An electronic device includes a cover and a display module mounted on the cover, the cover includes a cover body and a seal gasket molded on the cover body, the seal gasket is molded from thermosetting rubber. The seal gasket is permanently clamped between the cover body and the display module.
An operating device for operating automation technology machinery includes a transparent electrically non-conducting panel having an outer side and an inner side facing the interior of the operating device, and a membrane keyboard arranged on the outer side of the panel. The panel also includes channels extending through the panel from the outer side to the inner side, where an electrically conducting element is arranged in the channels and the membrane keyboard is connected to the electronics of the operating device by the electrically conducting elements. An operating device for operating automation technology machinery is thus provided in which it is possible to fit a membrane keyboard to any location on the front panel of the operating device.
During charging of a cell module in which a plurality of cells are connected in series, a voltage is applied in forward polarity to a switch element even when a current interrupting switch provided to the cell module is open, thereby shorting an anti-fuse element, and the switch element is thereby opened. A voltage monitoring circuit and a vehicle equipped with the voltage monitoring circuit are thereby provided in which a high voltage is not applied even when the cell module is charging when the current interrupting switch is open.
A device for providing electrostatic discharge (ESD) protection is described which includes a silicon controlled rectifier (SCR), a mechanism for triggering the SCR, and a pair of contact regions of opposing conductivity type distinct from regions of the SCR that are interposed between the cathodic and anodic regions of the SCR. The contact regions are configured to collect charge generated by the SCR. In some embodiments, the device may include a transistor and the cathodic region of the SCR may dually serve as a source contact region of the transistor. A circuit is described which includes an ESD protection device coupled between high and low voltage power supply bus bars, wherein the ESD protection device includes an SCR as well as a pair of contact regions of opposing conductivity type distinct from the SCR and interposed between the cathodic and anodic regions of the SCR.
An electric vehicle charging cord set includes a housing containing an interrupting device therein and a first cord provided at one end with a plug connectable to an outlet installed on a wall surface of a building and at the other end connected to one of the terminal units of the interrupting device. An electric vehicle charging cord set further includes a second cord provided at one end with a connector connectable to an inlet of an electric vehicle and at the other end connected to the other of the terminal units of the interrupting device. The housing includes a storage unit for extendibly storing the second cord, a stand for placing the housing on a ground surface and a transportation handle. The storage unit includes a drum rotatably attached to the housing. The second cord is wound on the outer circumferential surface of the drum.
The present invention is directed to an electrical wiring device that includes a frameless shutter assembly disposed in the front cover portion or in a separator member between the receptacle openings and the receptacle terminals. The frameless shutter assembly comprises a first shutter member and a second shutter member configured to move from a closed position to an open position when the hot and neutral blades of a plug blade set are simultaneously inserted into the receptacle openings to engage a set of receptacle terminals and remain closed otherwise. The front cover member and/or the at least one separator includes a first stop member disposed proximate the first shutter member and a second stop member being disposed proximate the second shutter member.
A spindle motor includes a stationary portion and a rotating portion including a rotor hub, and includes a recording disk and a clamper mounted thereon. The rotor hub includes a hub circular plate portion whose outer circumferential portion includes a hub slanting surface, and a hub cylindrical portion whose outer circumferential portion includes a hub screw portion. The hub screw portion, to which the clamper is screwed, includes at least a first hub screw groove, a first hub screw thread arranged to be adjacent to the first hub screw groove, and upper and lower flanks arranged to together define the first hub screw thread. The hub slanting surface connects with the first hub screw groove. The length of the hub slanting surface is longer than the length of the upper flank.
A temperature sensor of a head transducer measures temperature near or at the close point. The measured temperature varies in response to changes in spacing between the head transducer and a magnetic recording medium. A detector is coupled to the temperature sensor and is configured to detect a change in a DC component of the measured temperature indicative of onset of contact between the head transducer and the medium. Another head transducer configuration includes a sensor having a sensing element with a high temperature coefficient of resistance to interact with asperities of the medium. Electrically conductive leads are connected to the sensing element and have a low temperature coefficient of resistance relative to that of the sensing element, such thermally induced resistance changes in the leads have a negligible effect on a response of the sensing element to contact with the asperities.
An asymmetry is determined of a signal generated by a read transducer in proximity to a changing magnetic field of a magnetic media. In response to determining the asymmetry of the signal, a current flowing through a heater of the read transducer is adjusted to cause a change to a magnetic field generated by the current. The change to the magnetic field generated by the current reduces the asymmetry of the signal.
A method, apparatus, and system are provided for implementing magnetic defect location detection on-the-fly for hard disk drives. A magnetic media readback signal of a hard disk drive is demodulated to generate phase modulation (PM) and amplitude modulation (AM) signals. A new coordinate plane defined by a combined phase modulation (PM) and amplitude modulation (AM) phasor-defect detector calculation function used to locate magnetic defects on-the-fly.
A photographing lens assembly includes, in order from an object side to an image side, a first lens element and a second lens element. The first lens element with positive refractive power has an object-side surface and an image-side surface, wherein the object-side surface and the image-side surface of the first lens element are convex at a paraxial region thereof. The second lens element with refractive power is made of plastic material, and has an object-side surface and an image-side surface, wherein the object-side surface of the second lens element is convex at a paraxial region thereof, the image-side surface of the second lens element is concave at the paraxial region and is convex at a peripheral region thereof, and the object-side surface and the image-side surface of the second lens element are aspheric.
This invention provides an imaging lens system including, in order from an object side to an image side: a first lens with positive refractive power having a convex object-side surface; a second lens with negative refractive power; a third lens having a concave image-side surface; a fourth lens with positive refractive power; a fifth lens with negative refractive power having a concave image-side surface, at least one surface thereof having at least one inflection point; and an aperture stop disposed between an imaged object and the third lens. The on-axis spacing between the first lens and second lens is T12, the focal length of the imaging lens system is f, and they satisfy the relation: 0.5<(T12/f)×100<15.
An image lens assembly system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element and a seventh lens element. The first lens element with negative refractive power has a convex object-side surface. The second lens element has positive refractive power. The third lens element has refractive power. The fourth lens element has refractive power. The fifth lens element has refractive power. The sixth lens element with positive refractive power is made of plastic material, wherein at least one surface of the sixth lens element is aspheric. The seventh lens element with negative refractive power made of plastic material has a concave image-side surface changing from concave at a paraxial region to convex at a peripheral region, and at least one surface thereof is aspheric.
The present invention relates to a zoom lens which can shift images using a movable optical system so as to have components orthogonal to the optical axis, and can correct hand motion blur, and minimizes the deterioration of performance while attempting higher variable power. This zoom lens has, in order from an object, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, a third lens group G3 having positive refractive power, a fourth lens group G4 having negative refractive power, and a fifth lens group G5 having positive refractive power, and at least a part of the fourth lens group G4 can move so as to have components orthogonal to the optical axis, and a distance between each lens group is changed upon zooming from a wide-angle end state to a telephoto end state, and the following conditional expression is satisfied, 0.01
An anamorphic eyepiece. In one implementation, the eyepiece is for use with a display where both the eyepiece and display are head-mounted, with the eyepiece projecting an image from the display into the user's eye. The display has high resolution in a horizontal direction, preferably at least 2000 pixels, but the image produced by the display is compressed in aspect ratio. The anamorphic eyepiece decompresses the aspect ratio.
An omnidirectional reflector that reflects a band of electromagnetic radiation of less than 100 nanometers when viewed from angles between 0 and 45 degrees is provided. The omnidirectional reflector includes a multilayer stack having a plurality of layers of high index of refraction material and a plurality of layers of low index of refraction material. In addition, the plurality of high index of refraction material layers and low index of refraction material layers are alternately stacked on top of or across each other and provide a non-periodic layered structure.
Multi-clad optical fibers and fiber amplifiers are disclosed. Various embodiments include multi-clad, large core fiber amplifiers. In various implementations mixing of pump modes is enhanced relative to that obtainable with conventional double-clad fibers. In some embodiments end terminations are provided with increased length of end-cap fiber. In at least one embodiment a multi-clad fiber is provided, with a pump cladding formed by stacking a layer of low index rods in the preform. Various embodiments include a multi-clad fiber amplifier system. The system includes a pump source to pump said fiber amplifier. The system also includes an optical fiber having a core and a cladding, wherein the cladding includes a pump cladding having a corrugated boundary. In various embodiments the pump cladding is formed by rods in a preform, which are disposed to mix the pump modes and/or scatter or reflect pump energy into the core.
An apparatus and method that provide optical isolation by permitting substantially all forward-propagating light into a delivery fiber from an optical amplifier and substantially preventing backward-traveling light from the delivery fiber entering the optical amplifier without the use of a conventional optical isolator. Eliminating the isolator improves efficiency and reduces cost. Some embodiments use a delivery fiber having a non-circular core in order to spread a single-mode signal into multiple modes such that any backward-propagating reflection is inhibited from reentering the single-mode amplifier. Some embodiments amplify an optical signal in a gain fiber having an output end, output the forward-propagating amplified signal as a high-brightness optical beam (having a first Rayleigh range) into a removable delivery fiber having a non-circular waveguide, output the amplified signal from a distal end of the delivery fiber, and, without the use of a non-linear optical isolator, inhibit backward-propagating light from re-entering the gain fiber.
A flexure assembly can have a stage that is deployed to a desired position by attachment of the flexure assembly to a housing. For example, a frame can be configured to be held in position by one portion of the housing and a deployment pad can be configured to be held in position by another portion of the housing. A deployment flexure can be configured to facilitate positioning of the frame and the deployment pad out-of-plane with respect to one another. The deployment flexure and a motion control flexure can facilitate movement of the stage with respect to the housing. In this manner, the position of the stage and the preload of the stage are determined by the housing.
An optical deflection unit for targeted radiation, e.g., produced by laser or superluminescent diodes, in scanning, ophthalmological measuring and therapy systems, comprises a deflection mirror, a position sensor and a control unit, which form a control circuit for minimizing the deviation of the actual positions, detected by the position sensor, from the desired positions of the deflection mirror, whereby the optical deflection unit comprises a deflection mirror, oscillatingly movable by means of non-contacting electromagnetic drives around at least one rotation axis, and which is positioned in the direction of the, at least, one rotation axis between at least two bearings. The optical deflection unit is designed may also be used for beam guidance in high and ultrahigh vacuum installations, such as UV and EUV exposure installations for semiconductor lithography.
A method produces colored individualized holograms for use as security elements for documents, and to a device for producing individualized holograms. The method generates light formed of different colors, spatially modulates the light, color by color, in an individual manner, optically guides the modulated light such that the light is at least partially refracted and/or reflected on a holographic master and is superposed in a holographic recording material with the modulated non-refracted and/or reflected light, and records the hologram. The light is modulated, color by color and at the same time, by a plurality of spatial light modulators. Every color is associated with its own spatial light modulator and a plurality of monochrome modulated light beams of the plurality of colors is combined in a collinear manner prior to refraction and/or reflection on the holographic master and the superposition in the recording material to give a multicolor exposure light beam.
The invention relates to scanning linear image sensors with signal integration, in which an image of a line of points from an observed scene is reconstructed by the addition of successive images taken by a plurality of photosensitive lines which successively observe the same line of the scene as the scene moves across the sensor perpendicularly to the lines. The sensor according to the invention uses charge transfer pixels (Pm,i,j) grouped into M groups of N lines; an analog charge summation is carried out in each group; and the results of this summation are read by read circuits (READm) associated with each group, and then digitized and added to those of the other groups.
An overhead scanner includes a main body, a rotation unit supported by the main body and being rotatable around a rotation axis, an imaging unit mounted on the rotation unit and is configured to read a medium placed on a placement surface below the rotation unit, a light source that irradiates the medium with light, a driving unit that moves the rotation unit around the rotation axis toward a placement side, where the medium is placed, and a posture change detecting unit that detects posture change of the main body. When it is determined that the main body falls down based on the posture change detected, while the rotation unit is located at a readable position for reading the medium, the driving unit moves the rotation unit toward the standby position where the rotation unit is located when the imaging unit does not read the medium.
An image reading recording apparatus includes a recording unit for recording an image on a sheet and a read unit. The recording unit includes a feeding port for feeding the sheet. The read unit includes a frame and a reading portion which movably scans in the frame to read an original. The read unit is movable relative to the recording unit between a first position and a second position. In the first position, the feeding port of the recording unit is closed by the frame. In the second position, the feeding port is not closed by the frame. The recording unit includes a first sheet feeder and a second sheet feeder, such that when the sheet is in the first position, sheet feeding from the first sheet feeder is prohibited, and a sheet is fed from the second sheet feeder.
An image processing apparatus includes a controller programmed to receive image data and also receive, from a user, an input number of separators included in the received image data. The controller detects a number of times a separator is included in the received image data based on criteria for detecting the separator, and determines, based on the detected number of times and the input number of separators, whether the criteria needs to be modified. In response to determining that the criteria needs to be modified, the controller modifies the criteria for detecting the separator and repeats detection of a number of times the separator is included in the received image data based on the modified criteria for detecting the separator.
A method for printing a security document on a substrate is disclosed. Firstly, a first reference image of a reference region of the substrate is generated, the image being indicative of an inherent characteristic of the substrate in the reference region. This is followed by generating encoded data indicative of the inherent characteristic of the substrate. Finally, the encoded data is printed over the reference region of the substrate, thus effecting the print of the security document.
An image processing apparatus includes a setting unit, a generating unit, and a converting unit. The setting unit sets a gloss level of each of plural areas into which an image is divided. The image is formed by forming plural toner images having different colors using plural first toners and at least one second toner having at least one same color as the first toners and by fixing the plural toner images onto a recording medium so as to be superimposed on one another. The generating unit generates multi-level image data for each of the first toners and the at least one second toner in accordance with the gloss levels set by the setting unit. The converting unit converts multi-level image data of toners having the same color into binary image data. The converting unit also converts multi-level image data of toners having different colors into binary image data.
An image forming apparatus includes: a storage unit that stores print data and transformation data transformed into a printable format by reflecting a print condition on the print data; a detection unit that detects an error when the transformation data stored in the storage unit is printed; a decision unit that decides a resolution print condition which is a print condition for resolving an error based on a content of the error and a device state when the error is detected; a transformation unit that acquires the print data from the storage unit and transforms the acquired print data into transformation data on which the decided resolution print condition is reflected; and a print control unit that prints the transformation data transformed by the transformation unit.
Methods and systems are disclosed that generate a screen capture image together with processing selectable options for a user. The screen capture image is saved to a memory of the system and the selectable options are chosen to communicate with an external device and/or helpdesk where information related to the screen can be analyzed or diagnosed for technical issues.
An image processing apparatus for performing rendering processing includes an input unit configured to input information relating to an object, a classification unit configured to classify a graphic type of the object based on the information relating to the object, and a processing unit configured to switch a processing procedure according to the graphic type classified by the classification unit to generate edge information relating to the rendering processing.
There is provided a layout print system including a storage storing electronic data sets having unique document IDs, and a printing image generating apparatus generating printing image data based on the stored electronic data sets. The printing image generating apparatus includes an acquisition section acquiring the electronic data sets, an identification section identifying a document form type for the electronic data sets, a weight value determination section determining weight values for the electronic data sets, and a printing image generating section generating a printing image data by arranging the electronic data sets on a layout template based on the weight values and attaching identification information to the electronic data sets. The layout print system further includes a printer printing the printing image data, and a display apparatus including an information identification reader reading the identification information on a printing medium and displaying a desired one of the electronic data sets.
An image processing apparatus comprising, a detector unit configured to detect an event that a user logged in to the image processing apparatus logs out, an query unit configured to be operable when said detector unit detects the event, to query the user whether or not to change a setting of a job under execution, and a control unit configured to be operable when the setting of the job is to be changed as a result of the query made by said query unit, to change the setting of the job and then perform a logout, and, when the setting of the job is not to be changed as a result of the query made by said query unit, to restrict the logout.
In order to vary a threshold value for performing an error diffusion process depending on a pixel position, a threshold value matrix configured to have pluralities of rows and columns is prepared. In this case, pieces of data in the threshold value matrix are arrayed such that average values in the respective rows and average values in the respective columns are almost the same value. If such a threshold value matrix is used to perform the error diffusion process, the dot sparseness and denseness do not occur with a period of the matrix, and therefore the pattern or sweeping phenomenon specific to the error diffusion can be suppressed.
A method of searching for missing resources associated with an image forming apparatus, which includes forwarding a print job having a resource call-out from a host computer to an image forming apparatus; receiving the print job on the image forming apparatus; checking the image forming apparatus for a resource, which has been called out by the print job, and if the resource is not available on the image forming apparatus, obtaining the resource from a device having the resource by: sending a request for the resource from the image forming apparatus to the device having the resource; receiving a response from the device having the resource indicating that the resource is a secured resource requiring user authentication; and obtaining the secured resource by sending the user authentication to the device having the secured resource.
An operating section structure positioned forward of a document scanning unit. The operating section structure includes: an image display surface; and an authentication device placement surface for mounting a detachable authentication device at an angle different from the image display surface.
The present disclosure provides methods and apparatus for managing a document. An example aspect provides a method of requesting a document to be displayed at a portable electronic device, including: installing at a computer a printer driver for displaying documents at the portable electronic device; creating an association of a portable account identifier with a unique identifier of the portable electronic device; using the printer driver and the association, to transmit the document to the portable electronic device over a network; and transmitting from the computer the document.
An image forming apparatus includes a rasterizing unit that rasterizes character information representing a character in a vector form into a first raster image in which pixels are arranged at a first predetermined density, a generator unit that generates a second raster image in accordance with the first raster image rasterized, and a mask image in which plural pixels are arranged at a second predetermined density, the plural pixels including a first pixel, and a second pixel, a exposure unit that irradiates an image carrier with the beam in response to the second raster image generated, a supply unit that supplies a developer to the image carrier which the exposure unit has irradiated with the beam, and develops on a surface of the image carrier an image responsive to the second raster image, and a transfer unit that transfers the developed image to a medium.
A film thickness measuring device includes a spectroscopic sensor and a data processor, wherein the spectroscopic sensor measures spectroscopic data of a film coated on a substrate and the data processor obtains measured color characteristic variables from the measured spectroscopic data, compares the measured color characteristic variables with plural sets of theoretical color characteristic variables corresponding to plural sets of values, each set including one of plural values of thickness and one of plural values of index of refraction of the film, determines index of refraction of the film using the set of values corresponding to the set of theoretical color characteristic variables which minimizes a difference between the set of theoretical color characteristic variables and the measured color characteristic variables, and determines thickness of the film using the index of refraction of the film.
The invention relates to a method for measuring structures on masks (1) for photolithography, wherein firstly the mask (1) is mounted on a spatially movable platform (2). The position of the platform (2) is controlled in this case. The structure on the mask (1) is illuminated with illumination light from an illumination light source which emits coherent light. The light coming from the mask (1) is imaged onto a detection device (6) by an imaging optical unit (4) and detected. The detected signals are evaluated in an evaluation device (7) and the positions and dimensions of the structures are determined. The invention also relates to an apparatus by which these method steps, in particular, can be carried out. In this case, the accuracy of the position and dimension determination is increased by the properties of the illumination light being coordinated with the structure to be measured. For this purpose, the illumination device (3, 3′) has setting means for coordinating the properties of the illumination light with the structure to be measured.
Aligning measurements taken by a second color measurement instrument with measurements taken by first color measurement instrument, wherein the first instrument has access to a first set of standards but not a second set of standards, and the second instrument has access to the second set of standards but not the first set of standards, includes using a third color measurement instrument to generate a profile that mathematically transforms a value measured on the second set of standards to a value measured on the first set of standards, wherein the third instrument has access to the first and second sets of standards, mathematically transforming measurements of the second set of standards taken by the second instrument into virtual measurements of the first set of standards, using the profile, and aligning the measurements taken by the second instrument to the measurements taken by the first instrument, using the virtual measurements.
A terahertz ellipsometer, the basic preferred embodiment being a sequential system having a backward wave oscillator (BWO); a first rotatable polarizer that includes a wire grid (WGP1); a rotating polarizer that includes a wire grid (RWGP); a stage (STG) for supporting a sample (S); a rotating retarder (RRET) comprising first (RP), second (RM1), third (RM2) and fourth (RM3) elements; a second rotatable polarizer that includes a wire grid (WGP2); and a Golay cell detector (DET).
There is provided a pattern inspection device for a substrate surface which can inspect a substrate including a pattern whose size is equal to or smaller than light resolution limit at high speed. The pattern inspection device for the substrate surface includes: a near-field optical head 101 having a fine repetitive pattern; a θ driving unit 311 of scanning an inspected substrate 900 relatively to the near-field optical head 101; a space holding mechanism of holding a space between the near-field optical head 101 and the inspected substrate 900 constant; alight source 110 of irradiating light to the near-field optical head 101; a detection system 201 of detecting an intensity of scattered light generated by interaction between the fine repetitive pattern on the near-field optical head 101 and a fine pattern on a surface of the inspected substrate 900; and a signal processing unit 321 of inspecting the fine pattern on the inspected substrate 900 based on an output of the detection system 201.
An embodiment of a system and a method for inspecting a contact lens is provided. The illumination system illuminates the center zone and the peripheral zone of the contact lens when it is inside a cavity between a male mold and a female mold. The imaging optical system has two channels to capture two images or a composite single image to inspect the entire contact lens. The imaging optical system of the first channel has its entrance pupil far away from the mold tool. The camera of the first channel is used to capture the image of the center zone of the contact lens. The image optical system of the second channel is located outside the mold tool but its entrance pupil is located inside the mold tool or outside but substantially close to it. This enables the camera of the second channel to capture the image of the peripheral zone of the contact lens.
The present disclosure relates to the field of micro-nano fabrication, and provides a projection-type photolithography system using a composite photon sieve. The system comprises: a lighting system, a mask plate, a composite photon sieve and a substrate, which are arranged in order. The lighting system is adapted to generate incident light and irradiate the mask plate with the incident light. The mask plate is adapted to provide an object to be imaged by the composite photon sieve, and the incident light reaches the composite photon sieve after passing through the mask plate. The composite photon sieve is adapted to perform imaging, by which a pattern on the mask plate is imaged on the substrate. The substrate is adapted to receive an image of the pattern on the mask plate imaged by the composite photon sieve. According to the present disclosure, because the composite photon sieve is used instead of a projection objective lens in a conventional projection-type photolithography system, the advantage of high efficiency in the conventional projection-type photolithography system can be reserved, and also photolithography can be performed in batches rapidly, so that photolithography efficiency can be improved. Meanwhile, costs can be effectively cut down and the system can be reduced in size.
A mother TFT substrate having plural TFT substrates, and a mother counter substrate having plural counter substrates are bonded together to form a mother panel. At this time, the interior of the mother panel is sealed only with a sealing material, without forming a sealant separately in seal portions. The mother counter substrate has plural counter substrates of liquid crystal cells. A sealing material is arranged in two rows surrounding the counter substrates in the periphery of the mother counter substrate, except for the seal portions in which seal portion sealing materials are arranged in two rows in a staggered manner on the short sides. When the mother counter substrate and the mother TFT substrate are overlapped and the inside air is let out, the sealing materials are heated. Then, the seal portion sealing materials are bridged together to seal the interior of the mother panel.
To provide a viewing-angle-enhancing film which is set in a liquid crystal display device at a position nearer to an observer than the position of a liquid crystal layer in the device, and which attains, at a high level, the compatibility of being enhanced in viewing angle with a decrease in the darkening of images at the time of observing the screen from the front thereof. A viewing-angle-enhancing film which is set in a liquid crystal display device at a position nearer to an observer than the position of a liquid crystal layer in the device, and simultaneously satisfies the following requirements (1) to (3): (1) the film has a parallel ray transmittance of 5 to 90%; (2) the film has a diffusivity (A) of 1 to 20 degrees in its main diffusion direction; and (3) the film has a diffusivity ratio of 0.25 to 15% in the main diffusion direction.
A television includes at least two inputs and at least one connected device (component). Upon a system event such as changing from one input to another input, the television signals the at least one connected device to change at least one operating parameter of the device.
An apparatus and method is presented for displaying auxiliary information associated with a multimedia program. Specifically, the present invention is directed to receiving program signals, acquiring auxiliary information (e.g. closed captioning information) from the program signals, associating time information with the auxiliary information, storing the auxiliary information in a file associated with program content, using the auxiliary information file and program content to determine candidate program portions for customization of the auxiliary information, and displaying customized auxiliary information with the program content in accordance with user selections (see FIG. 1). Using the present invention, users with differing abilities and/or preferences related to display of caption text may customize display of the caption information transmitted with television programs.
A method of interpolated frame generation and input source detection includes: receiving input frames; storing at least a first frame of successive frames in the input frames into a storage device under a film mode; comparing the stored first frame with a second frame of the successive frames not stored in the storage device to generate a first comparison result for determining whether to exit the film mode; and reading frames stored in the storage device to generate interpolated frames under the film mode.
The present invention enables an image signal processing that can improve color representation of an image signal converted from YCrCb 4:2:2 format to YCrCb 4:2:0 format. An image signal processing apparatus 500 includes a buffer 520 for retaining YCrCb 4:2:2 image signals captured by an image signal input 510, a frame and line recognizer 530 for determining whether the line from which the YCrCb 4:2:2 image signals are captured is a first line or a second line of an adjacent line pair based on frame and line information on the YCrCb 4:2:2 image signals captured by the image signal input 510, and a Cr and Cb data corrector 540 for, if the frame and line recognizer 530 determines that the line is the second line, reading YCrCb 4:2:2 image signals for the pixels in the first line at the same horizontal positions as the pixels in the second line from the buffer 520 and correcting Cr and Cb data on the YCrCb 4:2:2 image signals for the pixels at least in the first line of the first and second lines of the line pair based on Cr and Cb data on the captured YCrCb 4:2:2 image signals for the pixels in the second line.
A camera body includes a recess to which an image pickup unit is detachably attached to be placed therein. The image pickup unit includes a housing having an optical system, an image pickup device, a first connector section. The recess has three wall sections including a back wall section facing a rear of the housing of the image pickup unit and a side wall section facing a side surface of the housing when the image pickup unit is placed in the recess. The side wall section includes a second connector section to be connected to the first connector section to perform communication. The back wall section is provided with a controlling member. A rear of the image pickup unit has an insertion opening into which the controlling member is to be inserted and an abutting section to allow the controlling member to abut thereon. When the image pickup unit is attached to the recess, the first connector section and the second connector section are connected to each other when the controlling member is inserted into the insertion opening, and the first connector section is not connected to the second connector section when the controlling member abuts on the abutting section.
A camera to which a lens unit is exchangeably attached includes a phase difference detection type focus detection unit, a contrast detection type focus detection unit, and a processor configured to acquire correction information used to correct a shift amount between a focus detecting light flux and an image-pickup light flux from the image pickup lens. The contrast detection type focus detection unit performs scanning in a single direction from a focus position detected by the phase difference detection type focus detection unit, the single direction being set based on the correction information.
An image processing apparatus comprises edge detection unit, on-axis chromatic aberration edge detection unit which detects an edge determined to include chromatic aberration on an axis from the edges, color deviation amount acquisition unit which acquires color deviation amounts on the edges, and correction unit which performs chromatic aberration correction, wherein the on-axis chromatic aberration edge detection unit detects, as the edge which includes the chromatic aberration on the axis, an edge having signals corresponding to at least one color on the edge of the image data, which has a blur amount that is not less than a threshold value, and signals corresponding to at least another color which has a blur amount that is less than the threshold value, and the color deviation amount acquisition unit acquires the color deviation amounts from edges among the edges.
A solid-state imaging device which includes a pixel region which is provided on a semiconductor substrate, and in which a plurality of pixels including a photoelectric conversion unit having a photoelectric conversion function is arranged, a wiring layer which is provided at one plate surface of the semiconductor substrate, a color filter layer which is divided into a plurality of color filters provided corresponding to each pixel of the plurality of pixels which is arranged in the pixel region, and an inter-pixel light shielding unit which is provided in a boundary portion between the pixels adjacent to each other, between the semiconductor substrate and the color filter layer.
A solid-state imaging device includes a photoelectric conversion portion, a charge-receiving portion to which charges are transferred from the photoelectric conversion portion, and a light control film having a reverse tapered opening over the photoelectric conversion portion to reduce the intensity of diffracted light diffusing to regions other than the photoelectric conversion portion.
An image processing system includes a multiresolution decomposition section for frequency decomposing an image signal into high and low frequency components at an nth stage, a correction coefficient calculation section for calculating at least one of a gradation correction coefficient, a noise correction coefficient, and an edge correction coefficient with respect to the high frequency component at an ith decomposition stage (1≦i≦n) based on at least one of the low frequency component at the ith decomposition stage, a visual system adaptation model, a noise amount estimation model, and an edge enhancement model, a correction section for correcting the high frequency component based on the calculated correction coefficient, and a multiresolution composition section for composing the image signal corrected based on the low frequency component and the corrected high frequency component.
A digital camera for having a variable time duration burst capture mode, comprising: an image sensor; an optical system; a data processing system; a frame buffer memory; and a program memory. The program memory stores instructions including: specifying a first frame rate; initiating an image capture sequence; storing a sequence of digital images captured at the first frame rate in the frame buffer memory; determining whether the frame buffer memory has been filled to a predetermined capacity. If the frame buffer memory has been filled to the predetermined capacity, the program memory further includes instructions for specifying a second frame rate, wherein the second frame rate is lower than the first frame rate; designating a set of stored digital images that can be overwritten; and storing a sequence of digital images captured at the second frame rate in the frame buffer memory, overwriting the designated set of stored digital images.
Management of files stored on an image capturing unit such as a digital camera, includes detection of connection of the image capturing unit, reception of plural image data respectively corresponding to plural images stored in the image capturing unit, and storage of the plural received image data in a storage medium. A setting screen is displayed for storage settings, wherein the setting screen includes a first region for inputting a character string for a file name and a second region for setting a number. A file name is assigned to each one of the plural image data, the assigned file name including the inputted character string and a number sequentially assigned to the plural image data, the numbers starting from the number set in the second region. Each such one of the plural received image data is stored in the storage medium with the assigned file name.
Systems and methods for modifying a color image of a scene are provided. The systems and methods involve illuminating at least a portion of the scene with a light having a known spectral power distribution, and detecting a finite number of spectral components of light received from the scene under such illumination. The detected values of spectral components of light received from the scene are used to modify the color image or rendition of the scene.
A digital camera having a burst image capture mode, comprising: an image sensor; an optical system; a data processing system; an image memory; and a program memory storing instructions configured to implement a method for capturing a sequence of digital images in the burst image capture mode. The instructions include: capturing a sequence of digital images of the scene using the image sensor, each digital image being captured at a different time; identifying a moving object in the captured digital images; automatically determining the position of the moving object in each of the captured digital images; automatically selecting a subset of the captured digital images where the moving object has positions that most nearly correspond to a set of desirable positions; and storing the selected subset of captured digital images in the image memory.
An imaging system includes optics for forming an optical image, that provide a first region in the optical image that is characterized by a first range of best focus and a second region in the optical image that is characterized by a second range of best focus The first and second ranges correspond to object distance ranges that are discontiguous A sensor array converts the optical image to a data stream, and a digital signal processor processes the data stream to generate a final image.
Methods and systems for using eye-tracking data to stabilize a video are provided. An example method may involve receiving a video captured using a body-mountable camera and receiving gaze-direction data from one or more head-mountable eye trackers. Additionally, the method may include analyzing the received gaze-direction data to detect at least one involuntary orbital eye-movement. According to the method, the received video may be stabilized based at least in part on the detected at least one involuntary orbital eye-movement, and the stabilized video may be sent In some instances, camera-movement data may also be received and utilized to detect involuntary orbital eye-movements or stabilize the received video.
At the time of occurrence of camera shake, an angular velocity sensor detects an angular velocity. A rotation angle calculator integrates the angular velocity to calculate angle camera shake. A translational acceleration calculator subtracts an internal acceleration caused during operation of a lens unit from a first translational acceleration detected by an acceleration sensor, so as to calculate a second translational acceleration. A translational velocity calculator integrates the second translational acceleration to calculate a translational velocity. A rotation radius calculator calculates a rotation radius based on the angular velocity and the translational velocity. A shake amount calculator calculates a camera shake amount based on the angle camera shake and the rotation radius. An actuator drives a camera shake correction lens in a direction for canceling the camera shake amount.
The invention relates to a method for estimating a defect in an image-capturing system (I), which produces, with regard to any first image (I), representing any scene (S), a variation in the field of a characteristic of the first image, having an order of magnitude that is statistically lower than a variation in the field of said characteristic added by the scene. The method comprises: calculating, in at least a first portion of the field of the first image, a measurement (μ(I)) related to said characteristic of the first image, an estimative magnitude (ν) of said defect, depending on the calculated measurement and having a variation having the same order of magnitude as the variation in the field of said characteristic of the first image produced by said defect.
A method and apparatus for testing a number of display devices. Images displayed on the number of display devices are received by a computer system for a platform during a performance of a number of tests at a number of test locations for the platform. A portion of the images from the images are identified as a number of images of interest using a policy.
An image-based sensor system for a mobile unit makes use of light emitters and imagers to acquire illumination patterns of emitted light impinging on the floor and/or walls surrounding the unit. The illumination pattern is used to estimate location and/or orientation of the unit. These estimates are used for one or more functions of stabilization, calibration, localization, and mapping of or with respect to the unit.
Methods and systems are described for enabling the operation of a stereoscopic viewing device such that the viewing device provides a movable viewing window that enables the 3D rendering of 3D image data displayed by a backlit LCD device. In a particular implementation, the systems and methods disclosed herein are operable to control the operation of a pair of LCD shutter glasses.
A stereoscopic image is displayed with an appropriate amount of parallax based on auxiliary information recorded in a three-dimensional-image file. The size of a display which performs 3D display is acquired (Step S31), and a 3D image file is read (Step S32). The maximum display size capable of appropriately performing 3D display of each viewpoint image is acquired from metadata of the read 3D image file (Step S33), and the size acquired in Step S31 is compared with the maximum display size acquired in Step S33 (Step S34). Viewpoint numbers of images in which the maximum display size is larger are acquired (Step S35), the most appropriate image is selected from the images of the acquired viewpoint numbers (Step S37), and 3D display is performed using the selected image (Step S38). Therefore, an appropriate image can be selected based on the maximum display size and 3D display can be performed.
In accordance with one aspect, the present invention provides a real-time 3D visualization system. The system includes means for conveying electromagnetic energy emanating from one or more 3D surfaces including a scene and means for sensing spatial phase characteristics of the electromagnetic energy as the configuration of the 3D surfaces relative to the system changes. The system includes means for creating a 3D scene model utilizing the spatial phase characteristics sensed in a plurality of configurations and means for displaying the 3D scene model in real-time. The means for displaying includes means for synthesizing depth cues.
A method includes receiving a plurality of audio signals. Each of the plurality of audio signals includes audio packets, wherein one or more audio packets from each of the plurality of audio signals is coded with an audiometric, the audiometric including an acoustic measurement from a conference site. The method further includes, for each of the plurality of audio signals, extracting an audiometric from one or more audio packets and selecting an active audio signal based on the extracted audiometrics. In addition, the method includes determining a change in the active audio signal and in response to determining a change in the active audio signal, updating a media forwarding table, the media forwarding table including a directory for routing one or more of the plurality of audio signals. The method further includes distributing audio packets to one or more conference sites in accordance with the media forwarding table.
A method and an apparatus for Multiple Control Unit (MCU) to optimize configuration of multiple pictures are disclosed. The solutions provided by embodiments of the present invention include: calculating, according to resolutions, bandwidths, frame rates, importance, and volume of received video images sent by N conferencing terminals, the area occupied by each of the video images in a picture presented on an MCU display screen; and dividing, according to the area occupied by each of the video images in the picture presented on the MCU display screen, the picture into N regions, and filling the video images sent by the N conferencing terminals into corresponding regions of the picture.
An optical scanning apparatus includes a reflecting mechanism, a light receiving element and a restricting mechanism. The reflecting mechanism reflects a light beam such that the irradiation point of the light beam moves in a predetermined scanning direction. The light receiving element is arranged in a movement plane defined by the light beam reflected by the reflecting mechanism, and the light receiving element outputs a light reception signal for adjusting the irradiation timing of the light beam in accordance with reception of the light beam reflected by the reflecting mechanism. The restricting mechanism positions the light receiving element relative to the movement plane.
An optical scanning device includes a housing, a light source that emits light, a rotatable polygon mirror that receives the light from the light source while rotating and deflects the light by reflecting the light in a direction corresponding to an angle of rotation thereof, a scanning optical system that guides the light from the rotatable polygon mirror to a scanning object in such a manner as to repeatedly scan the scanning object with the light, and an intermediate member that is provided between an optical member included in the scanning optical system and the housing. The intermediate member is connected to the optical member with rubber adhesive and is also connected to the housing with the rubber adhesive.
A surface-emitting laser device includes a transparent dielectric layer provided in an emitting region and configured to cause a reflectance at a peripheral part to be different from a reflectance at a central part in the emitting region. In the surface-emitting laser device, the thickness of a contact layer is different between a region having a relatively high reflectance and a region having a relatively low reflectance in the emitting region. The contact layer is provided on the high refractive index layer of an upper multilayer film reflecting mirror, and the total optical thickness of the high refractive index layer and the contact layer in the region having the relatively low reflectance is deviated from an odd number multiple of a one quarter oscillation wavelength of laser light emitted from the emitting region.
A method and system is described for enhancing ground situational awareness to an aircrew via the display of an airport moving map within an own-ship, including determining the position of the own-ship and an aircraft on one of a taxiway, a runway, or an apron, displaying each of the own-ship and the aircraft on an airport moving map by displaying for each a first symbol that indicates the location on the airport moving map; and displaying a second symbol that changes in transparency in proportion to the range of the airport moving map.
The display color of, for example, a button image responsive to a command input into a facility operation display device is controlled by a palette value having a smaller number of bits than an RGB value. When the display color of the button image is changed, the palette value of a drawing object associated with the button image is changed to an RGB value. This eliminates the necessity of incorporating, for example, a high-performance CPU as a central arithmetic unit. In addition, it is not necessary to pre-store images corresponding to several kinds of display colors specified by RGB values, to thereby eliminates the necessity of incorporating, for example, a high-capacity storage medium in the facility operation display device. Accordingly, the device cost can be reduced.
Provided is an image processing device which enables image display that takes full advantage of a color reproduction performance of a panel without providing a viewer with a feeling of strangeness. In at least one embodiment, an image processing device includes: a first color space converter configured to convert an externally transmitted RGB signal into an XYZ signal; a three-dimensional matching processor configured to perform conversion to tristimulus values of the XYZ signal to generate an XYZ signal; and a second color space converter configured to convert the XYZ signal to an RGB signal for a liquid crystal panel. The three-dimensional matching processor performs the conversion to the tristimulus values such that saturation and brightness of only colors whose chromaticity coordinate is outside a boundary line provided on an xy chromaticity diagram are increased, and maintains the tristimulus values as they are such that colors whose chromaticity coordinate is within the boundary line are displayed in colors accurate to colors represented by the RGB signal.
A method and an apparatus for notifying a display driver to update a display with a graphics frame including multiple graphics data rendered separately by multiple graphics processing units (GPUs) substantially concurrently are described. Graphics commands may be received to dispatch to each GPU for rendering corresponding graphics data. The display driver may be notified when each graphics data has been completely rendered respectively by the corresponding GPU.
Detailed herein are approaches to enabling conditional execution of instructions in a graphics pipeline. In one embodiment, a method of conditional execution controller operation is detailed. The method involves configuring the conditional execution controller to evaluate conditional test. A pixel data packet is received into the conditional execution controller, and evaluated, with reference to the conditional test. A conditional execution flag, associated with the pixel data packet, is set, to indicate whether a conditional operation should be performed on the pixel data packet.
A system gathers information on important and influential people and builds a social graph. The social graph can be processed to determine the influence of a node in the graph or a subsection of the graph. For the influence in a subsection of the graph, only nodes with a specific type of relationship or concept is included in the influence calculation. For example, for the concept art, only relationship that have to do with art are included in the influence calculation (e.g., museum, artists, musician). In an implementation, the edge-weight of edges of the system are dependent on a property of the edge. For example, the edge-weight for an edge tracking donations is stronger if the amount of money donated is higher.
The present invention relates to a method and a device for visualizing surface-like structures in volumetric data sets, including defining local coordinate systems at sample points of the volumetric data set, transforming external parameters from a global coordinate system into the local coordinate systems, calculating the gradient vector components (Gai, Gbi, Gci) within the local coordinate systems of the sample points, and using the gradient vector components (Gai, Gbi, Gci) for calculating a surface normal at a given position of the volumetric data set, where the surface normal is important for conventional illumination models such as the Blinn-Phong shading model, preferably, the present invention is also calculating the external parameters from the global coordinate system at the given position by using the transformed external parameters of the local coordinate systems of the sample points, where the shading or illumination at the given position is then done by using a conventional illumination model, thereby using the calculated surface normal at the given position and the calculated external parameters at the given position.
A power source circuit of a display apparatus includes a voltage divider, an operational amplifier, a first switch, a second switch, and a protector. The voltage divider generates a divided voltage between a first driving voltage and a ground voltage. The operational amplifier receives the divided voltage and outputs the divided voltage as a second driving voltage. The first switch is connected between a first supply voltage terminal to receive the first driving voltage and a common node. The second switch is connected between the common node and a second supply voltage terminal to receive the ground voltage. The protector is connected to the common node to limit a voltage output of the first supply voltage terminal in response to a voltage of the common node.
A display device where a memory circuit is installed into each pixel without generating flicker, including a plurality of pixels arranged in a matrix, wherein each pixel has a light-transmissive element controlling the amount of transmissive light in response to a voltage difference between a first electrode and a second electrode, a memory circuit storing the voltage level of the first electrode, and a controller. In the case where the first electrode has a positive voltage level with respect to the second electrode at a refreshing timing, the controller makes the memory circuit store the voltage level of the first electrode, applies a first predetermined voltage to the second electrode to increase the voltage level of the first electrode by the first predetermined voltage, and discharges the first electrode so that the first electrode has a negative voltage level with respect to the second electrode.
A method of driving electromechanical devices such as interferometric modulators includes applying a voltage along a common line to release the electromechanical devices along the common line, followed by applying an address voltage along the common line to actuate selected electromechanical devices along the common line based on voltages applied along segment lines. Hold voltages may be applied along common lines between applications of release and address voltages, and the segment voltages may be selected to be sufficiently small that the segment voltages will not affect the state of the electromechanical devices along other common lines not being written to.
A multifunction stylus is configured to be applied to an electronic device. The electronic device includes a main body and a cover detachably latched to the main body. The multifunction stylus includes a holder and a detaching member rotatably hinged to the holder configured for detaching the cover from the main body. The holder has a stylus tip positioned at one end thereof and a tool head positioned at an opposite end thereof. The detaching member defines an accommodating space adjacent to one end thereof configured for optionally accommodating the stylus tip or the tool head therein.
A coordinate sensor of the present invention includes light emitting diodes (10) and line sensors (13) each including light receiving elements (13s), and further includes, between the light emitting diodes (10) and the light receiving elements (13s), wavelength selective reflection mirrors (11) for allowing light emitted from the light emitting diodes (10) to be selectively incident to the light receiving elements (13s).
A touchscreen system for locating an opaque object in a target region, detects interruption of light beams. Each of the touchscreens have one or more optical emitters (10) to create the beams, and one or more optical detectors (30) to provide detection signals arranged to use emission wavelengths which are compatible with night vision apparatus, and having an NVIS radiance smaller than 1.7 10−11 NR.
A pressure-sensitive multi-touch device is provided. The multi-touch device includes a matrix of pressure-sensitive cells, each pressure-sensitive cell configured to change a resistance of the cell inversely proportional to an amount of force applied to that cell. The multi-touch device further includes a spacer assembly between pressure-sensitive cells.
The invention discloses a touch input device and a touch sensor circuit. The touch input device includes a touch panel, a selection module and a differential detection module. The touch panel includes a plurality of capacitive nodes thereon. The selection module is electrically connected with the capacitive nodes of the touch panel. The selection module selects a first capacitive node and a second capacitive node from the capacitive nodes. The second capacitive node is close to the first capacitive node. The differential detection module, electrically connected to the selection module, is used for detecting a capacitance difference between the first capacitive node and the second capacitive node. According to the capacitance difference, the differential detection module generates a touch detection signal.
Disclosed are various embodiments of methods and devices for operating a processor or host controller in a mutual capacitance sensing device. Methods and devices for sorting motion reports provided to a host controller or other processor in a mutual capacitance sensing device, reporting touch points to a host controller or other processor in a mutual capacitance sensing device, improving noise robustness and navigation performance in a mutual capacitance sensing device, determining a touch area of a user's finger on a touch panel or touchpad of a mutual capacitance sensing device, and avoiding false wakeups and minimizing power consumption in a mutual capacitance sensing device having a touch panel or touchpad are described.
A device with a touchscreen with a light modulator is disclosed herein. The device transitions from a netbook mode to a touchscreen mode. The device comprises a main unit and a touchscreen unit with a transparent display. The touchscreen unit is preferably separated from the main unit when in a netbook mode, and the touchscreen unit communicates wirelessly with the main unit. The touchscreen unit preferably has an outer screen display surface and an inner screen display surface on each side of a light modulating unit. The main unit preferably has a main unit display.
In a touch sensor, as well as providing touch position data, additional data is provided on the shape of the touch. This is achieved by having sampling nodes on a finer mesh than the size of the actuating object, typically a finger, so each finger touch activates a group of adjacent nodes on the sensor. In this way, each touch has a shape formed by the activated nodes. The shape allows the touch sensor to report an angle with each touch and data indicating how elongate the touch is, preferably both together as a vector in which the direction of the vector gives the angle and the magnitude of the vector gives the ellipticity. For each frame of data collected from the sensor array, the sensor outputs an (x, y) coordinate of touch position and a further (x, y) coordinate of a shape vector.
An embodiment is directed to a touch screen panel including first sensing electrodes, second sensing electrodes, and a pad unit to be electrically connected to the first sensing electrodes and the second sensing electrodes, the touch screen panel including first trace lines connecting the first sensing electrodes and the pad unit, second trace lines connecting the second sensing electrodes and the pad unit, and a ground line connected to a ground power supply, the ground line being between the first trace lines and the second trace lines.
A touch detection device includes: a plurality of drive electrodes; a plurality of detection electrodes intersecting the plurality of drive electrodes, and each outputting, in response to driving of each of the drive electrodes, a series of detection signals; a signal correction section determining a reference based on the detection signals, and subtracting the determined reference from each of the detection signals; and a detecting section detecting an external proximity object based on corrected detection signals provided from the signal correction section.
A method of controlling an electronic device having a touch-sensitive display includes determining a first value representative of force applied by an actuator to a touch-sensitive input device of an electronic device, controlling the actuator to modulate the force on the touch-sensitive input device for providing tactile feedback, determining a second value representative of force applied by the actuator to the touch-sensitive input device, and adjusting control of the actuator to adjust a subsequent force applied by the actuator based on a difference between the first value and the second value.
A video game processing apparatus for controlling progress of a video game by displaying an object on a display screen of a display device is provided. The video game processing apparatus includes a plurality of touch panels respectively provided on a plurality of surfaces of all of surfaces on a housing of the video game processing apparatus. The video game processing apparatus receives a touch operation for any one of the plurality of touch panels, and determines which surface of the housing contains the touch panel for which the touch operation is received. The video game processing apparatus carries out a predetermined representation against the object displayed on the display screen from a side of the determined surface. The predetermined representation includes a representation indicating an attack against the object from the side of the determined surface.
In one embodiment, a method includes controlling a touch sensor of a device. The control of the touch sensor includes a first processing cycle executed by the controller that comprises acquisition of touch-sensor signals from the touch sensor; a second processing cycle executed by the controller that comprises pre-processing of the touch-sensor signals; and a third processing cycle executed by the controller that comprises processing of the touch-sensor signals to determine whether a touch or proximity input has occurred with respect to the touch sensor. If the touch or proximity input has occurred with respect to the touch sensor, a location of the touch or proximity input is determined. The method also includes controlling other sensors of the device. The control of the other sensors includes one or more fourth processing cycles executed by the controller concurrently with the first processing cycle or the second processing cycle.
In an image display device including: an electrophoretic display element having a memory property and a display/update controlling unit which outputs the first control signal and the data signal to the data line driving circuit, and the second control signal to the scanning line driving circuit, based on given image data, during the image updating period of time, and cuts off power supply to the data line driving circuit and the scanning line driving circuit, during an image holding period of time, the display/update controlling unit, during the image updating period of time, inputs sequentially a plurality of pieces of compressed image block data having a data configuration which one screen of the image data is divided into a plurality of blocks, and compressed for each block, expands the compressed image block data of a preceding screen and the compressed image block data of a corresponding updating screen sequentially inputted, and outputs the data signal for screen update to the data line driving circuit, based on the expanded image block data of the preceding screen and the expanded image block data of the corresponding updating screen.
An area control section individually sets illumination intensity (light control value) of each backlight cell corresponding to each area of the display screen. A spatial filter corrects the light control values so that spatial distribution of the light control values becomes more moderate between adjoining areas. A black area control section sets the minimum value of the light control value based on a “black area” in the screen. A power control section corrects the light control values so that power consumption of the backlight does not exceed a limit value. A shading control section corrects the light control values to relatively lower brightness in the peripheral part of the screen compared to the central part of the screen. A micro-controller switches the operations of the above light control value correcting sections according to an image display mode selected by the user.
A driver circuit includes first to third transistors, a first circuit, and a second circuit. In the first transistor, a first terminal is electrically connected to a second wiring, a second terminal is electrically connected to a first wiring, and a gate is electrically connected to the second circuit and a first terminal of the third transistor. In the second transistor, a first terminal is electrically connected to the first wiring, a second terminal is electrically connected to a sixth wiring, a gate is electrically connected to the first circuit and a gate of the third transistor. A second terminal of the third transistor is electrically connected to the sixth wiring. The first circuit is electrically connected to a third wiring, a fourth wiring, a fifth wiring, and the sixth wiring. The second circuit is electrically connected to the first wiring, the second wiring, and the sixth wiring.
Methods and devices for reducing a voltage difference between common voltage layers (VCOMs) of a display are provided. In one example, a method may include supplying an activation signal to a row of pixels of the display to activate the row of pixels. The method may also partially removing the activation signal from the row of pixels at a predetermined rate. The method may include detecting a voltage difference between a first VCOM of a first set of pixels of the display and a second VCOM of a second set of pixels of the display after the activation signal has been partially removed. The method may also include controlling removal of the activation signal from the row of pixels based at least partially on the detected voltage difference.
A liquid crystal display device includes a liquid crystal panel including a plurality of gate lines (GL1 to GLn) data lines (DL1 to DLm) and a plurality of pixel areas; a timing controller arranging the external input image data to be proper to the driving of the liquid crystal panel, generating a gate control signal (GCS) and a data control signal (DCS), and grouping the arranged image data into a plurality of groups each having a plurality of controller channels, and outputting a group control signal (HINV_m) by determining whether the arranged image data for each group is proper to horzintal-1-dot inversion or horizontal-2-dot inversion; a gate driver driving the plurality of the gate lines of the liquid crystal panel based on the gate control signal (GCS) from the timing controller; and a data driver grouping output terminals into a plurality of groups.
A driving device drives a liquid crystal display panel in which the number of source lines is by one larger than the number of columns of pixel electrodes and in which the columns of pixel electrodes are arranged between the source lines. The driving device has a configuration in which potential output terminals, in a central region, are not connected to any source line. A voltage follower is connected to an output switching section. Additionally, potential output terminals are connected through switches to input terminals, respectively. The switch connects a first terminal to a second terminal with control signal at a high level and connects the first terminal to a third terminal with at a low level.
A liquid crystal display (LCD) and a method of driving the LCD in which the LCD includes a liquid crystal panel divided into a plurality of display regions, each of the display regions having a plurality of pixels; and a timing controller receiving a primitive image signal for displaying an image in the display regions, and correcting the primitive image signal using a plurality of dithering patterns respectively corresponding to the display regions, wherein the display regions in contact with each other on at least one side correspond to different dithering patterns.
A display unit with which luminance is able to be improved and a wide view angle is able to be secured while increase of the power consumption is inhibited is provided. The display unit includes a first region placing priority on front face luminance in which an aperture ratio of a light emitting region is relatively small, a second region placing priority on view angle luminance in which the aperture ratio of the light emitting region is relatively large, and a drive means for driving the first region and the second region.
A method and system for programming, calibrating and driving a light emitting device display is provided. The system may include extracting a time dependent parameter of a pixel for calibration.
Pixel circuits and an organic electroluminescent display including the same are provided. The pixel circuit includes: an organic light emitting diode; a fifth transistor coupled to a third scan line, a reference power source, and a first node; a first capacitor coupled between the first node and a second node; a second capacitor coupled between the first node and the organic light emitting diode; a fourth transistor coupled to a second scan line, a data line, and the first node; a sixth transistor coupled to a first scan line, a first power source, and the second node; a second transistor coupled to the second scan line, the second node, and a third node; a third transistor coupled to an emission control line, the first power source, and the third node; and a first transistor coupled to the second node, the third node, and the organic light emitting diode.
A multiband antenna includes at least two antenna elements for use in a low frequency band and a high frequency band, a feeding point unit configured to be shared by both of the antenna elements for use in the low frequency band and the high frequency band and an impedance matching unit configured to be inserted into and connected to a position between an end of the antenna element for use in the high frequency band on the side of the feeding point unit and an open end thereof.
Apparatus for receiving and transmitting electromagnetic signals are disclosed herein. In some embodiments, an apparatus includes a positive refractive index (PRI) medium; a negative refractive index (NRI) medium having a first side and a second side disposed in the PRI medium; a plurality of first transmission lines, each first transmission line having a first end extending toward the first side of the NRI medium; and a plurality of second transmission lines, each second transmission line having a second end extending toward the second side of the NRI medium, wherein a plurality of electromagnetic signals travelling in a first direction, enters the PRI medium and travels along the plurality of first transmissions lines and exits into first side of the NRI medium, passes through the NRI medium and exits through the second side of the NRI medium into the PRI medium along a first one of the second transmission lines.
A multi-band antenna includes two conductive wirings and unit circuits cascaded along the conductive wirings. Each unit circuit includes a communication unit, a first capacitor and a second inductor. The communication unit connects between the conductive wirings through a first inductor and a second capacitor connected in series with the first inductor. The first capacitor and the second inductor are inserted in at least one of the conductive wirings. The second inductor is connected in parallel with the first capacitor. Alternatively, the unit circuit includes a communication unit connecting between the conductive wirings through a first inductor, and a first capacitor inserted in at least one of the conductive wirings. The first inductor, the first capacitor, a third capacitor disposed between the conductive wirings, and a third inductor disposed on at least one of the conductive wirings satisfy a relationship expressed by the expression 2.
The present invention refers to an antennaless wireless handheld or portable device comprising a communication module including a radiating system capable of transmitting and receiving electromagnetic wave signals in a first frequency region and in a second frequency region, wherein the highest frequency of the first frequency region is lower than the lowest frequency of the second frequency region. The radiating system comprising a radiating structure and at least one internal port, wherein the input impedance of the radiating structure at the/each internal port when disconnected from the radiofrequency system has an imaginary part not equal to zero for any frequency of the first frequency region; and wherein said radiofrequency system modifies the impedance of the radiating structure, providing impedance matching to the radiating system in the at least two frequency regions of operation of the radiating system.
A dual band antenna is provided. The dual band antenna includes a grounding portion, a connecting portion, a feeding portion, a radiating portion, a first radiating portion and a second radiating portion. The connecting portion is vertically connected to the grounding portion. The feeding portion has a first end and a second end, wherein the first end is connected to the connecting portion and the second end has a feeding end. The radiating portion is parallel to the grounding portion and vertically connected to the connecting portion. The first radiating portion has a third end and a fourth end, wherein the third end is connected to the radiating portion and the fourth end extends toward the radiating portion. The second radiating portion is vertically connected to the radiating portion.
A system for performing analog-to-digital conversion comprises a sampling unit that generates multiple digital samples from an analog input signal at each recurrence of a periodic interval, and a processing unit that combines the digital samples to produce a digital output signal. In certain embodiments, the sampling unit comprises multiple analog-to-digital converters arranged in parallel, and the processing unit comprises a digital signal processor that detects outliers in the digital samples and averages any non-outliers among the digital samples to generate the digital output signal.
A system for minimizing variation of a voltage reference includes a voltage reference generator and a power converter. The voltage reference generator is configured to generate a voltage reference from a supply voltage. The power converter, such as a flyback converter, is configured to supply an adjustable supply voltage to the voltage reference generator. The voltage reference generator generates the voltage reference from the adjustable supply voltage.
The present invention first provides adaptive binarization in which a binarizer outputs binary symbol in length, which is variable adaptively to the probability of the source. When the probability is low, it is desirable to decrease the length of the binary symbols to improve the efficiency of arithmetic coding and reduce the complexity of coding calculation. On the other hand, when the probability is high, it is desirable to increase the length of the binary symbols to improve the overall process speed of a decoder. Specifically, a binarizer, according to the present invention, binarizes mapping unit values from a non-binary symbol into binary symbols. The number of binary symbols is inversely proportional to the size of the mapping unit value. In the present invention, the mapping unit value is made variable adaptively to the probability. Thus, the number of binary symbols from the binarizer is also variable adaptively to the probability parameter.
A control system and a method for a back-and-forth cable system is provided. The cable system includes a running cable, a first pulley and a second pulley, the pulleys being located at both ends of a course for guiding the running cable. A controllable motor assembly drives of the pulleys and a carrier is connected to the running cable, for pulling or towing a boarder. The control system includes first and second tracking devices to generate first and second tracking signal indicative of the rotation of the pulleys. Two limit positions along the course are stored in storing means and a controller has inputs to receive the first and the second tracking signals and inverts rotation of the controllable motor assembly when the two positions of the carrier detected go beyond either one of the two limit positions.
An anti-effraction and antitheft system (1) of an electromechanical type for photovoltaic panels (8) and components of electrical plants and systems in general, which has the purpose of rendering unserviceable and/or unlikely to be re-usable, in the case of theft or tampering, of the photovoltaic panels (8). The system (1) is based upon the combination of functions of connection and electrical and electronic functions; namely, it is based upon at least one electromechanical element or connector (24), an electronic unit or management card (21) and a central system (39) with georeferencing, communication, and signalling functions.
A system level scheme for networking of implantable devices, electronic patch devices/sensors coupled to the body, and wearable sensors/devices with cellular telephone/mobile devices, peripheral devices and remote servers is described.
In general, this disclosure discloses techniques for using a computing device as a smart vehicle key. The computing device may send a validation request signal to a vehicle via a first short-range communication protocol. After to sending the validation request signal, the computing device may establish a secure connection with the vehicle over a second short-range communication protocol. The computing device may send via the secure connection an ignition signal to the vehicle that activates an ignition system operable to activate a motor of the vehicle. The computing device may periodically send via the secure connection a keep-alive message to the vehicle as the motor of the vehicle is running.
A building equipment control system comprises a remote transceiver module including a plurality of remote transceivers for remotely receiving multi-channel alarm signals, and each of the remote transceivers including a plurality of input points; a remote indication module including a plurality of remote indicators for performing alarm indication according to the multi-channel alarm signals, and each of the remote indicators including a plurality of output points; a remote main system controller for remotely setting characteristics and authorities of the input and output points; a remote compiler for remotely changing system settings of the remote main system controller and characteristics of the input points. The wiring of the system could save about 70-90% cables and 90-95% junction boxes, and reduce about 70% period of time for wiring and 90% period of time for testing and debugging needed for the conventional building equipment control system. The maintenance costs for the present building equipment control system are very low and thereby the efficiency thereof is higher. It is easier to fix failures of the system.
A greeting card having an audio message and playback device delivers a first sound recording upon opening of the greeting card and a second sound recording upon closing of the greeting card. The delivery of each sound recording may be delayed by a timing component within the audio message and playback device. Additionally, the delivery of each sound recording may be played simultaneously or in queue. Sound recordings may also be recorded by a user using a recording component that is in addition to the audio message and playback device. The audio message and playback device may also include an additional trial mode component that allows the user to test a recorded message before purchasing the greeting card and place the greeting card into a use mode that allows the user to permanently record the message.
Disclosed herein is a remote control apparatus for performing wireless communication with an electronic device, the remote control apparatus including: a reader/writer configured to read and/or write information from or to an information storage medium; and a transmission/reception section configured to transmit and receiving a signal to or from the electronic device via the wireless communication, wherein the transmission/reception section uses the same wireless communication system for both transmission of an operation instruction to the electronic device and transmission of information read from the information storage medium and reception from the electronic device of information to be written to the information storage medium.
In a laminated inductor element, a magnetic ferrite layer sandwiched between two conductor patterns is thinner than other magnetic ferrite layers. Therefore, a crack occurs in the magnetic ferrite layer due to firing. As a result of the occurrence of this crack, a stress applied to each layer is relaxed, and it becomes possible to avoid warpage, a crack, or the like. In addition, in the laminated type inductor element, the two conductor patterns are electrically connected by two via holes, and subjected to a same potential. Since the two conductor patterns correspond to a same wiring pattern and a coil of coil conductor is defined by the two conductor patterns, even if upper and lower coil conductors are electrically in contact with each other due to the crack, the two conductor patterns are not put into a short-circuited state.
A magnetic element may include a first core member, a second core member facing the first core member along an entire outer periphery thereof, a coil, and a base shaped body on which the first core member and the second core member are placed. The base shaped body is provided with a base member and a terminal member, and the terminal member is provided with a binding terminal part, which projects outward in a first corner part of the base member and projects from the base member on a side lower than a portion of a winding frame part side of one flange part. The second core member is provided with a cutout part at a portion corresponding to the first corner part of the base member for allowing insertion of an end drawn out from the winding frame part in a state of not contacting the second core member.
A magnet that includes a composite body and at least one reinforcing element. The reinforcing element is embedded within the body and increases the radial strength of the body. As a result, the magnet is able to rotate at higher speeds without fracturing. Additionally, methods of manufacturing the magnet are described.
A latch for a washing machine or other appliance provides two interengaging elements on a lid and housing each having a magnet oriented for mutual repulsion. Proper repulsion of the magnets is necessary to signal that the lid is properly closed such as may be used to determine if the appliance may be locked and safely operated, for example, in a clothes spinning mode.
A reference circuit, an oscillator architecture that includes the reference circuit and a method for operating the reference circuit are described. In one embodiment, the reference circuit includes a voltage reference generator configured to generate a reference voltage and a current reference generator configured to generate a reference current based on the reference voltage. The current reference generator includes a level shifter circuit configured to generate intermediate voltages based on the reference voltage, a first current reference circuit configured to generate intermediate currents based on the intermediate voltages, where the intermediate currents are correlated to the reference voltage, and a second current reference circuit configured to combine the intermediate currents to generate the reference current. Other embodiments are also described.
The embodiments described herein provide a voltage controlled oscillator (VCO). The VCO may include, but is not limited to a voltage-to-current converter configured to receive a control voltage and to convert the control voltage to a current, a current bias circuit coupled to the voltage-to-current converter and configured to receive frequency band select digital inputs and to bias the current generated by the voltage-to-current converter based upon the band select inputs, and a ring oscillator coupled to receive the biased current and to output an oscillating signal based upon the biased current.
In some embodiments, provided are calibration techniques for measuring mismatches between TDL delay stage elements, and in some cases, then compensating for the mismatches to minimize performance degradation.
A power amplifier circuit uses an output transistor and a cascode transistor. First and second drive circuits apply gate control signals to the two transistors, which rise and fall in synchronism, and this is such that the voltage drop across the cascode transistor is reduced (compared to a constant gate voltage being applied to the output transistor).
An amplifier for use in a buoyant cable antenna operable to receive signals within a frequency band includes: a first amplifier operable to provide amplified signals based on the received signals; a bandpass filter arranged to pass filtered signals within a first portion of the frequency band, the filtered signals being based on the amplified signals; an attenuator arranged in parallel with said bandpass filter and operable to attenuate signals within a second portion of the frequency band, the attenuated signals being based on the amplified signals; and a second amplifier operable to provide an amplified output including first amplified signals within the first portion of the frequency band and to provide second amplified signals within the second portion of the frequency band. The first amplified signals have a first gain, the second amplified signals have a second gain, and the first gain is more than the second gain.
A power circuit includes a RF transistor and an input match network coupled to an input to the RF transistor and to an input to the power circuit. The input match network includes a resistor, an inductor and a capacitor that are coupled together in series between the input to the RF transistor and a ground. The values of the resistor and the inductor are selected to match an input impedance of the RF transistor to a source impedance at the input to the power circuit over at least a portion of a high frequency range, wherein the value of the capacitor has a substantially negligible contribution to the match at the high frequency range. The value of the capacitor is selected so that the series combination of the resistor, the inductor and the capacitor substantially reduce the magnitude of the impedance presented to the input of the RF transistor in a low frequency range relative to the source impedance at the input to the power circuit.
There is provided a power amplifier module having a bias circuit, in which a bias power is supplied to an amplifier by differently setting an impedance between an input signal terminal and a reference power terminal and an impedance between the input signal terminal and a ground. The power amplifier module includes: an amplifier unit receiving a bias power to amplify an input signal; and a bias unit supplying the bias power to the amplifier, by differently setting an impedance between an input signal terminal transmitting the input signal therethrough and a reference power terminal transmitting a reference power having a predetermined voltage level and an impedance between the input signal terminal and a ground.
An amplifier includes a first switch and a second switch each having a first terminal and a second terminal. The first terminals of the first and second switches respectively communicate with a first tank circuit and a second tank circuit. The second terminal of the second switch communicates with the second terminal of the first switch. A first capacitance having a first terminal connected directly to (i) the second terminal of the first switch and (ii) the second terminal of the second switch. A second terminal of the first capacitance is connected directly to a first input voltage of the amplifier. A first load is connected across (i) the first terminal of the first switch and (ii) the first terminal of the second switch. The amplifier generates a first output across the first load.
An output buffer of a source driver is disclosed. The output buffer includes a buffer input, a buffer output, a differential input stage, a bias current source, an output stage, a compensation capacitor, and a comparator. The output stage and the comparator are both operated between an analog supply voltage (AVDD) and a half analog supply voltage (HAVDD), or both operated between the half analog supply voltage (HAVDD) and a ground voltage. The comparator compares an input signal with an output signal and outputs a control signal to the bias current source according to the compared result.
A multi-regulator circuit comprises a regulator configured to regulate an input voltage to generate a constant voltage, and a plurality of voltage division circuits configured to output divided voltages which are obtained by dividing the constant voltage on the basis of a plurality of voltage generation codes, respectively.
A charge pump includes a first node configured to receive a first voltage and a second node coupled to the first node through a first transistor. The second node is configured to output a voltage having a greater voltage magnitude than the first voltage. A first capacitor is coupled to a third node, and a fourth node is configured to receive a first clock signal. The third node is disposed between a drain of the first transistor and the fourth node. A leaky circuit device is coupled in parallel with the first capacitor for draining charges of a first polarity away from the second node.
In one embodiment, the present invention includes a mixer having various stages, including a transconductance stage with a differential transistor pair, a bias circuit, and a feedback circuit. The transistor pair can include a first transistor having a first terminal to receive a first input radio frequency (RF) voltage and to output a first RF current via a second terminal of the first transistor, and a second transistor having a first terminal to receive a second input RF voltage and to output a second RF current via a second terminal of the second transistor. In turn, the bias circuit is coupled to the second terminals of the transistors to provide a bias current to these transistors. The feedback circuit is in turn coupled to the second terminals of the transistors to generate a feedback signal corresponding to a common mode voltage at the second terminals of the transistors.
Voltage controlled variable attenuators are described that are configured to be coupled to a transmission path to furnish variable attenuation of a signal, such as a radio frequency signal. In one or more implementations, the voltage controlled variable attenuator includes at least one transistor. The transistor has an open configuration for at least substantially preventing the flow of current through the transistor, and a closed configuration for at least partially allowing the flow of current through the transistor. The variable attenuator also includes a resistive component coupled to the transistor, and configured to couple to the transmission path. The resistive component is configured to at least partially mitigate non-linear effect when the transistor transitions from the open configuration to the closed configuration. The transistor and the resistive component are configured to at least partially attenuate a signal transmitted along the transmission path when the transistor is in the closed configuration.
Described is an integrated circuit having a clock distribution network capable of transitioning from a non-resonant clock mode to a first resonant clock mode Transitions between clock modes or between various resonant clock frequencies are done gradually over a series of clock cycles. In example, when transitioning from a non-resonant clock mode to a first resonant clock mode, a strength of a clock sector driver is reduced over a series of clock cycles, and individual ones of a plurality of resonant switches associated with resonant circuits are modified in coordination with reducing the strength of the clock sector driver.
A method and circuit for providing on-chip measurement of the delay between two signals includes first and second delay chains (241, 242) having different delay values connected to sampling latches (222-227) which each include a data input coupled between adjacent delay elements of the first delay chain and a clock input coupled between adjacent delay elements of the second delay chain, thereby capturing a high precision delay measurement for the signals.
A data output circuit and a data output method thereof are provided. The data output circuit includes a delay locked loop, a duty ratio correction block, and an output unit. The delay locked loop corrects a duty ratio of a first internal clock. The delay locked loop includes a correction enable signal output unit configured to output a correction enable signal when the operation of correcting the duty ratio of the first internal clock is completed. The duty ratio correction block corrects the duty ratio of the first internal clock by using a duty ratio detection signal in response to the correction enable signal, and outputs the corrected first internal clock as an output clock. The output unit detects a duty ratio of the output clock, generates the duty ratio detection signal to the duty ratio correction block, and outputs a data strobe signal in response to the output clock.
An apparatus includes a phase-locked loop (PLL) circuit including a phase-frequency detector configured to output phase error signals. A phase error monitor circuit is configured to determine instantaneous peak phase error by logically combining the phase error signals and comparing pulse widths of the logically combined phase error signals to a programmable delay time at each reference clock cycle to determine instantaneous phase error change. A storage element is configured to store the instantaneous phase error change.
A power-on reset circuit includes a first-conductive-type MOS transistor having a first source connected to a first power supply, a first drain, and a first gate connected to a second power supply; a second-conductive-type MOS transistor having a second source connected to the second power supply, a second drain connected to the first drain, and a second gate, to which a bias potential which depends on neither a potential of the first power supply nor a potential of the second power supply is applied; and an output node for outputting a reset signal corresponding to a potential of the first drain, in a process that a voltage between the first power supply and the second power supply increases.
In one aspect, a current driver, includes an operational amplifier that includes a first input port configured to receive a reference signal and a second input port configured to receive a variable signal. The variable signal is a function of an output current of the current driver. The reference signal corresponds to a selected maximum output current of the current driver. The current driver also includes a feedback transistor comprising a gate coupled to the output of the operational amplifier and a summing junction coupled to a drain of the feedback transistor and configured to receive a signal from the drain to enable clamping of the output current of the current driver to the maximum output current when the variable signal exceeds the reference signal. The summing junction is coupled to a set of transistors configured to provide the output current of the current driver.
The number of power-gating transistors on an integrated circuit used for power reduction in a sleep mode is controlled during a wake state to adjust the current flow and hence voltage drop across the power-gating transistors as a function of aging of these transistors and/or a function of temperature of the integrated circuit. In this way, the supply voltage to the integrated circuit may be better tailored to minimize current leakage when the integrated circuit is young or operating at low temperatures.
A constant current source circuit includes one end connected to a second node as sources of third and fourth transistors, and the other end connected to a second power supply node that supplies a second voltage different from a first voltage. The clamp circuit is configured to form a current path between the second node and the second power supply node. It adjusts the potential of the second node to a certain potential when a first external input signal is switched from a first state to a second state.
A comparator having first and second stages can provide component offset compensation and improved dynamic range. The first stage can receive first and second input signals and produce first and second output signals. The second stage can be coupled to the first stage to receive the first and second output signals at first and second input terminals of the second stage. The second stage can provide a voltage to the first and second terminals that differs from the supply voltage by less than a voltage of a diode drop. The comparator is operable to receive input voltages that reach the supply voltage.
Apparatuses and methods are disclosed, including an apparatus that includes a differential driver with charge injection pre-emphasis. One such apparatus includes a pre-emphasis circuit and an output stage circuit. The pre-emphasis circuit is configured to receive differential serial signals, and buffer the differential serial signals to provide buffered differential serial signals. The output stage circuit is configured to receive the buffered differential serial signals and drive the buffered differential serial signals onto differential communication paths. The pre-emphasis circuit is configured to selectively inject charge onto the differential communication paths to assist with a signal transition on at least one of the differential communication paths. Additional embodiments are disclosed.
A system having an input and output buffer includes a dynamic driver reference generator to generate dynamic driver reference signals based on a data signal and an IO buffer supply voltage, a level shifter to generate level shifted signals based, in part, on the dynamic driver reference signals, and a driver having at least one stress transistor. The driver dynamically adjusts a voltage across the stress transistor based on at least one of dynamic driver reference signals, the level shifted signals, and a current state of an IO pad.
A circuit with a plurality of analog circuit blocks, each configured to provide at least one analog function and a programmable interconnect coupled of the analog circuit blocks and configurable to interconnect combinations of the analog circuit blocks to one another. The circuit is formed in an integrated circuit (chip) and the programmable interconnect comprises a plurality of switches coupled between the analog circuit blocks and ports that provide signal connections for the chip.
A reconfigurable integrated circuit (IC) has IC interface terminals including circuit input terminals and circuit output terminals. A bypass controller and bypass circuitry are coupled to each other, and to at least one of the circuit input terminals and at least one of the circuit output terminals. A processing circuit has multiple circuit modules coupled to the bypass circuitry. The processing circuit is coupled to at least one of the circuit input terminals and at least one of the circuit output terminals. In operation the bypass controller controls the bypass circuitry to selectively couple at least one pair of the IC interface terminals together, the pair including one of the circuit input terminals and one of the circuit output terminals. When the pair of IC interface terminals are coupled together, at least one of the circuit modules is selectively de-coupled from the pair of the IC terminals.
A fault signal indicates a single-pole or a double-pole fault in a three-phase electrical power grid which occurred during a present electric oscillation in the electrical power grid. The method assures that single-pole or double-pole faults occurring during oscillation can be detected with high reliability in that a symmetry signal is produced during the oscillation, which indicates whether the oscillation is symmetrical or unsymmetrical, and the phases of the electrical power grid are checked for an existing fault, wherein the symmetry signal is used for carrying out the check. The fault signal is produced if a fault was detected during the check. A protective device has an accordingly equipped control unit.
The present invention provides an apparatus including a stacked plurality of devices and a related method. The apparatus includes a stacked plurality of devices including a master device and at least one secondary device; a plurality of segments, each segment being associated with one of the stacked plurality of devices; and a plurality of N vertical connection paths traversing the stacked plurality of devices. The apparatus further includes a plurality of M vertical signal paths configured from the plurality of N vertical connections paths, wherein M is less than N, and at least one of the plurality of M vertical signal paths is a merged vertical signal path adaptively configured by the master device using at least one segment from each one of at least two of the plurality of N vertical connection paths.
A detection system and method for detecting one or a plurality of species from a mixture of species in a phase. The detection system and method detect changes in conductance induced by the species. The conductance includes a cell structure having a rigid architecture having a top surface a portion of which is electrically conductive forming a first conductive component. A second conductive component substantially overlaps the first conductive component and is spaced from the first conductive component by an insulating component. One or more flow pathways exist between the first conductive component and the second conductive component for the chemical and/or biological species to flow. A time dependent electrical signal for inducing a time dependent response is applied to at least one of said first and second conductive components and a signal detector coupled to at least one of the first and second conductive components measures the time dependent response.
A particulate matter detection device that detects the diameter and the amount of particulates in exhaust gas while reducing detection error caused by deterioration such as the deterioration of electrodes is provided. In the particulate matter detection device, which measures particulates in a gaseous body, AC voltages having different frequencies are applied to a pair of electrodes disposed apart from each other. The resulting impedances to the different frequencies are detected. A resistance component and/or a capacitance component of the impedances to the different frequencies are calculated. The average diameter and/or the number of particulates in the gaseous body are estimated in accordance with changes in the resistance component and/or the capacitance component.
Systems, methods and devices directed to transformers are disclosed. One transformer system includes a set of transformer cells and a controller. The set of transformer cells is coupled in series to form a series coupling, where each transformer cell includes at least one first coil and at least one second coil. The second coil is configured to receive electrical energy from the first coil through magnetic interaction. The controller is configured to modify electrical aspects at ends of the series coupling by independently driving the transformer cells such that at least one of the transformer cells is driven differently from at least one other transformer cell in the set.
A method and apparatus for diagnosing an electrochemical sensor that detects the concentration of a gas are operative for diagnosing whether or not the sensor is in an error state due to a rise in a resistance in the electrolyte of the sensor. Such detection is made on the basis of a current flowing between a sensing electrode and an opposite electrode or a voltage corresponding to the current. A method for diagnosing an electrochemical sensor having a solid or liquid electrolyte between a sensing electrode and an opposite electrode detects the concentration of the gas to be detected on the basis of a current flowing between the sensing electrode and the opposite electrode, or a voltage corresponding to the current. Whether or not the electrochemical sensor is in an error state is diagnosed on the basis of a resistance of the electrolyte between the two electrodes of the electrolyte.
A device for real-time correction of set-point signals intended to receive at the input set-point signals and to deliver at its output set-point signals that are modified to compensate for defects, negative effects or the like subsequently encountered during the processing and/or the application of the set-point signals. This device (1) includes at least one circuit (1′) that is based on a microprogrammed structure and composed of several subassemblies (3, 4, 5, 6, 6′) that work with digital components essentially including a micro-sequencer (3) forming a counter, a memory (4) for storing micro-instructions, and a processing unit (5) combined with at least one working memory (6, 6′) and integrating arithmetic calculation modules (7,7′), whereby the processing unit (5) modifies the data of set-point signals in accordance with the micro-instructions that are addressed by the micro-sequencer (3) and by taking into account the correction coefficients that are provided.
A magnetic resonance imaging apparatus according to an embodiment includes a gradient coil and a coil cooling pipe. The gradient coil applies a gradient magnetic field onto a subject placed in a static magnetic field. The coil cooling pipe is provided to the gradient coil, and cools the gradient coil by circulating a coolant inside pipe. The coil cooling pipe is provided so as to extend from one end of the gradient coil in the direction toward the other end, then to bend, and to return to the one end along the shape of the gradient coil.
A method for detecting electromagnetic waves derived from bacterial DNA, comprising extracting and purifying nucleic acids from a sample; diluting the extracted purified nucleic acids in an aqueous solvent; measuring a low frequency electromagnetic emission over time from the diluted extracted purified nucleic acids in an aqueous solvent; performing a signal analysis of the low frequency electromagnetic emission over time; and producing an output, based on the signal analysis, in dependence on the DNA in the sample. The DNA may be extracted from at least one of blood, feces, urine, saliva, tears, seminal fluid, sweat, seminal and vaginal fluids of a patient, or water to determine, e.g., potability. The samples may be frozen. The extracting and purifying may comprise diluting the sample with an aqueous buffer and mixing; degrading proteins in the diluted sample; precipitating DNA from the buffer solution; and resuspending the precipitated DNA in an aqueous solution.
A power factor control circuit has a power factor controller that determines if the power factor control circuit is operated at a continuous current mode (CCM) or a discrete current mode (DCM), and outputs PWM signals corresponding to the present current mode. A duty cycle of the PWM signals is equal to a sum of a feed-forward control parameter and a current compensation parameter. The current compensation parameter contains a difference value between a reference current and an inductor current in the power factor control circuit. Accordingly, a switching power supply circuit can acquire the PWM signals corresponding to the present current mode to effectively resolve the issue of harmonic distortion.
A digital circuit directs operation of a pulse width modulation or pulse frequency modulation controller varying its control between closed loop and open loop topology. An exemplary control plant could embody a step-down switch mode power supply providing a precise sequence of voltages or currents to any of a variety of loads such as the core voltage of a semiconductor unique compared to its input/output ring voltage. A state machine monitors pulse width or pulse frequency from the pulse width modulation or pulse frequency modulation controller, respectively, while either type of controller operates in its closed loop topology, to determine if the present power state of the system matches the predicted load as characterized from a predetermined model used in conjunction with design automation tools. The state machine averages pulse widths or pulse frequencies monitored in the closed loop topology. If the average deviates from the predicted pulse width or pulse frequency for the present power state, the state machine updates a corresponding value in a table of pulse width or pulse frequency values from which an open loop controller applying pulse width modulation or pulse frequency modulation, respectively, generates a near critical damped step response during system power state transitions or maintains a maximally flat voltage during system current transients.
This invention is directed to a modularized interface for connecting a plug-in electric vehicle to the energy grid. For use with public or semi-public outlets, the modularized interface comprises a module and a smart socket, where the module is integrated within or capable of being connected to, the vehicle's charging interface. The module is normally disabled, but is enabled only after the end user is authenticated, the smart socket and its associated meter have been identified, and the module and the end user's account with the local utility are validated. The module meters the energy consumption, and, when the module is disconnected from the smart socket, indicating termination of the charging session, the metered data is communicated to the utility for updating the end user's account, and the module is disabled. The module is also capable of use with conventional outlets located, for example, in private residences.
A DC voltage value from a DC voltage detection section is input directly to a voltage correction section without passing through a compensator or a filter. Therefore, even when rapid voltage change occurs, such as short power interruptions, instantaneous voltage drop and return from instantaneous voltage drop, the voltage correction section can quickly perform the correction operation in response to the rapid voltage change. Since the amount of link resonance compensation is limited by the limitation section to a certain range, it is possible to prevent the amount of link resonance compensation from fluctuating excessively upon rapid voltage change. Since the amount of link resonance compensation which is limited by the limitation section to a certain range is input to one compensator that has an appropriate control band, among all control calculation sections, the response does not have to be unnecessarily fast, thus realizing a stable control.
The present invention provides a power supply device for an electric vehicle that allows highly efficient operation of a compressor inverter. A power supply device for motor vehicle 10 has: a main circuit 13 having a power source 11, a DC-DC converter 18, and a main inverter 17 that drives a main motor 12; an auxiliary circuit 15 having an auxiliary inverter 19 that drives an auxiliary motor 14, a first electrical circuit 23 that is connected to the main circuit 13 on a primary side of the DC-DC converter 18, a second electrical circuit 24 that is connected to the main circuit 13 on a secondary side of the DC-DC converter 18, and a connection circuit 30 configured to be capable of selecting one of the first electrical circuit 23 and the second electrical circuit 24 as a path for supplying a direct current voltage to the auxiliary inverter 19; and a control device 16 that controls the connection circuit 30 when the main motor 12 is in power running operation so that switching between the first electrical circuit 23 and the second electrical circuit 24 is performed corresponding to a required voltage of the auxiliary inverter 19.
The motor position controller inputs a command pulse signal and a desired pulse form setting, and drives a motor based on the command pulse signal. The motor position controller includes a position command generating device configured to generate a position command signal from the command pulse signal in accordance with the inputted desired pulse form setting, a motor controlling part configured to supply power to the motor based on the position command signal, and a first conformity determination device configured to determine the conformity of the desired pulse form setting and the command pulse signal.
Provided is a motor control device which realizes automatic adjustment of control of a motor for driving a mechanical load through a simple operation. The motor control device includes: a follow-up control unit (6) for receiving detection information of a detector (3) to output a torque command signal and output a status of motor control of a motor (1) as a control status amount signal, when a command signal regarding the motor control to be output from an upper-level controller is absent; an oscillation detection unit (9) for receiving the control status amount signal and detecting oscillation of a control status amount to output an oscillation detection signal; and an automatic adjustment unit (10) for receiving the oscillation detection signal to monitor a control status of the motor (1) and adjust a control parameter of the follow-up control unit (6) only when abnormality is detected.
Speed of a motor, generator or alternator, more particularly the speed of an alternating current (AC) induction motor is determined. Problems associated with previous devices are overcome by providing a speed monitoring device that is readily retrofitted to an existing motor. A test signal is superimposed onto an input voltage, which voltage in use is applied to at least one winding of the stator of a motor (the test signal is at a frequency substantially equal to the rotor frequency). The test signal frequency is varied so that it varies from a minimum frequency to a maximum frequency. A current monitor monitors a resultant current, in the at least one stator winding. and deriving from the resultant current is a signal indicative of the rotor frequency.
An inverter/charger integrated device is provided. The inverter/charger integrated device includes: a three-phase motor; a rectifying unit configured to rectify AC power for charging a battery and output the rectified AC power to a neutral point of the three-phase motor; a rectifier/inverter integrated unit configured to be connected to the rectifying unit and charge the battery; and a control unit configured to control the charging of the battery and an operation of the three-phase motor.
In a drive control circuit of a linear vibration motor, a drive signal generating unit generates a drive signal used to alternately deliver a positive current and a negative current to a coil. A driver unit generates a drive current in response to the drive signal generated by the drive signal generating unit and supplies the drive current to the coil. An induced voltage detector detects an induced voltage occurring in the coil. After a running of the linear vibration motor has terminated, the drive signal generating unit generates a drive signal whose phase is opposite to that of the drive signal generated during the motor running; this drive signal of opposite phase includes a high impedance period during which the driver unit is controlled to a high impedance state. The induced voltage detector detects the induced voltage occurring in the coil during the high impedance period.
The temperature rise due to the backstreaming electrons is canceled by an equal and opposite fall in temperature at the surface of the cathode due to the conduction of heat deposited at the surface immediately prior to the microwave pulse by a pulsed laser focused to uniformly illuminate the cathode surface. Variations in temperature across the surface of the cathode attributable to the non-uniform spatial distribution of the backstreaming electrons may be compensated using a second laser pulse fired during the RF pulse to maintain constant thermal power input across the surface of the cathode during the RF pulse. This second pulse can also be used to compensate for the time-dependent rate of decay of temperature due to conduction of the heat deposited by the first laser into the body of the cathode.
A backlight unit includes; a light source, an inverter which provides the light source with an input voltage, and a printed circuit board (“PCB”) connected to the light source, wherein the PCB includes a protection circuit which detects an open-lamp-protection voltage which varies according to a change of the input voltage and changes a reference voltage according to the change of the input voltage, wherein the protection circuit turns off the inverter when the detected open-lamp-protection voltage is higher than the changed reference voltage.
Threshold-based zero-crossing detection is provided. A power phase threshold detector detects when absolute value of a voltage level of the electrical power rises above a non-zero voltage threshold and outputs a zero-crossing signal to a controller to indicate occurrence of the zero-crossing. Delaying the zero-crossing signal to the point when the absolute value of the voltage level of the electrical power rises above the non-zero voltage threshold ensures completion of the zero-crossing of the power phase prior to signaling the controller. The controller provides signals to a switching circuit for controlling switching of electrical power to a load based on the zero-crossing indications.
A solid state lighting switch can include a first input control that can be configured to adjust a dimming indication or color indication for a solid state lighting fixture that is configured for coupling to the solid state lighting switch. A selective linking mechanism can be configured to activate a linked mode of operation of the switch to link the dimming indication to the color indication or to activate an unlinked mode of operation of the switch to unlink the dimming indication from the color indication.
An apparatus for generating an electron beam is disclosed to reduce emittance of an electron beam. The apparatus includes: a housing including a rear portion where an electron beam is generated, a front portion having an electron beam discharge hole for discharging the electron beam to the exterior, and a side portion connecting the rear portion and the front portion, the side portion having a first hole and an opposite side portion, facing the first hole, having a second hole in order to reduce asymmetry of an electric field caused by the first hole; and a waveguide installed on the side portion to supply an electromagnetic wave to the interior of the housing through the first hole, wherein the electron beam is generated by laser incident to the interior of the housing and accelerated by the electromagnetic wave supplied to the interior of the housing.
An organic light emitting diode (OLED) display device is provided. The OLED display device according to an embodiment of this document may comprise a substrate and a number of unit pixels placed over the substrate. Each of the unit pixels comprises emission layers each interposed between first electrodes and a second electrode. The unit pixel further comprises three subpixels emitting respective pieces of light of red, green, and blue. Each of two or less of the three subpixels may comprise a translucent reflection layer.
Problem is to enhance the welding strength when a projecting shape section is resistance-welded to a around electrode. A ground electrode 30 includes a ground electrode base material 35 and a projecting shape section 36. The projecting shape section 36 is connected by resistance welding to an opposite surface 32 of the ground electrode 30 so as to be opposite and project towards the leading end of a center electrode 20. The ground electrode base material 35 and the projecting shape section 36 are formed from a material that is composed of the same metal (for example, nickel) as a main component and have a relation of formulas (1) and (2) described below. In formula (1), the specific resistance of the ground electrode base material 35 is R (μΩcm) and the specific resistance of the projecting shape section 36 is S (μΩcm). The specific resistance R>the specific resistance S . . . (formula 1), the specific resistance R−specific resistance S≧20 . . . (formula 2). Accordingly, fusion of the ground electrode base material 35 that has a larger volume than that of the projecting shape section 36 can be expedited and the welding strength can be enhanced.
Disclosed herein is an optical image stabilizer, including: a substrate; a table disposed over the substrate, while levitating, to be movable on the substrate and having an image sensor mounted on the upper end of the substrate; cantilever arms disposed over the substrate, while levitating, and connected to the table to move the table; anchors fixing one ends of the cantilever arms onto the substrate; and electrodes applying voltage for moving the cantilever arm.
This coupling device includes a magnet rotator and a yoke-side member, while a conductor portion of the yoke-side member has a plurality of first conductor portions at least on a side opposed to magnets. A yoke of the yoke-side member is arranged at least on the side opposed to the magnets in a clearance between the plurality of first conductor portions. The ratio of the circumferential length of each of the first conductor portions to the circumferential length of the yoke is at least 1/1.4.
Disclosed herein is a spindle motor including: a rotating part including a hub coupled to a rotating shaft and a magnet coupled to the hub; and a fixing part including a sleeve supporting the rotating shaft and an armature facing the magnet, wherein the magnet has a contact part formed on an upper end portion thereof in a direction of the rotating shaft, the contact part partially contacting a lower end portion of the hub.
An Oldham coupling includes a first coupling part, a second coupling part and an intermediate part. The first coupling part and the second coupling part are coupled to each other with the intermediate part provided therebetween. The first coupling part and the second coupling part are fitted on fitting portions of the intermediate part extending perpendicular to each other. The first coupling part, the second coupling part and the intermediate part have fitting indication portions. The fitting indication portions allow a positional relationship between the first coupling part and the second coupling part about a rotational axis to be determined.
An electric powered vehicle is equipped with a main battery for storing electric power input to and output from a motor, and an auxiliary battery as a power source for an auxiliary system including a control system. A DC/DC converter converts an output voltage of the main battery to a level of an output voltage of the auxiliary battery. During operation, a BAT-ECU monitors states of charge of the main battery and the auxiliary battery and controls operation/stop of the DC/DC converter. When the electric powered vehicle is in a key-off state (running stop state), the BAT-ECU is intermittently operated, while an external charging system and a vehicle running system are stopped.
A device and method for coupling two parts of a dc network, in which at least two capacitors respectively are installed, particularly onboard an aircraft. The device includes at least one static converter including at least one electronic coupling device, including at least one transistor and one diode, associated with an inductance, arranged between these at least two capacitors.
A sensor array package can include a sensor disposed on a first side of a substrate. Signal trenches can be formed along the edges of the substrate and a conductive layer can be deposited in the signal trench and can couple to sensor signal pads. Bond wires can be attached to the conductive layers and can be arranged to be below a surface plane of the sensor. The sensor array package can be embedded in a printed circuit board enabling the bond wires to terminate at other conductors within the printed circuit board.
A microelectronic assembly is provided which includes a first element consisting essentially of at least one of semiconductor or inorganic dielectric material having a surface facing and attached to a major surface of a microelectronic element at which a plurality of conductive pads are exposed, the microelectronic element having active semiconductor devices therein. A first opening extends from an exposed surface of the first element towards the surface attached to the microelectronic element, and a second opening extends from the first opening to a first one of the conductive pads, wherein where the first and second openings meet, interior surfaces of the first and second openings extend at different angles relative to the major surface of the microelectronic element. A conductive element extends within the first and second openings and contacts the at least one conductive pad.
An apparatus includes a substrate having a land side having a plurality of contact pads and a die side opposite the land side. The apparatus includes a first die and a second die wherein the first die and second die are embedded within the substrate such that the second die is located between the first die and the land side of the substrate.
A substrate having, on a base material, a barrier film for preventing copper diffusion containing one or more metal elements selected from tungsten, molybdenum and niobium, a metal element having a catalytic function in electroless plating such as platinum, gold, silver and palladium, and nitrogen contained in the form of a nitride of the aforementioned one or more metal elements selected from tungsten, molybdenum and niobium. The barrier film for preventing copper diffusion is manufactured by sputtering in a nitrogen atmosphere using a target containing one or more metal elements selected from tungsten, molybdenum and niobium and the aforementioned metal element having a catalytic function in electroless plating.
One aspect of the present invention is a method of making an electronic device. According to one embodiment, the method comprises depositing a cap layer containing at least one dopant onto a gapfill metal and annealing so that the at least one dopant migrates to grain boundaries and/or interfaces of the gapfill metal. Another aspect of the present invention is an electronic device.
A circuit substrate having a mounting surface on which a semiconductor chip is mounted and at least one connection pad formed on the mounting surface is connected to a support plate having at least one mounting portion with a diameter larger than a diameter of the connection pad, through a truncated-cone-shaped solder layer which is formed from at least one solder ball on the basis of a difference between the diameter of the mounting portion and the diameter of the connection pad.
Micro-plasma is generated at the tip of a micro-spring by applying a positive voltage to the spring's anchor portion and a negative voltage to an electrode maintained a fixed gap distance from the spring's tip portion. By generating a sufficiently large voltage potential (i.e., as determined by Peek's Law), current crowding at the tip portion of the micro-spring creates an electrical field that sufficiently ionizes neutral molecules in a portion of the air-filled region surrounding the tip portion to generate a micro-plasma event. Ionic wind air currents are generated by producing multiple micro-plasma events using micro-springs disposed in a pattern to produce a pressure differential that causes air movement over the micro-springs. Ionic wind cooling is produced by generating such ionic wind air currents, for example, in the gap region between an IC die and a base substrate disposed in a flip-chip arrangement.
A multi-chip module (MCM) structure comprises more than one semiconductor chip lying in a horizontal plane, the MCM having individual chip contact patches on the chips and a flexible heat sink having lateral compliance and extending in a plane in the MCM and secured in a heat exchange relation to the chips through the contact patches. The MCM has a mismatch between the coefficient of thermal expansion of the heat sink and the MCM and also has chip tilt and chip height mismatches. The flexible heat sink with lateral compliance minimizes or eliminates shear stress and shear strain developed in the horizontal direction at the interface between the heat sink and the chip contact patches by allowing for horizontal expansion and contraction of the heat sink relative to the MCM without moving the individual chip contact patches in a horizontal direction.
A semiconductor device includes: a semiconductor substrate; a heat sink mounted on an upper surface of the semiconductor substrate; wirings formed on a lower surface of the semiconductor substrate; and the like. The heat sink is mounted on the upper surface of the semiconductor substrate, and a planar size thereof is approximately the same as that of the semiconductor substrate. Moreover, the heat sink has a thickness of 500 μm to 2 mm, and may be formed to be thicker than the semiconductor substrate. By using the heat sink to reinforce the substrate, a thickness of the semiconductor substrate can be reduced to, for example, about 50 μm. As a result, a thickness of the entire semiconductor device can be reduced.
A stacked structure includes a first die bonded over a second die. The first die has a first die area defined over a first surface. At least one first protective structure is formed over the first surface, around the first die area. At least one side of the first protective structure has at least one first extrusion part extending across a first scribe line around the protective structure. The second die has a second die area defined over a second surface. At least one second protective structure is formed over the second surface, around the second die area. At least one side of the second protective structure has at least one second extrusion part extending across a second scribe line around the protective structure, wherein the first extrusion part is connected with the second extrusion part.
In an integrated circuit an inductor metal layer is provided separately to the top metal layer, which includes the power and signal routing metal lines. Consequently, high performance inductors can be provided, for instance by using a moderately high metal thickness substantially without requiring significant modifications of the remaining metallization system.
An embodiment is an integrated circuit (IC) structure. The structure comprises a deep n well in a substrate, a first pickup device in the deep n well, a first signal device in the deep n well, a dissipation device in the substrate, a second signal device in the substrate, a first electrical path between the first pickup device and the dissipation device, and a second electrical path between the first signal device and the second signal device. The dissipation device is outside of the deep n well, and the second signal device is outside of the deep n well. A highest point of the first electrical path is lower than a highest point of the second electrical path.
A semiconductor device and method for making such that provides improved mechanical strength is disclosed. The semiconductor device comprises a semiconductor substrate; an adhesion layer disposed over the semiconductor substrate; and a porous low-k film disposed over the semiconductor substrate, wherein the porous low-k film comprises a porogen and a composite bonding structure including at least one Si—O—Si bonding group and at least one bridging organic functional group.
In one general aspect, an apparatus includes a metal or metal silicide contact layer disposed on an n-well region of a semiconductor substrate to form a primary Schottky diode. The apparatus includes a p-well guard ring region of the semiconductor substrate abutting the primary Schottky diode. The metal silicide contact layer has a perimeter portion extending over the p-well guard ring region of the semiconductor substrate and the p-well guard ring region has a doping level establishing a work function difference relative to the perimeter portion of the metal silicide contact layer to form a guard ring Schottky diode. The guard ring Schottky diode is in series with a p-n junction interface of the p-well region and the n-well region and the guard ring Schottky diode has a polarity opposite to that of the primary Schottky diode.
A method and device is disclosed for reducing noise in CMOS image sensors. An improved CMOS image sensor includes a light sensing structure surrounded by a support feature section. An active section of the light sensing structure is covered by no more than optically transparent materials. A light blocking portion includes an opaque layer or a black light filter layer in conjunction with an opaque layer, covering the support feature section. The light blocking portion may also cover a peripheral portion of the light sensing structure. The method for forming the CMOS image sensors includes using film patterning and etching processes to selectively form the opaque layer and the black light filter layer where the light blocking portion is desired, but not over the active section. The method also provides for forming microlenses over the photosensors in the active section.
Reading margin is improved in a MTJ designed for MRAM applications by employing a pinned layer with an AP2/Ru/AP1 configuration wherein the AP1 layer is a CoFeB/CoFe composite and by forming a MgO tunnel barrier adjacent to the CoFe AP1 layer by a sequence that involves depositing and oxidizing a first Mg layer with a radical oxidation (ROX) process, depositing and oxidizing a second Mg layer with a ROX method, and depositing a third Mg layer on the oxidized second Mg layer. The third Mg layer becomes oxidized during a subsequent anneal. MTJ performance may be further improved by selecting a composite free layer having a Fe/NiFeHf or CoFe/Fe/NiFeHf configuration where the NiFeHf layer adjoins a capping layer in a bottom spin valve configuration. As a result, read margin is optimized simultaneously with improved MR ratio, a reduction in bit line switching current, and a lower number of shorted bits.
A Hall effect transducer in a semiconductor wafer comprises a first layer of semiconducting material, a second layer of semiconducting material, and a contact structure configured to provide a path for electrical current to pass through the second layer. The second layer has higher electron hole mobility than the first layer, and is epitaxially grown atop the first layer.
A semiconductor structure is provided. The structure includes a semiconductor substrate of a semiconductor material and a gate dielectric having a high dielectric constant dielectric layer with a dielectric constant greater than silicon. The gate dielectric is located on the semiconductor substrate. A gate electrode abuts the gate dielectric. The gate electrodes includes a lower metal layer abutting the gate dielectric, a scavenging metal layer abutting the lower metal layer, an upper metal layer abutting the scavenging metal layer, and a silicon layer abutting the upper metal layer. The scavenging metal layer reduces an oxidized layer at an interface between the upper metal layer and the silicon layer responsive to annealing.
The present disclosure provides a semiconductor device. The semiconductor device includes an electrical-free dummy gate formed over a substrate. The dummy gate has an elongate shape and is oriented along a first direction. The semiconductor device includes a first functional gate formed over the substrate. The first functional gate has an elongate shape and is oriented along the first direction. The first functional gate is separated from the dummy gate in a second direction perpendicular to the first direction. A first conductive contact is formed on the first functional gate. The semiconductor device includes a second functional gate formed over the substrate. The second functional gate has an elongate shape and is oriented along the first direction. The second functional gate is aligned with and physically separated from the dummy gate in the first direction. A second conductive contact is formed on the second functional gate.
A power switch with active snubber. In accordance with a first embodiment, an electronic circuit includes a first power semiconductor device and a second power semiconductor device coupled to the first power semiconductor device. The second power semiconductor device is configured to oppose ringing of the first power semiconductor device.
The present disclosure describes a semiconductor device including a semiconductor substrate and a gate stack disposed on the semiconductor substrate. A first spacer element is disposed on the substrate abutting the first gate stack. In an embodiment, the first spacer element includes silicon nitride. A second spacer element is adjacent the first spacer element. In an embodiment, the second spacer element includes silicon oxide. A raised source and a first raised drain is provided laterally contacting sidewalls of the second spacer element. In an embodiment, a contact directly interfaces with the second spacer element.
A semiconductor device includes a substrate having a semiconducting surface having formed therein a first active region and a second active region, where the first active region consists of a substantially undoped layer at the surface and a highly doped screening layer of a first conductivity type beneath the first substantially undoped layer, and the second active region consists of a second substantially undoped layer at the surface and a second highly doped screening layer of a second conductivity type beneath the second substantially undoped layer. The semiconductor device also includes a gate stack formed in each of the first active region and the second active region consists of at least one gate dielectric layer and a layer of a metal, where the metal has a workfunction that is substantially midgap with respect to the semiconducting surface.
Mutual triggering of electrostatic discharge (ESD) fingers is improved by creating a base contact in each individual finger and connecting all of these base contacts in parallel. The local base contact in each ESD finger is located at a position where the base voltage significantly increases when the ESD current increases. Thus when an ESD finger is triggered its local base voltage will tend to significantly increase. Since all of the ESD finger bases are connected in parallel this local voltage increase will forward bias the base-emitter junctions of the other ESD fingers, thus triggering them all. By sharing the triggering current from the fastest ESD finger with the slower ones ensures that all ESD fingers are triggered during an ESD event.
The embodiments of the present disclosure disclose a trench-gate MOSFET device and the method for making the trench-gate MOSFET device. The trench-gate MOSFET device comprises a curving dopant profile formed between the body region and the epitaxial layer so that the portion of the body region under the source metal contact has a smaller vertical thickness than the other portion of the body region. The trench-gate MOSFET device in accordance with the embodiments of the present disclosure has improved UIS capability compared with the traditional trench-gate MOSFET device.
A semiconductor memory device includes a lower select transistor formed within a semiconductor substrate, memory cells stacked over the lower select transistors, and an upper select transistor formed over the memory cells.
An apparatus is provided which includes an array of impurity ions disposed in an insulating region, a semiconductor region adjacent to the insulating region, an array of electrometers arranged to detect charge carriers in the semiconductor region and an array of sets of at least one control gate configured to apply an electric field to the insulating region and semiconductor region. Each control gate is operable to cause at least one charge carrier in the semiconducting material region to bind to the impurity ion without the at least one charge carrier leaving the semiconductor material region. The electrometers are operable to detect whether the at least one charge carrier is bound to the impurity ion.
A semiconductor device according to an embodiment of the present invention includes a vertical channel layer protruding upward from a semiconductor substrate, a tunnel insulating layer covering a sidewall of the vertical channel layer, a plurality of floating gates separated from each other and stacked one upon another along the vertical channel layer, and surrounding the vertical channel layer with the tunnel insulating layer interposed therebetween, a plurality of control gates enclosing the plurality of floating gates, respectively, and an interlayer insulating layer provided between the plurality of control gates.
A non-volatile memory device having a string of a plurality of memory cells that are serially coupled, wherein the string of memory cells includes a plurality of second channels of a pillar type, a first channel coupling lower end portions of the plurality of the second channels with each other, and a plurality of control gate electrodes surrounding the plurality of the second channels.
Non-volatile switches and methods for making the same include a gate material formed in a recess of a substrate; a flexible conductive element disposed above the gate material, separated from the gate material by a gap, where the flexible conductive element is supported on at least two points across the gap, and where a voltage above a gate threshold voltage causes a deformation in the flexible conductive element such that the flexible conductive element comes into contact with a drain in the substrate, thereby closing a circuit between the drain and a source terminal. The gap separating the flexible conductive element and the gate material is sized to create a negative threshold voltage at the gate material for opening the circuit.
A semiconductor device includes a transistor array including a plurality of transistors each having a gate electrode extended in a first direction, the plurality of transistors being arranged in a second direction intersecting the first direction, and a pad electrode arranged in the first direction of the transistor array and electrically connected to source regions of the plurality of transistors.
According to one embodiment, a solid state imaging device includes a photoelectric converting portion including a semiconductor region and a semiconductor film. The semiconductor region has a first region and a second region. The first region is of a second conductivity type. The first region is provided in a semiconductor substrate. The second region is of a first conductivity type. The first conductivity type is a different conductivity type from the second conductivity type. The second region is provided on the first region. The semiconductor film is of the second conductivity type. The semiconductor film is provided on the semiconductor region. An absorption coefficient of a material of the semiconductor film to a visible light is higher than an absorption coefficient of a material of the semiconductor substrate to the visible light. A thickness of the semiconductor film is smaller than a thickness of the semiconductor region.
A light-emitting apparatus has a light-emitting device and a supporting board. The light-emitting device has a pair of n-electrodes with a p-electrode therebetween, on the same plane. The supporting board includes an insulating substrate on which positive and negative electrodes are formed, opposing to the p- and n-electrodes of the light-emitting device, respectively. Bonding members bond the p- and n-electrodes with the positive and negative electrodes, respectively. The positive electrode on the supporting board is formed within the width region of the p-electrode and narrower in width than the width of the p-electrode, in a cross-section along a line extending through the pair of n-electrodes. The negative electrodes oppose to the n-electrodes, respectively, with the same widths, or with that side face of each of the negative electrodes which faces the positive electrode being retracted outwardly from that side face of each of the n-electrodes which faces the p-electrode.
An LED package includes a base, an LED chip, and an electrode layer. The base has thereon a first electrical connecting layer and a separated second electrical connecting layer. The LED chip is placed on the base and electrically connected with the first electrical connecting layer and the second electrical connecting layer by flip chip bonding. The electrode layer comprises a first electrode and a separated second electrode, and a receiving groove being defined between the first electrode and the second electrode. The base is received in the receiving groove of the electrode layer with the first electrical connecting layer being electrically connected to the first electrode, and the second electrical connecting layer being electrically connected to the second electrode.
An LED includes a compound semiconductor structure having first and second compound layers and an active layer, first and second electrode layers atop the second compound semiconductor layer and connected to respective compound layers. An insulating layer is coated in regions other than where the first and second electrode layers are located. A conducting adhesive layer is formed atop the non-conductive substrate, connecting the same to the first electrode layer and insulating layer. Formed on one side surface of the non-conductive substrate and adhesive layer is a first electrode connection layer connected to the conducting adhesive layer. A second electrode connection layer formed on another side surface is connected to the second electrode layer. By forming connection layers on respective side surfaces of the light-emitting device, manufacturing costs can be reduced.
A method of producing a surface-mountable semiconductor component including providing an auxiliary carrier made with a plastics material; applying at least one insert and at least one optoelectronic component to a mounting surface of the auxiliary carrier; enclosing the optoelectronic component and the insert in a common molding, wherein the molding covers the optoelectronic component and the insert form-fittingly at least in places, the optoelectronic component and the insert are not in direct contact with one another, and the optoelectronic component and the insert are connected together mechanically by the molding; removing the auxiliary carrier; and producing individual surface-mountable semiconductor components by severing the molding.
A semiconductor light emitting device which has a wavelength converting part on a semiconductor film and can eliminate unevenness in emission color without a reduction in light output. The semiconductor film includes a light emitting layer. The support substrate is bonded to the semiconductor film via a light-reflecting layer and has a support surface supporting the semiconductor film and edges located further out than the side surfaces of the semiconductor film. The light-shielding part covers the side surfaces of the semiconductor film and part of the support surface around the semiconductor film in plan view. The wavelength converting part contains a fluorescent substance and is provided over the support substrate to bury the semiconductor film and the light-shielding part therein. The wavelength converting part has a curved surface shape in which its thickness increases when going from the edges toward the center of the semiconductor film.
Certain embodiments provide a semiconductor light emitting device including: a first metal layer; a stack film including a p-type nitride semiconductor layer, an active layer, and an n-type nitride semiconductor layer; an n-electrode; a second metal layer; and a protection film protecting an outer circumferential region of the upper face of the n-type nitride semiconductor layer, side faces of the stack film, a region of an upper face of the second metal layer other than a region in contact with the p-type nitride semiconductor layer, and a region of an upper face of the first metal layer other than a region in contact with the second metal layer. Concavities and convexities are formed in a region of the upper face of the n-type nitride semiconductor layer, the region being outside the region in which the n-electrode is provided and being outside the regions covered with the protection film.
A pixel structure including a substrate, a color filter layer, a conductive light-shielding layer, a buffer layer, a scan line, a data line, an active device, and a pixel electrode is provided. The substrate has a pixel region. The color filter layer is disposed corresponding to the pixel region. The conductive light-shielding layer is disposed corresponding to the periphery of the pixel region. The buffer layer covers the conductive light-shielding layer and color filter layer. The scan line and the data line are disposed on the buffer layer. The active device is disposed on the buffer layer and electrically connected to the scan line and data line. The pixel electrode is disposed on the buffer layer and electrically connected to the active device, wherein an overlapping area between the pixel electrode and the conductive light-shielding layer constitutes a storage capacitor. A method for manufacturing the pixel structure is also provided.
In order to improve the light extraction efficiency of a light-emitting element, the light-emitting element includes: a light-emitting layer provided between an electrode and a transparent substrate; a particle layer provided between the light-emitting layer and the transparent substrate; and an adhesive layer provided between the light-emitting layer and the particle layer, the particle layer includes particles having a refraction index that is higher than a refraction index of the transparent substrate, the adhesive layer has a refraction index that is higher than the refraction index of the transparent substrate, and the particle layer has an average thickness that is less than an average particle size of the particles.
There is provided a light emitting device in which low power consumption can be realized even in the case of a large screen. The surface of a source signal line or a power supply line in a pixel portion is plated to reduce a resistance of a wiring. The source signal line in the pixel portion is manufactured by a step different from a source signal line in a driver circuit portion. The power supply line in the pixel portion is manufactured by a step different from a power supply line led on a substrate. A terminal is similarly plated to made the resistance reduction. It is desirable that a wiring before plating is made of the same material as a gate electrode and the surface of the wiring is plated to form the source signal line or the power supply line.
A semiconductor device includes a main body made of a GaN-based semiconductor material, and at least one electrode structure. The electrode structure includes an ohmic contact layer that is formed on the main body, a buffer layer that is formed on the ohmic contact layer opposite to the main body, and a circuit layer that is made of a copper-based material and that is formed on the buffer layer opposite to the ohmic contact layer. The ohmic contact layer is made of a material selected from titanium, aluminum, nickel, and alloys thereof. The buffer layer is made of a material different from the material of the ohmic contact layer and selected from titanium, tungsten, titanium nitride, tungsten nitride, and combinations thereof.
Provided are an electronic device and methods of fabricating the same, the electronic device include a device-substrate, a stacked structure, and an electrode. The stacked structure includes a graphene thin film between a first insulator and a second insulator. The electrode is disposed over the stacked structure.
A display device includes an infrared sensing transistor and a visible sensing transistor. The visible sensing transistor includes a semiconductor on a substrate; an ohmic contact on the semiconductor; an etch stopping layer on the ohmic contact; a source electrode and a drain electrode on the etch stopping layer; a passivation layer on the source electrode and the drain electrode; and a gate electrode on the passivation layer. The etch stopping layer may be composed of the same material as the source electrode and the drain electrode. The infrared sensing transistor is similar to the visible sensing transistor except the etch stopping layer is absent.
An object is to provide a display device which operates stably with use of a transistor having stable electric characteristics. In manufacture of a display device using transistors in which an oxide semiconductor layer is used for a channel formation region, a gate electrode is further provided over at least a transistor which is applied to a driver circuit. In manufacture of a transistor in which an oxide semiconductor layer is used for a channel formation region, the oxide semiconductor layer is subjected to heat treatment so as to be dehydrated or dehydrogenated; thus, impurities such as moisture existing in an interface between the oxide semiconductor layer and the gate insulating layer provided below and in contact with the oxide semiconductor layer and an interface between the oxide semiconductor layer and a protective insulating layer provided on and in contact with the oxide semiconductor layer can be reduced.
It is known that a light-emitting element utilizing organic EL deteriorates due to moisture. Therefore, a sealing technique to prevent moisture permeation is important. A light-emitting device including a light-emitting element utilizing organic EL is manufactured over a support substrate having flexibility and a high heat dissipation property (e.g., stainless steel or duralumin), and the light-emitting device is sealed with a stack body having moisture impermeability and a high light-transmitting property or with glass having moisture impermeability and a high light-transmitting property and having a thickness greater than or equal to 20 μm and less than or equal to 100 μm.
An organic thin film transistor and a method for manufacturing the same is disclosed, which can improve the device properties by decreasing a contact resistance which occurs in a contact area between an organic semiconductor layer and source/drain electrodes. The organic thin film transistor includes a gate electrode formed on a substrate, a gate insulation layer formed on the gate electrode, source and drain electrodes overlapped with both edges of the gate electrode and formed on the gate insulation layer, an organic semiconductor layer formed on the gate insulation layer including the source/drain electrodes, a first adhesive layer having hydrophilic properties formed between the gate insulation layer and the source/drain electrodes, and a second adhesive layer having hydrophobic properties formed between the organic semiconductor layer and the gate insulation layer.
For decreasing a recording current and suppressing a cross erase simultaneously, a three-dimensional phase-change memory for attaining higher sensitivity and higher reliability by the provision of a chalcogenide type interface layer is provided, in which an electric resistivity, a thermal conductivity, and a melting point of the material of the interface layer are selected appropriately, thereby improving the current concentration to the phase-change material and thermal and material insulation property with Si channel upon writing.
A nonvolatile semiconductor memory device includes: a first interconnect; a second interconnect at a position opposing the first interconnect; and a variable resistance layer between the first interconnect and the second interconnect, the variable resistance layer being capable of reversibly changing between a first state and a second state by a voltage applied via the first interconnect and the second interconnect or a current supplied via the first interconnect and the second interconnect, the first state having a first resistivity, the second state having a second resistivity higher than the first resistivity. Wherein the variable resistance layer has a compound of carbon and silicon as a main component and including hydrogen.
An ion beam irradiation method comprises calculating a scan voltage correction function with the maximum beam scan width depending on the measurement result of a beam current measurement device, calculating each of more than one scan voltage correction functions corresponding to each of scheduled beam scan widths depending on the calculated scan voltage correction functions while satisfying dose uniformity in the horizontal direction, measuring a mechanical Y-scan position during the ion implantation, changing the scan voltage correction function as a function of the measured mechanical Y-scan position so that the beam scan area becomes a D-shaped multistage beam scan area corresponding to an outer periphery of a half of the wafer to thereby reduce the beam scan width, and changing a mechanical Y-scan speed depending on the change of the measurement result of a side cup current measurement device to thereby keep the dose uniformity in the vertical direction.
Provided are devices and methods for quantifying a surface's cleanliness relative to a contaminant. Such devices and methods may comprise and/or use a source of interrogating radiation to which the contaminant is responsive, a means for directing the interrogating radiation, a detector, and an analyzer. Radiation emitted from the source is directed by the radiation means toward an article having the surface or comprising a surface cleaner that may hold the contaminant. The detector detects radiation from the article produced in response to the interrogating radiation by the contaminant, e.g., fluorescent or phosphorescent radiation, and generate a corresponding signal that is compared by the analyzer relative to an electronic standard that corresponds to the surface in an acceptably clean state so as to quantify the surface's cleanliness.
A gamma radiation detecting apparatus includes a gamma radiation collimator, a scintillation crystal, a charge coupled device, and an electronic device. The collimator receives and collimates gamma radiation. The scintillation crystal receives the gamma radiation from the gamma radiation collimator and converts the gamma radiation into visible light. The charge coupled device receives the visible light from the scintillation crystal and converts the visible light into an electrical charge. The electronic device converts the electrical charge into a digital image.
Using standard or “off the shelf” cable to interconnect between the PET block detector and the detector circuit may save substantial costs given the number of PMTs in a PET system. Given space constraints, simple maintenance with reduced risk of disturbing cabling is desired, making ongoing use of standard cabling without adding further cabling desired. To implement digital gain control, a further communication is provided between the PET detector block and the detector circuit. Since the standard cable may not have additional wires for such communications and to reduce timing degradation, the PMT signals are combined, such as generating position and energy signals at the PET detector block. The four PMT signals are reduced to three signals without reduction in function, allowing a fourth twisted pair of wires in a CAT5 cable to be used for digital gain control.
A data processing unit for an integrated magnetic resonance (MR) and positron emission tomography (PET) system includes an RF shield housing, a first input port in the RF shield housing configured to receive a PET detector signal, a first filter disposed in the RF shield housing, in communication with the first input port, and configured to remove MR noise from the PET detector signal, a second input port in the RF shield housing configured to receive DC power, a second filter disposed in the RF shield housing, in communication with the second input port, and configured to remove the MR noise from the DC power, and a signal processing circuit disposed in the RF shield housing and powered by the DC power, the signal processing circuit including an analog-to-digital converter to digitize the PET detector signal.
The invention provides a switchable photomultiplier switchable between a detecting state and a non-detecting state including a cathode upon which incident radiation is arranged to impinge. The photomultiplier also includes a series of dynodes arranged to amplify a current created at the cathode upon detection of photoradiation. The invention also provides a detection system arranged to detect radiation-emitting material in an object. The system includes a detector switchable between a detecting state in which the detector is arranged to detect radiation and a non-detecting state in which the detector is arranged to not detect radiation. The system further includes a controller arranged to control switching of the detector between the states such that the detector is switched to the non-detecting state while an external radiation source is irradiating the object.
An imaging detector includes a scintillator array (202), a photosensor array (204) optically coupled to the scintillator array (202), a current-to-frequency (I/F) converter (314), and logic (312). The I/F converter (314) includes an integrator (302) and a comparator (310), and converts, during a current integration period, charge output by the photosensor array (204) into a digital signal having a frequency indicative of the charge. The logic (312) sets a gain of the integrator (302) for a next integration period based on the digital signal for the current integration period. In one instance, the gain is increased for the next integration period, relative to the gain for the current integration period, which allows for reducing an amount of bias current injected at an input of the I/F converter (314) to generate a measurable signal in the absence of radiation, which may reduce noise such as shot noise, flicker noise, and/or other noise.
An IP processing technology is disclosed, and more particularly to a human infrared recipient processor, comprising: an amplifying circuit, a switch control circuit for output of switching signals, a PIR for obtaining analogue human IR signals, a PHOT for obtaining brightness signals, a main controller IC1 used for A/D conversion and digital filtering of analogue human IR signals and logical control/output of high-/low-level signals by the brightness and switching signals, as well as an external output circuit for controlling the working states depending on high-/low-level signals; wherein the human infrared recipient processor of the present invention features simple construction, higher SNR, stability, and sensitivity as well as stronger logical functions.
An infrared imaging device, including: connection wiring portions arranged in matrix form on a substrate which is mounted in a package; first and second infrared detecting portions configured to convert intensity of absorbed infrared radiation into respective first and second signals, the second infrared detecting portion being smaller in thermal conductance than the first infrared detecting portion; and a lid member attached to the package so as to define an air-tight gap with the substrate, the connection wiring portions, the first and second infrared detecting portions being accommodated within the gap; wherein a degree-of-vacuum is measured within the gap and a warning issued based on the measured degree-of-vacuum.
A method and apparatus for deriving a refinery product property value based on data produced from a globally-calibrated spectrographic analyzer and data from a non-spectrographic analyzer.
A system for electron pattern imaging includes: a device for converting electron patterns into visible light provided to receive an electron backscatter diffraction (EBSD) pattern from a sample and convert the EBSD pattern to a corresponding light pattern; a first optical system positioned downstream from the device for converting electron patterns into visible light for focusing the light pattern produced by the device for converting electron patterns into visible light; a camera positioned downstream from the first optical system for obtaining an image of the light pattern; an image intensifier positioned between the device for converting electron patterns into visible light and the camera for amplifying the light pattern produced by the device for converting electron patterns into visible light; and a device positioned within the system for protecting the image intensifier from harmful light.
A time-of-flight mass spectrometer includes a sample plate that supports a sample for analysis. A pulsed ion source generates a pulse of ions from the sample positioned on the sample plate. An ion accelerator receives the pulse of ions generated by the pulsed ion source and accelerates the ions. An ion detector includes an input in a flight path of the accelerated ions emerging from the field-free drift space and an output that is electrically connected to the sample plate. The ion detector converts the detected ions into a pulse of electrons.
A method of mass spectrometry is disclosed wherein a signal output from an ion detector is digitized by an Analogue to Digital Converter and is then deconvoluted to determine one or more ion arrival times and one more ion arrival intensities. The process of deconvoluting the ion signal involves determining a point spread function characteristic of an ion arriving at and being detected by the ion detector. A distribution of ion arrival times which produces a best fit to the digitised signal is then determined given that each ion arrival is assumed to produce a response given by the point spread function. A plurality of ion arrival times are then combined to produce a composite ion arrival time-intensity spectrum.
An electro-optical (EO) radiation collector for collecting and/or transmitting EO radiation (which may include EO radiation in the visible wavelengths) for transmission to an EO sensor. The EO radiation collector may be used with an arc flash detection device or other protective system, such as an intelligent electronic device (IED). The arc flash detection device may detect an arc flash event based upon EO radiation collected by and/or transmitted from the EO radiation collector. The EO radiation collector may receive an EO conductor cable, an end of which may be configured to receive EO radiation. A portion of the EO radiation received by the EO radiation collector may be transmitted into the EO conductor cable and transmitted to the arc flash detection device. The EO radiation collector may be adapted to receive a second EO conductor cable, which may be used to provide redundant EO transmission and/or self-test capabilities.
An embodiment relates to a device comprising a substrate having a front side and a back-side that is exposed to incoming radiation, a nanowire disposed on the substrate and an image sensing circuit disposed on the front side, wherein the nanowire is configured to be both a channel to transmit wavelengths up to a selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the nanowire.
An image sensor having an image acquisition mode and an ambient light sensing mode includes a pixel array having pixel cells organized into rows and columns for capturing image data and ambient light data. Readout circuitry is coupled via column bit lines to the pixels cells to read out the image data along the column bit lines. An ambient light detection (“ALD”) unit is selectively coupled to the pixel array to readout the ambient light data and to generate an ambient light signal based on ambient light incident upon the pixel array. Control circuitry is coupled to the pixel array to control time sharing of the pixels cells between the readout circuitry during image acquisition and the ALD unit during ambient light sensing.
A CCD image sensor includes vertical CCD shift registers and gate electrodes disposed over the vertical CCD shift registers. The gate electrodes are divided into distinct groups of gate electrodes. The CCD image sensor is adapted to operate in an accumulation mode and a charge transfer mode, an accumulation mode and a charge shifting mode, or an accumulation mode, a charge transfer mode, and a charge shifting mode. The charge transfer mode has an initial charge transfer phase and a final charge transfer phase. The charge shifting mode has an initial charge shifting phase and a final charge shifting phase.
A light harvesting system employing a focusing array and a photoresponsive layer in which a plurality of microstructured areas is formed. Light received by the focusing array is injected transmissively into the photoresponsive layer through the microstructured areas. The injected light is retained in the photoresponsive layer by at least a total internal reflection and is propagated within the layer until it is substantially absorbed.
An apparatus for welding a plastic component to a body's aperture includes a first heating head mounted to a frame element for heating the component, a gripper for gripping the component and for mounting the component to the body's aperture, a heater arm having a second heating head mounted thereto for heating the aperture, and an actuator for mounting both the heater arm and the gripper to the frame element for alternating between a heating position wherein ia) the gripper is generally aligned with the first heating head for abutment therewith, while ib) the second heating head is positioned for heating the aperture, and a work position wherein ii) the gripper is generally aligned with the aperture for mounting the component to the aperture for welding therewith: The gripper is mounted to the actuator via a cylinder arm provided with a collision monitor to detect inadvertent collision.
Apparatus and method are provided for electric induction heating and/or stirring of a molten electrically conductive composition in a containment vessel with the apparatus being removably insertable in the molten composition. An induction coil embedded in refractory or a coating is submerged in the composition and used to heat and/or stir the molten composition either externally or internally to the refractory or coating.
Provided are a heater supporter and an electric hob including the heater supporter. A tube heater is supported by the heater supporter, and at least a portion of the heater supporter is formed of a ceramic containing material. Therefore, food can be cooled more rapidly, and the tube can be easily installed. Furthermore, damage caused by heat generated from the tube heater can be minimized.
Methods and devices for securing an item of cookware to the burner of a stove top by use of magnetism. The magnet(s) may be permanent magnets or electromagnets. The cookware may comprise a permanent magnet disposed on or in the base of the cookware. The burner comprises a magnetic material such as steel or iron. The magnetic material may be in the grate of the cook top, in the electric coil of an electric burner, in the surface of a smooth-top stove top, or any other component of the cook top which is in close proximity to the bottom of the cookware when it is placed on the cooking surface. When the cookware is placed on the stove top, the magnetic field of the permanent magnet creates a force on the magnetic material biasing the cookware against the stove top and securing the cookware to the cook top.
A thermode device for connecting and/or electrically contacting a plurality of first semiconductor components to at least one support element and/or to a plurality of second semiconductor components by heating an adhesive under the application of pressure. An example thermode device includes a basic body and a heating element which can be extended out of the basic body and which, under the application of pressure, acts on at least one of the first semiconductor components, wherein the basic body has on its underside a plurality of heating plates which are oriented vertically and are arranged next to one another. Each heating plate has on its end and underside a plurality of the extendable heating elements, to the underside of each of which there is assigned a first semiconductor component.
A cabinet includes a chassis and an electromagnetic interference (EMI) shielding apparatus. The shielding apparatus includes a bracket installed to a first end of the chassis, a shaft rotatably installed in the bracket, and a shielding member reeled about the shaft. The shielding member includes a first end fixed to the shaft, and a second end opposite to the first end and forming a holder. A second end of the chassis forms a latch opposite to the bracket for engaging with the holder. The shielding member is made of EMI shielding material, and the shielding member is wound on or let out from the shaft as the shaft rotates.
A substrate includes a substrate base, first contact parts arranged in a pattern on a surface of the substrate base, and leads respectively having a generally U-shape with a flexible part, a first end fixed to a corresponding one of the first contact parts, and a second end that is located a predetermined distance away from the first end relative to the surface of the substrate base. The first and second ends of each of the leads are substantially aligned in a direction perpendicular to the surface of the substrate base in a state where the second end of each lead is pushed by a target object and deformed thereby in order to electrically connect the substrate to the target object.
A non-adhering portion where an adhesion layer is removed is provided on a lower surface of a display sheet directly above a connection portion. Even if bulges or recesses occur at the connection portion on an upper substrate owing to fluctuations or differences in thickness when adhering and connecting a wiring board, no bulge or recess occurs on the display sheet. Therefore, it is possible to obtain a touch panel which is easy to see and operate.
A jacket for a data cable that comprises a main jacket body having an inner area for receiving one or more filaments and a central longitudinal axis. The main body has an inner surface that surrounds the inner area and an opposite outer surface. At least one longitudinal opening extends through the main jacket body between the inner and outer surfaces and substantially parallel to the central longitudinal axis of the main jacket body. The longitudinal opening is substantially enclosed within the main jacket body.
An electric equipment of the present invention has an insulation structure at a welding part formed by joining end parts of a plurality of conductors with each other, the welding part having a rectangular cross section and being coated with an insulating coating, in which the insulating coating is voidless and has a coating thickness of 50 to 1000 μm in the welding part, and in which an edge cover ratio of the insulating coating is 20% or more.According to the present invention, the insulation performance of the insulation structure in which the welding part formed by joining the end parts of the plurality of conductors with each other can be improved, the welding part having a rectangular cross section and being coated with an insulating coating, and a highly reliable electric equipment can be provided.
An organic photovoltaic cell structure and a method for fabricating the organic photovoltaic cell structure are each predicated upon an organic photovoltaic material layer located and formed interposed between an anode and a cathode. The organic photovoltaic cell structure and the method for fabricating the organic photovoltaic cell structure also include for the anode a nickel and indium doped tin oxide material layer (Ni-ITO) that has a nickel doping sufficient to provide a work function of the nickel and indium doped tin oxide material layer (Ni-ITO) anode preferably no more positive than about −5.0 eV. Such a composition of the nickel and indium doped tin oxide material layer (Ni-ITO) anode provides for a superior bandgap matching to a B3HT p-type donor component within a B3HT:BPCM BHJ organic photovoltaic material layer while also providing a greater bandgap separation of an aluminum material layer (Al) cathode to provide for enhanced electric field and charge carrier transport and collection capabilities of an organic photovoltaic cell device that derives from the organic photovoltaic cell structure.
A solar cell includes a graphite substrate, an amorphous carbon layer having a thickness of not less than 20 nm and not more than 60 nm formed on the graphite substrate, an AlN layer formed on the amorphous carbon layer, a n-type nitride semiconductor layer formed on the AlN layer; a light-absorption layer including a nitride semiconductor layer formed on the n-type nitride semiconductor layer; a p-type nitride semiconductor layer formed on the light-absorption layer; a p-side electrode electrically connected to the p-type nitride semiconductor layer; and an n-side electrode electrically connected to the n-type nitride semiconductor layer. The amorphous carbon layer is obtained by oxidizing the surface of the graphite substrate.
A system and method directed to using a PV array and laser beamed-power for aircraft and satellites is provided. More specifically, a system and method directed to a PV receiver that reduces power losses caused by variations in irradiance is provided. The use of a sloped array with a grooved cover glass coated with reflective coating allows the system and method to receive the laser beamed power at an angle and reduce any losses while producing a maximum power output. In addition, the use of capacitors in parallel with the PV cells in the array reduces resistive losses caused by short-term optical fluctuations and assists in maximizing power output for the array.
A tone control device is provided. The tone control device includes a weight assembly including at least a first magnet and a second magnet magnetically attracted to the first magnet, wherein the first magnet is positionable on a first surface of the bridge and the second magnet is positionable on a second surface of the bridge such that the weight assembly is securely coupled to the bridge.
An upright piano main action rail with a special cross sectional shape of its lower half that angles or curves towards the back of the piano to effectively relocate the lower front surface of upright piano main action rail from a position in front of the row of whippen flanges as with the prior art to a relocated new position behind the row of whippen flanges to enable the front mounting of whippen flanges to the main action rail. Upright piano main action rail has all whippen mounting holes located its the lower front surface instead of the lower rear surface as with prior art upright piano main action rails.
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH458430. The invention thus relates to the plants, seeds and tissue cultures of the variety CH458430, and to methods for producing a corn plant produced by crossing a corn plant of variety CH458430 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH458430.
According to the invention, there is provided seed and plants of the corn variety designated CV636214. The invention thus relates to the plants, seeds and tissue cultures of the variety CV636214, and to methods for producing a corn plant produced by crossing a corn plant of variety CV636214 with itself or with another corn plant, such as a plant of another variety. The invention further relates to corn seeds and plants produced by crossing plants of variety CV636214 with plants of another variety, such as another inbred line. The invention further relates to the inbred and hybrid genetic complements of plants of variety CV636214.
The invention relates to the soybean variety designated A1036387. Provided by the invention are the seeds, plants and derivatives of the soybean variety A1036387. Also provided by the invention are tissue cultures of the soybean variety A1036387 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety A1036387 with itself or another soybean variety and plants produced by such methods.
The invention relates to the soybean variety designated A1035365. Provided by the invention are the seeds, plants and derivatives of the soybean variety A1035365. Also provided by the invention are tissue cultures of the soybean variety A1035365 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety A1035365 with itself or another soybean variety and plants produced by such methods.
The invention relates to the soybean variety designated A1026663. Provided by the invention are the seeds, plants and derivatives of the soybean variety A1026663. Also provided by the invention are tissue cultures of the soybean variety A1026663 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety A1026663 with itself or another soybean variety and plants produced by such methods.
The invention relates to the soybean variety designated A1026657. Provided by the invention are the seeds, plants and derivatives of the soybean variety A1026657. Also provided by the invention are tissue cultures of the soybean variety A1026657 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety A1026657 with itself or another soybean variety and plants produced by such methods.
The invention relates to the soybean variety designated A1035724. Provided by the invention are the seeds, plants and derivatives of the soybean variety A1035724. Also provided by the invention are tissue cultures of the soybean variety A1035724 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety A1035724 with itself or another soybean variety and plants produced by such methods.
A novel soybean variety, designated XR29D12 is provided. Also provided are the seeds of soybean variety XR29D12, cells from soybean variety XR29D12, plants of soybean XR29D12, and plant parts of soybean variety XR29D12. Methods provided include producing a soybean plant by crossing soybean variety XR29D12 with another soybean plant, methods for introgressing a transgenic trait, a mutant trait, and/or a native trait into soybean variety XR29D12, methods for producing other soybean varieties or plant parts derived from soybean variety XR29D12, and methods of characterizing soybean variety XR29D12. Soybean seed, cells, plants, germplasm, breeding lines, varieties, and plant parts produced by these methods and/or derived from soybean variety XR29D12 are further provided.
A novel soybean variety, designated XBP27006 is provided. Also provided are the seeds of soybean variety XBP27006, cells from soybean variety XBP27006, plants of soybean XBP27006, and plant parts of soybean variety XBP27006. Methods provided include producing a soybean plant by crossing soybean variety XBP27006 with another soybean plant, methods for introgressing a transgenic trait, a mutant trait, and/or a native trait into soybean variety XBP27006, methods for producing other soybean varieties or plant parts derived from soybean variety XBP27006, and methods of characterizing soybean variety XBP27006. Soybean seed, cells, plants, germplasm, breeding lines, varieties, and plant parts produced by these methods and/or derived from soybean variety XBP27006 are further provided.
The invention provides seed and plants of spinach hybrid RX 06681616 and the parent lines thereof. The invention thus relates to the plants, seeds and tissue cultures of spinach hybrid RX 06681616 and the parent lines thereof, and to methods for producing a spinach plant produced by crossing such plants with themselves or with another spinach plant, such as a plant of another genotype. The invention further relates to seeds and plants produced by such crossing. The invention further relates to parts of such plants, including the leaf and gametes of such plants.
A method for the secretory production of a glycoprotein having a human-type sugar chain, comprising a step of introducing a gene of an enzyme capable of performing a transfer reaction of a galactose residue to a non-reducing terminal acetylglucosamine residue, and a gene of heterologous glycoprotein, to obtain a transformed plant cell, a step of culturing the plant cell, and a step of recovering the culture medium of the plant cell.
A series of independent non-transgenic mutations found at the waxy loci of wheat; wheat plants having these mutations in their waxy loci; and a method of creating and finding similar and/or additional mutations of the waxy by screening pooled and/or individual wheat plants. The wheat plants of the present invention exhibiting altered waxy activity in the wheat without having the inclusion of foreign nucleic acids in their genomes. The invention also includes food and non-food products as well as non-food products that incorporate seeds from the wheat plants having non-transgenic mutations in one or more waxy genes.
The present invention relates to a method of applying absorbent gelling material (AGM) granules by indirect printing onto an carrier layer for use in an absorbent article, particularly diaper for babies or adults, training pants, pull-up diapers (diaper pants), sanitary napkins, panty liners or the like. These articles typically comprise the carrier layer with the AGM particles together with further layers, making up the complete article.
One aspect of the present invention relates to ligands for transition metals. A second aspect of the present invention relates to the use of catalysts comprising these ligands in various transition-metal-catalyzed carbon-heteroatom and carbon-carbon bond-forming reactions. The subject methods provide improvements in many features of the transition-metal-catalyzed reactions, including the range of suitable substrates, number of catalyst turnovers, reaction conditions, and efficiency. For example, improvements have been realized in transition metal-catalyzed: aryl amination reactions; aryl amidation reactions; Suzuki couplings; and Sonogashira couplings. In certain embodiments, the invention relates to catalysts and methods of using them that operate in aqueous solvent systems.
A process for the conversion of a tertiary phosphine oxide to the corresponding tertiary phosphine includes reacting the tertiary phosphine oxide with a reducing tertiary phosphine, in the presence of a catalyst that catalyzes the conversion.
Processes for preparing (E)-2,4,6-(Trimethoxystyryl)-3-O-Phosphate Disodium-4-Methoxybenzyl Sulfones and uses thereof as antiproliferative agents, including, for example, anticancer agents, and as radioprotective and chemoprotective agents.
Process for the manufacture of 1,2-epoxy-3-chloropropane by reaction between allyl chloride and hydrogen peroxide in the presence of a solid catalyst and in the possible presence of at least one solvent in an epoxidation medium comprising at least two liquid phases under the conditions of reaction, wherein the catalyst exhibits an external surface to volume ratio lower than to 2.4 104 m−1.
Selective neuronal nitric oxide synthase (nNOS) inhibitor compounds designed with one or more thiophene-2-carboximidamide substituents for improved bioavailability.
The present invention provides bicyclo-heptan-2-amines that selectively bind to the sigma-2 receptor and are useful in the treatment of diseases related to the sigma-2 receptor, for example, cancer and neurological disorders.
Disclosed is a compound of formula (I) and salts thereof. Also disclosed are methods of making the compound of formula (I) and the use of the compound as an intermediate for making pharmaceutically active compounds such as 11-β-hydroxysteroid hydrogenase type 1 (11-β-HSD1) inhibitors.
Provided is a novel organometallic complex which can be synthesized easily and emits phosphorescence, or a compound which emits red phosphorescence. The inventors focused on easy synthesis of an m-aminophenyl pyrazine derivative represented by the following general formula (G0), synthesized an organometallic complex having a structure in which the derivative is coordinated to a Group 9 or Group 10 metal ion, and further synthesized a useful substance which emits red phosphorescence.
A process of making a polymeric phenazonium compound having the general formula: wherein R1, R2, R4, R5, R6, R8 and R9 are the same or different, and represent hydrogen, a low alkyl or a substituted aryl, R3 starts as NH2 and is diazotized followed by polymerization, R5 and R8 may alternatively represent monomeric or polymeric phenazonium radicals, R7 is a carbon in the aromatic ring, and wherein RX—N—RY represents a substituted amine, and RX and RY represent any combination of CH3, C2H5, and hydrogen, except that RX and RY cannot both be hydrogen, A is an acid radical, and n is an integer from 2 to 100. The polymeric phenazonium compound is usable in as an additive in a metal plating bath. The method includes the steps of: a) dissolving an effective amount of an amino compound in a formic acid solution; b) adding a nitrite salt to diazotize the amino compound; and c) adding sulfamic acid to neutralize any excess nitrous acid that may be formed in step b), whereby a polymeric phenazonium compound is produced.
Heteroaryloxy-substituted benzoic acid amides of general formula I wherein the groups R1 to R7 as well as X and Y are defined according to claim 1, including the tautomers, the stereoisomers, the mixtures and the salts thereof. The compounds according to the invention are suitable for the treatment of respiratory complaints, particularly COPD and asthma.
Provided are compounds and their pharmaceutically acceptable salts that are useful for the treatment of diseases related to the adenosine receptor. Also included are methods of treating patients suffering from or susceptible to at least one symptom of abuse of, dependence on, or withdrawal from at least one substance.
Embodiments describe methods of synthesizing metal mesoporphyrin compounds. In embodiments, a metal mesoporphyrin compound may be formed by hemin transmetallation and subsequent hydrogenation of the tin protoporphyrin IX to form a metal mesoporphyrin. In other embodiments, a method of synthesizing a metal mesoporphyrin compound comprises forming a protoporphyrin methyl ester from hemin and converting the protoporphyrin methyl ester intermediate to a metal mesoporphyrin compound through metal insertion and hydrogenation. In other embodiments, a metal mesoporphyrin compound may be formed from hemin by a hydrogen-free hydrogenation method to form a mesoporphyrin IX intermediate followed by metal insertion and hydrogenation. In embodiments, a method of synthesizing a metal mesoporphyrin compound comprises forming a mesoporphyrin IX dihydrochloride intermediate compound and converting the mesoporphyrin IX intermediate to a metal mesoporphyrin compound through metal insertion. In embodiments, a metal mesoporphyrin compound may be formed directly from hemin without isolation of any intermediates.
The present inventions relate to cellulose esters having low hydroxyl content for use in optical applications, such as liquid crystal display (LCD) films. Films with low hydroxyl levels and a given ratio of non-acetyl ester to hydroxyl level have low intrinsic birefringence. These films can be cast, molded, or otherwise oriented without an appreciable birefringence or optical distortion (i.e. retardation). These films are useful in polarizer, protective, and compensator films and in molded optical parts, such as lenses. The resins of the present inventions can also be made to have “+C plate” behavior either by melt or solvent based processing, which is uncharacteristic of cellulose esters. Such +C behavior allows films having unique compensatory behavior. Other embodiments of the invention relate to methods of melt casting films while minimizing birefringence. Another embodiment of the invention is directed to films made from the cellulose esters described herein further comprising a plasticizer.
A composition of exceptionally dense chitosan and a novel method for producing the dense chitosan structure have been described. The novel production method employs coincident compression and vacuum on a neutralized chitosan polymer that results in an exceptionally dense chitosan film or membrane material. The dense chitosan film or membrane composition possesses multiple physical and clinically appealing qualities for a variety of medical applications on or in animals, mammals, or humans.
Cationic dextran polymer derivatives including an ester-linked amine-containing substituent and an alkyl ester substituent and methods for making such dextran polymer derivatives are disclosed.
Intact, bacterially-derived minicells can safely introduce therapeutically effective amounts of plasmid-free functional nucleic acid to target mammalian cells. To this end, functional nucleic acid can be packaged into intact minicells directly, without resort to expression constructs, the expression machinery of the host cell, harsh chemicals or electroporation.
The present invention provides fusion proteins expressed by cancer cells, antibodies and other antigen-binding agents that specifically bind to the fusion proteins, and compositions and methods for using the antibodies and other antigen-binding agents to detect, characterize, and treat cancer.
An improved process for obtaining value added by-products from an ethanol production whole stillage is disclosed wherein the whole stillage is mixed with additives to form a nutrition enriched product stream that is subsequently dried to produce a nutrition enriched product having a water content of less than 12% by weight. In a preferred embodiment the whole stillage is obtained from a ethanol production process that has utilized a corn flour as the starting feedstock. The corn flour is then hydrolyzed along with added vitamins and/or nutrients and/or enzymes. The hydrolyzed product is then preferably mixed with a soy hull flour, also preferably having a median particle size of less than about 100 microns, and subjected to conventional fermentation conditions to produce an ethanol containing product. The ethanol-containing product is then distilled to produce an ethanol enriched steam and the separate whole stillage to be used as the feedstock.
The present invention relates to sequentially arranged streptavidin-binding binding modules which may in particular be used as affinity tags. The affinity tags comprise at least two individual modules capable of mediating avidic binding to streptavidin.
A method for producing a polycarbonate resin comprises a step of performing polycondensation through a transesterification reaction in the presence of a transesterification catalyst by using a dihydroxy compound as a raw material compound and a carbonic acid diester, wherein the dihydroxy compound comprises at least an aliphatic dihydroxy compound having an etheric oxygen atom on a hydroxy group, the raw material compound comprises the specific amount of a nitrogen-containing compound, and the production method of a polycarbonate resin comprises a step of previously heating the aliphatic dihydroxy compound at the specific temperature, holding the compound in the melted state for the specific time, and then mixing the melt with a carbonic acid diester.
A cycloolefin-based copolymer and a hydrogenation process are disclosed, wherein the cycloolefin-based copolymer is prepared by using: a monomer which can be easily and economically obtained by hydrogenating dicyclopentadiene that occupies much of C5 fractions from naphtha cracking; or a monomer which can be obtained by chemically bonding three molecules of cyclopentadiene via Diels-Alder reactions and then hydrogenating the cyclopentadiene. The copolymer can be used in various fields as an amorphous transparent resin.
An aromatic vinyl thermoplastic resin composition includes (A) about 10 to about 99% by weight of a thermoplastic resin (A) including (a1) an aromatic vinyl copolymer resin, (a2) a rubber-modified vinyl graft copolymer, or a combination of (a1) and (a2); and (B) about 1 to about 90% by weight of a branched aromatic vinyl copolymer resin including a silicon based compound. The branched aromatic vinyl copolymer includes a copolymer prepared by copolymerizing (b1) about 10 to about 85% by weight of an aromatic vinyl based monomer; (b2) about 10 to about 85% by weight of an unsaturated nitrile based monomer; (b3) about 1 to about 50% by weight of an aromatic methacrylate, aliphatic methacrylate, or a combination thereof; and (b4) about 0.1 to about 20% by weight of a silicon based compound having two or more unsaturated functional groups.
A resin composite material including fine graphite particles including plate-like graphite particles, an aromatic vinyl copolymer which is adsorbed on the plate-like graphite particles and which has a vinyl aromatic monomer unit represented by the following formula: —(CH2—CHX)— (X represents a phenyl group, a naphthyl group, an anthracenyl group, or a pyrenyl group, provided that these groups may have substituents); a fibrous inorganic filler; and a resin matrix.
The flame-retardant thermoplastic resin, composition comprised of the following Components (C), (D) and (E) with the thermoplastic resin composition having a thermoplastic polyurethane elastomer of the Component (A) and an ethylene polymer and/or an ethylene copolymer of the Component (B) as the main components;Component (C): a (poly) phosphate compound represented by the following general formula (1). n in the formula (1) represents a number of 1-100; X1 is an ammonia; or a triazine derivative, represented by the following general formula (2); p is a number satisfying a relation of 0
A resin material of high strength and high voltage equipment capable of improving the reliability by using the resin material, the resin material being a hardened product including fine particles and resin ingredients, in which the fine particles have hydrophobic groups on the surface and have a particle diameter of 200 nm or less, the resin ingredients have hydrophilic groups on the side chains, and the fine particles form a plurality of linear aggregates inside the resin, thereby forming a dendritic structure.
Provided are a composition for preparing expandable polypropylene carbonate and an expandable polypropylene carbonate prepared therefrom, and more particularly, to a composition for preparing expandable polypropylene carbonate capable of using supercritical carbon dioxide as a foaming agent and producing a foam having excellent moldability by using an appropriate foaming method. By using the composition according to the present invention, highly magnificated expandable polypropylene carbonate capable of having excellent thermal stability and dimensional stability can be prepared.
The present invention relates to methods for producing particles of diclofenac using dry milling processes as well as compositions comprising diclofenac, medicaments produced using diclofenac in particulate form and/or compositions, and to methods of treatment of an animal, including man, using a therapeutically effective amount of diclofenac administered by way of said medicaments.
The present disclosure relates to lipid compounds of the general formula (I): R1-O—C(R2)(R3)-X (I) wherein R1 is a C10-C22 alkyl group, a C10-C22 alkenyl group having 1-6 double bonds, or a C10-C22 alkynyl group having 1-6 triple bonds; R2 and R3 are the same or different and may be chosen from different substituents; and X is a carboxylic acid or a derivative thereof, such as a carboxylic ester, a carboxylic anhydride, a phospholipid, triglyceride, or a carboxamide; or a pharmaceutically acceptable salt, solvate, solvate of such salt or a prodrug thereof. The present disclosure also relates to pharmaceutical compositions and lipid compositions comprising at least one compound according to the present disclosure, and to such compounds for use as medicaments or for use in therapy, in particular for the treatment of diseases related to the cardiovascular, metabolic, and inflammatory disease area.
Compounds having the structures of Formula I, including pharmaceutically acceptable salts of the compounds, are CETP inhibitors, and are useful for raising HDL-cholesterol, reducing LDL-cholesterol, and for treating or preventing atherosclerosis: In the compounds of Formula I, B or R2 is a phenyl group which has an ortho aryl, heterocyclic, benzoheterocyclic or benzocycloalkyl substituent, and one other position on the 5-membered ring has an aromatic, heterocyclic, cycloalkyl, benzoheterocyclic or benzocycloalkyl substituent connected directly to the ring or attached to the ring through a —CH2—.
New compounds, compositions and methods of inhibition of Provirus Integration of Maloney Kinase (PIM kinase) activity associated with tumorigenesis in a human or animal subject are provided. In certain embodiments, the compounds and compositions are effective to inhibit the activity of at least one PIM kinase. The new compounds and compositions may be used either alone or in combination with at least one additional agent for the treatment of a serine/threonine kinase- or receptor tyrosine kinase-mediated disorder, such as cancer.
The invention relates to a method for treating schizophrenia and/or related diseases comprising administering lurasidone and a mGluR2 ligand to a mammal in need thereof.
Compounds of the formula II: wherein R1 and R2 are independently H, F or CH3; or R1 forms an ethynyl bond and R2 is H or C3-C6 cycloalkyl which is optionally substituted with one or two substituents independently selected from methyl, CF3, OMe or halo; R3 is C1-C3 alkyl or C3-C6 cycloalkyl, either of which is optionally substituted with one or two methyl and/or a fluoro, trifluoromethyl or methoxy, when R3 is C3-C6 cycloalkyl it may alternatively be gem substituted with fluoro; R4 is methyl or fluoro; m is 0, 1 or 2; E is a bond, or thiazolyl, optionally substituted with methyl or fluoro; A1 is CH or N, A2 is CR6R7 or NR6, provided at least one of A1 and A2 comprises N; R6 is H, C1-C4 alkyl, C1-C4 haloalkyl, C1-C3 alkyl-O—C1-C3 alkyl, or when A2 is C, R6 can also be C1-C4alkoxy or F; R7 is H, C1-C4 alkyl or F or a pharmaceutically acceptable salt, N-oxide or hydrate thereof, have utility in the treatment of disorders characterized by inappropriate expression or activation of cathepsin K, such as osteoporosis, osteoarthritis, rheumatoid arthritis or bone metastases.
Provided are methods of treating psychological diseases and conditions by administration of a preferential muscarinic acetylcholine receptor M1 antagonist, optionally with at least one antidepressant other than a selective muscarinic acetylcholine receptor M1 antagonist. The invention also provides for pharmaceutical compositions and kits for administration of at least one selective muscarinic acetylcholine receptor M1 antagonist in combination with at least one antidepressant other than a selective muscarinic acetylcholine receptor M1 antagonist.
The present invention relates to heterocyclic compounds of formula (I) having affinity to muscarinic receptors, a pharmaceutical composition containing the compounds, as well as the use of the compounds for the preparation of a medicament for treating, alleviating or preventing muscarinic receptor medicated diseases and conditions.
Compounds of general formula (I) wherein the groups R1 to R3 and X are defined as in claim 1, which are suitable for the treatment of diseases characterised by excessive or abnormal cell proliferation, pharmaceutical preparations which contain such compounds and their use as medicaments.
The present invention relates to specific and markedly improved pre-mRNA trans-splicing molecule (RTM) molecules which are designed to correct specific genes expressed within cells to be targeted, and which are associated with epidermolysis bullosa, cystic fibrosis, pachyonychia congenital, and psoriasis or neurodermitis, as well as cancers of the skin. In particular, the RTMs of the present invention are genetically engineered to interact with a specific target pre-mRNA expressed in cells to be targeted so as to result in correction of genetic defects or reprogramming of gene expression responsible for a variety of different skin disorders.
The present invention relates to a method for preparation of heparin silver, to use of heparin silver in manufacture of medicine for treating burns and/or scalds, to a method of using heparin silver to treat burns and/or scalds, and to a topical preparation containing heparin silver for treating burns and/or scalds. The heparin silver product prepared according to the method of the present invention has a high purity and less impurity. The animal test proved that the medicine made by using heparin silver exhibited effects of accelerating wound healing and reducing scar formation.
Biologically active peptides that are derived from or are similar to sequences identical with the N-terminus of the αS1 fraction of milk casein. These peptides are capable of stimulating and enhancing immune response, protecting against viral infection, normalizing serum cholesterol levels, and stimulating hematopoiesis. The casein-derived peptides are non-toxic and can be used to treat and prevent immune pathologies, hypercholesterolemia, hematological disorders and viral-related diseases, alone or in combination with other peptides or blood cell stimulating factors.
A film-forming lubrication composition for make-up of threaded connections, intended to cover at least one threading (FE, FI) and a make-up abutment (BVM, BVF) of a threaded element (EM, EF) of a component (T2, T1) of a threaded tubular connection (JF) with a solid state film which adheres to the threading (FE, FI) and to said make-up abutment (BVM, BVF), said make-up abutment (BVM, BVF) being intended to bear against another abutment (BVF, BVM) of another component (T1, T2) of said threaded tubular connection (JF) during the terminal make-up phase, and said lubrication composition comprising a matrix. The matrix further comprises at least one rheoresistant material selected so as to endow said composition, as a complement to lubrication, with a shouldering torque which is at least equal to a threshold value.
Synthetic antibody display library containing human germline antibody molecules with variation in VH CDR3 and VL CDR3 and at position 52 of VH CDR2, for screening and selection of antibody molecules specific for antigens of interest.
DNA taggants in which the nucleotide sequences are defined according to combinatorial mathematical principles. Methods of defining nucleotide sequences of the combinatorial DNA taggants, and using such taggants for authentication and tracking and tracing an object or process are also disclosed.
An object of the present invention is a process for the preparation of particles which comprise two agrochemical active ingredients in amorphous form, where a melt comprising the two molten agrochemical active ingredients is emulsified in an aqueous solution and cooled. A further object is the use of an agrochemical active ingredient for inhibiting the crystallization of another agrochemical active ingredient in a preparation process for particles which comprise the two agrochemical active ingredients in amorphous form, where a melt comprising the two molten agrochemical active ingredients is emulsified in an aqueous solution and cooled. A further object is particles which comprise two agrochemical active ingredients in amorphous form. The use in plant protection is also described.
The present invention relates to petrochemistry, gas chemistry, coal chemistry, particularly the invention relates to a catalyst for synthesis of hydrocarbons from CO and H2 and a preparation method thereof. The catalyst is pelletized and comprises at least Raney cobalt as active component in an amount of 1-40% by weight based on the total weight of the catalyst, metallic aluminium in an amount of 25-94% by weight based on the total weight of the catalyst and a binder in an amount of 5-30% by weight based on the total weight of the catalyst. The present invention provides the catalyst stability to overheating and high productivity of hydrocarbons C5-C100 for synthesis of hydrocarbons from CO and H2.
A catalyst for alkali-free purification of oil raw materials includes a solid metalocomplex or a liquid metalocomplex with a general formula (CuMCl)20(Li)2^(L2)i^, where Li is amino alcohol, L2 is acetonitryl or single atom alcohol.
A composition comprising a base component and a polymer, and a method of making said composition, are disclosed. The composition thereby obtained is then used as a catalyst for isoparaffin-olefin alkylation.
An article comprising a microporous membrane. A first porous fabric is laminated to a first side of the microporous membrane. A second porous fabric is laminated to a second opposite side of the microporous membrane to form a laminate with the membrane and the first porous fabric. The laminate has two fabric sides separated by the microporous membrane. A treatment material is applied to the laminate to form a treated laminate. The treated laminate has an oil resistance of at least a number 7 determined by AATCC 118 testing on both fabric sides and has an air permeability through the treated laminate of at least 0.01 CFM per square foot determined by ASTM D737 testing.
In some embodiments, the present invention discloses a gate dielectric deposition process, including depositing a fluorinated hafnium oxide by an ALD process utilizing a fluorinated hafnium precursor and an oxidant. A two-step ALD deposition process can be used, including a fluorinated hafnium oxide layer deposition followed by a hafnium oxide layer deposition. Hafnium oxide can provide high dielectric constant, high density, large bandgap and good thermal stability. Fluorinated hafnium oxide can passivate interface states and bulk traps in the hafnium oxide, for example, by forming Si—F or Hf—F bonds, which can improve the reliability of the hafnium oxide gate dielectrics.
A method for fabricating a dual damascene structure includes the following steps. At first, a dielectric layer, a dielectric mask layer and a metal mask layer are sequentially formed on a substrate. A plurality of trench openings is formed in the metal mask layer, and a part of the metal mask layer is exposed in the bottom of each of the trench openings. Subsequently, a plurality of via openings are formed in the dielectric mask layer, and a part of the dielectric mask layer is exposed in a bottom of each of the via openings. Furthermore, the trench openings and the via openings are transferred to the dielectric layer to form a plurality of dual damascene openings.
A vertically arranged laterally diffused metal-oxide-semiconductor (LDMOS) device includes a trench extending into a semiconductor body toward a semiconductor substrate. The trench includes sidewalls, a bottom portion connecting the sidewalls, a dielectric material lining the trench and a diffusion agent layer lining the dielectric material. A lightly doped drain region adjoins the trench and extends laterally around the sidewalls from the diffusion agent layer into the semiconductor body. In one implementation, a method for fabricating a vertically arranged LDMOS device includes forming a trench extending into a semiconductor body toward a semiconductor substrate, the trench including sidewalls, a bottom portion connecting the sidewalls, a dielectric material lining the trench and a diffusion agent layer lining the dielectric material. The method further includes diffusing impurities from the diffusion agent layer through the dielectric material to form a lightly doped drain region extending laterally around the sidewalls into the semiconductor body.
Some embodiments include methods in which insulative material is simultaneously deposited across both a front side of a semiconductor substrate, and across a back side of the substrate. Subsequently, openings may be etched through the insulative material across the front side, and the substrate may then be dipped within a plating bath to grow conductive contact regions within the openings. The insulative material across the back side may protect the back side from being plated during the growth of the conductive contact regions over the front side. In some embodiments, plasma-enhanced atomic layer deposition may be utilized for the deposition, and may be conducted at a temperature suitable to anneal passivation materials so that such annealing occurs simultaneously with the plasma-enhanced atomic layer deposition.
A method of patterning a gate stack on a substrate is described. The method includes preparing a gate stack on a substrate, wherein the gate stack includes a high-k layer and a gate layer formed on the high-k layer. The method further includes transferring a pattern formed in the gate layer to the high-k layer using a pulsed bias plasma etching process, and selecting a process condition for the pulsed bias plasma etching process to achieve a silicon recess formed in the substrate having a depth less than 2 nanometer (nm).
A reactive evaporation method for forming a group III-V amorphous material attached to a substrate includes subjecting the substrate to an ambient pressure of no greater than 0.01 Pa, and introducing active group-V matter to the surface of the substrate at a working pressure of between 0.05 Pa and 2.5 Pa, and group III metal vapor, until an amorphous group III-V material layer is formed on the surface.
A method of forming a semiconductor device includes forming first and second bumps on a semiconductor substrate, forming first and second penetration electrodes penetrating the semiconductor substrate, forming a first conductive structure making a first electrical path between the first bump and the first penetration electrode, and forming a second conductive structure making a second electrical path between the second bump and the second penetration electrode, the second conductive structure being smaller in resistance value than the first conductive structure.
A method for sealing through-holes in a material via material diffusion, without the deposition of a sealant material, is disclosed. The method is well suited to the fabrication and packaging of microsystems technology-based devices and systems. In some embodiments, the method comprises forming sacrificial material release through-holes through a structural layer, removing the sacrificial material via an etch that etches the sacrificial material through the release through-holes, and sealing of the release through-holes via material diffusion.
The present invention discloses a semiconductor device and a manufacturing method therefor. Conventionally, platinum is deposited in a device substrate to suppress diffusion of nickel in nickel silicide. However, introducing platinum by means of deposition makes the platinum only stay on the surface but fails to effectively suppress the diffusion of nickel over a desirable depth. According to the present invention, a semiconductor device is formed by implanting platinum into a substrate and forming NiSi in a region of the substrate where platinum is implanted. With the present invention, platinum can be distributed over a desirable depth range so as to more effectively suppress nickel diffusion.
A method of fabricating a semiconductor integrated circuit (IC) is disclosed. The method includes providing a substrate. A conductive layer is deposited on the substrate. A patterned hard mask is formed on the conductive layer and then a patterned photoresist is formed on the patterned hard mask and the conductive layer. A local metal catalyst layer is formed on the conductive layer in the openings of the patterned photoresist. Carbon nanotubes (CNTs) are grown from the local metal catalyst layer. The conductive layer is etched by using the CNTs and the patterned hard mask as etching mask to form metal features. An inter-level dielectric (ILD) layer is deposited between metal features.
The present disclosure is directed to a method of manufacturing an interconnect structure in which a low-k dielectric layer is formed over a semiconductor substrate followed by formation of a copper or copper alloy layer over the low-k dielectric layer. The copper or copper alloy layer is patterned and etched to form a copper body having recesses, which are then filled with a low-k dielectric material. The method allows for formation of a damascene structures without encountering the various problems presented by non-planar features and by porus low-K dielectric damage.
A method for fabricating an integrated circuit includes forming a temporary gate structure on a semiconductor substrate. The temporary gate structure includes a temporary gate material disposed between two spacer structures. The method further includes forming a first directional silicon nitride liner overlying the temporary gate structure and the semiconductor substrate, etching the first directional silicon nitride liner overlying the temporary gate structure and the temporary gate material to form a trench between the spacer structures, while leaving the directional silicon nitride liner overlying the semiconductor substrate in place, and forming a replacement metal gate structure in the trench. An integrated circuit includes a replacement metal gate structure overlying a semiconductor substrate, a silicide region overlying the semiconductor substrate and positioned adjacent the replacement gate structure; a directional silicon nitride liner overlying a portion of the replacement gate structure; and a contact plug in electrical communication with the silicide region.
A gate tunable diode is provided. The gate tunable diode includes a gate dielectric formed on a gate electrode and a graphene electrode formed on the gate dielectric. Also, the gate tunable diode includes a tunnel dielectric formed on the graphene electrode and a tunnel electrode formed on the tunnel dielectric.
In a replacement gate approach, a superior cross-sectional shape of the gate opening may be achieved by performing a material erosion process in an intermediate state of removing the placeholder material. Consequently, the remaining portion of the placeholder material may efficiently protect the underlying sensitive materials, such as a high-k dielectric material, when performing the corner rounding process sequence.
A method of forming a buried word line structure is provided. A first mask layer, an interlayer and a second mask layer are sequentially formed on a substrate, wherein the second mask layer has a plurality of mask patterns and a plurality of gaps arranged alternately, and the gaps includes first gaps and second gaps arranged alternately. A dielectric pattern is formed in each first gap and spacers are simultaneously formed on sidewalls of each second gap, wherein a first trench is formed between the adjacent spacers and exposes a portion of the first mask layer. The mask patterns are removed to form second trenches. An etching process is performed by using the dielectric patterns and the spacers as a mask, so that the first trenches are deepened to the substrate and the second trenches are deepened to the first mask layer.
A method of forming a silicon based optical waveguide can include forming a silicon-on-insulator structure including a non-crystalline silicon portion and a single crystalline silicon portion of an active silicon layer in the structure. The non-crystalline silicon portion can be replaced with an amorphous silicon portion and maintaining the single crystalline silicon portion and the amorphous portion can be crystallized using the single crystalline silicon portion as a seed to form a laterally grown single crystalline silicon portion including the amorphous and single crystalline silicon portions.
In a method of manufacturing a semiconductor device, a source/drain feature is formed over a substrate. A Si-containing layer is formed over the source/drain feature. A metal layer is formed over the Si-containing layer. A metal silicide layer is formed from the metal layer and Si in the Si-containing layer.
Methods of forming gates of semiconductor devices are provided. The methods may include forming a first recess in a first substrate region having a first conductivity type and forming a second recess in a second substrate region having a second conductivity type. The methods may also include forming a high-k layer in the first and second recesses. The methods may further include providing a first metal on the high-k layer in the first and second substrate regions, the first metal being provided within the second recess. The methods may additionally include removing at least portions of the first metal from the second recess while protecting materials within the first recess from removal. The methods may also include, after removing at least portions of the first metal from the second recess, providing a second metal within the second recess.
Methods for forming CMOS integrated circuit structures are provided, the methods comprising performing a first implantation process for performing at least one of a halo implantation and a source and drain extension implantation into a region of a semiconductor substrate and then forming a stressor region in another region of the semiconductor substrate. Furthermore, a semiconductor device structure is provided, the structure comprising a stressor region embedded into a semiconductor substrate adjacent to a gate structure, the embedded stressor region having a surface differing along a normal direction of the surface from an interface by less than about 8 nm, wherein the interface is formed between the gate structure and the substrate.
Provided is a method of fabricating a semiconductor device. Gate patterns are formed on a substrate including an NMOS transistor region and a PMOS transistor region. A spacer structure is formed on sidewalls of the gate patterns. The substrate in the PMOS transistor region is etched using the gate patterns and the spacer structure as etching masks, and thereby a recessed region is formed. A compressive stress pattern is formed in the recessed region, and a sidewall of the compressive stress pattern protrudes upwardly from an upper surface of the substrate. A mask oxide layer is formed on a sidewall of the spacer structure. The mask oxide layer is formed to cover a portion of the sidewall of the compressive stress pattern that protrudes upwardly from the upper surface of the substrate.
A method is provided for forming a metal gate using a gate last process. A trench is formed on a substrate. The profile of the trench is modified to provide a first width at the aperture of the trench and a second width at the bottom of the trench. The profile may be formed by including tapered sidewalls. A metal gate may be formed in the trench having a modified profile. Also provided is a semiconductor device including a gate structure having a larger width at the top of the gate than the bottom of the gate.
Methods are provided for forming semiconductor devices. One method includes etching trenches into a silicon substrate and filling the trenches with an insulating material to delineate a plurality of spaced apart silicon fins. Dummy gate structures are formed, which includes a first dummy gate structure, that overlie and are transverse to the fins. A back fill material is filled between the dummy gate structures. The first dummy gate structure and an upper portion of the insulating material are removed to expose an active fins portion of the fins. The active fins portion is dimensionally modified to form an altered active fins portion. A high-k dielectric material and a work function determining gate electrode material are deposited overlying the altered active fins portion.
A method of manufacture of an integrated circuit packaging system includes: providing a terminal having a top with a depression; applying a dielectric material in the depression, the dielectric material having a gap formed therein and exposing a portion of the top therefrom; forming a trace within the gap and in direct contact with the top, the trace extending laterally over an upper surface of the dielectric material; and connecting an integrated circuit to the terminal through the trace.
A method of forming a semiconductor device includes affixing a die to a heat sink to form a die and heat sink assembly and then placing the die and heat sink assembly on a support element. A semiconductor device includes a die and heat sink assembly disposed on a support element. The die and heat sink assembly is pre-assembled prior to being disposed on the support element.
A method of integrating a first substrate having a first surface with a first insulating material and a first contact structure with a second substrate having a second surface with a second insulating material and a second contact structure. The first insulating material is directly bonded to the second insulating material. A portion of the first substrate is removed to leave a remaining portion. A third substrate having a coefficient of thermal expansion (CTE) substantially the same as a CTE of the first substrate is bonded to the remaining portion. The bonded substrates are heated to facilitate electrical contact between the first and second contact structures. The third substrate is removed after heating to provided a bonded structure with reliable electrical contacts.
This invention relates to a method for producing group IB-IIIA-VIA quaternary or higher alloy semiconductor films wherein the method comprises the steps of (i) providing a metal film comprising a mixture of group IB and group IIIA metals; (ii) heat treating the metal film in the presence of a source of a first group VIA element (said first group VIA element hereinafter being referred to as VIA1) under conditions to form a first film comprising a mixture of at least one binary alloy selected from the group consisting of a group IB-VIA1 alloy and a group IIIA-VIA1 alloy and at least one group IB-IIIA-VIA1 ternary alloy (iii) optionally heat treating the first film in the presence of a source of a second group VIA element (said second group VI element hereinafter being referred to as VIA2) under conditions to convert the first film into a second film comprising at least one alloy selected from the group consisting of a group IB-VIA1-VIA2 alloy and a group IIIA-VIA1-VIA2 alloy; and the at least one group IB-III-VIA1 ternary alloy of step (ii); (iv) heat treating either the first film or second film to form a group IB-IIIA-VIA quaternary or higher alloy semiconductor film.
A minute electrode, a photoelectric conversion device including the minute electrode, and manufacturing methods thereof are provided. A plurality of parallel groove portions and a region sandwiched between the groove portions are formed in a substrate, and a conductive resin is supplied to the groove portions and the region and is fixed, whereby the groove portions are filled with the conductive resin and the region is covered with the conductive resin. The supplied conductive resin is not expanded outward, and the electrode with a designed width can be formed. Part of the electrode is formed over the region sandwiched between the groove portions, thus, the area of a cross section in the short axis direction can be large, and a low resistance in the long axis direction can be obtained.
Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.
This invention discloses a wafer-scaled light-emitting structure comprising a supportive substrate; an anti-deforming layer; a bonding layer; and a light-emitting stacked layer, wherein the anti-deforming layer reduces or removes the deformation like warp caused by thinning of the substrate.
A method of fabricating a light emitting diode device comprises providing a substrate, growing an epitaxial structure on the substrate. The epitaxial structure includes a first layer on the substrate, an active layer on the first layer and a second layer on the active layer. The method further comprises depositing a conductive and reflective layer on the epitaxial structure, forming a group of first trenches and a second trench. Each of the first and second trenches extends from surface of the conductive and reflective layer to the first layer to expose part of the first layer. The method further comprises depositing conductive material to cover a portion of the conductive and reflective layer to form a first contact pad, and cover surfaces between adjacent first trenches to form a second contact pad. The second contact pad electrically connects the first layer by filling the conductive material in the first trenches.
A measuring device measures a gate length of a plurality of gate electrodes formed on a wafer. A calculation device calculates data of an ion implantation dosage for making uniform a threshold voltage in a wafer surface on the basis of distribution of the gate length in a wafer surface measured by the measuring device. The ion implantation device implants ions into the wafer on the basis of the data of the ion implantation dosage calculated by the calculation device.
A stacking apparatus that stacks chip assemblies each having a plurality of chips disposed continuously with circuit patterns and electrodes, includes: a plurality of stages each allowed to move arbitrarily, on which the chip assemblies are placed; a storage unit that stores an estimated extent of change in a position of an electrode at each chip, expected to occur as heat is applied to the chip assemblies placed on the plurality of stages during a stacking process; and a control unit that sets positions of the plurality of stages to be assumed relative to each other during the stacking process based upon the estimated extent of change in the position of the electrode at each chip provided from the storage unit and position information indicating positions of individual chips formed at the chip assemblies and controls at least one of the plurality of stages.
The present invention generally relates methods for analyzing agricultural and/or environmental samples using liquid bridges. In certain embodiments, the invention provides a method for analyzing an agricultural sample for a desired trait including obtaining a gene or gene product from an agricultural sample, in which the gene or gene product is in a first fluid; providing a liquid bridge for mixing the gene or gene product with at least one reagent to form a mixed droplet that is wrapped in an immiscible second fluid; and analyzing the mixed droplet to detect a desired trait of the agricultural sample.
This disclosure relates to a process for controlling chlorination reactions in manufacturing titanium tetrachloride in a fluidized bed reactor, followed by processing to form a titanium product comprising an amount of silica, the process comprising: (a) feeding carbonaceous material, titanium bearing material comprising an amount of silica, and chlorine to the fluidized bed reactor to form a gaseous stream, and condensing the gaseous stream to form titanium tetrachloride, a non-condensed gas stream and a condensable product stream; (b) processing the titanium tetrachloride to form a titanium product comprising an amount of silica; (c) analyzing the titanium product comprising an amount of silica to determine the analyzed concentration of silica; (d) identifying a set point concentration of silica; (e) calculating the difference between the analyzed concentration of silica and the set point concentration of silica; (f) measuring the titanium tetrachloride flow to a processing reactor that releases chlorine; (g) measuring the flow of fresh chlorine added to the fluidized bed; (h) measuring the flow of the titanium bearing material added to the fluidized bed reactor and establishing a historic average flow of the titanium bearing material added to the fluidized bed reactor; (i) calculating the chlorine released from the titanium tetrachloride that is processed using the titanium tetrachloride flow data from step (f); (j) calculating the total chlorine flow to the fluidized bed reactor by adding the chlorine flow in step (g) to the chlorine flow calculated in step (i) and establishing a historic average chlorine flow; (k) calculating a unit titanium bearing material consumption per unit chlorine; (l) calculating an estimated current consumption rate of titanium bearing material based on the total chlorine flow from step (j) times the unit titanium bearing material consumption per unit chlorine from step (k); (l) calculating an estimated current consumption rate of titanium bearing material based on the total chlorine flow from step (j) times the unit titanium bearing material consumption per unit chlorine from step (k); and (m) generating a signal based on difference generated in step (e) that provides a feedback response and combining this to the estimated current consumption rate of titanium bearing material from step (l) to provide a feed forward response to control the flow of the titanium bearing material into the fluidized bed reactor.
The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.
Methods for the targeted integration of nucleotide sequences into a plant are provided. Transfer cassettes comprising nucleotide sequences of interest flanked by non-identical recombination sites are used to transform a plant comprising a target site. The target site contains at least a set of non-identical recombination sites corresponding to those on the transfer cassette. Exchange of the nucleotide sequences flanked by the recombination sites is effected by a recombinase.
The presently described technology relates to the modulation of specific immune responses to create a protective immunity in the treatment of autoimmune diseases and diseases requiring the transplantation of tissue. In particular, the present technology relates to the suppression of immune responses in a targeted fashion, by increasing the functional concentration of the CEACAM1 protein in a target tissue to create a localized protective immunity for the treatment of autoimmune diseases and diseases requiring the transplantation of tissue.
A spermatogonial stem cell line that is derived from testes of rats characterized by a desirable genetic background can serve as a source for cells to transplant into male-sterile recipient animals that are immuno-compatible with the spermatogonial line. Rat cells thus transplanted readily develop into fertilization-competent, haploid male gametes, with little or no endogenous sperm competition generated by the testes of the male-sterile recipient. This approach, constituting the first vector system for the use of rat spermatogonial lines from in vitro culture in generating mutant rats on a desired genetic background, effects maximal germline transmission of donor haplotypes from the transplanted spermatogonial cells.
Methods and compositions for modifying stem cells using one or more ZFPs are disclosed. Such methods and compositions are useful for facilitating processes such as, for example, dedifferentiating cells, differentiating stems cells into the desired phenotype, propagating stem cells and/or facilitating cloning.
The present invention has as its object developing a method that does not involve genomic modification and which yet is capable of inducing cell death in pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells, as well as in differentiated cells other than cardiomyocytes derived from pluripotent stem cells, but not in cardiomyocytes. It has been revealed that by establishing a method capable of inducing cell death in cells other than cardiomyocytes in a very efficient manner by adding a substance having no recognized inherent toxicity or cell death inducing action to the culture conditions for pluripotent stem cells and non-cardiomyocytes, the stated problem can be solved without relying upon genomic modification.
The present invention relates to methods of detecting, in a sample, embryonic stem cells, induced pluripotent stem cells, and/or cells undergoing reprogramming to produce induced pluripotent stem cells. These methods include providing a sample potentially containing such cells and providing a rosamine derivative compound of the formula (I): where the rosamine derivative compound selectively produces fluorescent signals for embryonic stem cells, induced pluripotent stem cells, and/or cells undergoing reprogramming to produce induced pluripotent stem cells. These methods also include the steps of contacting the sample with the rosamine derivative compound and detecting the presence of the embryonic stem cells, induced pluripotent stem cells, and/or cells undergoing reprogramming to produce induced pluripotent stem cells based on fluorescent signals emitted by the sample following said contacting.
Disclosed herein are activated NK cells that exhibit durable and prolonged activity in the absence of the activating agent and retain their activated state after preservation. Methods of administrating the NK cells to a patient do not require co-administration of the activating agent, and thus, pharmaceutical compositions comprising the NK cells may remain substantially free of the activating agent.
The present invention provides methods and compositions of variant polypeptides having isoprene synthase activity with improved solubility. In particular, the present invention provides isoprene synthase variant for increased isoprene production in recombinant host cells.
The present invention relates to a feed supplement comprising a phytase and a lipolytic enzyme, wherein said lipolytic enzyme has lipase activity at a pH in the range of about pH1.5 to about pH3.5.
Disclosed are mutant DNA polymerases having increased 3′-mismatch discrimination relative to a corresponding, unmodified polymerase. The mutant polymerases are useful in a variety of disclosed primer extension methods. Also disclosed are related compositions, including recombinant nucleic acids, vectors, and host cells, which are useful, e.g., for production of the mutant DNA polymerases.
The present invention relates to a recombinant Bacillus host cell containing a recombinant vector including a nucleic acid segment having a coding region segment encoding enzymatically active hyaluronan synthase (HAS). The recombinant Bacillus host cell is utilized in a method for producing hyaluronic acid (HA).
Glucosyl stevia compositions are prepared from steviol glycosides of Stevia rebaudiana Bertoni. The glucosylation was performed by cyclodextrin glucanotransferase using the starch as source of glucose residues. The short-chain glucosyl stevia compositions were purified to >95% content of total steviol glycosides. The compositions can be used as sweetness enhancers, flavor enhancers and sweeteners in foods, beverages, cosmetics and pharmaceuticals.
The present invention is directed to a method for inactivation and/or extraction of acid-fast bacteria (e.g., mycobacteria or nocardia), the method comprising the following sequential steps: (a) acquiring a test sample known to contain or that may contain acid-fast bacteria and suspending the test sample in a container containing ethanol and beads; (b) bead beating and/or vortexing the container to break up clumps and/or disrupt acid-fast bacteria cells in the container; and (c) subsequently incubating the suspension for at least about 3 minutes at room temperature to inactivate any acid-fast bacteria contained in the test sample. In accordance with the present invention, the test sample can subsequently be pelleted by centrifugation, resuspended with formic acid, acetonitrile added, and subjected to mass spectrometry for characterization and/or identification of the acid-fast bacteria.
The invention provides a kit for measuring the thrombin generation in a sample of a patient's blood or plasma, or in a sample of clotting factors. The kit contains lyophilized tissue factor/phospholipid-complex and a lyophilized mixture containing a thrombin-substrate and CaCl2. The invention also provides processes for preparing the reagents for the kit. The kit can be used in a method for measuring the thrombin generation in a sample, wherein it is possible to detect changes in thrombin generation kinetics, for example after administration of inhibitor bypassing agents to a patient who has developed inhibitors to an exogenous clotting factor such as Factor VIII.
The present invention deals with reagents and compositions capable of effectively inhibiting peroxidase activity. According to the invention, peroxidase enzymatic activity is blocked with an acidic aqueous solution of a protein denaturing agent. preferred protein denaturing agents are detergents and chaotropic substances.
Disclosed herein is a driver gene signature for predicting survival in patients with solid tumors, such as hepatocellular carcinoma (HCC) and breast cancer. The gene signature includes ten tumor-associated genes, SH2D4A, CCDC25, ELP3, DLC1, PROSC, SORBS3, HNRPD, PAQR3, PHF17 and DCK. A decrease in DNA copy number or mRNA expression of SH2D4A, CCDC25, ELP3, DLC1, PROSC and SORBS3 in solid tumors is associated with a poor prognosis, while a decrease in DNA copy number or mRNA expression of HNRPD, PAQR3, PHF17 and DCK in solid tumors is associated with a good prognosis. Thus, provided herein is a method of predicting the prognosis of a patient diagnosed with HCC or breast cancer by detecting expression of one of more tumor-associated genes in a tumor sample and comparing expression of the one or more tumor-associated genes in the tumor sample to a control. Also provided is a method of treating a patient diagnosed with HCC or breast cancer by administering a therapeutically effective amount of an agent that alters expression or activity of one or more of the disclosed tumor-associated genes. Further provided are arrays comprising probes or antibodies specific for a plurality of tumor-associated genes or proteins.
Cannabinoid receptor 2 (CB2) is expressed in B lymphocytes and is involved in immune regulation. Mouse splenic B cells express three CB2 transcripts utilizing two different first exons. Human peripheral blood B cells express one CB2 transcript utilizing one first exon. Alignment of sequenced RACE products to either the mouse or human genome reveals that isolated transcripts contain previously unidentified transcriptional start sites (TSS). B cells from mouse and human preferentially express one transcript, exon 1a in mouse and exon 1 in human. Multiple CB2 TSSs are utilized in mouse splenic B cells and one TSS in human peripheral blood B cells. The defining of the receptor gene TSSs in these cells provides materials and methods for therapeutically regulating immune function, including antibody isotype switching, using compounds such as inhibitory nucleic acids that down-regulate expression of the B cell CB2 gene (e.g., RNAi molecules).
Long- and/or short-chain nucleic acids are separated, purified and recovered by binding the nucleic acid to a solid phase using a binding buffer, to obtain a bonded nucleic acid, and eluting of the bonded nucleic acid from the solid phase, wherein the binding buffer comprises at least one citric acid salt and at least one alcohol.
Provided herein are methods and devices for single object detection. The methods and devices can be used to identify a plurality epigenetic markers on a genetic material, or a chromatin, encompassing fragments thereof. The invention provides for the characterization of the genetic material flowing through a channel in a continuous body of fluid based on detection of one or more properties of the genetic material. The methods and systems provided herein allow genome-wide, high-throughput epigenetic analysis and overcome a variety of limitations common to bulk analysis techniques.
A new device capable of measuring the number of particles present in a colloidal suspension is disclosed, which includes a forward scatter detector, an extinction detector, a laser beam, a cylindrical lens with which to create a plane of light through which particles can pass, and the various pumps and tubing needed to pass the colloidal suspension through the plane of light. The device is particularly designed for measuring particles which have different refractive indices, and which are in the size range of between about 0.7 to 2 microns. The device can determine the presence or absence of biological particles of interest in a given sample, by incubating a sample with a given ratio of active particles and marker particles, and determining whether the ratio of active particles and marker particles has changed. Additional binding and/or non-binding particles can also be present, and kits including the particles are also disclosed.
The present disclosure provides a variety of methods and compositions (e.g., solutions) useful for making, sterilizing, and preserving tissues (e.g., acellular tissue matrices). The disclosure also features the acellular tissue matrices made by the methods, which matrices can be used for a variety of applications such as, but not limited to, treating an injury to, or repairing, a large number of tissues and/or organs (e.g., e.g., fascia, bones, and/or cartilage) in a mammal (e.g., a human).
A polymer obtained from copolymerization of a recurring unit having a carboxyl group and/or phenolic hydroxyl group substituted with an acid labile group with a methacrylate having a phenolic hydroxyl-bearing pyridine is useful as a base resin in a positive resist composition. The resist composition comprising the polymer is improved in contrast of alkali dissolution rate before and after exposure, acid diffusion control, resolution, and profile and edge roughness of a pattern after exposure.
A method for producing a low density resin-coated carrier having a small resin amount to a carrier core material and having a uniform resin coating layer formed on the carrier core material is provided. A resin-coated carrier has a carrier core material and a resin coating layer formed on the surface of the carrier core material. The carrier core material has pores and an apparent density of 1.6 g/cm3 to 2.0 g/cm3 and a remanent magnetization of 10 emu/g of less. The resin coating layer is formed by a dry process of adhering resin particles to a surface of the carrier core material and applying heat and impact force to the resin particles. A volume average particle size of the resin particles is less than 1 μm. A two-component developer containing the resin-coated carrier is charged in a developing device in an image forming apparatus, and an image is formed.
To provide a toner including at least a binder resin and a colorant, wherein the binder resin has two glass transition temperatures Tg1 and Tg2 in a differential scanning calorimetry at a heating speed of 5° C./min, the glass transition temperature Tg1 is −20° C. to 20° C., and the glass transition temperature Tg2 is 35° C. to 65° C., wherein the binder resin comprises a polyester skeleton and a ring-containing skeleton molecule at ends thereof, and wherein the binder resin is obtained by block copolymerization of: a polyester skeleton A which includes a structural unit obtained by dehydration condensation of a hydroxycarboxylic acid in a repeating structure; and a skeleton B which does not include a structural unit obtained by dehydration condensation of a hydroxycarboxylic acid in a repeating structure.
A toner obtained by a method for producing a toner, which includes dissolving or dispersing in an organic solvent a toner material containing at least a binder resin, and a dispersion liquid of a crystalline polyester resin, so as to prepare a solution or dispersion liquid of the toner material, emulsifying or dispersing the solution or dispersion liquid of the toner material in an aqueous medium, so as to prepare an emulsion or dispersion liquid, and removing the organic solvent from the emulsion or dispersion liquid, wherein the crystalline polyester resin is localized near a surface of the toner.
A process for making emulsion aggregation (EA) toners is provided. In embodiments, the process comprises aggregating a mixture comprising a latex resin, and at least one colorant in a reactor to form aggregated toner particles, adding a shell resin to form a shell over the aggregated toner particles, coalescing the aggregated toner particles, and recovering the toner particles.
An electrophotographic photosensitive member having a surface layer that contains a polymer produced by the polymerization of a compound having a chain-polymerizable functional group. The compound having a chain-polymerizable functional group is a compound represented by the formula (1).
A product comprising a fuel cell component comprising a substrate and a coating overlying the substrate, the coating comprising nanoparticles having sizes ranging from 2 to 100 nanometers.
A fuel cell including a single fuel cell which includes a membrane electrode including a polymer electrolyte membrane, an anode electrode on one surface of the polymer electrolyte membrane, and a cathode electrode on another surface of the polymer electrolyte membrane, the anode electrode including an anode catalyst layer and a gas diffusion layer and the cathode electrode including a cathode catalyst layer and a gas diffusion layer. At least one of the anode cathode catalyst layers includes core-shell type catalyst particles, each having a core and a shell covering the core and including a shell metallic material. At least one of the polymer electrolyte membrane, anode catalyst layer, gas diffusion layer at the anode side, cathode catalyst layer and gas diffusion layer at the cathode side includes metallic nanoparticles having an average particle diameter different from that of the core-shell type catalyst particles and including the shell metallic material.
A fuel cell system is provided including heating means for heating up heat medium that exchanges heat with a fuel cell, and in which the fuel cell is warmed up by the heat medium heated by the heating means. The system includes: flow rate detecting means for detecting a flow rate of the heat medium flowing through the heating means; and heat controlling means for controlling the heating means based on the flow rate of the heat medium detected by the flow rate detecting means. With this arrangement, it is possible to prevent overheating of the heat medium in the fuel cell system in which the heat medium is heated to warm up the fuel cell.
An electrochemical cell including at least one nitrogen-containing compound is disclosed. The at least one nitrogen-containing compound may form part of or be included in: an anode structure, a cathode structure, an electrolyte and/or a separator of the electrochemical cell. Also disclosed is a battery including the electrochemical cell.
A negative electrode 100 for a nonaqueous electrolytic secondary cell includes a current collector 1 and a plurality of active material bodies 2 formed on a surface of the current collector 1 at intervals; each active material body 2 contains a material for occluding or releasing lithium; and a plurality of projections 3 are formed on a part of a side surface of each active material body 2.
An anode of a lithium battery includes a supporting member and a carbon nanotube film disposed on a surface of the support member. The carbon nanotube film includes at least two overlapped and intercrossed layers of carbon nanotubes. Each layer includes a plurality of successive carbon nanotube bundles aligned in the same direction. A method for fabricating the anode of the lithium battery includes the steps of: (a) providing an array of carbon nanotubes; (b) pulling out, by using a tool, at least two carbon nanotube films from the array of carbon nanotubes; and (c) providing a supporting member and disposing the carbon nanotube films to the supporting member along different directions and overlapping with each other to achieving the anode of lithium battery.
This invention provides a negative electrode material for a rechargeable battery with a nonaqueous electrolyte, characterized in that the negative electrode material contains polycrystalline silicon particles as an active material, the particle diameter of crystallites of the polycrystalline silicon is not less than 20 nm and not more than 100 nm in terms of a crystallite size determined by the Scherrer method from the full width at half maximum of a diffraction line attributable to Si (111) around 2θ=28.4° in an x-ray diffraction pattern analysis, and the true specific gravity of the silicon particles is 2.300 to 2.320.
A jelly-roll type battery unit includes a first electrode plate having a first electrode current collector with a first electrode tab, and a first electrode active material layer on a surface of the first electrode current collector; a second electrode plate having a second electrode current collector with a second electrode tab, and a second electrode active material layer on a surface of the second electrode current collector; and a separator interposed between the first electrode plate and the second electrode plate. The electrode tab is incorporated into the electrode current collector in an area of either first or second electrode plate where the corresponding electrode active material layer is not coated. The electrode tab is cut widthwise with respect to the electrode current collector from a center area of the electrode current collector and folded, and an insulating tape is adhered to either surface of the electrode tab.
Printed electronics are increasingly becoming an important industry, thus innovations to integrate the various components and processes would be very useful to expand this industry. Disclosed are innovational concepts that would be very useful to accelerate this industry. Webs of printed electronics, antennas, power sources (cells/batteries), and assembly substrates can be merged together to form a completed electronic assembly that could be, for example, in label form or in a stand alone electronic device.
A rechargeable battery including at least one electrode assembly that performs charging and discharging; a case receiving the electrode assembly; a cap assembly coupled to the case and including at least one terminal electrically connected to the electrode assembly; a lead tab electrically connecting the terminal and the electrode assembly; and a supporting member between the lead tab and the case, wherein the lead tab includes at least one coupling bar attached to the electrode assembly, and the supporting member includes a supporting protrusion coupled to one surface of the coupling bar and a base supported by an inner surface of the case.
A microbial fuel cell includes an anode portion having an anode and a cathode portion having a cathode. The anode is configured to support an electrically conductive biofilm matrix. A cation exchange membrane is positioned between the anode and the cathode. The anode portion and the cation exchange membrane define an anode chamber having a volume of between about 1 μL and about 100 μL and configured to receive an anolyte. The cathode portion and the cation exchange membrane define a cathode chamber having a volume of between about 1 μL and about 100 μL and configured to receive a catholyte. The microbial fuel cell is configured to achieve a Coulombic efficiency of at least 30% and/or a power density of at least of 4.7 μW/cm2. The microbial fuel cell is a microelectromechanical system and can be fabricated in an automated production process.
The present invention relates generally to the field of organic chemistry and particularly to the optical retardation films for liquid crystal displays. The present invention provides an optical film comprising a substrate having front and rear surfaces, and at least one solid retardation layer on the front surface of the substrate. Said solid retardation layer comprises rigid rod-like macromolecules comprising n organic units of the first type having general structural formula I and k organic units of the second type having general structural formula II
A method for passivating metallic surfaces, more particularly those of strip metals, by treating the surface in alternating layers with a) an acidic, aqueous preparation comprising at least one water-soluble copolymer (A) containing acid groups and b) an aqueous preparation comprising at least one water-soluble and/or water-dispersible species (B) which contains cationic and/or procationic groups, preferably a cationic and/or procationic polymer (B1), the preparation a) always being the first and the last layer.
A diffusively reflective paint composition is disclosed for use in reflectors in lighting fixtures. The paint is formed by blending macroporous polymeric particles with a paint carrier. The macroporous polymeric particles are formed by reducing a reflective macroporous sheet material. The paint can further comprise solid or hollow microspheres. The paint can be applied to a variety of substrates to form diffusely reflective articles.
The invention relates to a thermally reversible hot melt adhesive that is isocyanate-free, moisture independent, crosslinkable and thermally reversible. The thermally reversible hot melt adhesive may be repeatedly heated and cooled without negatively affecting the performance of the adhesive. The thermally reversible composition may also be used as a primer layer. The thermally reversible hot melt adhesive and primer are particularly well suited for end use applications such as packaging, graphic arts, construction, footwear, textiles, general assembly, automotive and consumer goods.
A laminate film including a first core polylactic acid layer, a coating receiving-layer of polylactic acid, and coated on one side of the coating receiving-layer with PVOH, EVOH, a blend of crosslinked EVOH/PVOH, vinyl alcohol-vinylamine (PVAm) copolymer, anionic carboxylated styrene-butadiene copolymer (SBR) emulsion, or blends thereof. This coating may be applied after the machine-direction orientation step and dried and oriented in a transverse direction orientation oven if in-line coating is desired; or applied to the film in an off-line coating method and dried in an air flotation oven. The dried coating layer can be metallized. This laminate film exhibits excellent gas and moisture barrier properties, appearance, and metal adhesion. It may also optionally include a heat sealable or winding improving layer on the side opposite the coating receiving-layer of the core layer.
The present disclosure relates to a hydrogel composition and methods of using the same. The hydrogel composition may include precursors that react with each other upon contact as well as precursors that react upon contact with an initiator. In embodiments, the resulting hydrogels may have varying levels of crosslinking with both denser and less dense regions.
A liquid crystalline coating solution which comprises: an azo compound represented by the following general formula (1); and a solvent to dissolve the azo compound: wherein Q1 is an aryl group which may have any substituent group; Q2 is an arylene group which may have any substituent group; R is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an acetyl group, a benzoyl group, or a phenyl group (these groups may have any substituent groups); and M is a counter ion.
A film-formation method whereby a minute pattern thin film can be formed on a deposition substrate, without provision of a mask between a material and the deposition substrate. Moreover, a light-emitting element is formed by such a film-formation method, and a high-definition light-emitting device can be manufactured. Through a film-formation substrate in which a reflective layer, a light-absorbing layer and a material layer are formed, the light-absorbing layer is irradiated with light, so that a material contained in the material layer is deposited on a deposition substrate which is disposed to face the film-formation substrate. Since the reflective layer is selectively formed, a film to be deposited on the deposition substrate can be selectively formed with a minute pattern reflecting the pattern of the reflective layer. A wet process can be employed for formation of the material layer.
The present invention provides a resin-coated metal pigment capable of achieving both of water resistance of a water base paint and chemical resistance of a film at a high level, and a water base paint using the resin-coated metal pigment. The present invention provides a method for producing a resin-coated metal pigment including an adsorption step of bringing a solution or a dispersion liquid of a phosphate ester component (A) into contact with a metal pigment to prepare a phosphate ester adsorbing metal pigment, a slurry preparation step of preparing a slurry for polymerization obtained by dissolving a polymerization component (B) therein, and a coating step of polymerizing the polymerization component (B) to form a resin coating layer on the surface of the phosphate ester adsorbing metal pigment; a resin-coated metal pigment obtained by the method; and a water base paint using the resin-coated metal pigment.
A method is provided that produces nanocomposite materials containing well-dispersed, nanoparticles encapsulated in a polymer matrix. A feedstock comprising a colloidal dispersion of nanoparticles in a solvent and a polymer dissolved in the same solvent is passed through an ultrasonic nozzle using a flow control device, producing an aerosol of drops having diameters less than about 100 micrometers. The aerosol of drops is then mixed with a fluid that is miscible with the solvent, is a nonsolvent for the polymer, and destabilizes the colloidal dispersion. As a result, well-dispersed polymer-encapsulated nanoparticles precipitate. The method operates at atmospheric temperature and pressure and allows for independent control of the precipitation of the particle and of the polymer.
A process comprising a duplex type impregnating apparatus providing the steps of: (i) providing an elongated porous web, said elongated porous web comprising two outermost surfaces; (ii) transporting said elongated porous web downwards between two impregnating heads comprising two slots each with substantially vertical upper and lower slot faces substantially parallel to said elongated porous web providing simultaneously to both surfaces of said elongated porous web metered substantially identical quantities of a dope, comprising at least one membrane polymer and at least one solvent therefor; (iii) thereby impregnating said elongated porous web completely with said dope and providing substantially equally thick dope layers on each surface of said outermost surfaces of said elongated porous web with a thickness independent of the gap between one of said lower slot faces and the surface of said elongated porous web nearest thereto; (iv) subjecting said dope associated with said elongated porous web to symmetric phase inversion with at least one non-solvent thereby forming a membrane, and (v) removing residues of said at least one solvent for said at least one membrane.
This invention discloses a method of preservation of a food product comprising the step of adding 1) a first component comprising between 10 ppm and 1% of a biocidal salt of Nα-(C1-C22) alkanoyl di-basic amino acid alkyl (C1-C22) ester cationic biocidal molecule with an anionic counterion, and 2) a second component comprising from 10 ppm to 1% by weight an acyl monoglyceride, directly to a food product. The preferred cationic biocidal molecule comprises Nα-lauroyl-L-arginine ethyl ester (“LAE”). The invention also discloses the method of preservation of a food product using salts of a Nα-(C1-C22) alkanoyl di-basic amino acid alkyl (C1-C22) ester cationic biocidal molecule and an anionic counterion with or without a monoglyceride of a fatty acid, whereby the packaging film is compounded with the salts and the optional monoglyceride of a fatty acid.
A method relates to adjusting a parameter of a process to be executed in a cooking appliance. The parameter has a range of values. The method includes displaying a set of pictorial depictions on a display. Each pictorial depiction represents one of the values in the range. A manual selection from among the pictorial depictions is input. The process is executed in accordance with the value represented by the manually selected pictorial depiction.
Methods and systems for providing easy access to information and sharing are provided. Embodiments of the present invention enable a host to grant access to published content to one or more users in a manner in which the user(s) can scan small portions of information to decide which information is desired. The embodiments described herein enable, for example, a user to see a library of content that is larger than the storage capacity of the computing unit used by the user. The sharing of information is also secured through the use of auto-lock keys and the creation of abstract identities for the host and each user.
The present invention relates to the preparation and use of a glycolipid fraction from Oscillatoria Planktothrix sp., for the treatment and/or prevention of bacterial gum diseases primarily caused by: Actinobacillum actinomycetemconcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola and even more preferably by Porphyromonas gingivalis. Said gum diseases, in particular gingivitis and periodontitis (pyorrhea), are primarily caused by a pro-inflammatory response to components of P. gingivalis, leading to destruction of periodontal tissue, and are often accompanied by osteoclastogenesis (increased number of osteoclasts responsible for destruction of bone tissue), and by chronic infection.
Previous research demonstrated that aflatoxin contamination in corn is reduced by field application of wheat grains pre-inoculated with the non-aflatoxigenic Aspergillus flavus strain NRRL 30797. We evaluated the reliability and efficiency of replacing wheat grains with the novel bioplastic formulation Mater-Bi® to serve as a carrier matrix to formulate strain NRRL 30797. Mater-Bi® granules were inoculated with a conidial suspension of NRRL 30797 to achieve a final cell density of ˜log 7 conidia/granule. Incubation of 20-g soil samples receiving a single Mater-Bi® granule for 60-days resulted in log 4.2 to 5.3 propagules of A. flavus/g soil for microbiologically active and sterilized soil, respectively. The bioplastic formulation was highly stable; Mater-Bi® is a suitable substitute for biocontrol applications of A. flavus NRRL 30797.
This invention is disclosing a pure ointment of traditional Chinese medicine which was invented to treat burn or scald, and infectious trauma, and its preparation. The ointment has solved a number of problems in the treatment of burn or scald, and infectious trauma, such as the high cost of current drugs, post-treatment scar, and unfavorable therapeutic effect. The advantages of this ointment include low cost, favorable therapeutic effect, short course, and without scar after treatment. Its formula is based on the weight of every five hundred portions of following ingredients: lithospermum, 4-10 portions, beeswax, 5-20 potions, insect-white wax, 5-20 portions, and lard, 450-486 portions.
A method and medicine for treating leukemia or other cancer or disease condition including administering periodic doses of a combination of one or more of emodin, rhein or rhapontin with one or more of aucubin, digoxin or beta-sitosterol, and/or one or more of carvacrol, vanillic acid or sitosterol.
A polymeric hollow nanoshell or nanosphere for release of an agent is described, wherein the hollow nanosphere comprises at least one biodegradable polymer, characterised in that the polymer is cross-linked. The biodegradable mono-disperse nanospheres described are suitable for use as carriers of biomolecules, therapeutic agents and/or imaging agents.
A therapeutic foam for the treatment of, inter alia, varicose veins comprises a sclerosing solution foamed with a physiological gas such as carbon dioxide, oxygen or a mixture thereof. The foam has a nitrogen content of less than 0.8%. It may be generated using a pressurized canister system incorporating a fine mesh of micron dimensions through which the gas and sclerosing liquid are passed to make the foam. Alternatively, the foam may be generated by passing gas and solution between two syringes through a fine mesh. Techniques are described for minimizing the amount of nitrogen in a canister or syringe based product. A technique for generating and delivering foam simultaneously using a syringe based device is also disclosed.
The present invention relates to a novel technology for forming fine particles with a size of 0.0˜23 microns from a solid that can be dissolved in a liquid solvent and is not decomposed by heat. The particle preparation technology according to the present invention may be applicable to the fields of food, cosmetics, biopolymer, polymer compositions, and pharmaceuticals.
Hyaluronic acid (HA) conjugates or crosslinked HAs compositions for coating an implantable device are provided. The implantable device can be used for treating a disorder such as atherosclerosis, thrombosis, restenosis, high cholesterol, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
The present invention describes a combined vaccine that offers broad protection against meningococcal disease caused by the pathogenic bacteria Neisseria meningitidis. The vaccine is comprised of four distinct polysaccharide-protein conjugates that are formulated as a single dose of vaccine. Purified capsular polysaccharides from Neisseria meningitidis serogroups A, C, W-135, and Y are chemically activated and selectively attached to a carrier protein by means of a covalent chemical bond, forming polysaccharide-protein conjugates capable of eliciting long-lasting immunity to a variety of N. meningitidis strains in children as well as adults.
Methods are presented for attenuating myelosuppressive side effects of treatment regimens, promoting thrombopoiesis and neutrophil production, and increasing efficacy of treatment regimens, by administering PF4-interacting heparinoids.
The present invention relates to anti-IL13 antibodies that bind specifically and with high affinity to both glycosylated and non-glycosylated human IL13, does not bind mouse IL13, and neutralize human IL13 activity at an approximate molar ratio of 1:2 (MAb:IL13). The invention also relates to the use of these antibodies in the treatment of IL13-mediated diseases, such as allergic disease, including asthma, allergic asthma, non-allergic (intrinsic) asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, eczema, urticaria, food allergies, chronic obstructive pulmonary disease, ulcerative colitis, RSV infection, uveitis, scleroderma, and osteoporosis.
This invention relates generally to antibodies that specifically bind Toll-like Receptor 4 (TLR-4), and to methods of using the anti-TLR4 antibodies as therapeutics and to methods of using the anti-TLR4 antibodies in methods of preventing transplant rejection and/or prolonging survival of transplanted biological material.
The present invention relates to the identification of polynucleotides and polypeptides having increased expression in tumor blood vessels. The invention further relates to the use of the identified polynucleotides and polypeptides, and inhibitors of the polynucleotides and polypeptides, in the regulation of angiogenesis and the diagnosis and treatment of angiogenesis-related diseases such as cancer.
Compositions and methods for treating and/or preventing a variety of diseases and conditions that are amenable to immunotherapy and, in one particular embodiment, compositions and methods for treating and/or preventing cancer in an animal are described. Specifically improvements related to the use of a yeast-based vaccine comprising a yeast vehicle and an antigen that is selected to elicit an antigen-specific cellular and humoral immune response in an animal, for use in prophylactic and/or therapeutic vaccination and the prevention and/or treatment of a variety of diseases and conditions are disclosed.
This invention pertains to methods and compositions for the diagnosis and treatment of cardiovascular conditions. More specifically, the invention relates to isolated molecules that can be used to diagnose and/or treat cardiovascular conditions including cardiac hypertrophy, myocardial infarction, stroke, arteriosclerosis, and heart failure.
Personal care compositions containing aminofunctional endblocked silicone polyether copolymers are disclosed. The aminofunctional endblocked silicone polyether copolymers are particularly useful in hair care formulations to provide conditioning, which includes ease of detangling, combing, pliability, smoothness, slipperiness and styling benefits.
The invention provides MRI contrast agents which provide a high sensitivity and which have an optimised body retention time. These agents enable the mapping of the local pH, temperature, oxygen concentration or other metabolites in a patient's body by the use of Chemical Exchange Saturation Transfer (CEST). Particularly pH and temperature mapping are useful for the detection of small cancer lesions and localized inflammation respectively.
This disclosure relates to a process for producing titanium dioxide, comprising: reacting aluminum and an alloy comprising silicon and titanium having a silicon content of at least 5%, based on the weight of the ahoy, with chlorine gas at temperatures above 190° C. to form chlorides of silicon, aluminum and titanium; adding titanium tetrachloride to the chlorides of silicon, aluminum and titanium; oxidizing the chlorides of silicon, aluminum and titanium and titanium tetrachloride; and forming titanium dioxide.
A method of synthesis of a fulleride of metal nano-cluster is provided. The method is characterized in mechanically alloying metal nano-clusters with fullerene-type clusters. Fullerene molecules in the fulleride of metal nano-cluster are preserved. The alloying is done by milling in a planetary mill. A material including a fulleride of a metal nano-cluster is also provided.
Aspects of the disclosure relate to the separation of gases and to a process for the removal of carbon dioxide gas using liquid absorbents. A process is disclosed for removing carbon dioxide from a gaseous stream comprising contacting the gaseous stream with a carbon dioxide absorbent comprising a mixture of an ionic liquid and water in a molar ratio of from 10:1 to 1:10, wherein the ionic liquid has the formula: [Cat+][X−].
An automated machine for handling and embedding tissue samples contained on microtome sectionable supports. The machine includes an input member configured to hold a plurality of the microtome sectionable supports prior to a tissue embedding operation. An output member is configured to hold a plurality of the microtome sectionable supports after the tissue embedding operation. A cooling unit is configured to hold at least one of the microtome sectionable supports during the tissue embedding operation. A motorized carrier assembly is mounted for movement and configured to hold at least one of the microtome sectionable supports. The carrier assembly moves the support from the input member to the cooling unit and, finally, to the output member. A dispensing device dispenses an embedding material onto the microtome sectionable support and at least one tissue sample carried by the microtome sectionable support during the embedding operation.
The present relates to a system and method for preventing or reducing unwanted heat in a microfluidic of the device while generating heat in selected regions of the device. Current can be supplied to a heating element through electric leads that are designed so that the current density in the leads is substantially lower than the current density in the heating element. Unwanted heat in the microfluidic complex can be reduced by thermally isolating the electric leads from the microfluidic complex by, for example, running each lead directly away from the microfluidic complex. Unwanted heat can be removed from selected regions of the microfluidic complex using one or more cooling devices.
Systems, devices, methods, and compositions are described for providing an actively-controllable disinfecting implantable device configured to, for example, treat or prevent an infection in a biological subject.
A mold assembly or system includes a moldbase that holds mold inserts and has embedded fluid lines to facilitate cooling during part formation. Mold inserts combine to form mold cavities that receive carbon fiber and resin components to form a carbon composite based part. A permanent release coating along a mold component surface that contacts the carbon fiber and resin components facilitates the release of the finished part from the mold component. Guide pins and guide pin receiving holes facilitate accurate alignment of mold components. Ejector pins within respective ejector pin shafts help eject a finished part from a respective mold component. An ejector pin shaft cover transfers force from an ejector pin to eject a finished part and also prevents substantial passage of resin into the ejector pin shaft. A fluid actuated ejection system provides fluid based mechanical forces to the ejector pins to facilitate finished part ejection.
A composite wafer carrier according to an embodiment of the present invention comprises an operative portion formed of a first thermoplastic material and a support portion formed of a second different thermoplastic material. One of the operative portion and support portion is overmolded onto the other to form a gapless hermitic interface that securely bonds the portions together. The operative portion may be a transparent window, a portion of a latching mechanism or a wafer contact portion. Preferred embodiments of the invention include wafer carriers with said features, process carriers with said features and a process for manufacturing wafer carriers with said features.
Disclosed are new compound semiconductors which may be used for solar cells or as thermoelectric materials, and their application. The compound semiconductor may be represented by a chemical formula: InxMyCo4-m-aAmSb12-n-zXnQ′z, where M is at least one selected from the group consisting of Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; A is at least one selected from the group consisting of Fe, Ni, Ru, Rh, Pd, Ir and Pt; X is at least one selected from the group consisting of Si, Ga, Ge and Sn; Q′ is at least one selected from the group consisting of O, S and Se; 0
Various embodiments provide materials and methods for forming a graphene product by vacuum induction heating expandable graphite. The graphene product can include graphene nano-sheets with high purity and uniform thickness. The graphene nano-sheets can contain carbon of more than about 99% by weight. The graphene nano-sheets can be exfoliated or dispersed within a matrix of a semiconducting polymer to form a graphene-containing composite.
The present invention relates to a marking of polymeric liquid crystal material having determined optical characteristics allowing its authentication and reading by a machine and its authentication by the human eye. The marking is applied onto an item, good or article by a variable information printing process. The marking is in the form of indicia representing a unique code which allows for an easy authentication by the human eye and a secure tracking and tracing of the marked item, good or article throughout its life cycle.
Disclosed is lithium iron phosphate having an olivine crystal structure, wherein the lithium iron phosphate has a composition represented by the following Formula 1 and carbon (C) is coated on the particle surface of the lithium iron phosphate containing a predetermined amount of sulfur (S). Li1+aFe1−xMx(PO4−b)Xb (1) (wherein M, X, a, x, and b are the same as defined in the specification).
Described herein are materials for use in electrolytes that provide a number of desirable characteristics when implemented within batteries, such as high stability during battery cycling up to high temperatures high voltages, high discharge capacity, high coulombic efficiency, and excellent retention of discharge capacity and coulombic efficiency over several cycles of charging and discharging. In some embodiments, a high voltage electrolyte includes a base electrolyte and a set of additive compounds, which impart these desirable performance characteristics.
A method for preparing nanotubes by providing nanorods of a piezoelectric material having an asymmetric crystal structure and by further providing hydroxide ions to the nanorods to etch inner parts of the nanorods to form the nanotubes.
A composition and a method for chemical mechanical polishing. The composition includes a surfactant anion an alkyl alcohol, a controlled amount of chloride ion source and a diluent. The composition further includes abrasive particles and an oxidizer. The method includes providing the composition on a surface to be polished and polishing the surface by contacting the surface with a polishing pad.
An imaging structure such as a mask or reticle may be fabricated using a patterning layer on an imaging layer. The patterning layer may have substantially different etch properties than the imaging layer. A first etch process may be selective of the patterning layer with respect to a resist layer. A second etch process may be selective of the imaging layer with respect to the patterning layer.
A process for etching a silicon-containing substrate to form structures is provided. In the process, a metal is deposited and patterned onto a silicon-containing substrate (commonly one with a resistivity above 1-10 ohm-cm) in such a way that the metal is present and touches silicon where etching is desired and is blocked from touching silicon or not present elsewhere. The metallized substrate is submerged into an etchant aqueous solution comprising about 4 to about 49 weight percent HF and an oxidizing agent such as about 0.5 to about 30 weight percent H2O2, thus producing a metallized substrate with one or more trenches. A second silicon etch is optionally employed to remove nanowires inside the one or more trenches.
[PROBLEM] There is provided a method for regenerating a filter, by which deterioration of the color tone of purified acrylic acid can be prevented.[SOLUTION] There is provided a method for regenerating a filter which has been used in a filtration step in the process for producing an acrylic acid, comprising a step (A) wherein the filter is washed with an aqueous alkaline solution, a step (B) wherein the filter is washed with water after the step (A) , and a step (C) wherein the filter is brought into contact with the acrylic acid for regeneration for at least one hour after the step (B).
A mercury remediation method and apparatus for reducing mercury levels in water to a nanogram per liter level that uses four treatment steps: (1) chelation; (2) oxidation; (3) reduction; and (4) air stripping, vapor/liquid separation. There is a fifth step in the process, which does not involve the wastewater. It is to scrub the stripper air of the volatile mercury in an off-gas adsorption unit or to condense volatile mercury in a cryogenic mercury trap.
Porous metal organic frameworks formed by AlIII ions to which fumarate ions are coordinated to produce a framework structure; shaped bodies comprising such porous metal organic frameworks, and also the preparation and use thereof for the uptake of a substance for the purposes of its storage, controlled release, separation, chemical reaction or as support.
An apparatus for conducting single-pass filtration of ink waste is disclosed. The apparatus includes: a filter connected to a housing unit and a plurality of absorbent layers within the housing unit, wherein the plurality of absorbent layers are in any order and include: a layer for removing metal and polar compounds, a layer for removing non-polar color impurities, a layer for removing acid functional components, a layer for removing additives with polar or protic functional groups, and a layer for removing residual water. A process and a system that include or utilize the apparatus are also disclosed.
A system and method for removing gas from a gas producing subterranean formation and removing contaminants from the produced water is provided. The method includes providing a mixture of gas and water gathered from a gas producing well. Thereafter the method entails separating the gas from the mixture to produce a gas product and the produced water which includes organics, suspended solids and dissolved solids including silica. Thereafter, suspended solids are removed from the produced water. After removing some of the suspended solids, the produced water is directed to a micro porous polymer extraction (MPPE) unit. In the MPPE unit aromatic organic compounds are removed from the produced water. Thereafter the produced water is treated in a membrane bioreactor to remove additional organics. Thereafter the produced water is directed to at least one RO unit that produces a high dissolved solids containing reject stream and a low dissolved solids permeate stream. The method or process described reduces the concentration of certain contaminants in the produced water such that the output or permeate stream from at least one RO unit can be used for frac fluid, drilling mud, or discharged to the environment.
Systems and methods are provided for the treatment of caustic wastewater. Specifically, systems and methods are provided for combining refinery spent caustic and ethylene spent caustic solutions and treating the combined spent caustic mixture using a wet air oxidation process.
An apparatus for treating a substance includes: (a) a volute or cyclone head, (b) a throat connected to the volute or cyclone head, (c) a parabolic reflector connected to the throat, (d) a first wave energy source comprising a first electrode within the volute or cyclone head that extends through the outlet into the first opening of the throat along the central axis of the throat, and a second electrode extending into the parabolic reflector proximate to the focus wherein the second electrode is spaced apart and axially aligned with first electrode, and (e) a second wave energy source disposed inside the throat, embedded within the throat or disposed around the throat. The substance is supplied to the inlet of the volute or cyclone head and is irradiated with one or more wave energies produced by the first and second wave energy sources.
An oil filtering and distributing device for supplying a first oil pump and a second oil pump of an aircraft engine, the pumps sucking up oil in a common housing, the device including a casing with a lower part and an upper part; a first sleeve coupling for supplying the first pump; a second sleeve coupling for supplying the second pump; the casing including a first compartment receiving oil via a first screen and supplying the first pump with oil via the first sleeve coupling, a second compartment receiving oil via a second screen and supplying the second pump with oil via the second sleeve coupling, an isolator arranged between the first compartment and the second compartment.
Apparatus and operating methods are provided for controlled atmosphere furnace systems. In one possible embodiment, hydrogen is injected from a hydrogen source to an enclosure. The hydrogen is circulated within the enclosure from a gas inlet to a gas outlet. A temperature is raised within the enclosure to a predetermined threshold. Hydrogen is pumped from the gas outlet to the gas inlet with an electrochemical hydrogen pump. The electrochemical hydrogen pump has a first electrode in fluid communication with the gas outlet, and a second electrode in fluid communication with the gas inlet. An electrical potential is provided between the first and second electrodes, wherein the first electrode has a higher electrical potential with respect to zero than the second electrode. Various methods, features and system configurations are discussed.
A series of microactuators for manipulating small quantities of liquids, and methods of using these for manipulating liquids, are disclosed. The microactuators are based on the phenomenon of electrowetting and contain no moving parts. The force acting on the liquid is a potential-dependent gradient of adhesion energy between the liquid and a solid insulating surface.
Provided is a power supply apparatus which can effectively restrict the current rise at the time of occurrence of arc discharge that is directly related to the occurrence of splashes or particles, and which is also capable of preventing the discharge voltage from getting excessive at the time of finishing the arc processing. The power supply apparatus has: a DC power supply unit which applies a DC voltage to a target which comes into contact with a plasma; and an arc processing unit which can detect arc discharge generated in the electrode by positive and negative outputs from the DC power supply unit, and also which can perform arc discharge suppression processing. An output characteristics switching circuit switches the outputs such that the output to the electrode has constant-current characteristics and that the output to the electrode has constant-voltage characteristics by the time of completion of the arc suppressing processing.
A method for producing a hard bias (HB) structure that stabilizes a free layer in an adjacent spin valve is disclosed. The HB structure includes a composite seed layer and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (Co/Ni)x laminate. (Co/Ni)x deposition involves low power and high Ar pressure to avoid damaging Co/Ni interfaces and thereby preserves PMA. A capping layer is formed on the HB layer to protect against etchants in subsequent processing. After initialization, HB magnetization direction is perpendicular to the sidewalls of the spin valve and generates an Mrt value that is greater than from an equivalent thickness of CoPt. A non-magnetic metal separation layer may be formed on the capping layer and spin valve to provide an electrical connection between top and bottom shields.
A method for pulp processing used in connection with a pre-hydrolysis kraft process (PHKP) includes adding wood chips or similar material to a reaction vessel, performing pre-hydrolysis, and neutralizing the mixture with a first quantity of white liquor followed by a different solution such as a cold caustic extraction alkaline filtrate optionally enriched with white liquor. The neutralization fluids are replaced with a cooking fluid comprising a hot black liquor and alkaline filtrate, optionally enriched with white liquor. The cooking fluid may have a relatively high effective alkali concentration. The cooked pulp may exhibit very low residual hemicelluloses and a kappa number within an optimal range.
A process for continuous manufacturing of moisture-curable polyurethane formulations used as sealants and adhesives. The process is characterized by the fact that the reactive components are introduced independently, and without the need for a prepolymer, to a mixer. Solid or liquid raw materials can be either pre-blended or fed directly to the mixer, a twin-screw extruder, which provides the requisite energy to homogenously mix the raw materials and drive the chemical reaction. The process is designed so that the extruder barrel and screw allow variable feed addition and heat exchange down the length of the machine. This allows various operations to be performed at different points in the extruder, including reaction, dispersive mixing, distributive mixing and devolitization.
A method of producing an optical film laminate includes: a first film layer forming step of cutting a first optical film having an elongated shape into first optical film pieces along cutting lines crossing the longitudinal direction of the first optical film and disposing the first optical film pieces adjacent to each other in a substantially band or strip shape; a second film layer forming step of cutting a second optical film having an elongated shape into second optical film pieces along cutting lines crossing the longitudinal direction of the second optical film and disposing the second optical film pieces adjacent to each other in a substantially band or strip shape; and a cutting step of, while holding a third film layer made of the third optical film, the first film layer and the second film layer in a laminated state, cutting them into plural optical film laminates.
Provided is a steel wire rod for a high strength and high toughness spring having excellent cold workability, the steel wire rod having a composition comprising: in weight %, C: 0.4 to 0.7%, Si: 1.5 to 3.5%, Mn: 0.3 to 1.0%, Cr: 0.01 to 1.5%, Ni: 0.01 to 1.0%, Cu: 0.01 to 1.0%, B: 0.005 to 0.02%, Al: 0.1% or less, O: 0.0020% or less, P: 0.02% or less, S: 0.02% or less, N: 0.02% or less, remainder Fe, and other unavoidable impurities, having a microstructure formed of ferrite and pearlite, and in which a prior (before cooling) austenite grain size is 8 μm or less.
There is provided an aluminum surface treatment process, comprising: preparing an aluminum material containing silicon and magnesium; and plasma nitriding the aluminum material to form an aluminum nitride region on a surface of the aluminum material.
A dishwasher including a control device in which a wash program is stored to control a wash cycle for cleaning items to be washed. A water inlet device has a hot-water valve to take in hot water from an external hot-water supply and a cold-water valve to take in cold water from an external cold-water supply. The wash program has a wash step including an intake phase for taking in water via the water inlet device and a spraying phase for spraying the items to be washed with washing liquor containing the water that has been taken in via the water inlet device. The wash program includes a first phase of the intake phase during which the hot water is taken in via the hot-water valve and during which the temperature of the hot water that has been taken is measured by a temperature sensor.
The invention comprises an apparatus for washing, storing and transporting concrete wastewater washed from concrete conveying chutes associated with a concrete mixing truck. The apparatus comprises a fluid container having a first opening and a pair of arms extending upwardly above the container. Each end of the arms distal from the container is adapted to mate with a first end of a first concrete chute member and to removably retain the first concrete chute member such that a second end of the first concrete chute member is higher than the first end and the first end is disposed above the first opening in the fluid container. The container is attachable to a concrete mixing truck such that a second concrete chute member attached to the concrete mixing truck can be positioned above the first concrete chute member while the first concrete chute member is mated with the arms. A method of using the apparatus is also disclosed.
One aspect of the present subject matter relates to a method for forming a transistor. According to an embodiment, a fin of amorphous semiconductor material is formed on a crystalline substrate, and a solid phase epitaxy (SPE) process is performed to crystallize the amorphous semiconductor material using the crystalline substrate to seed the crystalline growth. The fin has a cross-sectional thickness in at least one direction less than a minimum feature size. The transistor body is formed in the crystallized semiconductor pillar between a first source/drain region and a second source/drain region. A surrounding gate insulator is formed around the semiconductor pillar, and a surrounding gate is formed around and separated from the semiconductor pillar by the surrounding gate insulator. Other aspects are provided herein.
An indoor dust collecting system includes an air conditioner having an indoor unit that generates an air current, a dust collector, and a controller for controlling the air current from the indoor unit. A moving body detector is provided to detect a moving body such as, for example, a person, a pet, a cleaning robot, and the like. The air current from the indoor unit is controlled by the controller based on the position of the indoor unit, the position of a spot of occurrence of dust detected by the moving body detector, and the position of the dust collector such that the air current from the indoor unit reaches the dust collector via the spot of occurrence of dust in order for the dust collector to effectively suck the dust.
A pressure or vacuum swing adsorption process for separating water from solvent utilizing molecular sieves and regenerating the molecular sieve by passing non-condensable recycled gas along the molecular sieve, capturing the recycled gas and using the recycled gas again to repeat regeneration of the molecular sieve.
Methods and systems for monitoring the condition of a new air filter installed in an HVAC system are disclosed. In one example, an input that indicates a new air filter has been installed may be accepted, and in response, the HVAC system may be automatically operated in an air filter verifying mode, in which the fan of the HVAC system is activated to drive air through the new air filter. While in the air filter verifying mode, a measure related to an amount of flow restriction presented by the new air filter may be received. A status of the new air filter may be determined based, at least in part, on the received measure related to the amount of flow restriction presented by the air filter of the HVAC system. Once the status of the new air filter is determined, an indication may be displayed on a display, which may communicate the determined status of the new air filter to a user.
Provided are a magnesium-based alloy and a manufacturing method thereof. In the method, a magnesium alloy is melted into liquid phase, and an alkaline earth metal oxide is added into a molten magnesium alloy. The alkaline earth metal oxide is exhausted through surface reduction reaction between the melt and the alkaline earth metal oxide. Alkaline earth metal produced by the exhaustion reacts with Mg and/or other alloying elements in the magnesium alloy so that an intermetallic compound is formed. The magnesium prepared by the method is excellent in fluidity and hot-tearing resistance. To this end, the alkaline earth metal oxide added is CaO, and the added amount of CaO is 1.4 to 1.7 times the target weight of Ca to be contained in the final Mg alloy.
The present intention relates to an agricultural blend and a method of forming an agricultural blend. The agricultural blend includes a sulfate source and calcium silicate or a by-product of slag, the slag being selected from the group consisting of steel slag, stainless steel slag, alloy steel slag, carbon steel slag, and phosphate slag. The method includes blending a sulfate source and calcium silicate.
An air filtration media pack is provided having a plurality of layers of single facer media. The layer of single facer media includes a fluted sheet, a facing sheet, and a plurality of flutes extending between the fluted sheet and the facing sheet and having a flute length extending from a first face of the filtration media pack to a second face of the filtration media pack. A first portion of the plurality of flutes are closed to unfiltered air flowing into the first portion of the plurality of flutes, and a second portion of the plurality of flutes are closed to unfiltered air from flowing out of the second portion of the plurality of flutes so that air passing into one of the first face and the second face of the media pack and out the other of the first face and the second face of the media pack passes through media to provide filtration of the air. The fluted sheet includes repeating internal peaks facing toward the facing sheet and repeating external peaks facing away from the facing sheet. In addition, the fluted sheet can include at least one ridge extending along at least 50% of the flute length between an internal peak and an adjacent external peak. Additional characterizations of an air filtration media pack, air filtration media, and methods of making and using are provided.
A filter assembly for a motor-vehicle air cleaner comprises a main filter, an auxiliary filter set apart from the main filter, and a filter mount fixed to and configured to support the main filter and the auxiliary filter. In this embodiment, the filter mount is fittable in and removable from a housing of the air cleaner, and includes a sealing element passing between the main filter and the auxiliary filter.
A casing (10) of an indoor unit (1) contains an indoor fan (21), an air filter (30), and an indoor heat exchanger (22). The indoor unit (1) includes: a divider plate (25) which includes an air hole (26) for attaching the air filter (30) therein, and divides space inside the casing (10) into a room upstream of an air flow passing through the air filter (30), and a room downstream of the air flow passing through the air filter (30); a dust removing mechanism (50) for removing dust trapped on the air filter (30); and a dust container (90) for containing the dust which is removed by the dust removing mechanism (50), and is transferred through a transfer duct (88). The indoor heat exchanger (22) is arranged around the indoor fan (21), and the dust container (90) is arranged below the indoor heat exchanger (22).
Processes are provided for preparing a substantially free-flowing alkali metal gasification catalyst-loaded carbonaceous particulate suitable for use as a feedstock for the production of gaseous products, and in particular methane, via the catalytic gasification of the catalyst-loaded carbonaceous particulate in the presence of steam.
Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes integrated pressure maintenance and miscible flood systems with low emission power generation. The system may also include integration of a pressure swing reformer (PSR), air-blown auto-thermal reformer (ATR), or oxygen-blown ATR with a gas power turbine system, preferably a combined cycle gas power turbine system. Such systems may be employed to capture and utilize greenhouse gases (GHG) and generate power for use in hydrocarbon recovery operations.
Preparation process of electrode for battery, comprising first application step for forming first linear part by relatively moving first nozzle which discharges first active material linearly with respect to current collector to form a plural of first linear parts on current collector, first drying step for drying first linear parts, second application step for forming second linear part between first linear parts by relatively moving second nozzle which discharges second active material with respect to current collector, and second drying step for drying first linear part and second linear part, wherein height H1 of first linear part and height H2 of second linear part satisfies the relational inequality (1): H1
Compositions, methods, apparatuses, kits, and combinations are described for permanently or temporarily re-designing, decorating, and/or re-coloring a surface. The compositions useful in the present disclosure include a décor product that is formulated to be applied and affixed to a surface. If desired, the décor product may be substantially removed from the surface before being affixed thereto. If a user desires to remove the décor product, the décor product is formulated to be removed by a number of methods including, for example, vacuuming, wet extraction, chemical application, and the like. If the user desires to affix the décor product to the surface in a permanent or semi-permanent manner, the décor product may be affixed to the surface by applying energy thereto in the form of, for example, heat, pressure, emitted waves, an emitted electrical field, a magnetic field, and/or a chemical. The décor product may also be utilized in the form of a kit or in conjunction with a design device, such as a stencil, to control the application of the décor product to create, for example, a pattern on the surface.
The present invention relates to new azo dyes, a process for their preparation, and their use for dyeing or printing fibrous materials, to produce materials with brownish shades.
An osteoinductive demineralized bone matrix, corresponding osteoimplants, and methods for making the osteoinductive demineralized bone matrix are disclosed. The osteoinductive demineralized bone matrix may be prepared by providing demineralized bone and altering the collagenous structure of the bone. The osteoinductive demineralized bone matrix may also be prepared by providing demineralized bone and compacting the bone, for example via mechanical compaction, grinding into a particulate, or treatment with a chemical. Additives such as growth factors or bioactive agents may be added to the osteoinductive demineralized bone matrix. The osteoinductive demineralized bone matrix may form an osteogenic osteoimplant. The osteoimplant, when implanted in a mammalian body, may induce at the locus of the implant the full developmental cascade of endochondral bone formation including vascularization, mineralization, and bone marrow differentiation. The osteoinductive demineralized bone matrix may also be used as a delivery device to administer bioactive agents.
The invention relates to: —a biphasic calcium phosphate/hydroxyapatite (CAP/HAP) bone substitute material comprising a sintered CAP core and at least one uniform and closed epitactically grown layer of nanocrystalline HAP deposited on top of the sintered CAP core, whereby the epitactically grown nanocrystals have the same size and morphology as human bone mineral, i.e. a length of 30 to 46 nm and a width of 14 to 22 nm, —a process of preparing the above CAP/HAP bone substitute material comprising the steps of a) preparing a sintered CAP core material, b) immersing the sintered CAP core material in an aqueous solution at a temperature between 10° C. and 50° C. to start the transformation process of CAP to HAP whereby a uniform and closed epitactic grown layer of nanocrystalline hydroxyapatite will be formed on the CAP core material surface, the epitactically grown nanocrystals having the same size and morphology as human bone mineral, c) stopping the transformation by separating solid material from the aqueous solution at a time when a uniform and closed coating of at least one nanocrystalline layer of HAP is present but before the transformation process is finished completely, and d) optionally sterilizing the separated material coming from step c), and —the use of the above bone substitute material as implant or prosthesis for bone formation, bone regeneration, bone repair and/or bone replacement at a defect site in a human or animal.
A posterior stabilized knee orthopaedic prosthesis includes a tibial bearing and a femoral component configured to articulate with the tibial bearing. The tibial bearing includes a spine having a concave cam surface and a convex cam surface. The femoral component includes a posterior cam having a concave cam surface and a convex cam surface. During flexion, the concave cam surface of the posterior cam contacts the convex cam surface of the spine and the convex cam surface of the posterior cam contacts the concave cam surface of the spine.
The present invention is directed to the field of prosthetic devices. More particularly, one embodiment of the present invention is directed to an artificial disc that can be used as a replacement for an intervertebral disc (e.g., a human intervertebral lumbar disc, a human intervertebral cervical disc and/or a human intervertebral thoracic disc).
An artificial retinal system includes an external optical device having an image generator and a background light generator, and a retinal implant chip having a solar cell and a stimulus generator. The stimulus generator is disposed to receive a target image projected by the image generator and a background light provided by the background light generator, and receives the electrical power from the solar cell. The stimulus generator includes an image sensing stimulator operable to convert the target image into electrical stimuli, and a contrast enhancer for reducing effect of the background light on the electrical stimuli.
An intraocular lens to be implanted into the capsular bag after ablation of the crystalline lens includes a central optical portion and a haptic portion including haptic members arranged on the periphery of the optical part and for positioning the intraocular lens in the capsular bag. On the one hand, the posterior surface of the optical portion includes a sharp ridge at the peripheral edge and, on the other hand, the posterior surface of the haptic members includes a proximal area in the vicinity of the peripheral edge of the optical portion, each proximal area including at least one tooth extending substantially along the entire width of each haptic member, the tooth or teeth having a sharp edge that becomes serrated in the posterior capsule in order to limit the migration of the epithelial cells of the haptic members towards the optical portion.
The methods, devices, and systems are provided for performing endovascular repair of atrioventricular and other cardiac valves in the heart. Regurgitation of an atrioventricular valve, particularly a mitral valve, can be repaired by modifying a tissue structure selected from the valve leaflets, the valve annulus, the valve chordae, and the papillary muscles. These structures may be modified by suturing, stapling, snaring, or shortening, using interventional tools which are introduced to a heart chamber. Preferably, the tissue structures will be temporarily modified prior to permanent modification. For example, opposed valve leaflets may be temporarily grasped and held into position prior to permanent attachment.
An external vein support comprising an elongate axial body including an axis, said body is plastically deformable by at least one of stretching, bending, twisting, and any combination thereof, relative to said axis.
Disclosed herein, among other things, is system for thermal neuroinhibition. According to an embodiment, the system includes at least one implantable fluid-filled conduit adapted to be placed adjacent to a neural target. The system also includes an implantable housing including a power source, a heat pump deriving power from the source and connected to the conduit, and a controller within the housing. The controller is connected to the heat pump, and is adapted to control the heat pump to effect fluid flow in the conduit to cool the neural target using electromechanical refrigeration to reversibly inhibit neural activity as part of a medical treatment.
A removable anchoring pedicle screw includes an implant mounting screw, an anchor screw, and a nose piece. The anchor screw is configured to be rotated relative to the implant mounting screw such that the nose piece engages an expandable anchor. The expandable anchor is disposed between the implant mounting screw and the nose piece such that rotation of the anchor screw relative to the implant mounting screw causes expansion of the expandable anchor.
A polyaxial fastener is secured within an implant with a retaining ring. The ring is assembled onto a circumferential groove formed in the fastener head. The groove and ring are positionable, when the fastener is installed into an implant, at a wide portion of the mating polyaxial aperture in the implant. The ring is compressible into the groove to form a narrowed diameter, which is passable into a narrow diameter of the aperture, near an entrance to the aperture. The ring is released to expand and increase an overall diameter of the head and ring assembly, thereby rending the assembly too wide to pass by the narrow entrance to the aperture, thereby securing the assembly within the implant.
A bone plate having a plurality of openings for receiving a compression bone screw or a cortical screw. An end cap, threadably insertable in the opening and having a layer of polymeric material interposed between the end cap and the top of the head such that the compression of the polymeric material would allow slight axial movement of the screw. Alternatively, a locking ring adapted to attach to the head of the screw and having shape complimentary to the features formed on the head. The locking ring and the bone screw being assembled together and being insertable in the bone simultaneously using a dedicated instrument. Compression may be applied to a bone fracture by turning the bone screw alone after the locking ring has reached its final axial position.
A filter, configured to be disposed within a body lumen, that includes one or more filtering zones. The filter may include one or more sets of legs, configured to interact with the body lumen wall in order to stabilize the position of the filter and to create a filtering structure. In some embodiments the filter may be integrally formed form a single tube of material.
Provided is an apparatus that includes a nerve conduit and a nested manifold for providing a reduced pressure. Also provided is a system that includes a source of reduced pressure, a nerve conduit and nested manifold, and a conduit for providing fluid communication between the manifold and the source of reduced pressure. Additionally provided is a method that includes implanting the above nerve conduit and manifold at a site of damaged nerve tissue and applying a reduced pressure to the manifold thereby stimulating repair or regrowth of nerve tissue.
Devices, systems and methods for compressing, cutting, incising, reconfiguring, remodeling, attaching, repositioning, supporting, dislocating or altering the composition of tissues or anatomical structures to alter their positional or force relationship to other tissues or anatomical structures. In some applications, the invention may be used to used to improve patency or fluid flow through a body lumen or cavity (e.g., to limit constriction of the urethra by an enlarged prostate gland).
A medical device includes an elongate member having a plurality of flexibility features and a basket having a plurality of legs. The elongate member and the basket are formed from a single piece of a material. The flexibility features are formed by removing first portions of the material to increase flexibility of the elongate member. The legs are formed by removing longitudinal portions of the material.