground connection terminal (21) for grounding, a coil (31) formed by winding a conductive wire (33), a pair of capacitors (41) constituting a π-type filter circuit C together with the coil (31) and to be electrically connected to the ground connection terminal (21), and a housing (11) capable of housing the coil (31) and the pair of capacitors (41). The capacitors are both arranged on one surface side of a virtual plane dividing the coil into two in an axial direction, and a conductive shielding plate (24B) to be grounded to the ground connection terminal (21) is interposed between the capacitors (41).
An apparatus comprises a differential amplifier circuit and a current source. The differential amplifier circuit is configured to receive a voltage at an input, wherein the differential amplifier circuit generates an output voltage having a magnitude proportional to the received voltage over a voltage range to be measured at a specified output common mode voltage. The current source is electrically connected to an input of the differential amplifier circuit and is configured to subtract a midpoint of a voltage range of the battery voltage to be measured at the input of the differential amplifier, wherein a circuit supply voltage provided to the differential amplifier circuit and the current source is less than the voltage at the input.
An instrumentation amplifier includes: a first input stage configured to shift a level of a first input voltage applied to a first input terminal and to output the level-shifted voltage; a second input stage configured to shift a level of a second input voltage applied to a second input terminal and to output the level-shifted voltage; a first resistor configured to generate a differential current corresponding to a difference between the voltage output from the first input stage and the voltage output from the second input stage; a second resistor configured to convert the differential current into a first output voltage; a third resistor configured to convert the differential current into a second output voltage; a first output stage configured to output the first output voltage from a first output terminal; and a second output stage configured to output the second output voltage from a second output terminal.
The present technique relates to a demodulation device, a demodulation method and a program capable of realizing a demodulation process at a rate equivalent to a case where I and Q channel signals are not inverted, even when the I and Q channel signals are inverted. A frequency correction unit establishes synchronization of a frequency and clock based on a signal from a frequency synchronization unit. A channel inversion detection unit of a frame synchronization unit detects presence or absence of inversion of I and Q channel signals, and supplies, as a detection result, a channel inversion detection result to the channel inversion control unit. The channel inversion control unit switches the I and Q channel signals if the inversion has occurred, based on the channel inversion detection result. This technique can be applied to a demodulation device.
The current disclosure teaches and describes a generator assembly and related hand crank devices. One embodiment of the device may include a traditional generator, a handle and a crank link. The crank link is rotatably connected to the handle in a perpendicular position. A user may hold the handle and wield the hand crank device to make the crank link rotate around the handle like a clock hand, enabling the generator to provide power to the hand crank device. Such wielding motion may also be driven by other forces. The current design allows the user to charge the device with only one hand and with ease. In addition, the “functioning” components of the current hand crank device may be housed in or attached to either the handle or crank link, or both. Other components may also be introduced to make the generator assembly more efficient and easy to use.
A power electronic converter, for connecting AC and DC networks and transferring power therebetween, comprises: first and second DC terminals for connection in use to a DC network; at least one primary converter limb extending between the first and second DC terminals and having first and second primary limb portions separated by a primary AC terminal for connection in use to a respective phase of a multi-phase AC network, at least one of the first and second primary limb portions including at least one primary active switching module to selectively allow current to flow through the corresponding primary converter limb in a first direction from the corresponding primary AC terminal to the DC terminals and in a second direction from the DC terminals to the corresponding primary AC terminal; and at least one secondary converter limb extending between the first and second DC terminals and having first and second secondary limb portions separated by a secondary AC terminal for connection in use to a further respective phase of the said multi-phase AC network, each of the first and second secondary limb portions including at least one passive current check element to limit current flow through the corresponding secondary converter limb to a single direction from the corresponding secondary AC terminal to the DC terminals.
Power conversion systems are presented with common mode reduction by space vector pulse width modulation zero vector selection to counteract common mode contribution of active vectors.
An electrical power system is connectable to an AC base power supply to provide AC base electrical power to a mobile unit. The AC mobile unit electrical power is provided in one embodiment without pass-through of AC electrical power which would otherwise bypass an AC/DC inverter. In one implementation, a marine electrical power system is connectable to an AC shore power supply to provide AC shore electrical power to a docked marine vessel.
The invention relates to a method for feeding electrical current into an electrical, three-phase power supply system having a first phase, a second phase and a third phase with a first voltage, a second voltage and a third voltage at a power supply system frequency, comprising the steps of: measuring the first, second and third voltages, transforming the first, second and third voltages into a positive phase-sequence voltage system and a negative phase-sequence voltage system according to the method of symmetrical components, calculating a first desired current, a second desired current and a third desired current for feeding into the first, second and third phases of the power supply system, wherein the first, second and third desired currents are calculated on the basis of at least one value of the positive phase-sequence voltage system and/or the negative phase-sequence voltage system.
An intermediate bus architecture power supply system including an output voltage feedback-regulated, isolated first stage switching voltage converter (SVC) such as an intermediate bus converter, connected via an intermediate voltage bus (IVB) to at least one second stage DC-to-DC voltage converter. The first stage SVC is configured to adjust its switching duty cycle to compensate for voltage fluctuations on the IVB. The voltage regulation mechanism of the first stage SVC may thus suppress oscillations in the IVB voltage which originate from the first stage SVC's input or from fluctuations in the system's load current, and consequently reduce electromagnetic interference as well as the amplitude of voltage and current fluctuations on the IVB.
The present invention provides a power system and controlling method thereof. The power system includes: pulse width modulation (PWM) power source, voltage detection unit, current detection unit and feedback signal generation unit. PWM power source receives external DC input, performs PWM on received external DC input, and supplies PWM output obtained through PWM from the DC output terminal to a device expecting power supply. Voltage detection unit detects voltage amplitude of PWM output. Current detection unit detects current amplitude of PWM output. Feedback signal generation unit generates feedback signal and supplies generated feedback signal to PWM power source. PWM power source adjusts the voltage amplitude and current amplitude of the PWM output based on the received feedback signal.
A high power density switched-capacitor DC-DC converter is disclosed. According to one aspect, the subject matter described herein includes a high power-density switched-capacitor DC-DC converter that includes: first and second voltage summing circuits, each voltage summing circuit producing an output voltage that is substantially equal to an input voltage; and a switching circuit connected between the first and second voltage summing circuits and configured to provide a DC voltage source as an input to the first and second voltage summing circuits, wherein the converter produces an output voltage that is the sum of the voltage produced by the first voltage summing circuit, the voltage provided by the DC voltage source, and the voltage produced by the second voltage summing circuit.
A high-voltage flywheel energy storage system to prevent ionization, plasma formation, and electrical arc discharge and corresponding method are provided. The high-voltage flywheel energy storage system prevents ionization, plasma formation, and electrical arc discharge by isolating the motor windings and motor end windings from the partial vacuum environment existing in the flywheel housing.
A housing for a generator set includes an enclosure within which the generator set is disposed. The housing further includes a covering including a substantially flat top face and a bottom face comprising a plurality of undulations. The bottom face is disposed between the top face and the enclosure. Each of the plurality of undulations has a peak atop which an adhesive bead is positioned. The adhesive bead is responsive to pressure exerted thereon. Each of the undulations is in contact with the enclosure via a respective adhesive bead.
An outer-rotor motor includes a stationary portion, a rotating portion, and a bearing mechanism arranged to support the rotating portion such that the rotating portion is rotatable about a central axis extending in a vertical direction with respect to the stationary portion. The stationary portion includes a stator, a mounting plate, and a circuit board. The rotating portion includes a shaft, a rotor holder, and a rotor magnet. The mounting plate includes a projecting portion arranged to project radially. The outer-rotor-motor further includes a guide structure connected with the projecting portion. The guide structure is arranged to extend axially, radially outside the rotor holder. A leadwire is electrically connected to the circuit board, and is guided along the guide structure. Provision of the guide structure, which is arranged to guide the leadwire radially outwardly of the rotor holder, contributes to preventing a contact between the leadwire and the rotor holder.
An electricity collection and distribution ring includes a plurality of bus rings that include a plurality of annular conductive bodies and a plurality of connecting terminals provided on the annular conductive bodies. The connecting terminals each include a first connecting portion connected to a center conductor, a second connecting portion connected to a winding and a coupling portion for coupling the first and second connecting portions. The coupling portion includes the first extended portion including an end portion extending through a gap between the annular conductive bodies toward one side in an axial direction of the annular conductive bodies and the second extended portion extending from the end portion of the first extended portion toward one side in a radial direction of the annular conductive bodies. The second connecting portion is formed at an end portion of the second extended portion on one side in the radial direction.
In the automotive rotary electric machine stator according to the present invention, a stator winding is constituted by distributed windings, slot-housed portions and root portions of coil end portions are formed so as to have flat cross sections, and the slot-housed portions are housed in the slots in contact with each other so as to line up in a single column in a radial direction such that long sides of the flat cross sections are oriented circumferentially. Flatnesses of root portions of the coil end portions that are radially adjacent and that extend outward in different circumferential directions from the slots are mutually different.
An electric machine has a stator that comprises a plurality of laminations with an outer periphery, and each of the laminations has teeth about a central opening such that when the laminations are stacked side-by side to form the stator core, the plurality of teeth of adjacent laminations cooperate to form slots disposed circumferentially about the central opening that are configured to receive a plurality of stator windings. Each of the laminations has a plurality of cooling apertures angularly spaced about the central opening. The cooling apertures of adjacent laminations cooperate to form cooling manifolds that extend along a length of the stator core. A portion of the laminations has their cooling apertures offset from other laminations in the stack in a manner to create a plurality of flow path transverse to the manifolds and angularly between laminations and adjacent manifolds.
A generator (5) for a wind turbine (1) is disclosed. The generator (5) comprises a rotor (3) configured to rotate about a rotational axis, and at least one stator (4) arranged next to the rotor (3). Each stator (4) comprises at least two subunits (8), the subunits (8) being arranged side-by-side along a moving direction of the rotor (3). Each subunit (8) comprises at least one flux-generating module (9) facing the rotor (3) but spaced therefrom, thereby defining an air gap between the rotor (3) and each flux-generating module (9). The subunits (8) are movable relative to each other along a direction which is substantially transverse to the moving direction of the rotor (3). This allows a subunit (8) to move in a manner which adjusts the air gap without affecting the position and the air gap of a neighboring subunit (8). Thereby variations in the rotor (3) can be compensated and a uniform and constant air gap can be maintained. The invention further provides a wind turbine (1) comprising such a generator (5) and a method for performing service on a generator (5).
A portable wireless charging system is incorporated inside a carrying device that has a plurality of walls and an interior. The portable wireless charging system has a transmitter positioned at a first fixed location at an inner surface of one of the walls, a mobile power supply positioned adjacent the transmitter and electrically coupled to the transmitter, and a receiver positioned at a second fixed location at an outer surface of the one of walls, with the second fixed location aligned with the first fixed location. A barrier is positioned between the transmitter and the receiver, and a first pocket positioned at the outer surface about the second fixed location. A portable device that includes a battery to be charged can be retained inside the first pocket to be charged.
This disclosure describes techniques for a method of charging a battery. In an example, the method includes determining a capacity of the battery, and determining a state of charge of the battery. The method also includes charging the battery with a charging current, wherein the charging current is based on the capacity of the battery and the state of charge of the battery, and wherein charging the battery comprises reducing the charging current in response to the state of charge of the battery changing with respect to the capacity of the battery.
A device control apparatus according to an embodiment includes a monitoring unit, a first processing unit, and a second processing unit. The monitoring unit monitors a state of voltage supply from a battery. When the start of the voltage supply is detected, the first processing unit starts the voltage supply to some devices, operates in a first operation mode, and executes a resume process of the devices. When the resume process is completed, the second processing unit starts the voltage supply to devices other than some devices, initializes states of the devices, and operates in a second operation mode in which consumption power is larger than consumption power of the first operation mode.
A power adapter for mobile devices may include an alternating current to direct current (AC/DC) converter. The AC/DC converter may convert electric power from a power source. The power adapter may include a housing enclosing the AC/DC converter. The power adapter may include a power plug extending from the housing along a first axis. The power adapter may include a Universal Serial Bus (USB) plug extending from the housing along the first axis and on an opposite end of the housing from the power plug. The power adapter may include a device charging plug pivotally coupled to the housing.
A cap lamp system includes a battery pack featuring a housing with a battery cell and a protection circuit positioned within the battery pack housing. A pair of terminals are attached to the battery cell and are adapted to provide power to a cap lamp and/or other device(s). Circuitry is electrically attached to the battery cell and the cap lamp for controlling discharging of the battery cell when powering the cap lamp and/or other device(s) and charging of the battery cell when the battery pack is connected to a charger.
A method for reducing a total loss of charge of battery cells by balancing states of charge includes checking boundary conditions as to whether a vehicle is in the park mode, whether a previous balancing step occurred in the past by at least a defined time period, whether a temperature of a balancing unit lies below an adjustable temperature limit and whether states of charge of all battery cells exceed a minimum state of charge. Additionally, the method includes determining a need for balancing such that a check is made as to whether a maximum difference of all states of charge of all battery cells is greater than an adjustable limit state of charge. Also the method includes, balancing by the balancing units if the first two steps of the method are affirmed. The balancing resistances are connected to respective battery cells for a predetermined time.
A photovoltaic power generation system is discussed. The photovoltaic power generation system includes a solar cell module including a plurality of solar cell groups divided into groupings of the plurality of solar cell groups, each of the plurality of solar cell groups including at least one of one solar cell row which a plurality of solar cells are electrically connected, and a plurality of signal control units connected to the plurality of solar cell groups, respectively, wherein the each of the plurality of signal control units track a maximum power based on the current and the voltage output from each of the plurality of solar cell groups and outputs the maximum power.
Disclosed is a method of controlling the power input to a HVDC transmission link, which HVDC transmission link is connected to an AC power plant via a first voltage source converter and to AC grid via a second voltage source converter, which method includes using the second voltage source converter to perform voltage control of the HVDC transmission link during a no-fault mode of operation of the grid; monitoring a HVDC transmission link parameter to detect an unbalanced fault; and using the first voltage source converter to regulate the output of the AC power plant on the basis of the monitored HVDC transmission link parameter in the event of an unbalanced fault. Also described are a control module for controlling the power input to a HVDC transmission link; a voltage source converter for a power plant; and a power generation and transmission arrangement.
In one embodiment, a computer determines a grid topology of an electric grid based on one or more electric grid configuration description files, and also determines a network topology of a computer network used to provide communication to grid devices of the electric grid. By assessing whether the network topology is configured to meet one or more communication requirements of the grid topology (e.g., initially and/or through monitoring for grid changes), the computer may trigger a corrective action (e.g., alarm or reconfiguration) in response to the network topology not being configured to meet the one or more communication requirements of the grid topology.
A solid state switch module is provided for use in a power distribution network including an input differential protection connection for receiving a measured current value from an upstream module. The solid state switch module also includes an output differential protection connection for sending a measured current value. The solid state switch module includes a trip outlet for sending a trip signal to an upstream solid state switch, and a trip inlet for receiving a trip signal from a downstream solid state switch. The trip inlet is operably coupled to the switch. A current sensor measures the current value of a connected power transmission line across the solid state switch module. A summer adds a current input from a parallel module with the current measures by the current sensor. A comparator determines whether an amount of current lost between the solid state switch module and an upstream module is acceptable.
A dielectric cover system for an insulator supporting a high voltage conductor is molded to fit over the insulator to cover at least a top portion of the insulator and the conductor in contact with the insulator. A bolt through the cover is inserted to a depth to engage a reduced-diameter neck area of the insulator to prevent the cover from being rotated about the insulator during a high wind condition. Other securing devices may instead be used that allow the cover to be freely placed over the insulator and then effectively restrict an inner diameter of the cover at a reduced diameter portion of the insulator, such that the securing device blocks the cover from being lifted off the insulator and rotated about the insulator.
A mounting plate for an electrical outlet includes a central region having a front surface, a rear surface, and an opening for accessing an outlet. A first mounting tab and a second mounting tab extend from the central region at an angle. The mounting plate may be used to attach an outlet to an outlet housing having a wiring compartment and a panel at least partially enclosing the wiring compartment. The panel has a front wall and an opening for receiving an outlet.
A handheld device comprising a handle assembly containing a longitudinally tubular shank used to manage and/or insert flexible elongated components during the assembly, replacement and/or repair of wired elements of a system is described. The handheld device includes a conduit that can be used to manage and/or insert said flexible elongated components such as wires, cables, flexible tubing, lines, cords, strings, ropes, and the like through constrained spaces and/or barriers. The conduit may be partially opened or completely open to allow removing of the flexible elongated components from the handheld device.
In one embodiment, a circuit couples an integrated circuit to a powerline and protects the integrated circuit from overvoltage noise. In one example, the integrated circuit comprises a two-port differential transceiver. Respective Schottky diodes couple the ports to a power supply and reference, so one diode for each port conducts current in forward bias if an applied voltage exceeds a respective voltage reference plus the forward voltage of that diode. A respective end of a first transformer winding feeds each input port. Respective ends of a second transformer winding couple to capacitors that couple with the powerline. Back-to-back zener diodes are connected between the ends of the second winding. A zener diode with a breakdown voltage set based on the power supply voltage plus a margin is coupled between the power supply and ground so that the power supply voltage does not exceed a desired value plus the margin.
A system and method for providing laser diodes with broad spectrum is described. GaN-based laser diodes with broad or multi-peaked spectral output operating are obtained in various configurations by having a single laser diode device generating multiple-peak spectral outputs, operate in superluminescene mode, or by use of an RF source and/or a feedback signal. In some other embodiments, multi-peak outputs are achieved by having multiple laser devices output different lasers at different wavelengths.
A method of manufacturing a semiconductor element by forming, on a substrate, columnar crystals of a nitride-base or an oxide-base compound semiconductor, and by using the columnar crystals, wherein on the surface of the substrate, the columnar crystals are grown while ensuring anisotropy in the direction of c-axis, by controlling ratio of supply of Group-III atoms and nitrogen, or Group-II atoms and oxygen atoms, and temperature of crystal growth, so as to suppress crystal growth in the lateral direction on the surface of the substrate.
In an example, the present invention provides a method for manufacturing a gallium and nitrogen containing laser diode device. The method includes providing a gallium and nitrogen containing substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising of at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The method includes patterning the epitaxial material to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. The method includes transferring each of the plurality of dice to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch corresponding to the design width.
A fiber amplifier system including a plurality of fiber amplifiers each receiving a fiber beam and a tapered fiber bundle (TFB) combiner including a plurality of input end fibers, a plurality of output end fibers and a center bundle portion, where each input end fiber is coupled to a separate one of the fiber amplifiers, and where the bundle portion combines all of the fiber beams into a single combined beam and each output end fiber being capable of receiving the combined beam separately from the other output end fibers. The system also includes a low non-linear delivery fiber coupled to an output end fiber of the TFB combiner and an optical output turret coupled to the delivery fiber opposite to the TFB combiner, wherein the non-linear delivery fiber is configured to reduce the effect of cross-phase modulation (XPM) instability in the delivery fiber.
As kilowatt class fiber laser and amplifier systems become more in demand, there are ongoing efforts to improve optical fiber laser and amplifier designs to maximize efficiency and further increase the capacity of these high-energy optical fiber lasers and amplifiers. The present disclosure provides a fiber laser or amplifier system configured to efficiently and conveniently generate and couple high numerical aperture and high-energy pump light into a fiber laser or amplifier system.
An optical device may include: an optical module disposed in a beam delivery path of a laser beam; a beam adjusting unit disposed in the beam delivery path for adjusting the beam delivery path of the laser beam; a measuring unit disposed in the beam delivery path for detecting the beam delivery path; and a control unit for controlling the beam adjusting unit based on a detection result of the beam delivery path of the laser beam detected by the measuring unit.
A shear guide for a terminal crimping machine includes a body having a shear edge configured to face a terminal used to splice a magnet wire and a lead wire. A magnet wire channel is formed by the body and is configured to receive and hold the magnet wire. A lead wire channel is formed by the body and is configured to receive and hold the lead wire. The lead wire channel is vertically offset with respect to the magnet wire channel. The body may include a platform and a separating wall positioned vertically above the platform with a slot defined between the separating wall and the platform. The slot may receive the magnet wire and the separating wall may support the lead wire above the separating wall.
A method for producing modular electrical connectors having varying contact element configurations includes providing a common header component having a plurality of receptacle spaces defined therein. A plurality of different contact sub-assemblies are provided having varying contact element configurations, with each of sub-assembly having a common size configured for receipt in the receptacle spaces. A pattern of the contact sub-assemblies is defined for a particular desired connector configuration from any combination of the contact sub-assemblies, and the contact sub-assemblies are fitted and adhered into the receptacle spaces in the header component according to the pattern. A kit may be provided with the modular components for making the connectors.
A connection system is disclosed for use in providing a high speed transmission line for connecting a chip mounted on a circuit board to a connector. The system has a structure that allows for high data rates from the connector to the chip. The connector includes a plurality of conductive terminals and a ground terminal arranged so that the impedance and other electrical characteristics may be maintained from the connector to the chip while reducing signal loss.
An electrical connector brace can include a first member and a second member. Both members can include a barrel, a groove, and a yoke. Each barrel can extend along a longitudinal axis. Each groove can extend along the longitudinal axis within the respective barrel. Each yoke can be integrally-formed with the respective barrel and be adjacent to the respective barrel along the longitudinal axis. The first member can have a first modulus of elasticity and a first elastic limit. The second member can have a second modulus of elasticity and a second elastic limit. The first barrel can be received in the second barrel and the second yoke can overlay the first yoke.
The present invention relates to an outlet unit facilitating plug separation and to a multi-outlet device using same. The outlet unit according to the present invention includes: an outlet main body having a plug inlet into which a plug is to be inserted, a bottom surface plate forming the bottom surface of the plug inlet and having a pair of terminal ports formed on the plate surface such that the terminals of a plug may be inserted, and a pair of electrodes which are disposed in the lower portion of the bottom surface plate and with which the terminals of the plug connect; a separation plate in which a pair of plug through-holes, through which the terminals of the plug pass, are formed on the plate surface and which is disposed in a raisable manner in the plug inlet so as to be capable of moving between a connection position, in which the terminals of the plug are lowered so as to be capable of being connected to the electrodes through the plug through-holes and the terminal ports, and a connection release position, in which the plug is lifted such that the terminals of the plug are separated from the electrodes; and a separation operation module which lifts the separation plate to the connection release position according to a user operation when the separation plate is placed in the connection position.
A connecting device is disclosed, which includes a connector structure having a housing, a plug connector, a plurality of electrical contacts and a magnetic-metal set. The housing has a surface on which the electrical contacts and the magnetic-metal set are disposed, and the plug connector protrudes from the housing and is electrically connected to the electrical contacts. An electronic device assembly is further disclosed, which includes an electronic device and the aforesaid connecting device. The connecting device can be inserted into a socket connector of the electronic device, so as to transform the socket connector into a non-pluggable magnetic connector.
A connector (10) has terminal fittings (11) extending from a housing (12) and connected to a board (50). A casing (51) is mounted on the side of an upper surface (12U) of the housing (12) and covering the board (50). Liquid retaining portions (28) are formed on the upper surface (12U) of the housing (12) by connecting longitudinal grooves (29) extending in a front-back direction and horizontal grooves (31) extending in a lateral direction. Thus, the connector (10) prevents the intrusion of liquid to the board (50) along an upper surface of the housing (12).
A detector (60) is supported on a lock arm (15) of the housing (10) movably between a standby position and a detection position. The detector (60) includes restricting portions (69) and the housing (10) include escaping portions (28). The escaping portions (28) extend in a direction intersecting a connecting direction, and the restricting portions (69) are inserted therein when the detector (60) is inclined in a connecting process and brought into contact with a wall surface facing in a moving direction of the detector (60) to prevent the detector (60) from reaching the detection position while being kept in an inclined state when the detector (60) moves from the standby position toward the detection position.
A connector terminal comprises: an electrical conductive portion connected with an electrical conductive member; and a connection portion integrally provided with the electrical conductive portion, the connection portion including: a pair of flat plate portions opposed to one another to form an insertion portion into which a corresponding terminal is inserted; a support portion provided in middle portions of the paired flat plate portions, the support portion restricting the paired flat plate portions from moving in directions in which they separate from one another when the corresponding terminal is inserted into the insertion portion, and a plurality of contact portions provided around the support portion in the paired flat plate portions the contact portions elastically contacting with the corresponding terminal to be electrically connected thereto.
Mating interfaces for high speed, high density electrical connectors. In some embodiments, a contact comprises a base region, a first elongated member comprising a distal end attached to the base region and a proximal portion, a second elongated member comprising a distal end attached to the base region and a proximal portion, and a strap coupling the distal portion of the first elongated member to the distal portion of the second elongated member, wherein the strap is conductive and compliant such that the distal portion of the first elongated member is capable of moving independently of and is electrically connected to the distal portion of the second elongated member.
A card edge connector includes a harness-side connector (H) in which a plurality of terminal fittings (50) are arranged side by side in a harness-side housing (10) and a board-side connector (P) in which a connecting edge portion (63) of a circuit board (62) projects from a front surface (60F) of a board-side housing (60). The harness-side housing (10) includes a terminal accommodating portion (39) configured to accommodate the plurality of terminal fittings (50), and a housing accommodating portion (48) arranged to face a front surface (39F) of the terminal accommodating portion (39) and configured to accommodate the board-side housing (60) connected to the harness-side housing (10). A resilient member (49) configured to bias the terminal accommodating portion (39) and the board-side housing (60) in a direction toward or away from each other in parallel to a connecting direction is provided in the housing accommodating portion (48).
A hybridized connector apparatus is provided for solder connection with a central conductor of an associated coaxial cable and for crimp connection with a conductive braid and foil of the coaxial cable, and includes a hollow, generally cylindrical contact pin member or tip portion operably received into an interior of a generally ring-shaped dielectric spacer disk. The dielectric is received into a connector body, which is received into a shell. An end of the contact pin member defines an interface portion having a substantially constant outer diameter D extending outwardly from the spacer disk beyond an extent of the body member in an insertion direction I. The interface portion defines a semicircular edge portion and may also include a linear edge portion disposed in a plane substantially oblique to the longitudinal axis, and a curvilinear edge portion.
An antenna mounting system includes an antenna mount and a track. An antenna is secured in the antenna mount and the antenna mount is secured to a track. The track is secured to a structure or vehicle and allows for multiple positioning of the antenna on the structure or vehicle. The antenna mount has multiple, standardized studs attached to the bottom surface of the antenna mount which allows the antenna mount to be secured to the track. One or more antennas may be secured to the structure or vehicle with one or more antenna mounts on one or more tracks.
An ohmic RF MEMS relay includes a substrate with a capacitive coupling, Csub; two actuating elements electrically coupled in series, so as to define a channel, wherein the actuating elements are configured to be independently actuated or simultaneously operated. The actuating elements have their own capacitive coupling, Cgap; a midpoint on the channel is in electrical communication with the actuating elements; and an anchor mechanically coupled to the substrate and supporting at least one of the actuating elements. Also, an ohmic RF MEMS relay that includes an input port; a plurality of first MEMS switches that make up a first switching group in electrical communication with the input port, thereby defining a plurality of channels each leading from each of the MEMS switches; and at least one outlet port along each of the channels distal from the first switching group and in electrical communication with the input port.
A method for forming a solvo-ionic liquid suitable for use as an electrolyte in an electrochemical cell is provided. The solvo-ionic liquid, a mixture including a multidentate ethereal solvent and magnesium borohydride, can be a liquid, a gel or a solid at room temperature and generally has high thermal stability including virtually no volatility at a typical cell operating temperature. An electrochemical cell having a solvo-ionic liquid as electrolyte is also disclosed. The electrochemical cell will typically be a rechargeable magnesium battery, having an anode suitable to accommodate magnesium oxidation during battery discharge.
A positive electrode mixture including a positive electrode active material represented by the following formula (1); and a solid electrolyte that comprises Li and S: aLi2MnO3bLiNi1-yM1yO2-cLiM2vM3wM4xO2 (1) wherein M1 is one or more elements selected from Co, Mn, Al, Fe, Cu, V, Zn and Cr; M2, M3 and M4 are independently one or more elements selected from Ni, Co, Mn, Al, Fe, Cu, V, Zn and Cr; M2, M3 and M4 are elements different from each other; a, b and c satisfy a+b+c=1, 0
The non-aqueous electrolyte battery includes an outer case, a positive electrode housed in the outer case, a negative electrode housed in the outer case such that the negative electrode is separated from the positive electrode, and a non-aqueous electrolyte accommodated in the outer case. The negative electrode comprises a current collector and negative electrode layer formed on one surface or both surfaces of the current collector. The negative electrode layer includes at least one main negative electrode layer which is formed on the surface of the current collector and contains a first active material, and a surface layer which is formed on the surface of the main negative electrode layer and contains a second active material different from the first active material, the second active material being a lithium titanium composite oxide having a spinel structure.
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 μm to about 2,000 μm, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.
A flow-field plate for a flow stack in a flow cell battery system is described. The flow-field plate includes first electrolyte channels formed in a molded plate to direct a first electrolyte to a first flow-field on a first side of the molded plate and second electrolyte channels formed in the molded plate to direct a second electrolyte to a second flow-field on the second side of the molded plate.
In one embodiment, an electrical power storage system using hydrogen includes a power generation unit generating power using hydrogen and oxidant gas and an electrolysis unit electrolyzing steam. The electrical power storage system includes a hydrogen storage unit storing hydrogen generated by the electrolysis and supplying the hydrogen to the power generation unit during power generation, a high-temperature heat storage unit storing high temperature heat generated accompanying the power generation and supplying the heat to the electrolysis unit during the electrolysis, and a low-temperature heat storage unit storing low-temperature heat, which is exchanged in the high-temperature heat storage unit and generating with this heat the steam supplied to the electrolysis unit.
A power storage device with reduced initial irreversible capacity is provided. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte solution. In the negative electrode active material layer, the content percentage of a carbon material with an R value of 1.1 or more is less than 2 wt %. The R value refers to a ratio of a peak intensity I1360 to a peak intensity I1580 (I1360/I1580). The peak intensity I1360 and the peak intensity I1580 are observed by Raman spectrometry at a Raman shift of 1360 cm−1 and a Raman shift of 1580 cm−1, respectively. The electrolyte solution contains a lithium ion and an ionic liquid composed of an organic cation and an anion.
An example of a lithium ion battery electrode material includes a substrate, and a substantially graphitic carbon layer completely encapsulating the substrate. The substantially graphitic carbon layer is free of voids. Methods for making electrode materials are also disclosed herein.
Disclosed herein are systems and methods for control of a current interruption component in a battery system. Various embodiments consistent with the present disclosure may include a detection system configured to detect an event (e.g., an impact event, a resistive short, a coolant leak, etc.) and a control system configured to receive information from the detection system and to generate a control signal based upon detection of the event. The control signal may selectively actuate an electrical clearing component. A current interruption component may be configured to selectively interrupt a flow of current upon an occurrence of a condition that results from actuation of the electrical clearing component. Upon detection of the event by the detection system, the control system may generate the control signal to actuate the electrical clearing component, and the actuation of the electrical clearing component may trigger the current interruption system.
A magnesium cell includes a positive electrode, a negative electrode including a magnesium alloy, and a separator disposed between the positive electrode and the negative electrode to hold an electrolytic solution, in which a contact area between the negative electrode and the separator is variable.
It is intended to provide a polyethylene powder which can offer a fiber excellent in resistance to end breakage, dimensional stability, and acid resistance and/or a microporous membrane excellent in dimensional stability and acid resistance, and a microporous membrane and a fiber which are obtained by forming the polyethylene powder. The present invention provides a polyethylene powder comprising: 0.5 ppm or higher and 3,000 ppm or lower of aluminum hydroxide having an average particle size smaller than 50 μm; and 0.5 ppm or higher and 12 ppm or lower of a magnesium element, wherein the polyethylene has a viscosity-average molecular weight of 100,000 or larger.
Disclosed are ionically conductive membranes for protection of active metal anodes and methods for their fabrication. The membranes may be incorporated in active metal negative electrode (anode) structures and battery cells. In accordance with the invention, the membrane has the desired properties of high overall ionic conductivity and chemical stability towards the anode, the cathode and ambient conditions encountered in battery manufacturing. The membrane is capable of protecting an active metal anode from deleterious reaction with other battery components or ambient conditions while providing a high level of ionic conductivity to facilitate manufacture and/or enhance performance of a battery cell in which the membrane is incorporated.
A FET is formed on a semiconductor substrate, a curved surface having a radius of curvature is formed on an upper end of an insulation, a portion of a first electrode is exposed corresponding to the curved surface to form an inclined surface, and a region defining a luminescent region is subjected to etching to expose the first electrode. Luminescence emitted from an organic chemical compound layer is reflected by the inclined surface of the first electrode to increase a total quantity of luminescence taken out in a certain direction.
Disclosed is a method for contacting a device with a conductor 6, the device 1 comprising a substrate 2 with at least one cell 3, a contact region 4 and an encapsulation 5, wherein the encapsulation 5 encapsulates at least the contact region 4, the method comprising the steps of arranging the conductor 6 on the encapsulation 5, and interconnecting the conductor 6 with the contact region 4 without removing the encapsulation 5 between the conductor 6 and the contact region 4 beforehand. This invention is advantageous as the encapsulation 5 between the conductor 6 and the contact region 4 does not need to be removed beforehand anymore.
An object of the present invention is to provide a method for producing a gas barrier film, capable of producing a gas barrier film which has production suitability in a roll-to-roll manner and is excellent in productivity and in gas barrier performance. The method for producing a gas barrier film including: a coating step for coating a first barrier layer formed on a base with a coating liquid containing a polysilazane compound to form a coating film; and an ultraviolet ray irradiation step for irradiation with a vacuum ultraviolet ray by light sources to form a second barrier layer, wherein an illuminance of the vacuum ultraviolet ray received on a coating film surface by the coating film from start to end of the irradiation with the vacuum ultraviolet ray is 160 mW/cm2 or less, there is a period T during which an illuminance of the vacuum ultraviolet ray on the coating film surface is 50 mW/cm2 or more and 160 mW/cm2 or less, and an amount of energy (E1) received on the coating film surface within T is 180 mJ/cm2 or more and 1800 mJ/cm2 or less.
An organic electroluminescence display device includes: a lower electrode that is made of a conductive inorganic material and formed in each of pixels arranged in a matrix in a display area; a light-emitting organic layer that is in contact with the lower electrode and made of a plurality of different organic material layers including a light-emitting layer emitting light; an upper electrode that is in contact with the light-emitting organic layer, formed so as to cover the whole of the display area, and made of a conductive inorganic material; and a conductive organic layer that is in contact with the upper electrode, formed so as to cover the whole of the display area, and made of a conductive organic material.
A polarization organic photoelectric conversion device having a structure in which an organic photoelectric conversion layer is interposed between a first electrode and a second electrode, at least one of which is transparent, wherein the organic photoelectric conversion layer is one obtained by uniaxially orienting at least a portion thereof in the plane in advance.
An electrical element, such as a thin-film transistor, is defined on a flexible substrate, in that the substrate is attached to a carrier by an adhesive layer, and is delaminated after definition of the transistor. This is for instance due to illumination by UV-radiation. An opaque coating is provided to protect any semiconductor material. A heat treatment is preferably given before application of the layers of the transistor to reduce stress in the adhesive layer.
Provided is an organic light-emitting diode including a compound of Formula 1 below: wherein a detailed description of a substituent in Formula 1 above is defined as described in the detailed description.
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
According to one embodiment, a ferroelectric memory includes a semiconductor layer, an interfacial insulating film formed on the semiconductor layer, a ferroelectric film formed on the interfacial insulating film, and a gate electrode formed on the ferroelectric film, wherein the ferroelectric film is a film which includes a metal that is hafnium (Hf) or zirconium (Zr) and oxygen as the main components and to which an element selected from the group consisting of silicon (Si), magnesium (Mg), aluminum (Al).
Provided are a magnetic memory device and a method of forming the same. The magnetic memory device includes a pinned pattern including a coupling enhancement pattern, a polarization enhancement pattern, and a texture blocking pattern located between the coupling enhancement pattern and the polarization enhancement pattern, a free pattern located on the polarization enhancement pattern of the pinned pattern, and a tunnel barrier located between the pinned pattern and the free pattern. The coupling enhancement pattern includes a first enhancement magnetic pattern, a second enhancement magnetic pattern, and a first enhancement non-magnetic pattern located between the first enhancement magnetic pattern and the second enhancement magnetic pattern.
A vertical Hall Effect sensor assembly in one embodiment includes a first sensor with a first doped substrate, a first doped well, the first doped well having a doping opposite to the first doped substrate, a first endmost inner contact accessible at a first surface of the first sensor and located at a first end portion of the first doped well, a first intermediate inner contact accessible at the first surface and located between the first endmost inner contact and a second end portion of the first doped well, and a first electrode positioned on the first surface immediately adjacent to the first endmost inner contact and the first intermediate inner contact, the first electrode electrically isolated from the first doped well, and a first voltage source operably connected to the first electrode.
Provided are a bismuth-based piezoelectric material whose insulation property is improved while its performance as a piezoelectric body is not impaired and a piezoelectric device using the piezoelectric material. The piezoelectric material includes a perovskite-type metal oxide represented by the following general formula (1): Bix(Fe1-yCoy)O3 (1) where 0.95≦x≦1.25 and 0≦y≦0.30, and a root mean square roughness Rq (nm) of a surface of the piezoelectric material satisfies a relationship of 0
A continuous piezoelectric film can include a plurality of fibers, each fiber including a polypeptide, wherein molecules of the polypeptide have electric dipole moments that are aligned such that the piezoelectric fiber provides a piezoelectric effect. The continuous piezoelectric film has at least one piezoelectric constant d31 or d33 that is at least 1 pC/N. The continuous piezoelectric film can be prepared hot pressing a mat of aligned piezoelectric fibers.
A semiconductor sensor device includes a device substrate, a micro-controller unit (MCU) die attached to the substrate, and a packaged pressure sensor having a sensor substrate and a pressure sensor die. The sensor substrate has a front side with the pressure sensor die attached to it, a back side, and an opening from the front side to the back side. A molding compound encapsulates the MCU die, the device substrate, and the packaged pressure sensor. A back side of the sensor substrate and the opening in the sensor substrate are exposed on an outer surface of the molding compound.
In a method of manufacturing a light emitting device, a luminescent color conversion member made of a translucent material including phosphors is directly fixed to light emitting surface side of light emitting elements in a light emitting element group, and a stack of the light emitting element group and the luminescent color conversion member is divided into a plurality of chips. In each of the light emitting elements, a piece of the luminescent color conversion member is directly fixed to the light emitting surface of the light emitting element.
An optoelectronic semiconductor device includes a substrate, a semiconductor system having an active layer formed on the substrate and an electrode structure formed on the semiconductor system, wherein the layout of the electrode structure having at least a first conductivity type contact zone or a first conductivity type bonding pad, a second conductivity type bonding pad, a first conductivity type extension electrode, and a second conductivity type extension electrode wherein the first conductivity type extension electrode and the second conductivity type extension electrode have three-dimensional crossover, and partial of the first conductivity type extension electrode and the first conductivity type contact zone or the first conductivity type bonding pad are on the opposite sides of the active layer.
A light emitting device includes a diode region comprising a first face and opposing edges, and a bond pad structure comprising at least three bond pads along only one of the opposing edges of the first face.
The present invention relates generally to a near-infrared light-emitting diode (LED) and the method for manufacturing the same. When preparing the light-emitting layer of the near-infrared LED according to the present invention, the CsSnXX′2 solution is coated on the substrate having the hole transport layer. Then, by a drying process, the solvent is moved away and the CsSnXX′2 solution is solidified, crystallized to CsSnXX′2 in the perovskite structure, which is used as the light-emitting layer of the near-infrared LED and emits near infrared. X and X′ are identical or different halogen elements. In addition, according to the present invention, lead can be used to replace a part of tin. By adjusting the ratio of lead and tin or adopting different combination of halogen elements, the wavelength of the generated near infrared varies.
A light emitting device comprising a plurality of current spreading layers including a first P doped layer, a first N doped layer and a second P doped layer, wherein the N doped layer having a doping level and thickness configured for substantial depletion or full depletion.
The present invention increases the conversion efficiency of a photoelectric conversion element that uses cadmium zinc telluride or cadmium telluride (Cd(Zn)Te) compound semiconductor single crystals containing a group 1A element as an impurity. A heat-resistant pot is filled with raw material and a group 1A element, which is reacted with a portion of the raw material, and the container is heated, thereby melting the raw material into a melt and diffusing the dissociated group 1A element in the melt, producing single crystals from the melt. Compound semiconductor single crystals for photoelectric conversion elements having a hole concentration of 4×1015 cm−3 to 1×1018 cm−3 are produced in this manner. Using a substrate (2) that has been cut out from the compound semiconductor single crystals for photoelectric conversion elements enables the conversion efficiency of a photoelectric conversion element (10) to be increased.
One of the objects is to improve display quality by reduction in malfunctions of a circuit. In a driver circuit formed using a plurality of pulse output circuits having first to third transistors and first to fourth signal lines, a first clock signal is supplied to the first signal line; a preceding stage signal is supplied to the second signal line; a second clock signal is supplied to the third signal line; an output signal is output from the fourth signal line. Duty ratios of the first clock signal and the second clock signal are different from each other. A period during which the second clock signal is changed from an L-level signal to an H-level signal after the first clock signal is changed from an H-level signal to an L-level signal is longer than a period during which the preceding stage signal is changed from an L-level signal to an H-level signal.
An object is to suppress conducting-mode failures of a transistor that uses an oxide semiconductor film and has a short channel length. A semiconductor device includes a gate electrode 304, a gate insulating film 306 formed over the gate electrode, an oxide semiconductor film 308 over the gate insulating film, and a source electrode 310a and a drain electrode 310b formed over the oxide semiconductor film. The channel length L of the oxide semiconductor film is more than or equal to 1 μm and less than or equal to 50 μm. The oxide semiconductor film has a peak at a rotation angle 2θ in the vicinity of 31° in X-ray diffraction measurement.
The present disclosure relates to methods for fabricating a field-effect transistor. The method includes performing a pocket implantation to a semiconductor substrate; thereafter forming a polysilicon layer on the semiconductor substrate; and patterning the polysilicon layer to form a polysilicon gate.The field-effect transistor (FET) includes a well of a first type dopant, formed in a semiconductor substrate; a metal gate disposed on the semiconductor substrate and overlying the well; a channel formed in the semiconductor substrate and underlying the metal gate; source and drain regions of a second type dopant opposite from the first type, the source and drain regions being formed in the semiconductor substrate and on opposite sides of the channel; and a pocket doping profile of the first type dopant and being defined in the well to form a continuous and uniform doping region from the source region to the drain region.
A gate-all-around (GAA) semiconductor device can include a fin structure that includes alternatingly layered first and second semiconductor patterns. A source region can extend into the alternatingly layered first and second semiconductor patterns and a drain region can extend into the alternatingly layered first and second semiconductor patterns. A gate electrode can extend between the source region and the drain region and surround channel portions of the second semiconductor patterns between the source region and the drain region to define gaps between the source and drain regions. A semiconductor oxide can be on first side walls of the gap that face the source and drain regions and can be absent from at least one of second side walls of the gaps that face the second semiconductor patterns. A gate insulating layer can be on the first side walls of the gaps between the gate electrode and the semiconductor oxide.
Aspects of the invention are directed to a vertical semiconductor device including an element active portion and a voltage withstanding structure portion that has a first main electrode and a gate pad electrode on a first main surface of the element active portion, includes first parallel pn layers in a drift layer below the first main electrode, and includes second parallel pn layers below the gate pad electrode. The vertical semiconductor device includes a first conductivity type isolation region between the second parallel pn layers below the gate pad electrode and a p-type well region disposed in a surface layer of the drift layer, and by the repetition pitch of the second parallel pn layers being shorter than the repetition pitch of the first parallel pn layers, it is possible to obtain low on-state resistance, high avalanche withstand, high turn-off withstand, and high reverse recovery withstand.
It is expected that both reduction of the resistance of a source region and reduction of a leakage current in a gate oxide film be achieved in an MOSFET in a silicon carbide semiconductor device. A leakage current to occur in a gate oxide film of the MOSFET is suppressed by reducing roughness at an interface between a source region and the gate oxide film. If an impurity concentration is to become high at a surface portion of the source region, the gate oxide film is formed by dry oxidation or CVD process. If the gate oxide film is formed by wet oxidation, the impurity concentration at the surface portion of the source region is controlled at a low level.
A method for testing an LDMOS transistor by measuring leakage current between the source and drain in the presence of a bias voltage. The leakage current is indicative of defects in the structure of the transistor.
A structure includes a substrate and a tunnel field effect transistor (TFET). The TFET includes a source region disposed in the substrate having an overlying source contact, the source region containing first semiconductor material having a first doping type; a drain region disposed in the substrate having an overlying drain contact, the drain region containing second semiconductor material having a second, opposite doping type; and a gate structure that overlies a channel region between the source and the drain. The source region and the drain region are asymmetric with respect to one another such that one contains a larger volume of semiconductor material than the other one. A method is disclosed to fabricate a plurality of the TFETs using a plurality of spaced apart mandrels having spacers. A pair of the mandrels and the associated spacers is processed to form four adjacent TFETs without requiring intervening lithographic processes.
A III-N semiconductor channel is formed on a III-N transition layer formed on a (111) or (110) surface of a silicon template structure, such as a fin sidewall. In embodiments, the silicon fin has a width comparable to the III-N epitaxial film thicknesses for a more compliant seeding layer, permitting lower defect density and/or reduced epitaxial film thickness. In embodiments, a transition layer is GaN and the semiconductor channel comprises Indium (In) to increase a conduction band offset from the silicon fin. In other embodiments, the fin is sacrificial and either removed or oxidized, or otherwise converted into a dielectric structure during transistor fabrication. In certain embodiments employing a sacrificial fin, the III-N transition layer and semiconductor channel is substantially pure GaN, permitting a breakdown voltage higher than would be sustainable in the presence of the silicon fin.
An ohmic electrode layer is disposed on a second main surface of a silicon carbide substrate, and a metal electrode layer is disposed on the ohmic electrode layer. A notch is formed along at least one pair of sides, facing each other, of a periphery of the second main surface of the silicon carbide substrate. The cross-section of the notch orthogonal to a side of the second main surface has a corner. In the cross-section, a thickness of the silicon carbide substrate at an edge thereof under which the notch is formed is smaller than a thickness of the silicon carbide substrate in a region under which the notch is not formed, and larger than a thickness of the silicon carbide substrate in a region under which a bottom of the corner is formed.
Embodiments of the present invention provide a fin type field effect transistor (FinFET) and methods of fabrication. A punchthrough stopper region is formed on a semiconductor substrate. An insulator layer, such as silicon oxide, is formed on the punchthrough stopper. Fins and gates are formed on the insulator layer. The insulator layer is then removed from under the fins, exposing the punchthrough stopper. An epitaxial semiconductor region is grown from the punchthrough stopper to envelop the fins, while the insulator layer remains under the gate. By growing the fin merge epitaxial region mainly from the punchthrough stopper, which is part of the semiconductor substrate, it provides a higher growth rate then when growing from the fins. The higher growth rate provides better epitaxial quality and dopant distribution.
A semiconductor device includes a first-conductivity-type semiconductor layer including an active region in which a transistor having impurity regions is formed and a marginal region surrounding the active region, a second-conductivity-type channel layer formed between the active region and the marginal region and forming a front surface of the semiconductor layer, at least one gate trench formed in the active region to extend from the front surface of the semiconductor layer through the channel layer, a gate insulation film formed on an inner surface of the gate trench, a gate electrode formed inside the gate insulation film in the gate trench, and at least one isolation trench arranged between the active region and the marginal region to surround the active region and extending from the front surface of the semiconductor layer through the channel layer, the isolation trench having a depth equal to that of the gate trench.
A semiconductor device includes a cell region having at least one device cell, wherein the at least one device cell includes a first device region of a first conductivity type. The semiconductor device further includes a drift region of a second conductivity type adjoining the first device region of the at least one device cell, a doped region of the first conductivity type adjoining the drift region, and charge carrier lifetime reduction means configured to reduce a charge carrier lifetime in the doped region of the first conductivity type.
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a plurality of pixels. Each of the pixels includes a first insulating layer and first and second signal lines spaced apart from each other. At least a portion of the first and second signal lines is formed over the first insulating layer. Each pixel also includes a second insulating layer interposed between the first and second signal lines. The second insulating layer has a lower permittivity that the first insulating layer.
Three-dimensional (3D) non-volatile memory arrays having a vertically-oriented thin film transistor (TFT) select device and method of fabricating are described. The vertically-oriented TFT may be used as a vertical bit line selection device to couple a global bit line to a vertical bit line. A select device pillar includes a body and upper and lower source/drain regions. At least one gate is separated horizontally from the select device pillar by a gate dielectric. Each gate is formed over the gate dielectric and a base that extends horizontally at least partially between adjacent pillars. The base is formed with notches filled with the gate dielectric. The select device is fabricated using a conformally deposited base dielectric material and conformal hard mask layer that is formed with a larger bottom thickness than horizontal thickness. The base thickness is defined by the deposition thickness, rather than an uncontrolled etch back.
A display device with a semiconductor layer sequence includes an active region provided for generating radiation and a plurality of pixels. The display device also includes a carrier. The active region is arranged between a first semiconductor layer and a second semiconductor layer. The semiconductor layer sequence includes at least one recess, which extends from a major face of the semiconductor layer sequence facing the carrier through the active region into the first semiconductor layer and is provided for electrical contacting of the first semiconductor layer. The carrier includes a plurality of switches, which are each provided for controlling at least one pixel.
An integrated circuit structure includes a semiconductor substrate, and a dielectric pad extending from a bottom surface of the semiconductor substrate up into the semiconductor substrate. A low-k dielectric layer is disposed underlying the semiconductor substrate. A first non-low-k dielectric layer is underlying the low-k dielectric layer. A metal pad is underlying the first non-low-k dielectric layer. A second non-low-k dielectric layer is underlying the metal pad. An opening extends from a top surface of the semiconductor substrate down to penetrate through the semiconductor substrate, the dielectric pad, and the low-k dielectric layer, wherein the opening lands on a top surface of the metal pad. A passivation layer includes a portion on a sidewall of the opening, wherein a portion of the passivation layer at a bottom of the opening is removed.
A solid-state imaging device includes a photoelectric conversion unit, a transistor, and an element separation region separating the photoelectric conversion unit and the transistor. The photoelectric conversion unit and the transistor constitute a pixel. The element separation region is formed of a semiconductor region of a conductivity type opposite to that of a source region and a drain region of the transistor. A part of a gate electrode of the transistor protrudes toward the element separation region side beyond an active region of the transistor. An insulating film having a thickness substantially the same as that of a gate insulating film of the gate electrode of the transistor is formed on the element separation region continuing from a part thereof under the gate electrode of the transistor to a part thereof continuing from the part under the gate electrode of the transistor.
Provided is a semiconductor device that includes a transistor. The transistor includes: a gate electrode; an oxide semiconductor film facing the gate electrode and including a first overlapping region that is overlapped with the gate electrode; a low-resistance region provided in the oxide semiconductor film; and a first separation region provided between the low-resistance region and the first overlapping region.
A method of fabricating a semiconductor device is provided. A first semiconductor layer including Ge at a first concentration is formed on an insulation layer. Second and third semiconductor layers are formed sequentially on the first semiconductor layer. The second and third semiconductor layers include Ge at second and third concentrations higher than the first concentration. A fin type structure is formed by patterning the insulation layer and the first to third semiconductor layers. The fin type structure is vertically protruded. A fin type active pattern is formed on the fin type structure by performing a first thermal process on the fin type structure. The fin type active pattern includes Ge at a fourth concentration higher than the first concentration and lower than the second concentration.
An improved finFET and method of fabrication is disclosed. Embodiments of the present invention take advantage of the different epitaxial growth rates of {110} and {100} silicon. Fins are formed that have {110} silicon on the fin tops and {100} silicon on the long fin sides (sidewalls). The lateral epitaxial growth rate is faster than the vertical epitaxial growth rate. The resulting merged fins have a reduced merged region in the vertical dimension, which reduces parasitic capacitance. Other fins are formed with {110} silicon on the fin tops and also {110} silicon on the long fin sides. These fins have a slower epitaxial growth rate than the {100} side fins, and remain unmerged in a semiconductor integrated circuit, such as an SRAM circuit.
This technology relates to a nonvolatile memory device and a method of fabricating the same. The nonvolatile memory device may include a pipe connection gate electrode configured to have a bottom buried in a groove formed in a substrate, one or more pipe channel layers formed within the pipe connection gate electrode, pairs of main channel layers each coupled to the pipe channel layer and extended in a direction substantially perpendicular to the substrate, and a plurality of interlayer insulating layers and a plurality of cell gate electrodes alternately stacked along the main channel layers, wherein the pipe connection gate electrode includes a metal silicide layer formed within the groove. The electric resistance of the pipe connection gate electrode may be greatly reduced without an increase in a substantial height by forming the metal silicide layer buried in the substrate under the pipe connection gate electrode.
A memory device includes a plurality of stacks of conductive strips separated by insulating material, including at least a bottom level of conductive strips, a plurality of intermediate levels of conductive strips, and a top level of conductive strips. A reference conductor is disposed in a level between the bottom level of conductive strips and a substrate, isolated from the substrate by a layer of insulating material, and isolated from the bottom level by another layer of insulating material. A plurality of vertical active strips is disposed between the plurality of stacks in electrical contact with the substrate, and with the reference conductor. Charge storage structures are disposed in interface regions at cross-points between side surfaces of the conductive strips in the plurality of intermediate levels and the vertical active strips. A bias circuit is configured to provide different bias arrangements to the reference conductor and the substrate.
Two-Port SRAM cells are described. In an embodiment, a cell includes first, second, and read-port pull-down, first and second pull-up, first, second, and read-port pass-gate transistors. Each transistor includes a first source/drain region in an active area, a channel extending above the active area, and a second source/drain region above the channel. First source/drain regions of pull-down transistors are electrically coupled through a first active area. First source/drain regions of pull-up transistors are electrically coupled through a second active area. A first gate electrode is around channels of the first pull-up, first pull-down, and read-port pull-down transistors. A second gate electrode is around the channels of the second pull-up and pull-down transistors. Second source/drain regions of the first pull-up, pull-down, and pass-gate transistors are electrically coupled to the second gate electrode. Second source/drain regions of the second pull-up, pull-down, and pass-gate transistors are electrically coupled to the first gate electrode.
Source/drain contact structures with increased contact areas for a multiple fin-based complementary metal oxide semiconductor field effect transistor (CMOSFET) having unmerged epitaxial source/drain regions and methods for forming such source/drain contact structures are provided by forming wrap-around source/drain contact structures for both n-type FinFETs and p-type FinFETs. Each of first source/drain contact structures for the n-type FinFETs includes at least one first conductive plug encapsulating epitaxial first source/drain regions on one side of a gate structure, while each of second source/drain contact structures for the p-type FinFETs includes at least a contact metal layer portion encapsulating epitaxial second source/drain regions on one side of the gate structure, and a second conductive plug located over a top surface of the contact metal layer portion.
A method of forming a multi-valued logic transistor with a small footprint and the resulting device are disclosed. Embodiments include forming plural fins on a silicon substrate, each fin covered with a hardmask; filling spaces between the fins and hard masks with an oxide; removing the hardmasks and recessing each fin, forming a cavity in the oxide over each fin; forming plural Si-based layers in each cavity with an increasing percentage of Ge or C or with an decreasing concentration of dopant from a bottom layer to a top layer; performing CMP for planarization to a top of the fins; recessing the oxide to a depth slightly below a top portion of the fin having a thickness equal to a thickness of each Si-based layer; and forming a high-k gate dielectric and a metal gate electrode over the plural Si-based layers.
There has been a case where peeling occurs if an internal stress of a wiring of a TFT is strong. In particular, the internal stress of a gate electrode largely influences a stress that a semiconductor film receives, and there has been a case where the internal stress becomes a cause of reduction in electric characteristics of a TFT depending on the internal stress. According to the present invention, an impurity element is introduced into a wiring, or both the introduction of an impurity element and heat treatment are performed, whereby the wiring can be controlled to have a desired internal stress. It is effective that the present invention is particularly applied to a gate electrode. Further, it is possible that the introduction of an impurity element and the heat treatment are conducted to only a desired region to conduct control to attain a desired internal stress.
A robust electrostatic (ESD) protection device is provided. In one example, the ESD protection device is configured to accommodate three nodes. When used with a differential signal device, the first and second nodes may be coupled with the differential signal device's BP and BM signal lines, respectively, and the third node may be coupled to a voltage source. This allows for a single ESD protection device to be used to protect the signal lines of the differential signal device, thus providing significant substrate area savings as compared to the conventional means of using three dual-node ESD protection devices to accomplish substantially the same protection mechanism. Moreover, the ESD protection device may be structurally designed to handle high voltage ESD events, as required by the FlexRay standard.
This invention prevents a substrate of a semiconductor chip that has through-silicon vias collectively arranged in a specific area thereof from becoming cracked. When a direction in parallel with a long side of a first semiconductor chip is defined as a row direction and a direction perpendicular to the long side of the first semiconductor chip is defined as a column direction, each one of the first through-silicon vias is arranged on any one of grid points arranged in m rows and n columns (m>n). In addition, as viewed in a cross section taken along a short side of the first semiconductor chip, the center of a through-silicon via area, which is defined by coupling the outermost grid points arranged in m rows and n columns, is off center of the short side of the first semiconductor chip in a first direction.
An apparatus includes an interposer and a plurality of dies stacked on the interposer. The interposer includes a first conductive network of a first trigger bus. Each of the plurality of dies includes a second conductive network of a second trigger bus, and an ESD detection circuit and an ESD power clamp electrically connected between a first power line and a second power line, and electrically connected to the second conductive network of the second trigger bus. The second conductive network of the second trigger bus in each of the plurality of dies is electrically connected to the first conductive network of the first trigger bus. Upon receiving an input signal, the ESD detection circuit is configured to generate an output signal to the corresponding second conductive network of the second trigger bus to control the ESD power clamps in each of the plurality of dies.
A memory device, and a method of making the memory device, are disclosed. The memory device is fabricated by mounting one or more semiconductor die on a substrate, and wire bonding the die to the substrate. The die and wire bonds are encapsuated, and the encapsulated device is singulated. The wire bonds are severed during the singulation step, and thereafter the severed wire bonds are connected to the substrate by external connectors on one or more surfaces of the molding compound.
A bonding structure including metal nano particles includes a first member having a metal surface on at least one side, a second member having a metal surface on at least one side, the second member being disposed such that the metal surface of the second member faces the metal surface of the first member, and a bonding material bonding the first member and the second member by sinter-bonding the metal nano particles. At least one of the metal surfaces of the first member and the second member is formed to be a rough surface having a surface roughness within the range from 0.5 μm to 2.0 μm.
Radio frequency shielding within a semiconductor package is described. In one example, a multiple chip package has a digital chip, a radio frequency chip, and an isolation layer between the digital chip and the radio frequency chip. A cover encloses the digital chip and the radio frequency chip.
A topological insulator is grown on an IC wafer in a vacuum chamber as a thin film interconnect between two circuits in the IC communicating with each other. As the TI is being grown, magnetic doping of the various TI sub-layers is varied to create different edge states in the stack of sub-layers. The sub-edges conduct in parallel with virtually zero power dissipation. Conventional metal electrodes are formed on the IC wafer that electrically contact the four corners of the TI layer (including the side edges) to electrically connect a first circuit to a second circuit via the TI interconnect. The TI interconnect thus forms two independent conducting paths between the two circuits, with each path being formed of a plurality of sub-edges. This allows bi-direction communications without collisions. Since each electrode contacts many sub-edges in parallel, the overall contact resistance is extremely low.
Embodiments of mechanisms for forming a semiconductor device structure are provided. The semiconductor device structure includes a metal-insulator-metal (MIM) capacitor formed on a substrate. The semiconductor device structure also includes an inductor formed on the MIM capacitor. The semiconductor device structure further includes a via formed between the MIM capacitor and the inductor, and the via is formed in a plurality of dielectric layers, and the dielectric layers comprise an etch stop layer.
According to an exemplary implementation, a power component includes a component substrate and a power semiconductor device electrically and mechanically coupled to the component substrate. The power component also includes at least one first peripheral contact and at least one second peripheral contact situated on the component substrate. A power semiconductor device is situated between the at least one first peripheral contact and the at least one second peripheral contact. The at least one first peripheral contact, the at least one second peripheral contact, and a surface electrode of the power semiconductor device are configured for surface mounting. The at least one first peripheral contact can be electrically coupled to the power semiconductor device.
A semiconductor device, including a substrate having an active region defined therein, a plurality of bit lines extending on the substrate in a first direction, a plurality of interconnection lines extending on the substrate in a second direction, a pad electrically connected to the plurality of interconnection lines and configured to apply an external voltage, a plurality of metal contacts electrically connecting the interconnection lines and the plurality of bit lines, and a plurality of bit line contacts that are in contact with the active region and electrically connect the plurality of bit lines and the active region, wherein a size of at least some of the bit line contacts and/or at least some of the metal contacts vary based on a distance of the respective bit line contact or the metal contact from the pad.
A compact circuit device wherein a semiconductor element that performs high current switching is embedded is provided. A lead (30) and lead (28) though which high current passes are disposed superimposed on the upper surface of a circuit board (12). Also, a plurality of ceramic substrates (22A-22F) are affixed to the circuit board (12), and transistors, diodes, or resistors are mounted to the upper surface of the ceramic substrates. Furthermore, the circuit elements such as the transistors or diodes are connected to the lead (28) or the other lead (30) via fine metal wires.
A heat exchange structure is provided, including a primary face provided with non-through holes formed in said face, the inner surface of the holes and the surface of said primary face outside the holes being covered with nanoparticles, the inside of the holes having a non-wettability property relative to a given liquid and the surface of the face between the holes having a wettability property relative to the liquid.
Disclosed is a chip thermal dissipation structure, employed in an electronic device comprising a first chip having a first chip face and a first chip back, comprising chip molding material, covering a lateral of the first chip; a first case, contacting the first chip back; a packaging substrate, connecting with the first chip face via first bumps; and a print circuit board, having a first surface and a second surface and connecting with the packaging substrate via solders. The chip thermal dissipation structure further comprises a second case, contacting the second surface. The thermal energy generated by the first chip is conducted toward the first case via the first chip back and toward the second case via the first chip face, the first bumps, the packaging substrate, the solders and the print circuit board.
A case including a case main body, a matrix including a semiconductor nanocrystal, the matrix disposed in the case main body, and a sealant disposed on the case main body, wherein the sealant has a gas permeability of about 1 cubic centimeter at standard temperature and pressure per centimeter per meter squared per day per atmosphere or less and a tensile strength of about 5 megaPascals or more, and wherein the semiconductor nanocrystal is a Group II-VI compound, a Group III-V compound, a Group IV-VI compound, a Group IV element, a Group IV element, a Group IV compound, or a combination thereof.
A chip package includes an integrated circuit chip. A first group of terminal pads of the chip package is electrically connected to the integrated circuit chip and a second group of terminal pads of the chip package is electrically connected to the integrated circuit chip. The first and second groups of terminal pads are arranged on a common terminal surface of the chip package. A pad size of a terminal pad of the first group of terminal pads is greater than a pad size of a terminal pad of the second group of terminal pads.
A silicon fin precursor is formed in an nFET device region and a fin stack comprising alternating material portions, and from bottom to top, of silicon and a silicon germanium alloy is formed in a pFET device region. A thermal anneal is then used to convert the fin stack into a silicon germanium alloy fin precursor. A thermal oxidation process follows that converts the silicon fin precursor into a silicon fin and the silicon germanium alloy fin precursor into a silicon germanium alloy fin. Functional gate structures can be formed straddling over each of the various fins.
Embodiments of mechanisms for epitaxially growing one or more doped silicon-containing materials to form source and drain regions of finFET devices are provided in this disclosure. The dopants in the one or more doped silicon-containing materials can be driven into the neighboring lightly-doped-drain (LDD) regions by thermal anneal to dope the regions. The epitaxially growing process uses a cyclical deposition/deposition/etch (CDDE) process. In each cycle of the CDDE process, a first and a second doped materials are formed and a following etch removes most of the second doped material. The first doped material has a higher dopant concentration than the second material and is protected from the etching process by the second doped material. The CDDE process enables forming a highly doped silicon-containing material.
At least one dielectric material layer having a top surface above the topmost surface of the gate electrode of a field effect transistor is formed. Active region contact via structures are formed through the at least one dielectric material layer to the source region and the drain region. A self-aligned gate contact cavity is formed over the gate electrode such that at least one sidewall of the gate contact cavity is a sidewall of the active region contact via structures. A dielectric spacer is formed at the periphery of the gate contact cavity by deposition of a dielectric liner and an anisotropic etch. A conductive material is deposited in the gate contact cavity and planarized to form a self-aligned gate contact via structure that is electrically isolated from the active region contact via structures by the dielectric spacer.
According to an embodiment, a non-volatile memory device includes a first wiring provided on an underlayer, a first memory cell array provided on the first wiring and including a plurality of memory cells, a first select element including a first control electrode provided between the first wiring and the first memory cell array. The device also includes a second wiring provided at the same level as the first wiring and electrically connected to the first control electrode, and a first plug electrically connecting the first control electrode and the second wiring, one end of the first plug being in contact with the second wiring, and a side surface of the first plug being in contact with the first control electrode.
A one-time programmable (OTP) memory cell is provided, which includes: a well of a first conductivity type; a gate insulating layer formed on the well and including first and second fuse regions; a gate electrode of a second conductivity type formed on the gate insulating layer, the second conductivity type being opposite in electric charge to the first conductivity type; a junction region of the second conductivity type formed in the well and arranged to surround the first and second fuse regions; and an isolation layer formed in the well between the first fuse region and the second fuse region.
A method is provided of processing substrate holder material for a substrate holder on which on a first side of said substrate holder a semiconductor substrate is to be placed for layered deposition of various semiconductor materials on the semiconductor substrate using induction heating. The method includes the operations of determining a first electrical resistivity at at least one measuring position on said substrate holder material, comparing said first electrical resistivity with a second reference electrical resistivity and adapting said substrate holder material in correspondence with said comparison. Also a substrate holder is provided which is processes by such a method.
A method for treatment of a product wafer temporarily bonded on a carrier wafer with the following steps: grinding and/or backthinning of the product wafer on one flat side facing away from the carrier wafer to a product wafer thickness D of <150 μm, especially <100 μm, preferably <75 μm, even more preferably <50 μm, especially preferably <30 μm, surface treatment of the flat side with means for reducing an especially structural intrinsic stress of the product wafer.
A substrate warp correcting device includes, a lower member including a concave portion, and the lower member on which a substrate is to be arranged, an upper member arranged above the lower member, and the upper member including a gas supplying hole, wherein the substrate is arranged between the lower member and the upper member and above the concave portion, and a sealing member arranged between a periphery part of the substrate and the upper member, and the sealing member sealing a space between the substrate and the upper member.
A shielded lid heater lid heater suitable for use with a plasma processing chamber, a plasma processing chamber having a shielded lid heater and a method for plasma processing are provided. The method and apparatus enhances positional control of plasma location within a plasma processing chamber, and may be utilized in etch, deposition, implant, and thermal processing systems, among other applications where the control of plasma location is desirable. In one embodiment, a shielded lid heater is provided that includes an aluminum base and RF shield sandwiching a heater element.
Methods for forming semiconductor device packages include applying a photoimageable dielectric adhesive material to a major surface of a semiconductor die and at least partially over conductive elements on the semiconductor die. The photoimageable dielectric adhesive material may be removed from over the conductive elements. The conductive elements are aligned with and bonded to bond pads of a substrate, and the semiconductor die and the substrate are adhered with the photoimageable dielectric adhesive material. A semiconductor device package includes at least one semiconductor die including conductive structures thereon, a substrate including bond pads thereon that are physically and electrically connected to the conductive structures, and a developed photoimageable dielectric adhesive material disposed between the semiconductor die and the substrate around and between adjacent conductive structures.
A package stack device includes a first package structure having a plurality of first metal posts and a first electronic element, a second package structure having a plurality of second metal posts and a second electronic element, and an encapsulant formed between the first and second package structures to encapsulate the first electronic element. By connecting the second metal posts to the first metal posts, respectively, the second package structure is stacked on the first package structure with the support of the metal posts. Further, the gap between the two package structures is filled with the encapsulant to avoid warpage of the substrates.
An IC package is provided. The IC package comprises a leadframe comprising a metal strip (222) partially etched on a first side. The leadframe may be configured for an IC chip to be mounted thereon and for a plurality of bonding areas (218) to be electrically coupled to the leadframe and the IC chip. The IC chip, the bonding areas, and a portion of the metal leadframe are covered with an encapsulation compound, with a plurality of contact pads (206) protruding from the bottom surface of the leadframe. The bottom surface of the leadframe may be etched one or more times during the manufacturing process to reduce the depth of the undercutting. A method for manufacturing an IC package is also provided.
Methods for fabricating integrated circuits and components thereof are provided. In accordance with an exemplary embodiment, a method for a fabricating a semiconductor device is provided. The method includes providing a partially fabricated semiconductor device and forming silicide regions outside of the first and second gates. The partially fabricated semiconductor device includes a semiconductor substrate, a first gate formed over the semiconductor substrate, and a second gate formed over the semiconductor substrate and spaced apart from the first gate. Silicide formation between the first gate and the second gate is inhibited.
A semiconductor process is described. A semiconductor substrate having a memory area, a first device area and a second device area is provided. A patterned charge-trapping layer is formed on the substrate, covering the memory area and the second device area but exposing the first device area. A first gate oxide layer is formed in the first device area. The charge-trapping layer in the second device area is removed. A second gate oxide layer is formed in the second device area.
A method of manufacturing an epitaxial wafer, including a silicon substrate having a surface sliced from single-crystalline silicon and a silicon epitaxial layer deposited on the surface of the silicon substrate, includes an oxygen concentration controlling heat treatment process in which a heat treatment of the epitaxial layer is performed under a non-oxidizing atmosphere after the epitaxial growth such that an oxygen concentration of the surface of the silicon epitaxial layer is set to 1.0×1017 to 12×1017 atoms/cm3 (ASTM F-121, 1979).
In a method for fabricating an engineered substrate for semiconductor epitaxy, an array of seed structures is assembled on a surface of the substrate. The seed structures in the array have substantially similar directional orientations of their crystal lattices, and are spatially separated from each other. Semiconductor materials are selectively epitaxially grown on the seed structures, such that a rate of growth of the semiconductor materials on the seed structures is substantially higher than a rate of growth of the semiconductor materials on regions of the surface. The semiconductor materials assume a lattice constant and directional orientation of crystal lattice that are substantially similar or identical to those of the seed structures. Related devices and methods are also discussed.
A silicon nanowire bio-chip structure and a manufacturing method thereof. The structure comprises a semiconductor substrate (1), a SiO2 insulating layer (2) formed on the semiconductor substrate, a polysilicon layer (3) formed on the SiO2 insulating layer (2) and a structural layer formed on the polysilicon layer (3); wherein, the polysilicon layer (3) comprises a patterned silicon nanowire array (4); the structural layer includes a SiON layer, a TaN and/or Ta2O5 layer (6) from bottom to top, the TaN and/or Ta2O5 layer only covers surface of each silicon nanowire in the silicon nanowire array. The silicon nanowire array is prevented from being polluted during preservation and use, and the pollutants of Na ions, K ions, Fe ions, Cu ions and Ca ions as well as the effects of chemical factors including the PH value are blocked during biological detection, thereby achieving the high stability of detection.
The present high-pressure discharge lamp is composed of an arc tube part having an internal space, a pair of tungsten electrodes disposed in opposition to each other within the internal space, and mercury and halogen encapsulated in the internal space. The halogen is excessively encapsulated into the internal space relatively to the capacity of the internal space so as to establish an appropriate halogen cycle when the mercury partially deposits without evaporating.
In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.
Provided is a combustion pretreatment-isotope dilution mass spectrometry measuring concentration of a target element for detection contained in a target sample for detection by using an isotope dilution mass spectrometry, including: pretreating the target sample for detection by combustion during an isotope dilution mass spectrometry, to thereby stabilize an isotope and further improve analysis ability, and therefore, the present invention is expected to be utilized as an element analysis method surpassing accuracy of the existing mass spectrometry method.
A sample plate handling system for a time-of-flight mass spectrometer includes a transport chamber and a mass spectrometer chamber that is mechanically coupled to transport chamber. A two-dimensional translation stage is positioned in the mass spectrometer chamber. A sample plate transporter is mounted on the two-dimensional translation stage. A first portion of the sample plate transporter is mechanically attached to the two-dimensional translation stage. A second portion of the sample plate transporter defines a sample plate receiver that is positioned in the transport chamber. A sealing surface located between the first and the second portions connects the transport chamber and the mass spectrometer chamber. A motion of the two-dimensional translation stage in one direction aligns the sample plate transporter with the sealing orifice and a motion of the two-dimensional translation stage in the other direction moves the sealing surface of the sample plate transporter to engage the sealing orifice, thereby preventing gas flow between the mass spectrometer chamber and the transport chamber.
The invention provides biomarkers and biomarker profiles that discriminate between a subject with breast cancer that has metastasized to the bone and a subject with breast cancer that has not metastasized to the bone. In particular, the biomarker and biomarker profile include polypeptides present or present at higher levels in the circulatory system of subjects having breast cancer bone metastasis compared to subjects having breast cancer without bone metastasis.
One embodiment is directed to a plasma source comprising a body in which a cavity is formed and at least two self-contained magnetron assemblies disposed within the cavity. The magnetron assemblies are mutually electrically isolated from each other and from the body. In one implementation of such an embodiment, the self-contained magnetron assemblies comprise closed-drift magnetron assemblies. Other embodiments are disclosed.
The invention relates to an in-column back-scattered electron detector, the detector placed in a combined electrostatic/magnetic objective lens for a SEM. The detector is formed as a charged particle sensitive surface, preferably a scintillator disk that acts as one of the electrode faces forming the electrostatic focusing field. The photons generated in the scintillator are detected by a photon detector, such as a photo-diode or a multi-pixel photon detector. The objective lens may be equipped with another electron detector for detecting secondary electrons that are kept closer to the axis. A light guide may be used to offer electrical insulation between the photon detector and the scintillator.
An electron microscope is offered which can facilitate adjusting a monochromator. The electron microscope (100) includes the monochromator (20) having an energy filter (22) for dispersing the beam (EB) according to energy and a slit plate (24) disposed on an energy dispersive plane. The slit plate (24) is provided with plural energy-selecting slits (25) which are different in width taken in a direction where the beam (EB) is dispersed. The microscope (100) further includes a lens system (30) on which the beam impinges after being monochromatized by the monochromator (20), a first measuring section (50) for measuring the intensity of the beam (EB) emitted from an electron beam source (10), a second measuring section (60) for measuring the intensity of the beam (EB) that has passed through an active one (25-L) of the energy-selecting slits (25), and a slit identifying portion (72) for identifying the active energy-selecting slit (25-L) from the plural energy-selecting slits (25) on the basis of the results of measurements made by the first and second measuring sections (50, 60).
A source of X-rays, and imaging device, and an imaging process are provided, including a source of electrons generating an electron beam of nanometric size and a target, the target being designed to send out an X-ray beam upon illumination by the electron beam, the target including one nanowire, for example made of silicon, and a nanowire catalyst, for example made of gold, covering the free end of the nanowire.
An electrochemical generator includes a first electrode covered by a passivation layer having a compound formed by repetition of a pattern of the following formula (7): in which: n is an integer comprised between 1 and 10, preferably between 1 and 4; R1 and R2 are identical or different and chosen independently from the group formed by —CH2—, a cyclic or acyclic, linear or branched alkyl chain; R3 is chosen from the group formed by —CH3, a cyclic or acyclic, linear or branched alkyl chain, and a group of the following formula (8): in which: N is a mono or polycyclic, aromatic hydrocarbonated group chosen from the group formed by phenyl, aryl groups, condensed polyaromatic groups, which may be substituted; R4 is chosen from the group formed by —CH2-, a cyclic or acyclic, linear or branched alkyl chain; and A is identical to or different from A′.
A solid electrolytic capacitor and method for forming a solid electrolytic capacitor with high temperature leakage stability is described. The solid electrolytic capacitor has improved leakage current and is especially well suited for high temperature environments such as down-hole applications.
A multilayer ceramic capacitor including, a ceramic body; a plurality of first and second internal electrodes disposed to be alternately exposed through first and second side surfaces facing each other in a width direction; and first and second external electrodes formed on the surfaces of the ceramic body in the length and thickness directions, wherein when a length of the ceramic body is defined as L, a width of the ceramic body is defined as W, a thickness of the ceramic body is defined as h, and a length of the first or second external electrode is defined as B, a ratio L/W of the length to the width of the ceramic body satisfies 1.4≦L/W≦2.1, and a relationship B×h/W between the thickness and the width of the ceramic body and the length of the first or second external electrode satisfies B×h/W≦1.27.
An inner drive for a magnetic drive pump includes a magnet supported on a yoke. The inner drive is driven about an axis to pump a corrosive process fluid. The magnet and yoke are fully encapsulated during the molding process to completely surround the magnet and yoke in a protective plastic shell. A sleeve is arranged radially outwardly of the magnet to provide further protection. Backing rings are arranged on either side of the magnet. A bonding material joins the plastic shell to the backing rings and sleeve to prevent a space from forming beneath the plastic shell that would become filled with the process fluid once it has permeated the plastic shell. A protective coating is arranged on at least a portion of the magnet to further insulate the magnet from the process fluid.
A contactless rotary joint has a stationary and a rotating part. Furthermore at least one of the parts has a rotary joint body made of a plastic material and holding a capacitive data link and a rotating transformer. The rotating transformer has a magnetic core for transmission of electrical power. To prevent interference of the capacitive data link by electrical and/or magnetic fields from the rotating transformer a shield is provided.
A kit of parts (1) comprising an electric cable (3) comprising hermetically sealed electric conductors, a connection device (5) comprising a first (9a) and a second connection part (9b), the first and second connection part each comprising a cavity (12) in which a respective secondary conduction coil (14) is arranged and connected to respective electrical contacts. In a connected arrangement of the connection device and the electric cable, the wire is wound around both the first connection part in a first winding sense and around the second connection part in a second, opposite winding sense. Thus, a watertight electric connection between the cable and the connection device is established.
A magnetic element including a magnetoresistive effect film (MEF). Magnetic element includes an MEF and nonmagnetic spacer layer, first and second ferromagnetic layers, wherein layers being disposed with nonmagnetic spacer layer interposed therebetween, pair of electrodes disposed with MEF interposed therebetween in stacking direction of MEF at least two first soft magnetic layers, coil, and second soft magnetic layer magnetically connected to coil, wherein second soft magnetic layer has ring-like shape, spacing distance between second soft magnetic layer and MEF is larger than first soft magnetic layer and MEF, film thickness of second soft magnetic layer is larger than first soft magnetic layer, part of the two first soft magnetic layers overlaps a part of second soft magnetic layer in stacking direction of MEF, first and second soft magnetic layers are magnetically coupled to each other, and MEF is disposed between respective fore ends of two first soft magnetic layers.
An exemplary locking or coupling device includes a plurality of magnets each having a direction of magnetization. A plurality of pole shoe members are positioned between selected ones of the magnets. A moveable support supports some of the magnets and some of the pole shoe members. The moveable support is moveable to selectively change a relative orientation of the directions of magnetization. One relative orientation primarily directs a flow of magnetic flux between the magnets through the pole shoe members and the magnetic flux remains essentially in a plane containing the magnets and the pole shoe members. A second, different relative orientation primarily directs the flow of magnetic flux from the pole shoe members in a transverse direction away from the plane.
This invention enables high temperature superconducting (HTS) metal oxide materials ReBa2Cu3Ox ((RE)BCO) to carry high superconducting currents at high current densities under high magnetic field (≧3 Tesla), in all orientations of the field, and at high temperatures (65 Kelvin). The superconductor is adapted to carry current in a superconducting state, with the superconductor having a current (I) carrying capacity of at least 250 A/cm width, in a field of 3 Tesla (T), at 65 Kelvin (K), at all angles relative to the coated conductor. More preferably, the current carrying capacity extends through the range of substantially 250 A/cm to 500 A/cm. Excellent performance is achieved by use of intrinsic pinning centers in the HTS compound. The invention preferably does not require the addition of extra elements or compounds or particles to the superconducting compound during synthesis, nor does it require extra process steps.
An electrical cable having an elongate electrically conductive element (2) and at least one electrically insulating fluoropolymer layer (4) surrounding the electrically conductive element (2). The electrical cable is exempt from polyimide-containing layer between the electrically conductive element and the electrically insulating fluoropolymer layer.
An impregnated fiber tow comprising multiple unitary graphene-based continuous graphitic fibers impregnated with a matrix material, wherein at least one of the continuous graphitic fibers comprises at least 90% by weight of graphene planes that are chemically bonded with one another having an inter-planar spacing d002 from 0.3354 nm to 0.4 nm as determined by X-ray diffraction and an oxygen content less than 5% by weight, wherein the graphene planes are parallel to one another and parallel to a fiber axis direction and the graphitic fiber contains no core-shell structure, has no helically arranged graphene domains or domain boundary, and has a porosity level less than 5% by volume.
Provided is a paste composition for front electrode of a solar cell. The paste composition includes conductive power, an organic vehicle, a glass frit, and an additive. The additive includes at least one material selected from the group consisting of Zn, Sb, V, W, Cr, Cd, Re, Sn, Mo, Mn, Ni, Co, Cu, and metal oxide including one of the foregoing materials.
A plate-like electric conductor for a busbar having excellent electric conductivity, strength and bendability, and a busbar formed therefrom.The electric conductor formed from an aluminum alloy plate having a thickness of 0.5-12 mm is obtained by subjecting an aluminum alloy consisting essentially of Fe: 0.05-2.0%; Si: 0.05-0.6%; Cu: 0.01-0.35%; by mass, and the balance comprising Al and inevitable impurities to a hot rolling process. The electric conductor has the electric conductivity of 55-60% IACS, tensile strength not lower than 170 MPa and yield strength not lower than 155 MPa, in the as-rolled state at the room temperature, and does not suffer from cracking upon bending by 90° with an inner bending radius equal to its thickness, while having the electric conductivity of 55-60% IACS, tensile strength not lower than 160 MPa, and yield strength not lower than 145 MPa, after a heat treatment at 140-160° C. for not longer than 1,000 hours.
A memory device may include an address latch circuit that latches an address received from an exterior of the memory device, a repair signal generation circuit that generates a soft repair signal, a selection information generation circuit that generates first selection information by using first bits of a latched address latched by the address latch circuit, first to Nth register circuits that store second bits of the latched address as repair data by being selected by the first selection information when the soft repair signal is activated, and first to Nth memory blocks that perform repair operations using the repair data stored in the respective first to Nth register circuits.
A data transfer unit includes a first page buffer to latch data of a normal bit line connected to a normal memory cell, a second page buffer to latch data of a parity bit line connected to a parity memory cell, and a third page buffer to be first replaced when the first page buffer is defective or when the second page buffer 102c is defective. An error code correction bus is connected to the first and second page buffers, and a data bus is connected to the first, second and third page buffers.
A semiconductor device includes a nonvolatile memory block suitable for outputting data stored in a plurality of nonvolatile memory cells included therein based on first control information, and programming data in the nonvolatile memory cells based on second control information; a control block suitable for generating the first control information based on an initialization signal, wherein the control block sequentially generates the second control information and the first control information when a program mode is activated; and a test control block suitable for deactivating the nonvolatile memory block and determining whether at least one control signal among a plurality of control signals included in the first and second control information is normally generated, in a test operation on the program mode.
A memory cell includes a programming selection transistor, a following gate transistor, an antifuse element, and a reading circuit. A charging current formed by the antifuse element may trigger the reading circuit to form a stable read current during a reading operation of the memory cell so that the time for reading data from the memory cell can be shortened. A discharging process may be operated in the beginning of the reading operation of the memory cell so that the window of time for reading data from the memory cell can be widened.
According to one embodiment, a memory system comprises a first nonvolatile semiconductor memory, a temperature sensor and a controller. The first nonvolatile semiconductor memory includes the first and second semiconductor chips. The temperature sensor detects a temperature of the first nonvolatile semiconductor memory. The controller acquires the wear level per block of the first and second semiconductor chips based on the temperature of the first nonvolatile semiconductor memory and the frequency of use of the first nonvolatile semiconductor memory, and sets, based on the wear level, an examination frequency for defining a cycle of examination of quality of data per block of the first and second semiconductor chips.
A non-volatile memory device comprises a semiconductor substrate of a first conductivity type. An array of non-volatile memory cells is located in the semiconductor substrate and arranged in a plurality of rows and columns. Each memory cell comprises a first region on a surface of the semiconductor substrate of a second conductivity type, and a second region on the surface of the semiconductor substrate of the second conductivity type. A channel region is between the first region and the second region. A word line overlies a first portion of the channel region and is insulated therefrom, and adjacent to the first region and having little or no overlap with the first region. A floating gate overlies a second portion of the channel region, is adjacent to the first portion, and is insulated therefrom and is adjacent to the second region. A coupling gate overlies the floating gate. A bit line is connected to the first region. During the operations of program, read, or erase, a negative voltage can be applied to the word lines and/or coupling gates of the selected or unselected memory cells.
A memory structure is provided including an array of non-volatile memory (NVM) cells arranged in rows and columns, each cell including a NVM transistor having a body bias terminal coupled to body bias supply. The memory structure further includes a control system to control the body bias supply to adjust a body bias voltage coupled to the body bias terminals during read operations of the memory structure to compensate for shifts in threshold voltages (VTH) of the NVM transistors to maintain a read current window (IRCW) between a cell in which the NVM transistor is ON and a sum of leakage current through cells in which the NVM transistor is OFF. Methods of operating the memory structure are also described.
Read disturb is reduced in a charge-trapping memory device such as a 3D memory device by optimizing the channel boosting voltage in an unselected NAND string. A pass voltage applied to the unselected word lines can cause a large gradient in the channel which leads to electron-hole formation and a hot electron injection (HEI) type of read disturb. When the selected word line is close to the source-side of the NAND string, HEI disturb occurs on the drain-side of the selected word line. To avoid this disturb, a spike is provided in the control gate voltage of a drain-side selected gate transistor to temporarily connect the channel to the bit line, lowering the voltage of the associated channel region. A similar approach is used for a drain-side selected word line. The spike may be omitted when the selected word line is mid-range.
A semiconductor memory device includes a first memory cell, a second memory cell above the first memory cell, a first word line electrically connected to a gate of the first memory cell, a second word line electrically connected to a gate of the second memory cell, and a control unit that performs an erasing operation on the first and second memory cells. During the erasing operation, the control unit applies a first voltage to a first word line and a second voltage higher than the first voltage to a second word line.
A non-volatile storage system is disclosed that includes non-volatile memory cells designed for high endurance and lower retention than other non-volatile memory cells.
The present invention relates to a semiconductor device, including memory blocks suitable for storing data, peripheral circuits suitable for refreshing the memory blocks, and a control circuit suitable for controlling the peripheral circuits to change data stored in a first memory block among the memory blocks and refresh the first memory block with changed data, and an operating method thereof.
According to another embodiment, a method of reset operation for a resistive random access memory (RRAM) array, having a first RRAM connected to a first word line and a second RRAM connected to a second word line, is provided. A first electrical resistance between the first word line and a word line voltage source is lower than a second electrical resistance between the second word line and the word line voltage source. The method includes: providing a first voltage by using the word line voltage source for resetting the first RRAM; and providing a second voltage by using the word line voltage source for resetting the second RRAM, wherein the first voltage for resetting the first RRAM is lower than the second voltage for resetting the second RRAM.
The invention is provided to suppress a current supplied to a storage element so as not to vary for each layer in a semiconductor memory device obtained by connecting a plurality of memory cells in series.A semiconductor memory device according to the invention includes a plurality of memory cells connected in series between a first signal line and a second signal line, and supplies a different gate voltage to at least two of selection transistors included in the memory cells, respectively (refer to FIG. 2).
Provided is a nonvolatile memory device. The nonvolatile memory device may include a resistive memory cell, a reference current generator which provides a reference current, a reference signal generator which provides a reference signal indicating a reference time for data read based on the reference current, and a read circuit which receives the reference signal and reads data by comparing a ramp-up time of a cell current flowing through the resistive memory cell with the reference time.
Methods are provided for use with a memory array that includes a selected memory cell coupled to a selected word line and a selected bit line, with the selected word line biased at a read voltage. The method include coupling a sense amplifier to the selected bit line, the sense amplifier including a capacitor integrator, a single-transistor amplifier and a level shifter, maintaining the selected bit line at a voltage of substantially 0V using the single-transistor amplifier and the level shifter, and integrating a selected bit line current on the capacitor integrator.
For non-volatile random access memory (NVRAM) power management using self-refresh commands, a low-power module intercepts a memory self-refresh command and powers down an NVRAM in response to the memory self-refresh command. A resumption module intercepts a self-refresh exit command and powers up the NVRAM in response to the self-refresh exit command.
Some embodiments include thyristors having first and second electrode regions, first and second base regions, and material having a bandgap of at least 1.2 eV in at least one of the regions. The first base region is between the first electrode region and the second base region, and the second base region is between the second electrode region and the first base region. The first base region interfaces with the first electrode region at a first junction, and interfaces with the second base region at a second junction. The second base region interfaces with the second electrode region at a third junction. A gate is along the first base region, and in some embodiments does not overlap either of the first and second junctions. Some embodiments include methods of programming thyristors, and some embodiments include methods of forming thyristors.
The invention relates to a spintronic circuit (10; 11; 15) comprising: a conductive non-magnetic channel (1); —means (2, NM, FM1-FM3) for generating spin polarized electrons (4) in the non-magnetic channel (1) by spin extraction; at least two ferromagnetic contacts (FM1-FM3) arranged along the non-magnetic channel (1) one after another, —means (7, 8, 9) for adjusting the magnetization direction of the ferromagnetic contacts (FM1-FM3); means for propagating the spin polarized electrons (4) along the non-magnetic channel (1); means (5, 6) for measuring the contact resistance of the individual ferromagnetic contacts (FM1-FM3), wherein the contact resistance depends on the relative alignment of the spin polarization direction of the spin polarized electrons (4) in the non-magnetic channel (1) at the ferromagnetic contact (FM1-FM3) and the magnetization direction of the ferromagnetic contact (FM1-FM3).
A system comprising a solid state lattice containing an electronic spin coupled to a nuclear spin; an optical excitation configuration which is arranged to generate first optical radiation to excite the electronic spin to emit output optical radiation without decoupling the electronic and nuclear spins; wherein the optical excitation configuration is further arranged to generate second optical radiation of higher power than the first optical radiation to decouple the electronic spin from the nuclear spin thereby increasing coherence time of the nuclear spin; a first pulse source configured to generate radio frequency (RF) excitation pulse sequences to manipulate the nuclear spin and to dynamically decouple the nuclear spin from one or more spin impurities in the solid state lattice so as to further increase the coherence time of the nuclear spin; a second pulse source configured to generate microwave excitation pulse sequences to manipulate the electronic spin causing a change in intensity of the output optical radiation correlated with the electronic spin and with the nuclear spin via the coupling between the electronic spin and the nuclear spin; and a detector configured to detect the output optical radiation correlated with the electronic spin and the nuclear spin so as to detect a nuclear spin state of the nuclear spin.
An optical pickup includes a light source 1; a diffraction element 2 for generating a write main beam and a read sub-beam via diffraction; an objective lens 5; a wavelength plate 9; a polarization hologram element 7 having a plurality of diffraction regions with different diffraction characteristics, designed so that each diffraction region separates a light beam reflected from the optical storage medium and transmitted through the wavelength plate into a 0th order light beam and ±1st order light beams; an actuator 11; and a photodetector 10 configured to detect a light beam reflected from the optical storage medium 6 and diffracted by the polarization hologram element 7. The photodetector 10 generates an RF signal from a detection result concerning a 0th order light beam derived from the main beam, generates a focus error signal and a tracking error signal from a detection result concerning one of ±1st order light beams derived from the main beam, and generates a signal indicating that data has been recorded normally from a detection result concerning a 0th order light beam derived from the sub-beam.
An apparatus includes a first read/write head coupled to a first micro actuator, a second read/write head coupled to a second micro actuator, an actuator and a controller. The actuator is coupled to both the first and second micro actuators. The controller is configured to position the first read/write head in response to a first micro actuator control signal and an actuator control signal. Further, the controller is configured to position the second read/write head in response to a second micro actuator control signal and the actuator control signal. The positioning of the first and second read/write heads by the controller is performed substantially simultaneously.
The invention provides a resin component used within a memory disk drive device and a highly reliable memory disk drive device using the resin component, the resin component having excellent flame resistance and minimal outgas. A resin component used inside a memory disk drive device (1), the resin component being an insulating bushing for protecting a lead of a motor (2) when the lead is connected to a circuit board; a carriage (4) being molded integrally with a coil for driving a swing arm (3) provided with a pickup head (3a) for reading or writing information on a memory disk on a distal end thereof, and the carriage adapted for balancing the weight of the swing arm (3); or a ramp (5) for retracting the pickup head (3a) when the memory disk stops.
A magnetic sensor for use in a data storage device is described. The magnetic sensor includes a composite layer comprising a free layer portion and a bias layer portion each comprising a magnetic material, a shield layer comprising a magnetic material, and a continuous spacer layer comprising a non-magnetic material, the spacer layer separating the shield layer from the composite layer such that the magnetic coupling between the shield layer and the bias layer portion is stronger than the magnetic coupling between the shield layer and the free layer portion. A disk drive comprising a rotatable magnetic recording disk and the slider including the magnetic sensor arranged with the magnetic recording disk is also described.
A reader includes top and bottom reader stacks that are offset relative to each other in a downtrack direction and disposed between a top shield and a bottom shield. Top side shields surround the top reader stack in a crosstrack direction, and bottom side shields surround the bottom reader stack in the crosstrack direction. A middle shield is between the top and bottom reader stacks and the top and bottom side shields. The middle shield includes a common electrical conductive path coupled to the top and bottom reader stacks. A middle lead is coupled to an edge of the middle shield.
An audio input device is provided which can include a number of features. In some embodiments, the audio input device includes a housing, a microphone carried by the housing, and a processor carried by the housing and configured to modify an input sound signal so as to amplify frequencies corresponding to a target human voice and diminish frequencies not corresponding to the target human voice. In another embodiment, an audio input device is configured to treat an auditory gap condition of a user by extending gaps in continuous speech and outputting the modified speech to the user. In another embodiment, the audio input device is configured to treat a dichotic hearing condition of a user. Methods of use are also described.
The present invention addresses the problems of enabling a process of converting voice data playback speed even in a voice data playback device alone. The solution is a voice data playback speed conversion method and a voice data playback speed conversion device, comprising: a step of setting a reference zero cross point from any arbitrary zero cross point; a step of selecting a zero cross point temporally after the reference zero cross point within a first predetermined time range; a step of calculating a reference correlation function in a waveform from the reference zero cross point until a second predetermined time; and a step of calculating a correlation function in a waveform from a plurality of previously selected zero cross points until the second predetermined time, wherein a second reference zero cross point is the zero cross point of the waveform having a correlation function in which a concordance rate of the correlation value between the reference correlation function and the correlation function is the highest value, the difference between the reference zero cross point and the second reference zero cross point is calculated as a basic cycle, and the expansion and contraction of voice data is executed in basic cycle units so as to perform a process of converting the playback speed of the voice data.
A method for predicting a bandwidth extension frequency band signal includes demultiplexing a received bitstream to obtain a frequency domain signal; determining whether a highest frequency bin, to which a bit is allocated, of the frequency domain signal is less than a preset start frequency bin of a bandwidth extension frequency band; predicting an excitation signal of the bandwidth extension frequency band according to the determination; and predicting the bandwidth extension frequency band signal according to the predicted excitation signal of the bandwidth extension frequency band and a frequency envelope of the bandwidth extension frequency band.
Provided is an audio encoding method. The audio encoding method includes: acquiring envelopes based on a predetermined sub-band for an audio spectrum; quantizing the envelopes based on the predetermined sub-band; and obtaining a difference value between quantized envelopes for adjacent sub-bands and lossless encoding a difference value of a current sub-band by using a difference value of a previous sub-band as a context. Accordingly, the number of bits required to encode envelope information of an audio spectrum may be reduced in a limited bit range, thereby increasing the number of bits required to encode an actual spectral component.
A low bit rate digital audio coding system includes an encoder which assigns codebooks to groups of quantization indexes based on their local properties resulting in codebook application ranges that are independent of block quantization boundaries. The invention also incorporates a resolution filter bank, or a tri-mode resolution filter bank, which is selectively switchable between high and low frequency resolution modes or high, low and intermediate modes such as when detecting transient in a frame. The result is a multichannel audio signal having a significantly lower bit rate for efficient transmission or storage. The decoder is essentially an inverse of the structure and methods of the encoder, and results in a reproduced audio signal that cannot be audibly distinguished from the original signal.
An encoder apparatus is provided that suppresses the quality degradation of encoding processes. An ultimate selection candidate limiting unit uses the spectrum of an input signal and a residual spectrum to designate a given number of pre-selected suppression factors to a CELP component suppressing unit, which uses the designated suppression factors to generate a suppressed spectrum. A CELP residual signal spectrum calculating unit, to which the suppressed spectrum is input, calculates a residual spectrum. A conversion encoding unit uses the residual spectrum to perform a second encoding process. A distortion evaluating unit determines one of the designated suppression factors by use of the spectrum of a second decoded signal generated by decoding a second code obtained by the second encoding process, and further by use of the suppressed spectrum and the spectrum of the input signal.
A system for supervising an operator in a speech-driven environment includes an operator terminal configured for running a bi-directional speech task with an operator in a first spoken language wherein the speech task includes a plurality of successive nodes that are encountered by the operator, indicating progress through the task. A supervisor terminal is configured for running a bi-directional speech task with a supervisor in a second spoken language that is different from the first spoken language. A communication link exists between the operator terminal and supervisor terminal for communicating information therebetween. The operator terminal communicates, to the supervisor terminal, information regarding progress through the operator terminal speech task. The supervisor terminal progresses through the supervisor terminal speech task synchronized with the progress of the operator terminal speech task. A monitor is configured for displaying the operator's node-by-node progression upon receipt of speech data from said operator terminal.
A method and system for acoustic echo cancellation varies a step size of an adaptive filter in an acoustic echo canceller. Far-end data is received and echo estimate data is calculated using the received far-end data. Microphone data is received and error data is calculated using the received microphone data and the echo estimate data. A first average of the microphone data and a second average of the error data are computed over a predefined number of samples. An echo leakage is estimated using the first average and the second average wherein the echo leakage indicates an extent to which the far-end data is present in the error data, and the step size of the adaptive filter is varied based on the echo leakage and a maximum allowed step size.
An adaptive active noise cancellation apparatus performs a filtering operation in a first digital domain and performs adaptation of the filtering operation in a second digital domain.
A hand-held percussive shaker assembly comprising two identical shakers capable of producing different percussive sounds and rhythms in a single assembly is disclosed. The shakers are detachably connected by an integrally formed lock assembly. The shakers may be played as a single assembly or detached and played individually. Each shaker comprises one or more bottles filled with a striker material. Each bottle isolates its striker material from the striker material in other bottles and from any other part of the shaker. The shakers may produce the same or different tones when the shaker assembly is moved.
A weight for a key of a keyboard musical instrument that is to be inserted and secured in an attachment space, provided to the key, is provided. The weight includes: a weight body portion; and a corrugated portion, disposed in at least one portion of a lateral surface of the weight body portion, the lateral surface being located around an axis extending in an inserting direction of the weight body portion into the attachment space, the corrugated portion including a plurality of corrugations aligned in the inserting direction. The weight body portion and the corrugated portion are made of an elastic material.
Discussed are an apparatus and method for driving a liquid crystal display device, whereby the apparatus includes a data driver for driving data lines of a liquid crystal panel, setting detectable temperatures for different temperature detection time points, detecting an ambient temperature at each temperature detection time point, and outputting a gate drive voltage variation signal and a common voltage variation signal in accordance with the set and detected temperatures at each temperature detection time point, and a power supplier for varying levels of a gate drive voltage and a common voltage in accordance with the gate drive voltage variation signal and the common voltage variation signal, and supplying the gate drive voltage and common voltage to a gate driver and the liquid crystal panel, respectively.
A display device for improving display quality includes a pulse compensator, a gate driver, a source driver and a display panel. The pulse compensator generates a clock signal of which amplitude decreases when peripheral temperature increases and increases when peripheral temperature decreases. The gate driver outputs a gate driving signal to the display panel based on the clock signal, wherein an amplitude of the gate driving signal decreases when the peripheral temperature increases and the amplitude of the gate driving signal increases when the peripheral temperature decreases. The source driver provides a gray-scale voltage based on gray-scale data, and the display panel displays an image corresponding to the gray-scale voltage in response to the gate driving signal. Therefore, the deterioration in the drive capability of the gate driver depending on the peripheral temperature may be prevented and display quality of the display device may be improved.
Provided is a display device, including: a drive circuit for inputting input signals generated based on video signals corresponding to at least red, green, and blue input from an exterior thereof; and a substrate including a plurality of connection wiring lines and a plurality of signal lines formed thereon, the plurality of connection wiring lines being connected to the drive circuit, the plurality of signal lines being provided in a display region, to which output signals output from the drive circuit are input through the plurality of connection wiring lines. The plurality of connection wiring lines supplied with the output signals corresponding to the respective colors are formed in layers different from each other corresponding to the respective colors on the substrate.
A pixel driving circuit includes a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, an organic light emitting diode, and a capacitor. The second transistor is electrically connected between a first end and a gate end of the first transistor. The third transistor is electrically connected between the first end of the first transistor and a first supply voltage source. The fourth transistor is electrically connected between a second end of the first transistor and a data input end. The fifth transistor is electrically connected to the second end of the first transistor. The organic light emitting diode is electrically connected between the fifth transistor and a second supply voltage source. The capacitor is electrically connected to the gate end of the first transistor.
A display device 100 includes a plurality of pixel circuits 10 arranged two-dimensionally; a plurality of power lines VPi provided for respective rows of the pixel circuits 10; p common power lines 9, each connected to two or more power lines VPi; and a power control circuit 4. Each pixel circuit 10 includes an organic EL element, a plurality of TFTs, and a capacitor and receives an initialization potential from a corresponding power line VPi. The power control circuit 4applies a power supply potential and the initialization potential to the p common power lines 9 in a switching manner. Accordingly, a display device is provided that has a configuration in which an initialization potential is provided to pixel circuits from power lines and that has a power control circuit small in circuit size.
An image display device adapted to display an image based on an image signal includes a light source, an adjustment section adapted to adjust light intensity of a light emitted from the light source based on a feature amount related to a luminance of the image, a modulation section adapted to modulate the adjusted light based on the image signal, and a control section adapted to suppress reduction of the light intensity by the adjustment section in a case in which a predetermined condition related to temperature of the modulation section is satisfied.
With a simple configuration, a area in which an operating unit can move is prevented from being limited. Provided is an operation input device including a display; an operating unit that operates a display object displayed on the display; a head-mounted unit that is mounted on the head of an operator; relative position sensors that detect a relative position and a relative orientation of one of the head-mounted unit and the operating unit with respect to the other; and a control unit that actuates the display object displayed on the display on the basis of changes in the relative position and the relative orientation detected by the relative position sensors.
The present invention relates to detectable warning panels, and in particular to detectable warning panels that display text and/or other graphic information such as commercial messages, trademarks, logos, directions, slogans, pictures, names, product illustrations, emblems, promotional information related to a product or service, Quick Response Codes, matrix code, two-dimensional bar code, optical machine-readable labels, and combinations thereof.
An attachment and method of use is described for securing flags, banners and the like to flag poles. The attachment includes a ring having a rotatable pin which fits within a conventional flag grommet. A ring retainer is used to maintain the ring at a selected location along the flag pole. In order for the attachment to work with flag poles having different diameters, a ring retainer spacer and ring spacer are available for easy use during assembly. The attachment allows ease in repositioning the flag along the pole as desired.
A system including a first component configured to be attached to a vertical surface, the first component including at least a pair of protrusions coupled thereto with a spacing therebetween. The system further includes a second component including a pair of hang tags coupled thereto. Each hang tag has an opening therethrough with a spacing therebetween. The spacing between the openings of said hang tags generally corresponds to the spacing between the pair of protrusions such that each protrusion is receivable through the opening of an associated one of the hang tags to removably couple the second component to the first component. Each hang tag is generally flat and planar and is movable in a direction generally parallel to a plane of the associated hang tag.
A system for sharing and processing traffic information includes a number of traffic information computer systems within individual vehicles or devices and a virtual traffic information server on a mobile network. The traffic information computer systems are each connected through a peer-to-peer radio, cellular, Wi-Fi, or other similar types of communications network, and which each operate with a database for displaying road maps, with a database storing average speed data for directions of travel along roadways, and with a location sensor used to determine the location and average speed of the vehicle or device, which are transmitted to other vehicles. The virtual server returns average speed data for road segments, which is displayed on the road maps. The system includes sharing average speed data calculated as well average speed data received from the plurality of vehicles to other vehicles, thereby enhancing the real-time communication of traffic and/or road condition data.
Approaches for classifying vehicles include generating a signal waveform from a signal in a single inductive loop generated by a passing vehicle. The signal waveform is compared to a first plurality of model waveforms. Each model waveform is associated with a respective class of vehicle. A first model waveform of the first plurality of model waveforms that matches the signal waveform is determined, and data indicating the respective class of vehicle associated with the first model waveform is output.
An approach is provided for presenting comprehensible representation of traffic flow information for various travel segments based on class levels. The approach involves causing, at least in part, a classification of one or more travel segments into one or more class levels. The approach also involves causing, at least in part, a designation of one or more representations of traffic flow information for the one or more travel segments based, at least in part, on the one or more class levels, wherein the one or more representations include, at least in part, a link-based traffic flow representation, a heat-map representation, or a combination thereof. The approach further involves causing, at least in part, a presentation of at least one user interface depicting the one or more representations of the traffic flow information for the one or more travel segments based, at least in part, on the designation.
An electronic window covering control system automatically controls raising, lowering, and rotating a window covering of a window. A window covering controller interfaces with an electronic window covering, sends messages including sensor data to a local receiver, and receives messages including window covering commands from the local receiver. In turn, the local receiver interfaces with a hub device through a mesh network. The hub receives the sensor data, applies a rule set to make window covering operation decisions, and sends messages, which may comprise commands to operate the window covering, through the mesh network to the local receiver. The local receiver decodes the messages and passes the window covering commands to the window covering controller to automatically control the electronic window covering.
Disclosed is a locator device that identifies a location of a person wearing or carrying the device, while providing a user with imbedded electronic feature to store personally identifiable information. The locator device takes the form of an article of jewelry or a retractable keychain, which may be provided in various ornamental designs having a housing member. Within the housing member of the device may include a GPS transceiver chip and an identifying integrated circuit that stores personally identifiable information. The housing member further includes an internal battery that provides electrical power when the device is utilized. The purpose of the device is to provide an aesthetically pleasing accessory while providing a discrete locator device that includes identifiable information of the person wearing or carrying the same.
A method to operate simultaneous races providing racecourses (10) printed on bet slips and scheduling draws of random numbers for racer advancements. On a bet slip, the player marks one selectable spot for a racer to start and none to scratch a racer, and also selects which forthcoming draws will be applicable to advance racers. Make-up bets can be placed between advancements. Besides, a 1-race bet winner can earn cash payoff or non-cashable credit to wager like cash. The ticket holder of a hanging multi-race bet has the option to trade in hanging credit for placing other bets. How to calculate advancement probabilities, winner credits, hanging credits and specific house edge formulas for payoffs will be provided. An automatic computer/video version of the game is included.
Disclosed in some examples is a method of providing a computer implemented game comprising: displaying one or more on-screen objects in accordance with the computer implemented game; accepting input from a user of the computer implemented game; responsive to receiving input from the user, updating the one or more on-screen objects according to one or more game rules using one or more computer processors; receiving a notification from a game server, over a network, that the user of the computer implemented game has completed a gameplay specific task in a second computer implemented game, wherein the second computer implemented game is provided on a separate platform from the computer implemented game; and responsive to receiving the notification from the game server, providing a reward to the user in the computer implemented game.
A vehicle control system includes a computer and logic executable by the computer. The logic is configured to read an odometer value from a storage system. The odometer value corresponds to an accrued mileage obtained from an odometer. The accrued mileage is determined at a beginning of a current driving event. The logic is also configured to read an odometer value for the vehicle from another storage system. The odometer value from the other storage system corresponds to an accrued mileage obtained from the storage system at the beginning of a driving event that precedes the current driving event. The logic is further configured to compare the odometer value from the storage system to the odometer value from the other storage system and calculate a reduction value from the difference, upon determining the odometer value from the other storage system is greater than the odometer value from the storage system.
Exemplary embodiments disclose a method of projecting an image onto a surface of a three-dimensional (3D) electronic map. The method includes: extracting nearest intersecting points for each of a plurality of virtual view angle vectors with respect to a position of a virtual photographing apparatus and a plurality of polygons that constitute the 3D electronic map; comparing 3D coordinates of the extracted nearest intersecting points and 3D coordinates of a plurality of pixels constituting the plurality of polygons to select pixels that are within a range of the 3D coordinates of the extracted nearest intersecting points; converting 3D coordinates of the selected pixels to two-dimensional (2D) coordinates to display the selected pixels on a 2D display; and superimposing an input image on top of the selected pixels to output the superimposed image in real-time.
According to an embodiment, in a medical image diagnostic apparatus, an accepting unit accepts input of conditions with respect to regions to be photographed and arrangement of the regions. An extracting unit extracts an area of interest of each subject by analyzing medical image data photographed based on the conditions accepted by the accepting unit. Based on the conditions and on the area of interest extracted by the extracting unit, a setting unit sets display conditions of a parallax image group to be displayed on a display unit having a stereoscopic viewing function.
The presentation of a computer display may be modified based on what the user is viewing on the display. In one embodiment, gaze detection technology may be used to determine what the user is looking at. Based on what the user is looking at, the display may be altered to either improve or degrade the display at the region the user is looking at.
A method includes receiving sensor data from a sensor. The sensor data includes location data, and an image of a viewing area. The method also includes determining markers in the viewing area based on the sensor data. The markers indicate Configuration Items (“CI's”) within the viewing area. The method further includes determining a coordinate system of the viewing area utilizing the sensor data. The method still further includes receiving CI data corresponding to the CI's within the viewing area. The method even further includes formatting for display the CI data. The formatting includes generating a visual representation based on the CI data. The formatting also includes projecting the visual representation onto the coordinate system in an augmentation pane based on coordinates of the markers. The formatting further includes overlaying the viewing area with the augmentation pane.
A imaging system and method is disclosed. In one aspect, the system includes a first edge-detecting module configured to detect edge coordinates in the first image, a first disparity-estimating module configured to obtain a first estimated disparity map of the first image relative to the second image, and a first edge-refining module configured to refine edge coordinates in the first estimated disparity map using the edge coordinates in the first image to obtain a first refined disparity map. The imaging system and method improve the quality of a disparity map and control the complexity of stereo-matching.
A compensation method of spectral mismatch for a color filter array (CFA) comprising of white, red, green, and blue (WRGB) color filters includes introducing an offset representing spectral mismatch to modify a linear model that relates a W component of a pixel to R, G, and B components of the pixel. In one embodiment, an estimated offset is generated according to readout component images, and a compensated component image is generated according to the estimated offset and a corresponding readout component image.
Means which enables image conversion in which a plurality of conversion results can be output without once saving all of video-image data, which has been input from image-pickup means, in a storage medium is provided. A single line memory having a plurality of lines is used while switching the role thereof for a reading use by a video-image converting means and a use for inputting image data from the image-pickup means. The image converting means obtains an input image, which is in the line memory, and carries out conversion of the input image based on a conversion specifying means interpreted by an instruction decoder.
In example embodiments, systems and methods for learning and using user preferences for image adjustments are presented. In example embodiments, a new image is received. A correction parameter based on previously stored user adjustments for similar images is determined. A user style that is an adjusted version of the new image is generated by applying the correction parameter. The user style is provided on a user interface. A user adjustment is received. Based on determining that a user sample image is within a predetermined threshold of closeness to the new image, data corresponding to the user sample image is replaced with new adjustment data for the new image in a database of user sample images used to generate the correction parameter. Based on determining that no user sample images are within the predetermined threshold of closeness, new adjustment data is appended to the database used to generate the correction parameter.
A computer implemented method for applying a numerical approximation of a convolution of image I as represented by hierarchical signals al of level l with filter f, said method including the steps of: generating a forward transformation by applying a convolution between al and kernel h1 for each level of hierarchy l and by down-sampling the result of convolved al and h1; generating a backward transformation by applying, for each level of hierarchy l, a convolution between kernel h2 and an up-sampled forward transformation and combining the result with a convolution of al with kernel g; and combining the forward transformation with the backward transformation, to yield â0 being an approximation of a convolution between a and f, wherein kernels h1, h1, and g are optimized kernels of filter f.
A user interface in a social networking system enables users to connect to and interact with each other using a third-party communication service, such as a VoIP or video chat service. A user initiates an interaction with another user in the social networking system, which passes the users' information to the third-party communication service provider to allow it to provide the requested service. The social networking system may pass an encrypted identifier for the users so that the third-party communication service does not have access to the real identities of the social networking system's users. A user of the social networking system may use this process to video conference with users of the third-party communication service, rather than just other users of the social networking system, and vice versa.
Methods and systems of displaying response data provide for identifying a pegged area of display content during a first retrieval of the display content by a client device at a first moment in time. Additionally, first data associated with the pegged area may be stored, wherein a comparison can be conducted between the first data and additional data associated with the pegged area at one or more subsequent moments in time. In one example, a user interface is generated that highlights a quantitative trend of the pegged area between the first moment in time and the one or more subsequent moments in time.
A graphical interface and method are provided for displaying market information corresponding to a tradeable object. One graphical interface includes a chart region for displaying historical market data in relation to a first value axis, and a market grid region in alignment with the chart region. The market grid region comprises a plurality of areas for receiving commands from a user input device to send trade orders, and the areas are displayed in relation to a second value axis. A plurality of values displayed along the second value axis is a subset of values displayed in relation to the first value axis, and can be modified to a new plurality of values that corresponds to a new subset of values on the first value axis.
Methods and systems are described for providing efficient product ordering of products, such as groceries or any other product or item. The customer enters keywords (or generic terms) that describe a desired item on a first portion of a display screen and search result items associated with each of the keywords on the list automatically appear on a second portion of the display screen. When the customer selects the desired items from the second portion of the display screen, the selected items automatically appear on a third portion of the display screen. The customer can then click a “Check Out” button on the same screen and have the products shipped to him/her.
A method and system for providing location based services to a user are provided. Multiple beacons are strategically positioned in predetermined locations in an environment. The beacons encode and project beacon related information. A client application is provided on the user's communication device. The client application captures the beacon related information in one or more communication modes, extracts the captured beacon related information, and sends a request to a service management server for area information and contextual information based on the extracted beacon related information via a communication network. The service management server assembles and transmits area information and contextual information to the communication device based on the sent request from the client application via the communication network. The client application identifies its location and acquires location based services on the user's communication device based on the identified location and the transmitted area information and contextual information.
The method of processing an analysis cycle to determine interest merchants may include selecting a seed merchant relevant to a topic interest, identifying consumers that have completed a transaction with the seed merchant to generate a list of identified consumers, determining merchants visited by the identified consumers, scoring all the merchants based on network connectivity, activity, and merchant over-index, updating the seed merchant in response to the list of scored merchants relative to a scoring threshold, and scoring the list of identified consumers based on the number of distinct merchants in transaction and over-indexing. Additionally, the method may further comprise producing a list of updated interest merchants and a list of updated identified consumers, where the updated interest merchants and the updated identified consumers are relevant to the topic interest.
Implementations include receiving a first image that displays context of an event, the first image being received during the event, receiving a first identifier associated with a first attendee, the first identifier being associated with a user profile in a computer-implemented social networking service and being determined based on processing of the first image to detect a presence of the first attendee in the first image, determining, based on the first identifier, that the first attendee is a contact of a user within the social networking service, populating an event social circle to include the first attendee, the event social circle being associated with the user and defining a distribution for digital content generated by the user within the social networking service, receiving digital content generated by a computing device of the user, and distributing the digital content based on the event social circle.
A method for facilitating the widespread use of the PIN-Debit payment method for Internet “eCommerce” and mobile payments sales which requires little or no change for the cardholders, merchants, debit networks and card issuers based primarily on the introduction of a layer of middleware and wherein the Debit Networks and Issuing Banks may customize the implementation of the services based on individual strategy and cardholder preferences.
A motor vehicle monitoring method for determining driver negligence is carried out by a company in order to determine a final assessment for the vehicle. The method for determining driver negligence enables the company to calculate an average revolutions per initial odometer value and an average revolutions per secondary odometer value, where the average revolutions per secondary odometer value is a direct indication about operating state of the vehicle or an action of an end user during a designated time period. Then the company is able to adjust the contact agreement for the designated time period upon the final assessment, wherein the responsible party that violates the contact agreement is only liable for the respective damages. The method for determining driver negligence also validates the odometer and speedometer values from illegal tampering.
Techniques are provided for generating and managing temporary email addresses. A requestor having a requestor email address makes a request to receive a temporary email address. The temporary email address is generated and mapped to the requestor email address. Messages received that are associated with the temporary email address are mapped to the requestor email address and forwarded to the requestor. The temporary email address expires when an expiring event is detected.
Embodiments relate to constructing a tree-shaped Bayesian network from variables associated with conditional dependencies in a given data set, the constructing being performed by a plurality of processors in parallel. An aspect includes assigning a plurality of variables as nodes to a respective plurality of processors. Another aspect includes operating the plurality of processors in a parallel manner to determine a correlation for each pair of nodes. Another aspect includes M variables that are randomly selected as primary nodes defining (M+1) sub-trees. Another aspect includes in each sub-tree the plurality of processors are operated in a parallel manner to determine a correlation for the remaining nodes with each of the primary nodes and to allocate each remaining node to one of the (M+1) sub-trees.
A system and method that facilitates authoring of a Bayesian Belief Networks by: accessing text content stored in a content storage device; identifying statements within said accessed text content indicating a dependence relation; extracting said statements indicating said dependence relation from said text content; and aggregating said extracted statements into a form suitable for representation as a BBN network structure. To identify statements indicating a dependence relation, the method includes identifying one or more lexical and semantic attributes of variables within a text unit indicating a conditional dependence relation between two or more variables. The method further processes the text content to extract probabilistic information and probability statements and aggregate the probability statements into a quantitative layer of the BBN structure.
An adaptive pattern recognition system optimizes an invariance objective and an input fidelity objective to accurately recognize input patterns in the presence of arbitrary input transformations. A fixed state or value of a feature output can nonlinearly reconstruct or generate multiple spatially distant input patterns and respond similarly to multiple spatially distant input patterns, while preserving the ability to efficiently evaluate the input fidelity objective. Exemplary networks, including a novel factorization of a third-order Boltzmann machine, exhibit multilayered, unsupervised learning of arbitrary transformations, and learn rich, complex features even in the absence of labeled data. These features are then used to classify unknown input patterns, to perform dimensionality reduction or compression.
A method for calculating a confidence score for a data element that includes substantive technical data in a computer interpretable form and is adapted to be utilized by a knowledge management system. The method includes the steps of encoding substantive technical data in the data element, tracking a plurality of component factors for the data element, calculating a plurality of component scores for the data element wherein each individual component score corresponds to an individual component factor, and calculating the confidence score for the data element based at least in part on the plurality of component scores.
Techniques for computing a solution to a query formulated against a knowledge base (KB) are provided. The techniques include receiving a query formulated against a knowledge base, wherein the knowledge base comprises a set of one or more axioms, wherein each axiom is annotated with a specific probability value indicating a degree of certainty assigned thereto, ignoring each probability value of the one or more axioms and computing a solution to the query, computing each of one or more justifications for the query solution, wherein computing each of one or more justifications for the query solution comprises determining a minimal set of one or more axioms in the knowledge base that entail the query solution, and using each probability value of the one or more axioms in each justification to compute a net probability of an inferred query solution.
According to one embodiment, a processing device is configured to process input data formed of a plurality of input digital values. The processing device has a plurality of computation layers connected in series. Each of the computation layers has a plurality of computation devices. Each of the plurality of computation devices in the computation layer of a first stage is configured to generate a digital value from the input digital values and weight coefficients defined in advance. The weight coefficients are applied to each of the input digital values. Each of the plurality of computation devices of the computation layer of a second or subsequent stage is configured to generate a new digital value from the digital values generated by the computation devices of the computation layer of the previous stage and weight coefficients defined in advance. The weight coefficients are applied to each of the digital values.
Provided is a neuromorphic signal processing device for locating a sound source using a plurality of neuron circuits, the neuromorphic signal processing device including a detector configured to output a detected spiking signal using a detection neuron circuit corresponding to a predetermined time difference, in response to a first signal and a second signal containing an identical input spiking signal with respect to the predetermined time difference, for each of a plurality of predetermined frequency bands, a multiplexor configured to output a multiplexed spiking signal corresponding to the predetermined time difference based on a plurality of the detected spiking signals output from a plurality of neuron circuits corresponding to the plurality of frequency bands, and an integrator configured to output an integrated spiking signal corresponding to the predetermined time difference, based on a plurality of the multiplexed spiking signals corresponding to a plurality of predetermined time differences.
A wearable device is provided with a wearable device structure with first end and second ends. A plurality of magnets is positioned at the first and second ends that provide for coupling of the first end to the second end of the wearable device structure. At least a portion of magnets at the first end overlap with magnets at the second end. ID circuitry is at a surface or an interior of the wearable device structure.
An image forming apparatus forms an image by irradiating light from a light source to an image carrier. The image forming apparatus includes: an image processing unit that processes image data at resolution N; and a control unit that generates modulation data to drive the light source at resolution m×N (m is a positive integer equal to or larger than 2), which is higher than the resolution N, based on the processed image data. Processing at the image processing unit is pseudo-halftone processing to perform line thinning or thickening on a part of the image data. The control unit converts the image data at the resolution N that has been subjected to the pseudo-halftone processing into data at the resolution m×N, and adjusts an amount of light for a part of the image data based on the resolution m×N.
A pulse width modulation technique is disclosed for use in an image forming device such as a laser printer or a photocopier. The technique implements a pacer to synthesize the frequency of a serializer circuit by stretching (or shrinking) pixel pulse train data. The pacer stretches the pixel pulse train data in accord with increment data that is based upon information about the image forming device, such as the number of bits in the pixel pulse train data, the number of bits in print engine pulse train, the target print engine frequency, and the serializer frequency. The technique can be implemented with digital circuits that provide digital test data.
An image forming apparatus includes a unit configured to correct a relative position of a first image and a second image, and a controller configured to form a first measurement image in a case where a first condition is satisfied, and to form the first measurement image and a second measurement image in a case where a second condition is satisfied. The controller is further configured to, in a case where the first condition is satisfied, determine whether or not the second condition is satisfied before the first condition is satisfied next, and in a case where the second condition is satisfied before the first condition is satisfied next, cause an image forming unit to form the first measurement image and the second measurement image.
An image forming apparatus includes an execution unit, a reception unit, and a control unit. The execution unit executes a printing job using a tab sheet from a first sheet supply unit and a sheet, other than a tab sheet, from a second sheet supply unit. The reception unit receives an instruction to confirm printed material of the printing job. The control unit controls the execution unit to stop a printing operation of the printing job that the execution unit is executing and print, for confirmation, at least one page included in the printing job, based on receiving the instruction. The control unit further controls the execution unit to restart the stopped printing job after the printing for the confirmation is ended and to execute the printing for the confirmation by not using a tab sheet and by using a sheet other than a tab sheet.
An automatic learning method for the automatic learning of the forms of appearance of objects in images in the form of object features from training images for using the learned object features in an image processing system comprises determining a feature contribution by a training image to object features by weighted summation of training image features by means of linear filter operations, applied to the feature image, by using a weight image obtained at least from an annotation image and a classification image. This allows faster learning processes and also the learning of a greater variance of forms of appearance of objects and backgrounds, which increases the robustness of the system in its application to untrained images.
An airborne mine countermeasure system includes a processor coupled to a memory having stored therein software instructions that, when executed by the processor, cause the processor to perform a series of image processing operations. The operations include obtaining input image data from an external image sensor, and extracting a sequence of 2-D slices from the input image data. The operations also include performing a 3-D connected region analysis on the sequence of 2-D slices, and extracting 3-D invariant features in the image data. The operations further include performing coarse filtering, performing fine recognition and outputting an image processing result having an indication of the presence of any mines within the input image data.
Systems and methods are disclosed for describing and tracking edges within the field of view of one or more imaging devices. In one example, the present system defines a row of pixels taken across a width of the edge, and then determines a binary edge descriptor for the edge by comparing at least one of grayscale values and contrast of pixels within respective pixel pairs from the row of pixels, the result of the comparisons setting bits within the binary descriptor.
An image recognition apparatus determines whether an image of a pedestrian is captured in a frame of video data captured by a vehicle mounted camera. A pre-processing unit determines a detection block from within a frame, and cuts out block image data corresponding to the detection block from the frame. Block data with a predetermined size that is smaller than the size of the detection block is created from the block image data. A neuro calculation unit executes neuro calculation on the block data, and calculates an output synapse. A post-processing unit determines whether a pedestrian exists within the detection block on the basis of the output synapse. When a pedestrian is detected, the post-processing unit creates result data, which is obtained by superimposing the detection block within which the pedestrian was detected onto the frame.
A method, in an application executing on a client device, includes: displaying a camera event history provided by a remote server system, where the camera event history is presented as a chronologically-ordered set of event identifiers, each event identifier corresponding to a respective event for which a remote camera has captured an associated video; receiving a user selection of a displayed event identifier; and in response to receiving the user selection of the displayed event identifier: expanding the selected event identifier into a video player window, the video player window consuming a portion of the displayed camera event history; and playing, in the video player window, the captured video; and in response to terminating playback of the captured video or user de-selection of the displayed event identifier, collapsing the video player window into the selected event identifier thereby stopping the playing of the captured video.
Methods and systems for eye tracking are disclosed. One such method obtains a plurality of images of the eye from an array camera and detects glint positions and a pupil edge of the eye in the plurality of the images. A distance from the array camera to the pupil edge may be estimated based on the glint positions. A pupil image may be generated based on selected ones of the plurality of images, the glint positions, and the estimated distance to the pupil edge. A pupil center position may be determined based on the pupil image and the glint positions.
A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.
Various embodiments of the present invention provide systems and methods for performing updates of credentials used in relation to RFID readers. As an example, some embodiments of the present invention provide methods for updating credentials capable of authorization to an RFID reader. Such methods include providing a cellular telephone that includes a memory, a cellular telephone interface, and an nfc interface. An access is received via the cellular telephone interface, and is stored to the memory. Communication with an RFID reader is initiated via the nfc interface, and the access update is provided to the RFID reader for authorization.
A weight and center-of-gravity profile for an aircraft is determined prior to flight. An uncertainty band is determined for each of a plurality of points along a fuel vector for the planned flight. Each of the points along the fuel vector is compared to a predetermined flight limit (e.g., an FAA certified envelope). This comparison is used to decide whether the profile is suitable for flight of the aircraft. If so, an indication is provided to a user (e.g., on a display or by a text message) that the profile is suitable and the aircraft is ready for flight.
The position information acquisition unit acquires the first current position information of the multifunction peripheral and the second current position information of HDD. The position information determination unit executes the first determination whether or not the first current position information is identical with the first registered position information and the second determination whether or not the second current position information is identical with the second registered position information. The activation permission unit activates the multifunction peripheral and HDD when the current position information are identical with the registered position information based on the first and second determinations, or activates the multifunction peripheral only when the current position information is identical with the registered position information based on the first or second determination, or not activates the multifunction peripheral and HDD when the current position information are not identical with the registered position information based on the first and second determinations.
A method and system for electronic content storage and retrieval using Galois Fields and geometric shapes on cloud computing networks. Plaintext electronic content is divided into plural portions and stored in plural cloud storage objects based on a created Xth dimensional geometric shape and a path through selected components of the geometric shape. Storage locations for the plural cloud storage objects are selected using a Galois field and the geometric shape. The plural cloud storage objects are distributed across the cloud network. When the electronic content is requested, the plural portions are retrieved and transparently combined back into the original electronic content. No server network devices storing the plural cloud storage objects or target network devices requesting the stored electronic can individually determine locations of all portions of the stored electronic content on the cloud communications network, thereby providing various levels of security and privacy for the electronic content without having to encrypt the plaintext electronic content on the cloud network.
Embodiments of apparatuses, articles, methods, and systems for secure vault service for software components within an execution environment are generally described herein. An embodiment includes the ability for a Virtual Machine Monitor, Operating System Monitor, or other underlying platform capability to restrict memory regions for access only by specifically authenticated, authorized and verified software components, even when part of an otherwise compromised operating system environment. The underlying platform to lock and unlock secrets on behalf of the authenticated/authorized/verified software component provided in protected memory regions only accessible to the authenticated/authorized/verified software component. Other embodiments may be described and claimed.
In accordance with some embodiments, data may be collected from vehicles, and then reported to various subscribers with different levels of access privileges and pursuant different levels of security. In some embodiments, the data may be authenticated by a cloud service without revealing the identity of vehicle owner. This may provide enhanced privacy. At the same time, some types of the data may be encrypted for security and privacy reasons. Different information may be provided under different circumstances to different subscribers, such as the government, family members, location based services providers, etc.
A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.
A method and system is provided for operatively associating a signing key with a software component of a computing platform. The computing platform includes a trusted device and on start-up first loads a set of software components with each component being measured prior to loading and a corresponding integrity metric recorded in registers of the trusted device. The system stores a key-related item in secure persistent storage, the key-related item being either the signing key or authorization data for its use. The trusted device is arranged to enable a component of the software-component set to obtain the key-related item, this enabling only occurring when the current register values correspond to values only present prior to loading of components additional to those of the software-component set. Certificate evidence is provided indicating that the signing key is operatively associated with a component of the software-component set.
A computing device includes a central processing resource, memory, a network interface, and a security control module. The security control module determines when to change a program of the computing device. When the program is to be changed, the security control module accesses a library of programs that includes a plurality of versions of the program and selects one of the plurality of versions of the program. The security control module then updates an active program list to include the selected version of the program. When the program is evoked, the central processing resource uses the selected version of the program such that execution of the program is changed, which changes internal operation of the computing device thereby reducing adverse impact of the malicious software.
A system and method including defining at least one device authentication policy; at a policy engine, initializing authentication policy processing for an authenticator device; collecting device status assessment; evaluating policy compliance of the device status assessment to an associated defined device authentication policy; and enforcing use of the authenticator device according to the policy compliance.
A processing device comprises a processor coupled to a memory and is configured to implement an overlay effects selection interface for use in conjunction with generation of a graphical password. An image is obtained and presented in the overlay effects selection interface with a plurality of user-selectable overlay effects. User input is received identifying at least one overlay effect selected from the plurality of user-selectable overlay effects, and a modified version of the image is presented incorporating the selected at least one overlay effect. Information characterizing the image and the selected at least one overlay effect is utilized to control access to a protected resource. For example, the information characterizing the image and the selected at least one overlay effect may be obtained as part of a graphical password enrollment process and stored as at least a portion of the graphical password for controlling access to the protected resource.
In a biometric sensor system and method, storage of acquired biometric data and/or processing of that data may be shifted from specialized secure processing hardware to host system resources for improved speed and reduced cost of biometric sensor devices and systems. Stored data may be encrypted and/or signed by the specialized secure processing hardware and/or software. A database of authorized biometric data (e.g., patterns or key features representing all or a portion of the fingerprints of authorized users) may be stored on the host system either encrypted or non-encrypted or both. Preliminary matching against a database of many enrolled fingerprints may be accomplished by the system processor to ease the processing burden on the specialized secure processing hardware/software. Final match confirmation remains within exclusive control of the specialized secure processing hardware/software in order to prevent data tampering or other efforts to defeat the security provided by biometric identification.
An automatic machine implemented identification and data processing, gathering and storage system and method. A system, method and computer program product for communicating peer-validated reputation information enabling users, including automated processing equipment and methods, to, among other things, make decisions of safe or unsafe personal interactions, such as participating in an in-person meeting.
A shortcut management device capable of improving user-friendliness of a portal application. The shortcut management device is capable of executing shortcuts which use functions of an electronic apparatus, and manages at least part of the functions used by the shortcuts. A storage unit registers shortcuts. An invalidation detecting unit detects that the license is invalidated. A retrieval unit retrieves a shortcut made inexecutable in association with the license of which the invalidation is detected. An invalidation unit invalidates the retrieved shortcut.
Embodiments of the present invention are directed toward an improved enterprise leasing license algorithm and system thereof. A licensing algorithm for enterprise software configured to support expiring floating licenses obtained from a central license server. Floating licenses that have a user limit but not necessarily an expiration date, are installed to a central license server. A license is assigned to a user upon starting of the software program if a valid license has not yet been assigned. On exiting the software program, the user can return the license, making it immediately available to another user, or can keep the license for later use. A user is able to obtain a license while coupled to a network but is able to advantageously continue using the software program while disconnected from the network.
A medical general intelligence computer system and computer-implemented methods analyze morpho-physiological numbers for determining a risk of an emergent disease state, determining an emergent disease state, predicting a pre-emergent disease state, determining a pre-emergent disease state, and/or predicting a risk of a pre-emergent disease state.
An improved method for the placement and routing of compound elements, each comprising a series/parallel combination of nominally identical elements, is disclosed. The method treats each compound element as a separate cell (the sub-circuit construct commonly used in silicon chip design) so as to treat as a unit all the nominally identical elements that make up a compound value, and place them as a single group in the design of a chip. This results in the compound elements being placed as units and routed in such a way that all of the nominal elements are located together and any effects between compound values are thus relatively localized and optimally isolated.
An integrated circuit design tool includes a cell library. The cell library includes entries for a plurality of cells, entries in the cell library including specifications of particular cells in a computer executable language. At least one entry in the cell library can comprise a specification of physical structures and timing parameters of a circuit including a first transistor, a second transistor, and an interconnect connecting a terminal of the first transistor to a terminal of the second transistor, the interconnect comprising one or more nanowires or 2D material strips arranged in parallel. An integrated circuit including the circuit is described.
A transformation engine that enables content and information to be transformed from one format, a source format, to a format that is compatible with the requesting device, a destination format. Advantageously, various device types can access and share content via a network without concern as to the original format of the content. When a client device provides a request for content, the transformation engine identifies delivery characteristics of the client device, and identifies a source for the requested content. The transformation engine then transforms the source formatted content into a format identified through a best fit analysis of the delivery characteristics of the device.
Systems, methods, and other embodiments associated with content invalidation are described. One example method includes providing an invalidation directive in a header of a response.
A state-based guidance method provides to a user operation guidance and technology guidance for an application. The method walks the user step-by-step through an existing interface and guides the user to provide the appropriate input in the appropriate places in the existing interface. Individualized guidance is dynamically provided based on a user profile in addition to state and context of the application. The method describes the technologies used to perform actions presented in the user interface of the application and indicates where these technologies are used, providing an overview of which technologies are used in the application and in what capacity those technologies are implemented.
Mechanisms for clarifying an input question are provided. A question is received for generation of an answer. A set of candidate answers is generated based on an analysis of a corpus of information. Each candidate answer has an evidence passage supporting the candidate answer. Based on the set of candidate answers, a determination is made as to whether clarification of the question is required. In response to a determination that clarification of the question is required, a request is sent for user input to clarify the question. User input is received from the computing device in response to the request and at least one candidate answer in the set of candidate answers is selected as an answer for the question based on the user input.
Systems, devices, and processes for classifying a digital item are described. In some examples, a first classifier determines whether a digital item, such as an electronic book (eBook), includes content of a first category that is acceptable for publication by a publisher. A second classifier determines whether the digital item includes content of a second category that is acceptable for publication by a publisher. In response to determining that the digital item includes content of the first category or content of the second category, a third classifier may determine whether the digital item includes a phrase that is indicative of content of a third category that is unacceptable for publication.
Methods and apparatus are described for scoring documents in response, in part, to parameters related to the document, source, and/or cluster score. Methods and apparatus are also described for scoring a cluster in response, in part, to parameters related to documents within the cluster and/or sources corresponding to the documents within the cluster. In one embodiment, the invention may identify the source; detect a plurality of documents published by the source; analyze the plurality of documents with respect to at least one parameter; and determine a source score for the source in response, in part, to the parameter. In another embodiment, the invention may identify a topic; identify a plurality of clusters in response to the topic; analyze at least one parameter corresponding to each of the plurality of clusters; and calculate a cluster score for each of the plurality of clusters in response, in part, to the parameter.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for query synonym expansion. One method includes receiving a query including a first compound term, and in response to receiving the query, performing the following operations before search results responsive to the query are identified: generating one or more splits of the first compound term, wherein each split divides the compound term into two or more subterms, assigning a score to each subterm of each split, determining an overall score for each split from the scores for the subterms of the split, selecting one or more of the one or more splits according to the overall score for each split, and augmenting the query with the subterms of each selected split.
A system and method for facilitating the accurate entry of information into a highly structured database by initially extracting information from a plurality of nonuniformly formatted source data streams, e.g., documents/files, and subsequent interactions with users before storing the accepted and/or modified information into the database. Embodiments of the present invention provide an interactive path for each user (e.g., the author of the source document/file) to interactively modify the extracted data, e.g., according to the source document/file. Preferably, this interactive path is provided via the Internet and the extracted information can be modified by editing and/or selectively copying portions of the source documents/files to supplement and/or modify the extracted information.
A system for clustering a plurality of documents having input and output space data is disclosed that uses both input and output space criteria. The system can aggregate documents into clusters based on input and/or output space similarity measures, and then refine the clusters based on further input and/or output space similarity measures. Aggregation of documents into clusters can include forming a hierarchical tree based on the input and/or output space similarity measures where the hierarchical tree has a root node, branching into intermediate nodes, and branching into leaf nodes covering individual documents, where the hierarchical tree includes a leaf node for each document of the plurality of documents. The system can include forming a forest of sub-trees of the hierarchical tree based on cluster criteria. Textual and numeric similarity measures can be used depending on the type and distribution of data in the input and output spaces.
A content management system synchronizes content items across client computing systems connected by a network. Each client device has a storage allocation for synchronized shared content items. If the storage allocation for shared content items on a client device is exceeded by the request to add or edit a content item such that it is enlarged, or open a large content item remote to the client device, a client application or the host of content management system selects content items to remove from residence on the client device but keep remotely on content management system. Upon removal of the selected content items, the client application creates shadow items, representing the content item but only containing the metadata of the content item. This creates sufficient space for the initial request to be completed while maintaining user access to all synchronized shared content items.
A system to collect and store in a special data structure arranged for rapid searching massive amounts of data. Performance metric data is one example. The performance metric data is recorded in time-series measurements, converted into unicode, and arranged into a special data structure having one directory for every day which stores all the metric data collected that day. The data structure at the server where analysis is done has a subdirectory for every resource type. Each subdirectory contains text files of performance metric data values measured for attributes in a group of attributes to which said text file is dedicated. Each attribute has its own section and the performance metric data values are recorded in time series as unicode hex numbers as a comma delimited list. Analysis of the performance metric data is done using regular expressions.
A method for building indices for a time sequence in a time series database includes dividing, using a processing device, a time sequence in the time series database into a plurality of subsequences based on a sliding window; building spatial indices for the plurality of subsequences, the spatial indices being used for defining spatial locations of subsequences in the plurality of subsequences in the time sequence; and building content indices for the plurality of subsequences, the content indices being used for defining content ranges of subsequences in the plurality of subsequences.
The present invention provides a file synchronization method, an electronic device and a synchronization system. Operating content performed on a first file in a first system is sent to a second system via a data information channel between the first system and the second system when the first file is changed. A second file processing program in the second system performs a synchronization processing on a second file according to the operating content, the second file being a file corresponding to the first file in the second system. With the above technical solutions, a real-time synchronization/updating may be performed on same files in different systems.
Detecting modifications to a storage that occur in an alternate operating environment. In one example embodiment, a method for detecting modifications to a storage that occur in an alternate operating environment may include tracking, in a modify map, modifications to a storage that occur during operation of a primary operating environment, identifying a first most recent transaction identifier in a journal of a file system of the storage prior to closing of the storage by the primary operating environment, upon opening of the storage by the primary operating environment, identifying a second most recent transaction identifier in the journal, determining that the second most recent transaction identifier does not match the first most recent transaction identifier, concluding that the storage was modified in an alternate operating environment between the closing and the opening of the storage by the primary operating environment, and invalidating the modify map.
Live preview of themes is provided. At least one invoked activity is detected in a web application. At least one candidate theme is obtained. The at least one candidate theme includes at least one style element for the web application. On the client device, display of a theme preview interface is caused. The theme preview interface includes at least one live preview. Each live preview corresponds to one of the at least one invoked activity and one of the at least one candidate theme. In response to selection of a selected theme, a current theme of web application is switched to the selected theme.
Various embodiments provide methods and apparatus for implementing a microblog message page. An exemplary method can include encapsulating common logics of a plurality of message pages into a message page control base, pulling content data of a message page control of one message page of the plurality of message pages; and enabling the message page control of the one message page to inherit from the common logics encapsulated in the message page control base. The exemplary method can also include executing the common logics based on the pulled content data, to load the message page control of the one message page and to display the message page control on the one message page. The disclosed methods and apparatus can simplify the sorting algorithm with improved efficiency for the message pages to sort and manage layout of various types of controls.
A method of controlling a digging operation of an industrial machine. The industrial machine includes a dipper, a hoist rope attached to the dipper, a hoist motor moving the hoist rope and the dipper, and a computer having a controller. The method includes monitoring a speed of the hoist motor, determining an acceleration rate of the hoist motor, comparing the acceleration rate of the hoist motor to a threshold reverse factor, determining an impact situation when the acceleration rate is less than the threshold reverse factor, and sending a reverse torque control command signal to the hoist motor.
Information processing techniques are disclosed for managing knowledge across a distributed entity using predictive analysis. For example, a method comprises the following steps. At least a portion of the information is indicative of at least one of a previous expansion, a previous transfer and a previous leveraging of the knowledge attributable to the at least one distributed entity. A predictive analysis is performed on at least a portion of the obtained information to generate one or more recommendations for at least one of a future expansion, a future transfer and a future leveraging of the knowledge attributable to the at least one distributed entity.
An information handling system includes a storage enclosure operable to communicate with a storage initiator. The storage enclosure includes a first controller corresponding to a first storage domain for enabling access between the storage initiator and a plurality of storage targets using a storage protocol. A second controller of the system, corresponding to a second storage domain, is operable to enable access between the storage initiator and the plurality of storage targets. A second storage enclosure subsystem is part of the second controller and a second configurable extra-protocol interconnection between the second storage enclosure subsystem and the first controller enables the second storage enclosure subsystem to function as a storage enclosure subsystem for the first controller.
A SAS expander includes a switch core, a number of SAS expander phys coupled to the switch core, an SMP originator coupled to the switch core and an SMP receptor coupled to the switch core. In an embodiment, the SMP originator is configured to only send connection requests and the SMP receptor is configured to only receive connection requests. Program instructions stored in non-transient digital storage media include code segments detecting a new connection request, code segments determining whether the new connection request is in conflict with an existing connection request and code segments determining if there is a free destination receptor phy. In an embodiment, the free destination receptor phy is never operationally used for an origination of a connection request.
A data storage system including a SSD includes a capability to detect whether its location is acceptable for function, and a capability to self-disable in the event the location of the device is unacceptable, or to self-enable only while the location of the device is acceptable.
A system for writing data includes a memory, at least one memory controller and control logic. The memory stores data units. The memory controller receives a write request associated with a data unit and stores the data unit in the memory. The memory controller also transmits a reply that includes an address where the data unit is stored. The control logic receives the reply and determines whether the address in the reply differs from an address included in replies associated with other memory controllers by a threshold amount. When this occurs, the control logic performs a corrective action to bring an address associated with the memory controller back within a defined range.
In one embodiment, a memory allocator of a memory manager can service memory allocation requests within a specific size-range from a section of pre-reserved virtual memory. The pre-reserved virtual memory allows allocation requests within a specific size range to be allocated in the pre-reserved region, such that the virtual memory address of a memory allocation serviced from the pre-reserved region can indicate elements of metadata associated with the allocations that would otherwise contribute to overhead for the allocation.
According to one aspect of the invention, a storage system comprises: a plurality of storage devices; and a controller operable to manage a secondary volume, of a remote copy pair with a primary volume of another storage system, and corresponding to a portion of the plurality of storage devices. The secondary volume has a function for storing data included in journal data sent from said another storage system according to a remote copy procedure. The controller is operable to handle the journal data to be stored temporarily in a third volume corresponding to another portion of the plurality of storage devices before storing the data of the journal data to the secondary volume, if a relationship between the journal data and another journal data, which has smaller sequence number than sequence number of the journal data and is sent from said another storage system to the storage system, has a condition.
Systems and methods of collecting and aggregating log data with fault tolerance are disclosed. One embodiment includes, one or more devices that generate log data, the one or more machines each associated with an agent node to collect the log data, wherein, the agent node generates a batch comprising multiple messages from the log data and assigns a tag to the batch. In one embodiment, the agent node further computes a checksum for the batch of multiple messages. The system may further include a collector device, the collector device being associated with a collector tier having a collector node to which the agent sends the log data; wherein, the collector determines the checksum for the batch of multiple messages received from the agent node.
A method is provided for generating errored test message words in network traffic used for testing. The method includes for each error cycle, select an error generator threshold, using a pseudo random sequence generator that advances with a new error cycle. The method includes for each test word generation cycle, determine whether to apply a bit error mask to a generated test word. An accumulator value is accumulated by an increment that takes into account at least a bit error rate and a bus width. The accumulator value is tested against the threshold. Upon reaching the threshold, a bit error mask is selected from a set of bit error masks, and applied to the generated test word. The threshold is then subtracted from the accumulator value, and a new error generator threshold is selected. The generated test word is output with or without a bit error as determined.
Provided are a computer program product, system, and method for processing main cause errors and sympathetic errors in devices in a system. Error data for the devices in the system are analyzed to determine a main cause error for one of the devices that cause at least one sympathetic error in the system. A main cause event object for the determined main cause error and at least one sympathetic event object for the determined at least one sympathetic error resulting from the main cause error are generated. A determination is made from the at least one sympathetic event object of at least one sympathetic event action to perform. The determined at least one sympathetic event action is performed to recover from the at least one sympathetic error represented by the at least one sympathetic event object providing the at least one sympathetic event action.
The invention aims to provide a method and a system on chip able to detect at once hardware and software errors to prevent manipulations for retrieving cryptographic keys, inserting or suppressing instructions to bypass security processes, modifying programs or memory content etc. The system on chip comprises a core including at least two processors, registers, and a data consistency check module. The core is connected to at least one set of memories containing zones for instructions of a first program and of a second program, said instructions being to be executed respectively by the first and second processor, which respectively produce and store result data into the registers and the memories. The data consistency check module is configured to verify conformity of the produced result data by comparing a test result obtained by carrying out a predetermined function F over one of the first or second result data with the corresponding second or first result data and to continue execution of instructions of each program when the comparison is successful, or stop execution when the comparison shows an error.
The effects of decoherence and/or noise in adiabatic quantum computation and quantum annealing are reduced by implementing replica coding schemes. Multiple instances of the same problem are mapped to respective subsets of the qubits and coupling devices of a quantum processor. The multiple instances are evolved simultaneously in the presence of coupling between the qubits of different instances. Quantum processor architectures that are adapted to facilitate replica coding are also described.
According to one embodiment, a computer-implemented method includes executing code for an application using a computing resource of a first computing device. The application requests execution of a first thread and a second thread. The first thread is executed using the computing resource of the first computing device. A second computing device is selected from a plurality of computing devices. The second computing device has an available computing resource to execute the second thread. The second thread is assigned to the second computing device. The second computing device is operable to execute the second thread using the available computing resource.
Techniques for improved transactional memory management are described. In one embodiment, for example, an apparatus may comprise a processor element, an execution component for execution by the processor element to concurrently execute a software transaction and a hardware transaction according to a transactional memory process, a tracking component for execution by the processor element to activate a global lock to indicate that the software transaction is undergoing execution, and a finalization component for execution by the processor element to commit the software transaction and deactivate the global lock when execution of the software transaction completes, the finalization component to abort the hardware transaction when the global lock is active when execution of the hardware transaction completes. Other embodiments are described and claimed.
Tracking data transfers in an input/output adapter card system to determine whether the adapter cards are well-placed with respect to the components (for example dynamic random access memories) with which the adapter cards respectively are observed to communicate data. Some embodiments use a heuristic value for each adapter card in the system based on inter node transfers and intra node transfers, which are separately weighted and summed over some predetermined time interval in order to obtain the heuristic value.