An optical intensity control system for use with an optical switch providing individual signal paths between input and output ports. The system has a optical splitters connectable to output multiplexers of the switch and also has variable optical intensity controllers (VOICs) for insertion into the individual signal paths. The VOICs individually control the intensity of optical signals present in the signal paths in accordance with intensity control signals. An equalizer is connected to the splitters and to the VOICs, for producing an estimate of the optical power of each individual switched optical signal and generating the intensity control signals. The equalizer is adapted to controllably isolate individual switched optical signals. In this way, individual and independent control of the power on each optical channel is provided, wavelength-dependent losses introduced by all the devices in the switch including the WDM devices at the output of the switch are accounted for and one optical coupler is required for each output optical fiber. Coarse equalization may be provided for each multiplexed optical signal either at the switch input or output, permitting a reduction in the dynamic range over which the VOICs inside the switch are required to operate.
An integrated cable configured to communicate over much of its length using one or more optical fibers includes an electrical connector at least one end. The electrical connector at a first end of the integrated cable and an optoelectronic device coupled to or included in the other end of the integrated cable may utilize a bidirectional status link to transmit status data to each other. If the status data indicates that optical signals transmitted over the optical channels between the two devices are not potentially exposed to view, the two devices may operate above nominal eye safety limits. Otherwise, the two devices may operate at or below nominal eye safety limits. If the second optoelectronic device is not status-link enabled, the first optoelectronic device may operate at or below nominal eye safety limits.
There is provided a lens control device that feeds a motor current to a lens drive motor which drives lens according to the motor current, the lens control device including: a servo computation portion that calculates a motor current setting value such that a deviation of the position of the lens from a target position to which a correction offset has been added is reduced; a motor driver that generates the motor current according to the motor current setting value; and a calibration computation portion that adjusts the correction offset such that an average value of the motor current approaches zero.
Disclosed herein is an information-processing apparatus including an event-log acquisition section acquiring an event log provided by a content reproduction apparatus capable of reproducing a content as an event log including at least information identifying the content and information indicating a reproduction start date/time and reproduction end date/time of the content, an event-log analysis section deriving a reproduction start date/time and reproduction end date/time of a content reproduced by the content reproduction apparatus from the event log, a playlist generation section generating a playlist, which is to serve as a set of pieces of information each used for identifying a content reproduced during a specific period of time, on the basis of the reproduction start date/time and reproduction end date/time of the content, and a playlist transfer section transmitting the playlist to the content reproduction apparatus.
Playability of a copy protected video signal is improved by reducing the darkening and or venetian blind effects which tend to cause artifacts in a video signal display. To this end, the copy protection signal includes automatic gain control (AGC) signals or pulses in video lines in a portion of the active or viewable video field or frame, wherein the AGC pulses comprise non similar AGC signals from one video line to another video line. The dis-similar AGC pulses may include pulses which are deleted, blanked, attenuated, pulse width modified, modulated, etc. In addition, selected sync pulses may be pulse width, amplitude and or position modified.
An area not displayed by a first stream recorded in a disk is complemented by a second stream which is transmitted from a server through a network to a playback apparatus. A picture represented by the second stream is superimposed on a picture represented by the first stream to display a complete picture. A sound included in the second stream is also mixed with a sound included in the first stream to output a complete sound.
In a DVD recording/playback system, a set top box STB receives an MPEG transport stream constituted by a plurality of transport packets, and a formatter extracts support information indicating if management information included in the transport packets includes predetermined items. A disc drive that records data on a recording medium having a management area and data area records the support information in the management area.
A video information item obtained by photographing and an audio information item obtained by recording are digitized to obtain a digitized video data item and a digitized audio data item each accompanied by a time information item, respectively. The digitized video data item is stored in such a manner as to be separated into the time information item and the digitized video data item. The digitized audio data item is stored in such a manner as to be separated into the time information item and the digitized audio data item. The separately-stored time information item and the digitized video data item and the separately-stored time information item and the digitized audio data item are combined in synchronization with each other. The combined time information items, the digitized video data item, and the digitized audio data item are stored in a predetermined format.
A mechanical stress activated interface and system comprising piezo-optical elements is described. The piezo-optical elements are fabricated from waveguides each having a core surrounded by a cladding material. The waveguides are supported on a substrate, thereby forming a thin sheet. The interface may take advantage of ambient light for illumination. Activation of the cores, such as by a user pressing the interface, may result in changes to their indices of refraction. More ambient light will be conducted along the lengths of the cores under stressed conditions than under non-stressed conditions. The output at the ends of the piezo-optical elements may be detected by light receiving elements. The output of the light receiving elements may be used by electronics coupled to a computer to determine which waveguides have been stressed, thereby determining the location of the touch on the interface. Methods for fabricating and using the interface are also described.
A super-resolution processor includes an N enlargement unit that generates an N-enlarged image by enlarging the input image by a factor N; an M enlargement unit that generates an M-enlarged image by enlarging the input image by a factor M; and a high-pass filter unit that extracts a high-frequency component of the M-enlarged image, as an M-enlarged high-frequency image. Additionally, a patch extraction unit extracts an estimated patch of a predetermined size from the M-enlarged high-frequency image, the estimated patch being a part of the M-enlarged high-frequency image; and an addition unit adds the estimated patch to a processing target block of the predetermined size in the N-enlarged image, to generate the output image, where M is smaller than N.
A method of generating a multiscale contrast enhanced image is described wherein the shape of edge transitions is preserved. Detail images are subjected to a conversion, the conversion function of at least one scale being adjusted for each detail pixel value according to the ratio between the combination of the enhanced center differences and the combination of the unenhanced center differences. Several adaptive enhancement measures are described.
A method and apparatus for encoding/decoding an image, wherein the method includes selecting a predetermined binarization table from a plurality of binarization tables based on prediction values of a current pixel and binarizing or inversely binarizing residual values by using the selected binarization table.
For automatically laying out a plurality of images, the present invention includes an image input unit which inputs an image; an analysis unit which analyzes the orientation of a principal object and the position of the principal object in the image from the image input by the image input unit; and a layout unit which places the image in accordance with the information analyzed by the analysis unit.
An information processing apparatus includes a plurality of information processing units that are connected in stages. Each of the information processing units comprises a plurality of processing units configured to process information and output a processing result and an integration unit configured to input the processing result of one or a plurality of the processing units and output the processing result after integrating the processing result, and changes a connection relation between the output of the processing result from the processing units and the input to the integration unit.
A system and method for generating a hierarchical LUT for implementing a color transformation within a color imaging system. In one embodiment, a coarse LUT is received which comprises a plurality of sub-cubes arrayed on a plurality of coarse levels on a structured coarse grid. Each of the sub-cubes encompasses at least one coarse LUT node. Sub-cubes in the coarse grid are identified that are bisected by a boundary surface of the gamut. Then, each of the identified coarse LUT sub-cubes are associated with fine LUT which comprises a plurality of fine LUT nodes arrayed on a plurality of fine levels on a structured fine grid. A hierarchical LUT is generated from the coarse LUT and the associated fine LUTs. Thereafter, the hierarchical LUT can be used for color transformation within a color imaging system.
Preferred aspects of the present invention can include receiving a digital image at a processor; segmenting the digital image into a hierarchy of feature layers comprising one or more fine-scale features defining a foreground object embedded in one or more coarser-scale features defining a background to the one or more fine-scale features in the segmentation hierarchy; detecting a first fine-scale foreground feature as an anomaly with respect to a first background feature within which it is embedded; and constructing an anomalous feature layer by synthesizing spatially contiguous anomalous fine-scale features. Additional preferred aspects of the present invention can include detecting non-pervasive changes between sets of images in response at least in part to one or more difference images between the sets of images.
A method of processing image data, to obtain image data for printing a junction area connecting a circular pad having a radius R with a linear line pattern by forming ink blots having a radius r in an overlapping manner, includes: setting a base pitch P as a base distance between adjacent ink blots; arranging image data of the pad, line pattern, and junction area, which is defined by an extension of the line pattern, in an x-y coordinate system; selecting a first determination point, which corresponds to one side of the junction area; comparing a distance from a center of the pad to the first determination point with a value of (R−r+P); and storing coordinates of the first determination point as print data if the distance from the center of the pad to the first determination point is greater than or equal to the value of (R−r+P).
Provided are a color to grayscale image conversion method of converting a color image into a grayscale image while maintaining original features of the color image, and a recording medium storing a program for performing the same. When an original color image is input, a target gradient with the features of the input original color image is acquired, and a global mapping function for converting the original color image into a grayscale image is determined based on the acquired target gradient. Thereafter, the original color image is converted into a grayscale image using the determined global mapping function. Therefore, it is possible to quickly convert a color image into a grayscale image, and to acquire a high-quality grayscale image with features of color difference included in the original color image.
Disclosed is an apparatus and method for ray-tracing using a path preprocess. The method for ray-tracing including launching a ray from a transmitting point at angles with regular intervals, setting a first side of an object where the launched ray is projected as a reference patch, and searching predetermined preprocessed path data for a counterpart patch corresponding to a second side of another object, the second side being exposed to the projected ray reflected or diffracted from the set reference patch, and tracing a transmission path of the reflected or diffracted ray.
A method for determining physical placement data for a plurality of wafers is disclosed. The method includes obtaining raw CCD array data from a linear CCD array by clocking data from pixels of the linear CCD array into memory cells of the memory device and ascertaining pixel transition data to determine whether at least one of an upper edge error, a lower edge error, a wafer thickness error, and transition-per-slot error exists. If an error is found, the method includes generating an error signal.
The invention provides analysis algorithms for quantitative assessment of microvasculatory video sequences that provide vessel thickness, vessel length and blood velocity per vessel segment. It further provides a method of for calculating the functional microvasculatory density and blood velocity as distributed over vessels with different thickness, in the field of view.
Improved 4D imaging reconstruction is provided for a freely breathing patient. 3D patient images from an imaging dataset are binned according to respiratory displacement or phase. The bins are defined by ranges, so every image in the raw 3D data set is included in a bin. Since binning in this manner often results in two or more images per bin, the 4D reconstruction is determined by selecting one 3D image from each bin at each patient position. This selection is performed so as to maximize the anatomical similarity of 3D images at adjacent patient positions. In cases where the 3D images include multiple slices, a 2D comparison of the closest slices can be used to determine anatomical similarity of the 3D images.
A method apparatus and computer product for imaging a human breast to map the breast ductal tree is disclosed. First, a breast is diffusion tensor imaged with high spatial resolution. Then the breast ductal tree is tracked using a protocol for breast based on echo-planar imaging (EPI) diffusion designed for optimizing diffusion weightings (b values), number of non-collinear directions for tensor calculations, diffusion, echo and repetition times, spatial resolution, signal to noise, scanning time and a sequence for fat suppression. The diffusion tensor is calculated by a non-linear best fit algorithm and then diagonalized with principal component analysis to three eigen vectors and their corresponding eigen values. A vector field map is obtained for tracking of breast ducts of the ductal trees along the direction of the 1st eigenvector v1 and the ductal tree is displayed on a voxel by voxel basis in parametric images using color coding and vector pointing.
The present invention relates to an apparatus (1) for segmenting an object comprising sub-objects shown in an object image. The apparatus comprises a feature image generation unit (2) for generating a feature image showing features related to intermediate regions between the sub-objects and a segmentation unit (3) for segmenting the sub-objects by using the object image and the feature image. Preferentially, the feature image generation unit (2) is adapted for generating a feature image from the object image. In a further embodiment, the feature image generation unit (2) comprises a feature enhancing unit for enhancing features related to intermediate regions between the sub-objects in the object image.
An image data subtraction system enhances visualization of vessels subject to movement using an imaging system. The imaging system acquires data representing first and second anatomical image sets comprising multiple temporally sequential individual mask (without contrast agent) and fill images (with contrast agent) of vessels respectively, during multiple heart cycles. An image data processor automatically identifies temporally corresponding pairs of images comprising a mask image and a contrast enhanced image and for the corresponding pairs, automatically determines a shift of a contrast enhanced image relative to a mask image to compensate for motion induced image mis-alignment. The image data processor automatically shifts a contrast enhanced image relative to a mask image in response to the determined shift. The image data processor subtracts data representing a mask image of a corresponding pair from a shifted contrast enhanced image of the corresponding pair, to provide multiple subtracted images showing enhanced visualization of vessels.
Two faces may be compared by calculating distances between different regions of the windows, and choosing one of the distances as the difference between the images. Two images are examined to detect the location of the face in the images. The faces may then be geometrically and photometrically rectified. A sliding window that is smaller than the whole face may be positioned at various locations over the images, and a descriptor is calculated for each window position. The descriptor for a window at one location in one image is compared with descriptors for windows in the neighborhood of that location in the other image. The lowest distance between window descriptors is chosen. The process is repeated for all window positions, resulting in a set of distances. The distances are sorted, and one of the distances is chosen to represent the difference between the two faces.
An image processing device includes a first camera that captures the periphery of a vehicle, specific region extracting units that extract regions, each of which is closer to the edge of an image than to the center of the image, as specific regions, and a movement amount calculating unit that calculates the amount of movement of the vehicle on the basis of image information in a plurality of specific regions. Therefore, it is possible to process only the first specific region and the second specific region of the captured image and thus effectively perform image processing.
A gesture recognition apparatus is caused to correctly recognize start and end of a gesture without use of special unit by a natural manipulation of a user and low-load processing for the gesture recognition apparatus. The gesture recognition apparatus that recognizes the gesture from action of a recognition object taken in a moving image includes: a gravity center tracking unit that detects a specific subject having a specific feature from the moving image; a moving speed determining unit that computes a moving speed per unit time of the specific subject; a moving pattern extracting unit that extracts a moving pattern of the specific subject; and a start/end judgment unit that discriminates movement of the specific subject as an instruction (such as an instruction to start or end gesture recognition processing) input to the gesture recognition apparatus when the moving speed and the moving pattern satisfy predetermined conditions.
A two-dimensional code with a logo, wherein a two-dimensional code that represents information by means of a cell dot distribution pattern formed by having a plurality of cells colored and a logo mark visually representing characters are superimposed. In a preferred embodiment, at least a part of the cell dot color area is smaller than the cell area while the two-dimensional code that represents the information by means of the cell dot distribution pattern that color codes the cells and the logo mark that visually represents the character are superimposed.
An articulating speaker assembly includes a first member including a first driver and a second member including second driver. The first member and the second member are pivotally connected for selectively changing the profile of the speaker assembly. A central housing member is pivotally connected to each of the first member and the second member, wherein the central housing member supports a third driver.
A headphone set is equipped with left- and right-ear headphone units. Each unit includes a housing body having a first plane section and a second plane section that faces the first section, the sections being almost perpendicular to a cross section of a cavum conchae of a user's ear when the housing body is fit in the cavum conchae, a speaker and a microphone aligned between the sections, the speaker being located at the first section side, the microphone being located at the second section side. A sound output section is provided at the first section, to give off sounds output by the speaker to an outer space of the housing body. A sound pick-up hole is provided at the second section, through which the outer space communicates with an inner space of the housing body created between a sound pick-up section of the microphone and the second section.
A microphone unit includes: a housing; a diaphragm which is disposed in the inside of the housing; and an electric circuit portion which processes an electric signal that is generated based on a vibration of the diaphragm. In the housing, a first sound guide space which guides a sound outside the housing to a first surface of the diaphragm via a first sound hole and a second sound guide space which guides a sound outside the housing to a second surface, that is, an opposite surface of the diaphragm via a second sound hole are formed. The electric circuit portion is disposed in either one of the first sound guide space and the second sound guide space; and an acoustic resistance portion which adjusts at least one of a frequency characteristic of the first sound guide space and a frequency characteristic of the second sound guide space is formed.
Device for generating acoustic waves comprising an assembly of substantially parallel deformable walls, made of a conductive elastomer material, the series of walls delimiting contiguous spaces therebetween alternately leading over two opposite surfaces of said assembly into two cavities, that are sealed relative to one another; and a rigid revolving chamber containing the assembly and having two sealed cavities opposite two surfaces. Two circular screened slots formed in the chamber define two vents that ensure communication between the cavities and the external acoustic medium. Means are also provided for applying, in a controlled and variable manner, a set of electric potentials to the walls in order to induce an electric field between the walls, consecutively active, and inactive for a control polarity, and inactive and active for the opposite polarity, so as to decrease the space covered by the field, i.e. and in series, and to thus equally increase the contiguous space.
There is provided a behind-the-ear hearing aid that makes it easy for a hearing aid wearer to estimate a position of a sound source with respect to a front-back direction and that enables an increase in aesthetic property when the hearing aid is worn. A behind-the-ear hearing aid of the present invention is used while fitted to an ear of a human body, and includes at least a microphone 101 which collects ambient sound, thereby generating an input signal and signal processing unit 102 that generates an output signal from the input signal. The hearing aid also has a behind-the-ear portion 110 that can be fitted to the ear and a receiver 103 that reproduces output sound from the output signal. When the behind-the-ear portion 110 is fitted to the ear, the microphone 101 is arranged in an entrance of an ear canal that lies in the extension of an ear canal 220 and that is disposed closer to an eardrum than to a plane that is defined by a helix 901, a tragus 902, and an earlobe 903.
A diaphonic valve utilizing the principle of the Synthetic Jet is disclosed herein. A diaphonic valve pump is provided for the inflation of an in-ear balloon. More complex embodiments of the present invention include stacks of multiple synthetic jets generating orifices as well as an oscillating, thin polymer membrane. In one or more embodiments of the present invention, a novel application is provided for the creation of static pressure to inflate or to deflate an inflatable member (balloon). In addition, sound can be utilized to inflate or deflate an inflatable member in a person's ear for the purpose of listening to sound.
A listening device includes an ear-part for being worn in or at an ear of a user, a microphone system including at least two microphones each converting an input sound to an electrical microphone signal, and a TF-conversion unit for providing a time-frequency representation of the at least two microphone signals. Each signal representation includes complex or real values of the signal in a particular time-frequency unit. The listening device also includes a DIR-unit with a directionality system providing a weighted sum of the at least two electrical microphone signals thereby providing at least two directional microphone signals having maximum sensitivity in spatially different directions and a combined microphone signal. Each time-frequency unit of the combined signal is attributable to a particular direction. A frequency shaping-unit modifies one or more selected time-frequency units to indicate directional cues of input sounds providing an improved directional output signal.
A beamforming system (ASY) comprises a modular transducer assembly (MTA) composed of a plurality of transducer modules (TM1, TM2, TM3). A transducer module comprises a plurality of interfaces having different geometrical orientations. An interface allows the transducer module to be physically coupled to another transducer module. In a reconnaissance phase, the beamforming system identifies transducer modules that are present in the modular transducer assembly (MTA). The beamforming system further identifies a structure in accordance with which the transducer modules have been physically coupled to each other. In a configuration phase, the beamforming system defines a signal relationship between the transducer modules on the basis of identification data that has been obtained in the reconnaissance phase and a desired directional response pattern.
Provided are a piezoelectric micro speaker and a method of manufacturing the same. The piezoelectric micro speaker includes: a substrate having a cavity therein; a diaphragm that is disposed on the substrate, the diaphragm including a vibrating membrane that overlaps the cavity; a piezoelectric actuator that is disposed on the vibrating membrane; and a weight that is disposed in the cavity and attached to a center portion of the vibrating membrane.
On a digital mixer, each channel is given a channel definition defining whether the channel is to be used individually or to be used as a group along with a certain channel. When a channel strip to which a user desires to assign and a channel which the user desires to assign are selected, it is determined whether the selected channel is a channel to be used individually or to be used as a group. When it is determined that the selected channel is to be used as a group, channels belonging to the group are assigned to the selected channel strip so that the user can concurrently control respective channels' values of a parameter by use of an operating element provided on the selected channel strip.
A volume control apparatus that is connectable to a controller and controls a volume value of a sound signal based on an instruction from the controller includes a receiving section for, when a controller-side volume setting value settable in the controller is changed by a user's operation, receiving the changed controller-side volume setting value from the controller. The apparatus also includes a first difference value calculating section for calculating a first difference value between the changed controller-side volume setting value and the controller-side volume setting value before change, a second difference value calculating section for calculating a second difference value between a maximum volume value controllable by the controller and a current volume value, and an increase value calculating section for multiplying the second difference value by a ratio of the first difference value so as to calculate an increase value of the volume value.
A grounding switch is described which operates properly even in the presence of negative voltages on a signal line. The grounding switch uses isolated field effect transistors that have their substrates tied to different voltages. The isolated field effect transistor has a gate voltage and substrate voltage which can be pulled down to a negative voltage when the signal line has a negative voltage allowing the switch to remain open even with a negative voltage.
An acoustic apparatus without increasing noise etc. even when plural directional microphones collect sounds from a place of the same distances is provided. Sound signals output from the microphone arrays are subjected to phase shift by phase shift circuits 211A to 211H, and the sound signals are combined by an adder 212. The phase shift circuits 211A to 211H performs phase shifts according to installation positions of the microphone arrays. The phase shift circuit 211A makes the shift 0 degree, the phase shift circuit 211B makes the shift 45 degrees, the phase shift circuit 211C makes the shift 90 degrees, and sequentially to the phase shift circuit 211H, the shifts are made according to rotational angles.
In one embodiment, a Time-Lapse Cryptography Service is provided based on a network of parties. Senders encrypt their messages with this public key whose secret key is not known to anyone—not even a trusted third party—until a predefined and specific future time T+.delta., at which point the secret key is constructed and published. In one example, the secret key can only be known after it is constructed. At or after that time, anyone can decrypt the cipher text using this secret key. In one embodiment, a method for cryptographic encoding is provided, including generation of cryptographic key components by a plurality of parties, where participation of the parties is verified. A public key is constructed from a plurality of key components.
System and methods for processing encoded messages at a message receiver are described. Encoded message processing is performed in multiple stages. In a first stage, a new received message is at least partially decoded by performing any decoding operations that require no user input and a resulting context object is stored in memory, before a user is notified that the new message has been received. When the user accesses the new message, any further required decoding operations are performed on the stored context object in a second stage of processing. The message can subsequently be displayed or otherwise processed relatively quickly, without repeating the first stage decoding operations. Decoding operations may include signature verification, decryption, other types of decoding, or some combination thereof.
A method of handling security configuration for a mobile device using a mapped security context in a wireless communication system includes utilizing the mapped security context to derive ciphering and integrity keys when security configuration, indicating a key update based on a cached security context, is received.
Methods of providing a transport streams are disclosed. In one embodiment, among others, a method comprises receiving an input transport stream having a plurality of packet identifier (PID) streams included therein, the plurality of PID streams comprising first, second, third, and fourth PID streams, decrypting the first PID stream, statistically multiplexing the second PID stream, encrypting the third PID stream, and transmitting the fourth PID stream, wherein the receiving, decrypting, statistically multiplexing, encrypting, and transmitting are implemented at a transport stream apparatus.
A system, apparatus, and method are directed towards allowing ingestion of encrypted content into such as a VOD server, or PVR, or the like by selectively encrypting portions of a content stream based on various selection rules. In one embodiment, the selection rules include leaving selected portions of the content stream unencrypted, including packets that include a PES header; or video packets that include various trick play data such as picture start, GOP start, sequence start, sequence end data; PIDs associated with a PAT, PMT, or the like; while other portions of the content stream may be encrypted, including video and/or audio PIDs, or other video and/or audio portions. In still another embodiment, Entitlement Control Messages (ECMs) may be inserted that employ an encryption/decryption key rotation scheme, such as odd and/or even scrambling control bit structures, which may also be rotated based on a variety of conditions.
In the present method of implementing functioning of an encryption engine, a plurality of logic blocks are provided, each for running a function. Each function is run based on three variables, each of which may have a first or second value. The function is run with the first variable value selected as having its first value, and with the second and third variables having their actual values. The function is again run with the first variable value selected as having its second value, and again with the second and third variables having their actual values. An actual value of the first variable is determined, and the output of the logic block is determined by the actual value of the first variable.
An input/output apparatus includes a speaker, a microphone, an adaptive filter circuit and a control circuit. The speaker is configured to output audio based on a voice-receiving signal. The microphone is configured to produce a voice-transmitting signal based on gathered audio. The adaptive filter circuit is configured to produce a residual signal based on a pseudo echo signal and a amplified voice-transmitting signal. The pseudo echo signal is produced from the voice-receiving signal and a transfer coefficient which expresses audio transfer properties between the speaker and the microphone. The amplified voice-transmitting signal is produced by causing a microphone amplification circuit to amplify the voice-transmitting signal. The control circuit is configured to stop output of the residual signal from the adaptive filter circuit during at least one of the speaker and the microphone is muted.
A method is provided for operating a directory assistance system having a plurality of different network elements operating on different protocols. The method includes receiving, at a first network element, operating on a first operating protocol, an incoming directory assistance call from a caller. A universal call identifier data is then assigned to the call. The call is then transmitted to a second network element, operating on a second operating protocol, wherein the same universal call identifier is accepted by the second network element. A record is generated of the exchange of the call between the first and second network elements based on the assigned universal call identifier data.
A method and platform for reducing call blocking in a telecommunications network addresses problems caused by the use of auto-dialers and by mass calling events in the network. When a capacity excess is detected, information associated with excess calls, such as the Initial Address Message (IAM), is stored in an incoming call cache memory. A message may be played to the caller informing the caller of the status of the message. Once additional call capacity is open, the call is connected using the call information stored in the cache. The calls may be removed from the cache and connected on a first-in, first-out basis.
An emergency call handling system can provide emergency call routing and processing that compliments or modifies the routing and processing provided by conventional enhanced 911 (E-911) and next generation 911 (NG-911) systems. Both the routing and processing can be based on rule sets detailed in emergency call handling profiles (ECHPs). Any entity (e.g., SIP servers, switches, terminals, etc.) within the system can process and route the emergency call by executing the rule sets within the ECHPs associated with the call. The ECHPs are delivered to the entities within the system by value or by reference. A SIP server, e.g., may execute all or a subset of the rule set, and may communicate with an application server to execute other subsets of the rule set.
A compound zone plate comprising a first zone plate frame including a first zone plate, a second zone plate frame including a second zone plate, and a base frame to which the first zone plate frame and the second zone plate frame are bonded. In examples, two more zone plates are added to make a four element optic. In the assembly process, the microbeads are used to ensure the parallelism, dial in the distance precisely between the zone plates by selecting the microbead size, possibly in response to the width of the frames, and ensure low friction lateral movement enabling nanometer precision alignment of the zone plates with respect to each other prior to being fixed by the adhesive. That is, when the frames are pressed together to ensure parallelism, it is still possible to align them to each other since the microbead layer facilitates the inplane movement of the alignment process.
Systems and methods for remote diagnostic imaging. The systems include a diagnostic imaging kiosk. The kiosk includes, for example, a first housing module and a second housing module. The first housing module is configured to house, among other things, a diagnostic imaging system (e.g., an X-ray system). The second housing module is configured to house electronics associated with the operation, control, and networking of the kiosk. The electronics include, for example, a primary controller, an X-ray controller, an X-ray generator, an internal display controller, an external display controller, one or more routers, and a digital radiology module. The kiosk is configured to communicatively connect to a remote technician's workstation, and a remote technician at the workstation is able to remotely control the kiosk through a packet-switched network. The control of the kiosk includes controlling access to the kiosk, the position of a diagnostic imaging unit, the capture of diagnostic images, the display of information to a patient, etc.
Discussed herein is a shift register which is capable of stabilizing an output thereof. The shift register includes a plurality of stages for sequentially outputting scan pulses in such a manner that high durations of the scan pulses partially overlap with each other. Each of the stages includes a node controller for controlling a charging duration of a set node, and an output unit for outputting a corresponding one of the scan pulses through an output terminal for the charging duration of the set node.
A low power consumption shift register which inputs a CK signal with a low voltage with almost no effect of variation in characteristics of transistors. In the invention, an input portion of an inverter is set at a threshold voltage thereof and a CK signal is inputted to the input portion, of the inverter through a capacitor means. In this manner, the CK signal is amplified, which is sent to the shift register. That is, by obtaining the threshold potential of the inverter, the shift register which operates with almost no effect of variation in characteristics of transistors can be provided. A level shifter of the CK signal is generated from an output pulse of the shift register, therefore, the low power consumption shift register having the level shifter which flows a shoot-through current for a short period can be provided.
The present invention provides a method for producing Cu67 radioisotope suitable for use in medical applications. The method comprises irradiating a metallic zinc-68 (Zn68) target with a high energy gamma ray beam. After irradiation, the Cu67 is isolated from the Zn68 by any suitable method (e.g., chemical and/or physical separation). In a preferred embodiment, the Cu67 is isolated by sublimation of the zinc (e.g., at about 500-700° C. under reduced pressure) to afford a copper residue containing Cu67. The Cu67 can be further purified by chemical means (i.e., dissolution in acid, followed by ion exchange).
A clock generation circuit for a transmitter which transmits data according to an output clock signal is provided. The clock generation circuit include a clock generator and a phase locked loop (PLL). The clock generator generates a first clock signal. The PLL initially generates the output clock signal according to the first clock signal. When a frequency of the output clock signal generated according to the first clock signal is not within a range required for specification of the transmitter, the PLL generates the output clock signal according to a second clock signal.
A method and apparatus for detecting out-of-specification data streams and voltage controller oscillator operation. Data may be received over evaluation periods. Each evaluation period is segmented into n sub-periods. Each n sub-period has the same length. Each n sub-period spans a portion of the data. The corresponding data period starting at each of the n sub-period is evaluated. The sub-period interval counts may be stored in a first-in-first-out register.
A user apparatus for performing cell search includes: a timing information detection unit configured to detect timing information of a synchronization signal transmitted from a connected base station; a secondary synchronization channel correlation detection unit configured to detect a correlation of a secondary synchronization channel included in a synchronization signal transmitted by other base station other than the connected base station by using the timing information detected by the timing information detection unit; and a secondary synchronization channel detection unit configured to detect the secondary synchronization channel based on a result of the correlation detection by the secondary synchronization channel correlation detection unit.
The present invention relates to a wireless communication node (20A) adapted to via feeder ports be connected to antenna ports. It comprises signal handling and estimating means (21A) adapted to collect signals from a mobile station and to generate a plurality of channel estimates, connection combination information holding means (22A) adapted to hold information about all possible feeder port-antenna port connections, processing means (24A) comprising channel modelling means (23A) adapted to provide a channel model for the received signals. If further comprises channel model fitting means (25A) adapted to compare the channel model with the channel estimates for a plurality of permutations obtained by the connection combination information and order identifying means (26A) adapted to identify the feeder port connection order corresponding to the permutation order giving the best fit between channel model and channel estimates, hence allowing identification of the order in which the feeder ports actually are connected to the antenna ports.
An integrated circuit that includes a receive data path is described. The receive data path: equalizes a received analog signal, converts the resulting equalized analog signal to digital data values based on a clock signal, and recovers the clock signal in the digital data values. The integrated circuit also includes an on-chip oscilloscope. The oscilloscope includes: two comparators, a phase rotator that outputs an oscilloscope clock signal whose phase can be varied relative to that of the recovered clock signal, and an offset circuit that outputs a voltage offset. Based on the voltage offset and the oscilloscope clock signal, the comparators output digital values which can be used to determine eye patterns that correspond to the analog signal before and after equalization. The eye patterns can then be correlated with an error rate associated with the received data.
A method and device is provided for detecting data symbols in a received radio signal. Each data symbol is allocated transmit-side a symbol value-specific PN sequence of successive PN chips in the chip clock, and the allocated PN sequences are offset QPSK modulated. The method for incoherent detection includes converting the received radio signal into a complex baseband signal sampled in the chip clock, generating a demodulated signal by differential demodulation of the complex baseband signal, calculating correlation results by correlating the demodulated signal with the derived sequences, and deriving the values of the data symbols by evaluating the correlation results. Each derived sequence is assigned to a PN sequence allocable transmit-side and includes derived chips, whose values correspond to a logic linking of particular PN chips of the PN sequence allocable transmit-side that is assigned the derived sequence. The invention relates furthermore to a corresponding receiving unit.
A method for a user equipment to precode and transmit an uplink signal efficiently in a 4-antenna system and a method for a base station to receive the transmitted signal efficiently are disclosed. Four antennas of a user equipment can be grouped by a 2-antenna unit. In consideration of this antenna group, it is able to perform precoding using antenna selection/DFT matrix of the antenna group unit. Moreover, a rank-3 codebook can be configured to include a precoding matrix of a type in consideration of power balance per antenna and a precoding matrix including one non-zero component only in one row for maintaining a good CM property.
A method for transmitting information according to a target encoding rate is provided according to the embodiments of the present invention, which includes: obtaining basic information bits and at least one incremental information bit from information encoded by a base station (BS) according to a target encoding rate; and sequentially transmitting the basic information bits and the at least one incremental information bit to a mobile station (MS) within a determined time interval, in which the target encoding rate is an encoding rate used by the BS when the MS is capable of correctly decoding the information transmitted by the BS. A BS and an MS are further provided according to the embodiments of the present invention, thereby reducing power consumption by the MS.
A method for filtering a signal having a series of symbols to be transmitted using the default coefficients, detecting occurrence of a series of consecutive common symbols followed by a different symbol in the series of symbols and based on detecting the occurrence, changing from the default coefficients to a second set of coefficients.
The present invention relates to an apparatus and a method for selection of a precoding matrix. In the present invention, a precoding matrix to enable an effective signal-to-noise ratio (ESNR) to have a maximum value with respect to a signal vector that requires retransmission is selected in a codebook and fed back to a transmitter. Accordingly, since the effective signal-to-noise ratio has the maximum value after the signal vector is retransmitted, it is possible to minimize a reception error probability of retransmission.
A receiver may be operable to receive a QAM-based, inter-symbol correlated (ISC) signal at a signal-to-noise ratio of between 29 dB and 31 dB and process the QAM-based, ISC signal to output estimated symbols at a symbol error rate of between 2×10−1 and 1×10−3. The QAM-based, ISC signal may be a partial response signal generated by passing a first signal through a partial response pulse shaping filter. The partial response pulse shaping filter may provide greater capacity than a capacity achieved by passing the first signal through a root-raised-cosine-based pulse shaping filter. The receiver may comprises an input filter, and the processing of the QAM-based, ISC signal may comprises filtering the QAM-based, ISC signal via a filter configured to achieve a desired total partial response in combination with the partial response pulse shaping filter.
A signal generator and signal processor for single carrier wireless communication systems with frequency domain equalizer operable to use pseudorandom-noise sequences for cyclic prefix, the pseudorandom-noise sequences for coarse timing synchronization, channel estimation, carrier synchronization, signal-noise-ration estimation and channel equalization.
Apparatuses and methods for providing efficient spectrum sensing and signal detection using cyclostationary based spectrum sensing algorithms. A method embodiment is provided, comprising: receiving input samples of a signal having expected predetermined properties; transforming the input samples to angular form and obtaining data samples corresponding to at least one angle vector; performing a cyclostationarity test on the at least one angle vector, the cyclostationarity test being done entirely in an angular domain; wherein the cyclostationarity test comprises testing the at least one angle vector for a non-uniform distribution, the non-uniform distribution of the at least one angle vector indicating cyclostationarity in the input samples; and where cyclostationarity in the input samples is determined, refraining from transmitting radio frequency signals over an air interface at a frequency corresponding to the received signal. Apparatuses for implementing the methods are also disclosed.
In at least some embodiments, a system includes a multiple-input multiple-output (MIMO) base station and a plurality of MIMO user equipment (UE) devices in communication with the MIMO base station. The MIMO base station is configured to switch between a single-user (SU)-MIMO mode and a multiple-user (MU)-MIMO mode during communications with the plurality of MIMO UE devices based on multi-rank precoding matrix indicator (PMI) feedback received from at least one of the MIMO UE devices.
Disclosed is a BSLM method of generating U independent alternative symbol sequences by changing a phase of symbol sequences by phase sequences and transmitting the alternative symbol sequences with a PAPR to lower the PARR of a transmission signal of a transmitter in an OFDM system. The transmitter uses m-sequences as the phase sequence and a receiver uses an ML decoder to distinguish the phase sequence. The BSLM method includes rotating phases in blocks according to the m-sequences used in the respective symbol sequences, selecting a signal sequence with a minimum PAPR among U alternative signal sequences generated by the m-sequences in the transmitter, and partitioning U alternative symbol sequences into U/2 blocks in the transmitter. Block partitioning and predetermined phase rotation are used to embed side information in an alternative signal sequence, and the BSLM scheme may be extended to a BPTS. Since low decoding complexity is given while detecting side information, the same BER performance is obtained as that of the conventional BSLM scheme in the AWGN channel.
A decoder is disclosed. A video decoder extracts, when receiving a video stream, video output time information attached to each video frame. Thereafter, a difference value calculator calculates a difference value between an occurrence time of a synchronizing signal and the video output time information. Further, an audio output time corrector corrects, using the difference value, audio output time information attached to each audio frame. Then, a video source outputs video represented by a video frame in synchronization with a synchronizing signal. An audio source outputs, when a value of reference time information and a corrected value of the audio output time information are synchronized, audio represented by an audio frame with the synchronized audio output time information.
Methods and systems for detecting and compensating for motion depicted in a sequence of frames are disclosed. One example method includes converting video frames to monochrome. Conversion of an image to monochrome includes sampling luminance data of a portion of pixels in the image to identify the image as being of a particular image type, selecting a bit plane of the image based on the identified image type, and converting the image to a monochrome image using the selected bit plane. After conversion of video frames to monochrome, a pixel subset in a monochrome image corresponding to a first frame is compared to candidate matching pixel subsets within a search area of a monochrome image corresponding to a second, consecutive frame. The frames are processed to compensate for perceived motion blur based on the detected inter-frame motion.
Coding techniques for a video image compression system involve improving an image quality of a sequence of two or more bi-directionally predicted intermediate frames, where each of the frames includes multiple pixels. One method involves determining a brightness value of at least one pixel of each bi-directionally predicted intermediate frame in the sequence as an equal average of brightness values of pixels in non-bidirectionally predicted frames bracketing the sequence of bi-directionally predicted intermediate frames. The brightness values of the pixels in at least one of the non-bidirectionally predicted frames is converted from a non-linear representation.
A system estimates impairment contributions for upstream communications in a cable television system. The system receives equalization coefficients used by end devices in the cable television system. The equalization coefficients are used by equalizers to mitigate distortion in upstream channels for the end devices. The system analyzes the coefficients based on impairment thresholds to determine whether impairment problems exist and to identify the types of impairment problems that exist.
A disclosed multi-beam laser power control circuit includes a light receiving element receiving power output from semiconductor lasers to control output power of a semiconductor laser array having plural semiconductor lasers, automatic power control circuits (APC circuits) controlling emission power output from semiconductor lasers based on received corresponding automatic power control execution signals so as to be set to predetermined emission power based on output from the light receiving element, and APC execution signal input terminals inputting the corresponding automatic power control execution signals, wherein, when plural APC execution signals input to the corresponding APC execution signal input terminals are overlapped, the automatic power control circuits (APC circuits) to be preferentially operated is determined based on input timings of the APC execution signals and operated.
Processing workpieces such as semiconductor wafers or other materials with a laser includes selecting a target to process that corresponds to a target class associated with a predefined temporal pulse profile. The temporal pulse profile includes a first portion that defines a first time duration, and a second portion that defines a second time duration. A method includes generating a laser pulse based on laser system input parameters configured to shape the laser pulse according to the temporal pulse profile, detecting the generated laser pulse, comparing the generated laser pulse to the temporal pulse profile, and adjusting the laser system input parameters based on the comparison.
An apparatus and method for prioritizing communications between devices are provided. According to one aspect, an interface device for providing communications between at least one source device and at least one destination device comprises an input, logic, and an output. The input of the interface device receives data in a first format from the source device. The logic identifies the destination device for receiving the data. The logic then identifies a second format compatible with the destination device and translates the data from the first format to the second format. Transmission of the translated data is then prioritized by the logic based on characteristics of the translated data, which may include the format of the translated data or a service plan associated with the destination device or source device. The translated data is then transmitted to the identified destination device via the output.
A method and/or system of transmitting media items using aggregating bandwidths of disparate communication channels between a media source and a media player. By using the combined bandwidth of more than one communication channel, a media item that requires a bandwidth larger than a single communication channel can be transmitted. The media source also converts the media item depending on the available bandwidth of the communication channels. By dynamically changing the formats of the media item, more robust and reliable communication between the media source and the media player can be achieved.
A framer comprises a channel state block configured to store channel state information (CSI) of a data stream. The CSI includes one or more format indicators and one or more sample size indicators. The framer also comprises a frame timer configured to provide frame state information and a frame builder communicatively coupled to the channel state block and the frame timer. The frame builder is configured to receive the one or more format indicators and the one or more sample size indicators. The frame builder is also configured to receive the frame state information and to receive at least some of data units of the data stream. The frame builder is also configured to build a self-describing superframe based on the one or more format indicators, the one or more sample size indicators, the frame state information, and the at least some of data units. A deframer is also disclosed.
A telecommunication and multimedia management apparatus and method that supports voice and other media communications and that enables users to: (i) participate in multiple conversation modes, including live phone calls, conference calls, instant voice messaging or tactical communications; (ii) review the messages of conversations in either a live mode or a time-shifted mode and to seamlessly transition back and forth between the two modes; (iii) participate in multiple conversations either concurrently or simultaneously; (iv) archive the messages of conversations for later review or processing; and (v) persistently store media either created or received on the communication devices of users. The latter feature enables users to generate or review media when either disconnected from the network or network conditions are poor and to optimize the delivery of media over the network based on network conditions and the intention of the users participating in conversations.
A host device interfacing with a point of deployment (POD) and a method of processing broadcast data are disclosed. Herein, an Internet Protocol (IP) physical interface unit receives an Ethernet frame including broadcast data; and a routing engine transforms the Ethernet frame to an IP packet when a destination address included in the Ethernet frame matches with an address of a pod and routs the transformed IP packet to an extended channel connected to the POD. Accordingly, it is possible to protect contents using a conditional access provided by the existing cable card and process broadcast data received on all types of transmission protocols including an IP protocol over a wired/wireless network using a channel provided for connection between the existing cable card and the host device.
In one embodiment, a gateway implements: receiving an indication that a first and a second end point of a communication session are both associated with a first gateway, the first gateway in communication with a second gateway to access services; receiving from the first end point at the first gateway a compressed packet; and communicating within the first gateway, the compressed packet from the first end point to the second end point, where the communicating is initiated in response to the indication that the first and second end points of the communication session are both associated with the first gateway, and where the communicated compressed packet is communicated through the first gateway without passing through the second gateway.
Provided is a communication system which connects a unified C/U router to a network having C/U separation, wherein the stopping of U-plane communication of the unified C/U router is prevented even when the messages transmitted from a C-plane controller of the network having C/U separation do not arrive because of faults in the network having C/U separation. The routing information of a C-plane message (routing protocol) received by a U-plane controller is sent to an adjacent peer without being reflected in a routing table of the U-plane controller. The routing table of the U-plane controller is generated on the basis of the routing information (FIB information) received directly from the C-plane controller. In addition, a keep-alive packet from the unified C/U router is not sent to the C-plane controller and keeps alive the connection with the user router at the transmission destination.
There are provided a scalable method for mobility management applied to an IP-based network system including a plurality of routers and a plurality of servers, a part of which serve as a home routing manager (HRM), a part of which serve as local routing managers (LRM) for individual mobile nodes. The method at least comprises the steps of sending a first query about a routing address of a destination mobile node toward the HRM, based on an activation notification (AN) from an ingress access router (AR) of the plurality of routers, triggered by a source mobile mode, from an LRM receiving the activation notification; relaying the first query via one or more intermediate routing managers (IRM) closer to the HRM until the first query reaches the HRM; and in response to the first query, sending the routing address of the destination mobile node back to the ingress access router through the relay path from the HRM.
A device for managing calls sent by a local terminal (T1-T5) includes: an interface (11-15) for communication with each of said local terminals (T1-T5) communications client modules (CL2-CL5) each able to set up a communications link of a communications service with a distant terminal (T6-T10) via a communications network; and routing means (18) for selecting, should one of the communications client modules receive an incoming call from a distant sending terminal, a local terminal able to receive said call and to redirect said call to the communications interface with the selected local terminal in order to set up a communications link between said distant sending terminal and the selected local terminal via the communications client module receiving the call.
According to some embodiments, a mobile device may calculate adjustments of a timing advance based on a determined relative downlink timing change. Adjustments of the timing advance may be made toward a target timing advance in accordance with an adjustment parameter. The adjustment parameter may be adapted based on a received timing advance command and at least one of: a calculated adjustment of the timing advance; and a difference between the target timing advance and the timing advance. In another aspect, self-adjustment of a timing advance performed by a mobile device may be configured based on a property of a communication channel between the mobile device and a base station. In another aspect, self-adjustment of a timing advance performed by a mobile device may be configured based on timing advance commands received from a base station.
A method, medium, and wireless system are provided for scheduling access terminals to prevent starvation of access terminals connected to a communication network when one or more recently-connected access terminals having limited historical information about their channel conditions request time slots to initiate network communications. The wireless system includes access terminals and base stations that communicate over the communication network. The access terminals measure channel conditions associated with communications to the base station and transmit requests that specify a desired communication rate to the base station. The base stations receive the requests from each access terminal and select an access terminal to communicate during a subsequent time slot based on, among other things, the channel conditions and weighted average functions of the communication rate corresponding to the access terminal.
A method of performing a polling procedure in a wireless communication system is disclosed. In a method of performing polling procedure in a protocol layer in a wireless communication system, wherein the protocol layer performs a data retransmission function, the method comprises triggering a polling procedure to request a receiving side to transmit a status report, and terminating the triggered polling procedure if a predetermined event occurs.
A method and system to acknowledge a multicast message includes informing each node in a network about each multicast group to which it belongs, a relative position in each multicast group to which it belongs, and a group size of each multicast group to which it belongs, transmitting the multicast message, and transmitting, by each node in the multicast group, an acknowledgment in an assigned slot, which is determined by the relative position.
Methods and apparatus related to the sharing of wide area network (WAN) downlink bandwidth with peer to peer communication signaling usage are described. A WAN, e.g., cellular, wireless communications device using a base station attachment point, transmits a signal to be used by a peer to peer wireless communications device for controlling its peer to peer transmit power level. The peer to peer wireless communications device receives and measures the strength of the power control signal from the WAN wireless communications device. The measurement information is used by the peer to peer wireless communications device in determining whether or not peer to peer signal transmission is permitted and/or in determining a peer to peer transmission power level. Thus the WAN device is able to manage interference from the peer to peer devices in its vicinity which impacts its recovery of WAN base station downlink signals.
Inter-CoMP cell interference is reduced by “extending” at least one CoMP cell to include UEs served by a neighboring CoMP cell in the extended CoMP cell's transmission calculations, so as to minimize interference to the UEs served by other CoMP cells. Each UE in a border sub-cell identifies neighboring CoMP cells from which it receives interference in excess of a threshold value, and includes the interfering CoMP cells in a close-neighbor set. The close-neighbor set is transmitted to the UE's serving CoMP cell controller. When downlink transmissions are scheduled to the target UE, the controller notifies the neighboring CoMP cells in the close-neighbor set, identifying the target UE. Those CoMP cells then use information about the channel conditions from their transmit antennas to the target UE receive antennas to compute transmissions to UEs they serve, with the constraint that interference to the target UE is below a predetermined level.
A transmitting device of the present invention is used in a CDMA communications system, and comprises: a plurality of spreading units for spreading user data; a managing unit for managing spread codes; a determining unit for determining a number of codes to be multiplexed based on use statuses of the spread codes managed by said managing unit; and a multiplexing unit for multiplexing the user data spread by spreading units a number of which corresponds to the number of codes to be multiplexed.
The technology applies to a cellular radio communication system in which a mobile radio terminal transmits information in transmission time intervals (TTIs) that is received by a serving base station and by one or more non-serving base stations. A number N of hybrid automatic repeat request (HARQ) transmissions transmitted together by the mobile terminal is determined. An HARQ transmission includes a first transmission, one or more retransmissions of the first transmission, or both. An indication of the number N of HARQ transmissions is provided either directly or indirectly to the one or more non-serving base stations so that the one or more non-serving base stations can take the number N into account when combining HARQ transmissions received from the mobile terminal.
A wireless device receives a control command for transmission of a random access preamble on a first cell. The wireless device transmits the random access preamble in parallel with a first control packet, a second packet and/or a third packet. The wireless device determines a transmission power for the random access preamble. If a total calculated transmission power exceeds a predefined value, the wireless device reducing or scaling linear transmission power of one or more of the at least one parallel uplink transmission considering a higher priority for the transmission power of the random access preamble.
The present disclosure relates to a method for generating reference signals in a cellular wireless communication system having a set of resource blocks. Each resource block includes a plurality of resource elements. Each reference signal is associated with an antenna port in a cell. At least one reference signal in a cell is transmitted on at least one resource element only in resource blocks belonging to a subset of said set of resource blocks. The method includes shifting frequency in the resource blocks in the subset of resource blocks. The frequency shifting of the resource blocks belonging to said subset of resource blocks is cell-specific and is determined from an integer sequence having a length less than or equal to a total number of cell identities in said cellular wireless communication system. The disclosure also relates to methods and devices for transmitting and receiving such reference signals; and to a device for generating reference signals.
An apparatus for managing a multi-carrier in a communication system supporting the multi-carrier receives channel quality information of multi-carriers from a terminal and directs the terminal to change a primary carrier from a current primary carrier to one carrier of the multi-carriers on the basis of reference information including channel quality information.
An uplink scheduling method by a terminal which performs a communication service according to a semi-persistent resource allocation scheme in a Base Station (BS) of a mobile communication system. The uplink scheduling method includes generating resource allocation control information including a particular field set to a value predetermined according to the semi-persistent resource allocation scheme, code-masking the particular field of the resource allocation control information by using a Cyclic Shift (CS) value for a Multi-User Multiple Input Multiple Output (MU-MIMO) operation of the terminal, configuring a transport block including the code-masked resource allocation control information; and transmitting the transport block to the terminal. Therefore, the MU-MIMO can be implemented even in a Semi-Persistent Scheduling (SPS) scheme. When the BS provides a VoIP service, service delay, which may occur due to lack of resources, does not occur, and resources can be immediately allocated.
A wireless communication device includes a front-end module (FEM) network, an RF connection, and a system on a chip (SOC). A first set of FEMs is operable to output, via an antenna, a first outbound RF signal to a first wireless communication device and receive a first inbound RF signal via an antenna. A second set of FEMs is operable to output, via an antenna, a second outbound RF signal to a second wireless communication device, wherein the second outbound RF signal is representative of the first inbound RF signal, and receive a second inbound RF signal via an antenna, wherein the first outbound RF signal is representative of the second inbound RF signal. The SOC is operable to activate the first and second sets of FEMs, facilitate the first outbound RF signal representing the second inbound RF signal, and facilitate the second outbound RF signal representing the first inbound RF signal.
A method of controlling user equipment in a wireless communications network, the method comprising: producing different system information for different groups of user equipment based on characteristics of the user equipment, sending the system information to said user equipment, and indicating to which group of the user equipment the system information is addressed.
The present invention provides a user-carriable mobile communication relay device that relays communication between an internal network and an external network, in which even when the device is moved, the device dynamically selects and connects the external network depending on a surrounding radio wave environment or a communication content. The device is provided with an internal network communication adapter 13 compatible with the internal network connecting to a specific terminal device 4; external network communication adapters 11, 12 compatible with external networks with a mobile telephone network and with a wireless LAN at an installation site; a network selection processing portion 102 automatically selecting one or more networks to be connected, out of the external networks, according to stored profile information 141; an internal network connection processing portion 104 establishing or reconfiguring the connection to an internal network selected for a predetermined opportunity; an external network connection processing portion 105 establishing or reconfiguring the connection to an external network selected for a predetermined opportunity; and a communication relay processing portion 101 relay-processing communication between the internal network and the external network.
Disclosed herein are an automatically-switchable network extension apparatus and a switching method thereof. An automatic connection mechanism is particularly introduced into the apparatus. Exemplarily, a random number scheme is used to generate a value to be a basis for configuring the apparatus functioned as a CO or CPE operational mode. Based on the value, the method is to perform a connection with the other network extension apparatus. According to the embodiment, a set of connection parameters and the randomly-generated value are generated after the apparatus is initialized. The apparatus may be configured as CO or CPE operational mode according to the value, and simultaneously detect the operational mode of the apparatus to be linked. The apparatus accomplishes the connection if the two apparatuses have different modes, or the value is generated again to perform the connection.
There is provided a radio system, comprising: a receiver for receiving uplink channel traffic; a measuring unit for measuring periodicity of the received uplink channel traffic; and a control unit for controlling discontinuous uplink operation on the basis of the measured periodicity of the received uplink channel traffic.
A method and apparatus of reporting a measurement result in a wireless communication system is provided. A user equipment receives, from a base station, measurement configuration information comprising a reporting condition for triggering reporting of a measurement result on M component carriers among N component carriers, where M≦N. The user equipment determines whether the reporting condition is satisfied by measuring the N component carriers. If the reporting condition is satisfied, the user equipment reports a measurement result on the M component carriers to the base station.
A communication system extending Ethernet Operation and Management (OAM) Loopback Message (LBM) and Loopback Replay (LBR) functionality into a time division multiplexing (TDM) domain has a first interworking function (IWF) of an Ethernet network that transmits an Ethernet Operation and Management (OAM) Loopback Message (LBM) having a first type length value (TLV) field. The first IWF controls the first TLV field to indicate that a connectivity test is to extend beyond the Ethernet network. The communication system further has a second IWF of the Ethernet network that receives the Ethernet OAM LBM and interprets the first TLV field. In addition, the second IWF performs a TDM connectivity test across a TDM connection in response to the Ethernet OAM LBM and based on the first TLV field and transmits a reply for the Ethernet OAM LBM to the first IWF, the reply prompted by the LBM and comprising data based on the TDM connectivity test.
A wireless device receives message(s) configuring transmissions of sounding reference signals on a secondary cell in a secondary cell group. The wireless device receives an activation command to activate the secondary cell. The wireless device transmits the sounding reference signals if the secondary cell is activated, a timing advance command is applied to the secondary cell group, and a time alignment timer for the secondary cell group is running. The wireless device is configured to not transmit the sounding reference signals on the secondary cell during the period between receiving the activation command and applying the timing advance command.
The present invention provides systems and methods that enable a base station to consume less power. According to an embodiment of the invention, the base station reduces its power consumption by not continuously broadcasting control information. In such an embodiment, a mobile station that seeks access to a network to which the base station provides access does not search for broadcast control information prior to transmitting an access message to the base station, but rather simply transmits on a predetermined access channel an access request message. A base station that receives the access request message may unicast control information to the mobile station.
Disclosed is a communication apparatus in a network system constituted by a plurality of communication apparatuses, wherein the fact that a specific communication apparatus connected to a temporary network constructed temporarily has left the temporary network is detected. In response to the specific communication apparatus leaving the temporary network, another communication apparatus connected to the temporary network is allowed to return to the original network.
An OFDM signal transmission apparatus is provided, which includes a mapping unit configured to map first signals into N subcarriers and second signals into M subcarrier(s) to form an OFDM signal, wherein N is larger than M. The first signals are each indicating a same bit of retransmission information and the second signals are each indicating a same bit of information other than retransmission information. The OFDM signal transmission apparatus further includes a transmitting unit configured to transmit the formed OFDM signal.
An integrated circuit and a method for transmitting messages from initiator units of an integrated circuit to at least one target unit of the integrated circuit. The initiator units transform first digital messages into second digital messages, the second messages being added, then transmitted to the target unit. The transformation of the first messages into second messages comprises the application of an orthogonal transformation by means of vectors obtained from rows or columns of an identity matrix.
The information recording medium (100) of the present invention includes: an information layer (110) including a recording layer (115) capable of changing its phase containing at least one selected from Ge—Te, Sb—Te and Ge—Sb, and two or more dielectric layers (117, 118) disposed on the optical beam incident side with respect to the recording layer (115); and a transparent layer (102) disposed on the optical beam incident side with respect to the information layer (110) adjacent to the information layer, made of a transparent material with respect to the optical beam, and having a refractive index n of 1.75 or more. When two dielectric layers (117, 118) from the near side to the transparent layer (102) each are referred to as a dielectric layer b (118) and a dielectric layer a (117) from the optical beam incident side among the two or more dielectric layers (117, 118), a relationship of the refractive index n of the transparent layer 102, a refractive index nb of the dielectric layer b (118) and a refractive index na of the dielectric layer a satisfies nb1 by irradiation with optical beam.
Optical information recording medium comprises: a plurality of recording layers 14, each of which undergoes a change in refractive index by irradiation with recording beam; and an intermediate layer 15 provided between recording layers 14. The recording layer 14 contains polymer binder and dye dispersed in the polymer binder, and at least in proximity to an interface (far-side interface 18) between the intermediate layer 15 and a recording layer 14 disposed adjacent to incident side of the intermediate layer 15 from which the recording beam enters the intermediate layer, the intermediate layer 15 has refractive index different from that of the recording layer 14. Glass transition temperature of the polymer binder is lower than melting point and decomposition point of the dye, and refractive index of the polymer binder changes by receiving heat generated when the dye absorbs the recording beam, whereby information is recordable in the recording layer.
An optical information reproducing apparatus includes: an irradiation section irradiating a light beam onto an optical information recording medium, in which holes are formed along a virtual track on a recording medium, along the virtual track; a light receiving section receiving a reflected light beam when the light beam is reflected by the optical information recording medium and sequentially generating a light receiving signal corresponding to the light intensity; a detection section detecting a variation pattern appearing when a signal level of the light receiving signal changes according to the hole; and a code string generating section, when generating a code string corresponding to the signal level, generating a code corresponding to the one hole from the variation pattern if the variation pattern falls within a range and generating a code string, which includes a plurality of codes, from the variation pattern if the variation pattern exceeds the range.
Methods and apparatuses are provided to manage the replication of contest recording media by assigning unique identifiers for content and media, and manage a database of records corresponding to the unique identifiers which include information related to the use of the unique identifiers. In addition, methods and apparatuses are provided for responding to content copy authorization requests, and are synergistically integrated with media replication management methods and apparatuses by using the same database of records corresponding to unique identifiers as a basis for such responses.
Aspects of the disclosure provide a method for mounting a storage disc. The method includes receiving data stored at a location on the storage disc. The location on the storage disc used for providing a structure of the storage disc as a result of a previous recording on the storage disc. Then, the method includes determining a medium type based on a parameter in the structure that is indicative of the medium type.
Embodiments of the present invention are directed to a recording head for energy assisted magnetic recording. The recording head includes a near-field transducer (NFT) having a preselected shape and a surface, a writing pole on the NFT, and a non-metal heat dissipator positioned between the NFT surface and the writing pole. The non-metal heat dissipator includes a first portion in contact with the NFT surface, the first portion extending beyond an edge of the NFT surface in a first direction substantially perpendicular to an air bearing surface (ABS) and parallel to the NFT surface.
A method of screening static random access memory (SRAM) arrays to identify memory cells with bit line side pass transistor defects. After writing a known data state to the memory cells under test, a forward back-bias is applied to the load transistors of those cells. A write of the opposite data state is then performed, followed by a read of the memory cells. The process is repeated for the opposite data state.
The present invention discloses a flash memory and the fabrication method and the operation method for the same. The flash memory comprises two memory cells of vertical channels, wherein a lightly-doped N type (or P type) silicon is used as a substrate; a P+ region (or an N+ region) is provided on each of the both ends of the silicon surface, and two channel regions perpendicular to the surface are provided therebetween; an N+ region (or a P+ region) shared by two channels is provided over the channels; a tunneling oxide layer, a polysilicon floating gate, a block oxide layer and a polysilicon control gate are provided sequentially on the outer sides of each channel from inside to outside; and the polysilicon floating gate and the polysilicon control gate are isolated from the P+ region by a sidewall oxide layer. The whole device is a two-bit TFET type flash memory with vertical channels which has better compatibility with prior-art standard CMOS process. As compared with a conventional MOSFET-based flash memory, the flash memory according to the present invention possesses various advantages such as high programming efficiency, low power consumption, effective inhibition of punch-through effect, and high density, etc.
According to one embodiment, a non-volatile semiconductor memory device includes a memory cell array and a row decoder. The memory cell array has NAND strings as a physical block, and word lines respectively connected to memory cells included in the NAND strings. The row decoder includes latch circuits and a drive circuit. When a failure exists within a corresponding first logical block, the latch circuits store a flag indicating the failure. The drive circuit inhibits driving of the word lines belonging to the first logical block when the flag is stored in the latch circuit corresponding to the first logical block to which the selected word lines belong, and allows the driving of the word lines belonging to the physical block including the first logical block when the flag is not stored in the latch circuit corresponding to the first logical block to which the selected word lines belong.
A semiconductor memory device includes a power supply circuit configured to supply an intermediate voltage between a power supply voltage and a ground voltage to each of a plurality of memory cells. The power supply circuit firsts generates a first intermediate voltage between the power supply voltage and the ground voltage and a second intermediate voltage between the power supply voltage and the ground voltage. In response to a first control signal, the first intermediate voltage is supplied to an output node and the second intermediate voltage stops. A connection control circuit connects the first output node and a second output node when the second intermediate voltage generating circuit stops its operation.
A magnetic random access memory according to the present invention is provided with: a magnetic recording layer including a magnetization free region having a reversible magnetization, wherein a write current is flown through the magnetic recording layer in an in-plane direction; a magnetization fixed layer having a fixed magnetization; a non-magnetic layer provided between the magnetization free region and the magnetization fixed layer; and a heat sink structure provided to be opposed to the magnetic recording layer and having a function of receiving and radiating heat generated in the magnetic recording layer. The magnetic random access memory thus-structured radiates heat generated in the magnetic recording layer by using the heat sink structure, suppressing the temperature increase caused by the write current flown in the in-plane direction.
A semiconductor integrated circuit comprising a first circuit area for a low voltage operation and a second circuit area for a high voltage operation. The circuit areas comprise two vertically stacked backend patterned metal layers that are separated by an inter-metallic dielectric (IMD). The two metal layers and the IMD form a combination that is operable at the low voltage. The first circuit area uses a first portion of the combination for operating at the low voltage and the second circuit area uses a second portion of the combination for routing at the high voltage, the two metal layers in the second portion being interconnected through the IMD by via hole, for withstanding the high voltage. The first portion may comprise an array of magnetic random access memory (MRAM) devices and the second circuit area may comprise a display drive circuit.
A semiconductor device that can transmit and receive data without contact is popular partly as some railway passes, electronic money cards, and the like; however, it has been a prime task to provide an inexpensive semiconductor device for further popularization. In view of the above current conditions, a semiconductor device of the present invention includes a memory with a simple structure for providing an inexpensive semiconductor device and a manufacturing method thereof. A memory element included in the memory includes a layer containing an organic compound, and a source electrode or a drain electrode of a TFT provided in the memory element portion is used as a conductive layer which forms a bit line of the memory element.
An integrated circuit is formed having an array of memory cells located in the dielectric stack above a semiconductor substrate. Each memory cell has two adjustable resistors and two heating elements. A dielectric material separates the heating elements from the adjustable resistors. One heating element alters the resistance of one of the resistors by applying heat thereto to write data to the memory cell. The other heating element alters the resistance of the other resistor by applying heat thereto to erase data from the memory cell.
A semiconductor memory device comprising: a memory cell array in which memory cells each containing a variable resistive element and a rectifier element connected in series are arranged at intersections of a plurality of first wirings and a plurality of second wirings; and a control circuit for selectively driving said first wirings and said second wirings; wherein said control circuit applies a first voltage to said selected first wiring, and changes said first voltage based on the position of said selected memory cell within said memory cell array to apply a second voltage to said selected second wiring, so that a predetermined potential difference is applied to a selected memory cell arranged at the intersection between said selected first wiring and said selected second wiring.
We describe a photovoltaic (PV) panel power conditioning circuits, in particular for a PV panel with multiple sub-strings of connected solar cells. The power conditioning unit comprises a set of input power converters, one connected to each sub-string, a shared dc link to provide a common dc bus for the set of input power converters, and a common output power conversion stage coupled to the shared dc link to convert power from the shared dc link to ac power for a mains power supply output from the power conditioning unit. Local conversion of the sub-strings facilitates control of the power available from the panel and optimum energy harvesting, as well as local maximum power point tracking (MPPT) adjustment.
System and method for regulating a power converter. The system includes a first signal generator configured to receive at least an input signal and generate at least a first output signal associated with demagnetization and a second output signal associated with sampling. Additionally, the system includes a sampling component configured to receive at least the input signal and the second output signal, sample the input signal based on at least information associated with the second output signal, and generate at least a third output signal associated with one or more sampled magnitudes. Moreover, the system includes an error amplifier configured to receive at least the third output signal and a first threshold voltage and generate at least a fourth output signal with a capacitor, the capacitor being coupled to the error amplifier.
A display apparatus includes a first substrate and a second substrate. The first substrate includes a light shielding layer including a first opening which transmits a light. The second substrate includes a shutter including a second opening which corresponds to the first opening, and a first flexible electrode part which is connected to one end of the shutter and transmits or blocks the light by moving the shutter. The first flexible electrode part includes a first flexible electrode, a second flexible electrode, and an insulation pattern. The insulation pattern insulates the first flexible electrode and the second flexible electrode from each other, and exposes upper and lower surfaces of the first flexible electrode and the second flexible electrode which are parallel to the second substrate, by covering portions of the first flexible electrode and the second flexible electrode.
A power module includes a semiconductor device having a first and second arms, and gate driving circuit board. The first arm includes a first extending electrode, a first gate electrode of a first power device extending in a direction different from the first extending electrode, and a first output electrode extending in the different direction from the first gate electrode. The second arm stacked on the first arm includes a second extending electrode extending in the first extending electrode extending direction in an insulating state, a second gate electrode of a second power device, extending in the first gate electrode extending direction, and a second output electrode extending in the first output electrode extending direction with electrical connection thereto. The gate driving circuit board is disposed at the first and second gate electrodes extending side so as to face the semiconductor device.
A conduction-cooled enclosure comprises a card guide having a card guide channel, at least one controlled-volume cavity in the card guide channel, and a thermal interface material (TIM) in the at least one controlled-volume cavity.
A cable management system is provided that includes a cable management rack for accommodating a heat generating device, a first baffle mounted with respect to a first upright of the rack and for redirecting a rearward flow of cool air sideways from a space adjacent a front side of the rack, and/or a second baffle mounted with respect to a second upright of the rack and for redirecting a sideways flow of exhaust air from the rack and through the second upright into a space adjacent a rear side of the rack. A method of cooling a heat-generating device mounted in or on a cable management rack includes providing a sideways flow of cooling air into the rack and into the device.
This disclosure relates generally to an apparatus and/or system for housing a device. The apparatus includes a housing that is configured such that a device may be fitted within the housing and thereby be protected, such as from shocks and/or liquid. The housing may include top and bottom members that may be removably coupled together so as to form the housing. Each top and bottom member optionally includes front and back surfaces surrounded by a perimeter. The perimeter is defined by proximal and distal ends as well as opposing sides. The top and bottom members may include respective clasping mechanisms that extend along the perimeter of the top and bottom members. The clasping mechanisms are configured for coupling the top and bottom members with one another thereby sealing the housing, for instance, in a shockproof and/or water tight seal.
An on-vehicle display device includes: an image display unit 6; wiring boards 8, 9 mounting a control circuit for controlling the image display unit 6; a magnesium alloy case 7 of which front recess receives the image display unit 6, and of which rear recess receives the wiring boards 8, 9; and a shield member 10 attached to the magnesium alloy case 7 for covering the rear recess. The magnesium alloy case 7 is thermally coupled to the image display unit 6 and works as a heat radiating device. The magnesium alloy case 7 is electrically coupled to the shield member 10 and works as an electromagnetic shield device together with the shield member 10.
This disclosure provides a supporting structure module and an electronic device using the same. The supporting structure module in the invention is used in the electronic device. The electronic device includes a first casing, a hinge, and a second casing rotatable relative to the first casing via the hinge. The supporting structure module includes a first supporting structure, and the first supporting structure includes a first bracket and a first hinge cover. The first bracket is fixed to and exposed from the first casing. The first hinge cover is connected with the first bracket by integral forming, and the first hinge cover is exposed from the first casing and covers a part of the hinge.
A surge arrester includes a gas-filled closed arrester body that is formed by a first annular ceramic body and two electrodes at a distance from one another. A second annular ceramic body is arranged in the interior of the arrester body and is at a distance from the first ceramic body and has a physical height that is less than the physical height of the first ceramic body.
A limiting current circuit that has output short circuit protection is connected to an external voltage source and comprises an output terminal, an input current unit, a driving transistor, a voltage control resistor, a voltage control transistor and a delay unit. The output terminal is connected to a load and has an output current. The driving transistor has an internal resistance, a drain current and a gate voltage. The voltage control resistor has a resistor voltage. The voltage control transistor has an internal resistance and a parasitic capacitance. The delay unit makes the resistor voltage charging the parasitic capacitance to extend the period of lower internal resistance of the voltage control transistor and the period of higher internal resistance of the driving transistor, makes the internal resistance of the voltage control transistor is less than the internal resistance of the driving transistor when the load is shorted.
Embodiments herein illustrate patterned servo data that allows the patterned disk to be planarized with a relatively simple planarization process. A magnetic disk, in this regard, includes a data region having a plurality of tracks. The magnetic disk also includes a plurality of servo bursts patterned in the magnetic disk at a plurality of locations in each track. The servo bursts are operable to direct a controller to center a write head over a track in the data region and write a track identification. The servo bursts include magnetic lands and nonmagnetic grooves. The magnetic lands of the servo burst are generally configured with a uniform polarity of magnetization and a first uniform width. The nonmagnetic grooves are configured with a second uniform width.
To implement the alignment of lenses with a simple configuration or by a simple method. A lens unit includes a plurality of lenses each including a lens portion and a flange portion surrounding the lens portion, and a tube portion that holds the plurality of lenses successively arranged along an optical axis. The holder body includes first and second receive portions successively formed along the optical axis. The first receive portion holds the lenses by pressing the side of the flange portion that extends along the optical axis. The second receive portion receives the lens such that the lens can be moved in a direction crossing the optical axis.
An objective is described consisting of a monolithic body of a material at least partly transparent for a part of an electromagnetic spectrum, and whose surfaces include a first optical refractive functional area serving as entrance area through which electromagnetic radiation can enter the objective, a second optical reflective functional area serving as a first mirror, a third optical reflective functional area serving as a second mirror, a fourth optical reflective functional area serving as a third mirror, a fifth optical reflective functional area serving as a fourth mirror, and a sixth optical refractive functional area serving as an exit area through which electromagnetic radiation can exit the objective, wherein the first to sixth optical functional areas are implemented such that a center shading-free, folded optical path extends from the entrance area through the monolithic body via first to fourth mirrors to the exit area, wherein no intermediate image level is located in the same between the entrance area and the exit area.
An inner focus type zoom lens includes a first lens group that has positive refracting power and is normally located at a fixed position, a second lens group that has negative refracting power and is movable in an optical axis direction for zooming, a third lens group that has positive refracting power, a fourth lens group that is movable for correction of a focal position due to the zooming and for focusing, and a fifth lens group that has positive refracting power, in order from an object side, wherein the first lens group includes a negative lens, a first positive lens, and a second positive lens arranged in order from the object side, wherein a first face of the negative lens has a shape of a concave surface turned on the object side, and wherein the zoom lens satisfies the following conditional equation (1) −10.0
A portable projection screen has a carrying frame, a movable frame, an elastically-rotating reel, a projection screen and two linkages. The carrying frame has a chamber communicating with an opening; the reel is coupled between two ends of the carrying frame in an elastically rotatable manner and is located in the chamber of the carrying frame; the projection screen is arranged via the opening between the movable frame and the carrying frame; the projection screen upper side connects to the movable frame and the lower side connects to the reel; the linkages arranged between the movable frame and the carrying frame, each linkage end respectively pivots to the movable frame and the carrying frame to form a first and a second pivoting part respectively; a third pivoting part is arranged between the two ends of each linkage; the pivoting parts of each linkage is provided an antislip structure.
Provided are diffused but transmissive optical image projection screens and methods of their manufacture, including screens comprising acetal polymers such as polyoxymethylene. Such screens may be used in various applications, including but not limited electronic image display and control system comprising in various embodiments a microdisplay video projector that projects a high quality color image from a non-CRT image source onto a diffused but transmissive optical projection screen that is optically coupled with and viewable through a biocular adapted to this purpose. Systems are disclosed that are adapted to be mechanically coupled with a user to prevent relative movement between the biocular and the user, for instance in tactical applications. Closed-loop control electronics are provided for automatically controlling the brightness and chromaticity of the image.
A method for manufacturing an array substrate includes forming a plurality of holes in a film shape substrate having thermal plasticity, in which the holes have a diameter of 0.25 times to 2 times a thickness of the substrate, and a pitch of 5 times to 40 times the diameter of the holes; and heating a molding member provided with a plurality of convex portions or concave portions in an array pattern, pressing the substrate provided with the plurality of holes, and transferring the plurality of convex portions or concave portions to the substrate.
In accordance with the invention, there are imaging interferometric microscopes and methods for imaging interferometric microscopy using structural illumination and evanescent coupling for the extension of imaging interferometric microscopy. Furthermore, there are coherent anti-Stokes Raman (CARS) microscopes and methods for coherent anti-Stokes Raman (CARS) microscopy, wherein imaging interferometric microscopy techniques are applied to get material dependent spectroscopic information.
A laser device having a semiconductor gain element optically coupled to an optical fiber by using an angled anamorphic fiber lens and including a wavelength-selective front reflector. The laser device possesses improved output characteristics such as a highly linear laser emission output, even when the amplification section produces a high amount of gain. Such a laser source can also be used in various applications such as pump lasers for fiber amplifiers or frequency doubling systems.
The invention provides a PLC-type DP-QPSK demodulator that reduces connection loss between a polarization beam splitter and a 90-degree hybrid circuit and aims at reducing the manufacturing cost and an optical transmission system using the same. In an embodiment of the invention, a PLC-type DP-QPSK demodulator that receives a DP-QPSK signal includes one PLC chip having a planar lightwave circuit. Input ports and output ports of signal light are provided at an input end and at an output end of the PLC chip, respectively. Within the planar lightwave circuit, there are integrated a polarization beam splitter that splits the DP-QPSK signal into an X-polarization QPSK signal and a Y-polarization QPSK signal, and two 90-degree hybrid circuits that mix the X-polarization QPSK signal and local oscillation light and the Y-polarization QPSK signal and local oscillation light, respectively, split each QPSK signal into orthogonal components I, Q and output them.
Disclosed is an electrochromic display device comprising: a first and a second substrates; a first and a second electrodes; and an electrochromic composition layer, wherein the device is of a passive matrix drive where the a display and an erasion are performed by an energization in reverse directions between the electrodes, the first and the second electrodes respectively comprise a plurality of electrodes, a pixel is formed where the electrodes are in a grade separated crossing, and the display is performed by voltage application processing where: (i) the first electrode is set as negative, and the second electrode is set as positive, to apply a voltage of a first potential difference, immediately followed by (ii) the first electrode being set as positive, and the second electrode being set as negative, to apply a voltage of a second potential difference equal to or more than the first potential difference.
In an aberration-correcting method according to an embodiment of the present invention, in an aberration-correcting method for a laser irradiation device 1 which focuses a laser beam on the inside of a transparent medium 60, aberration of a laser beam is corrected so that a focal point of the laser beam is positioned within a range of aberration occurring inside the medium. This aberration range is not less than n×d and not more than n×d+Δs from an incidence plane of the medium 60, provided that the refractive index of the medium 60 is defined as n, a depth from an incidence plane of the medium 60 to the focus of the lens 50 is defined as d, and aberration caused by the medium 60 is defined as Δs.
The present invention relates to a grating image (30) for depicting a motif (24) that moves upon tilting the grating image (30) about a tilt axis (20), having two or more grating fields (32, 34, 36) having a viewing-angle-dependent visual appearance, that each include an electromagnetic-radiation-influencing grating pattern composed of a plurality of grating lines, and exhibit a preferred direction that establishes a viewing angle from which the appropriate grating field (32, 34, 36) is visually distinguishable, wherein, according to the present invention, the grating fields (32, 34, 36) are formed from a plurality of sub-regions nested within each other (32-i, 34-i, 36-i), and each grating field (32, 34, 36) displays a motif (24) view (24-A, 24-B, 24-C) that is shifted substantially along the tilt axis (20), wherein the viewing angles for the visual distinguishability and the shifts of the motif views (24-A, 24-B, 24-C) of the grating fields (32, 34, 36) are coordinated with each other such that, upon tilting the grating image (30), a motif (24) depiction that moves substantially along the tilt axis (20) is created for the viewer.
An optical reading document board, an image reading apparatus, and an image forming apparatus, the optical reading document board including a platen formed of transparent glass and having a top surface on which a document is placed, and a reflectance reduction layer coated on a bottom surface of the platen and having a refractive index different from a refractive index of the platen.
Methods, systems, and computer program products for protecting information on a user interface based on a viewability of the information are disclosed. According to one method, a viewing position of a person other than a user with respect to information on a user interface is identified. An information viewability threshold is determined based on the information on the user interface. Further, an action associated with the user interface is performed based on the identified viewing position and the determined information viewability threshold.
An image scanning device and an image scanning method are provided. The invention is related to a miniaturized image scanning device and an image scanning method. The miniaturized image scanning device includes a housing, a first driving roller set, an entrance sensor, an image sensor, a reflective light source, a transmissive light source, and a control module. The housing has an entrance and an exit. The first driving roller set is disposed in the housing. The entrance sensor is disposed between the entrance and the first driving roller set. The image sensor, the reflective light source and the transmissive light source are disposed between the first driving roller set and the exit. The control module receives and processes signals outputted from the image sensor and the entrance sensor to control the operation of the image sensor, the first driving roller set, the reflective light source and the transmissive light source.
A rotatable scanner includes a scanner body and a document holder. The scanner body includes an exposure surface on which a document is placed. The document holder is provided above the scanner body to cover a document placed on the exposure surface of the scanner body, and includes a hinged side and a free side opposite the hinged side. A front upper edge of the scanner body is chamfered.
A contact-type image reading apparatus includes two image reading units each of which has light-receiving elements arranged two-dimensionally for reading an image on an original in two-dimensional directions, a first body unit which includes one of the two image reading units as a first image reading unit, and a second body unit which includes the other image reading unit as a second image reading unit disposed so as to be openable and closable with respect to the first body unit for sandwiching the original therebetween when the second body unit is closed.When the second body unit is closed, the second body unit is closed with respect to a surface where the first image reading unit is provided in the first body unit, and the second image reading unit is disposed to face the first image reading unit.
A method for printing with curable ink is presented. The method comprises the steps of: generating an image wise pattern of spaced apart ink droplet locations for representing the image; and separating the pattern into at least first and second different interleaved portions, each portion comprising a plurality of droplet locations and the droplet locations of each interleaved portion being spaced apart from each other and spaced apart from the droplet locations of the remaining interleaved portions. In a first printing pass, ink droplets are deposited on the substrate at the drop locations of the first interleaved portion. Then, in a final printing pass, ink droplets are deposited on the substrate at the droplet locations of the second interleaved portion. The deposited ink droplets are then cured by exposing the deposited ink droplets to curing radiation in a first partial curing step between first and final printing passes and in a final curing step.
Systems and methods are provided for installing workflow servers for a print shop. One embodiment is a system that installs a workflow server for a print shop. The system accesses installation templates, configured for different categories of print shop, that describe a set of print shop resources expected to exist at the category of print shop. The system also installs workflow server software on a computer system of a print shop. During the installation, the system determines a category for the print shop, selects an installation template that matches the category of the print shop, and performs a dialogue of queries with a user to determine which resources of the set of print shop resources identified by the installation template are available to the print shop, wherein the dialogue excludes queries for print shop resources that are not in the set of print shop resources described by the installation template.
The printing system according to the present invention has a number-of-pages accepting part for accepting user-specified number of pages, which is referred to as splitting unit for splitting a document consisting of a plurality of pages; and a control part for controlling a printer output operation of the document in such a way that each of the split documents obtained by splitting the document from the first page sequentially in the splitting unit will undergo printer output process configured via a printing setting screen.
An information processing apparatus includes an execution determination unit and a control unit. The execution determination unit determines whether a series of processes including multiple processes is executable at an execution time of the series of processes. The control unit selectively provides at least one recovery device for substituting for the series of processes when it is determined that the series of processes is not executable.
A CPU of an MFP executes a program including: a step of receiving information collecting combinations of functions set by a user using an MFP connected to a network from a server computer and storing the information in a function combination management table; a step of reading the function combination management table when a function selected in an MFP is established; a step of displaying three functions of higher priority that are combined with high frequency with the established function, as recommendations; and a step of transmitting, when a job is completed, the combination of selected functions to the server computer, as a job ending process.
A client terminal transmits a call request for using a MFP to a call control server. The call control server carries out authentication processing about a user and the MFP in response to the call request. If the authentication processing result is correct, the call control server transfers the call request to the printing service management server. The call request is transferred from the printing service management server to a printing service providing server and then transferred to the MFP via the call control server. Thus, a session of the client terminal and the MFP is established. The printing service providing server carries out processing for providing a predetermined printing service based on the call request from the client terminal.
In the image forming apparatus that forms an image on a sheet, an operation time measuring section that measures elapsed time that elapses from the point of time when the image forming apparatus arrives at its operable state and a controller that stops operations of the image forming apparatus when the elapsed time measured by the operation time measuring section arrives at a prescribed time are provided, whereby, a life span of the image forming apparatus influenced by temporal changes can be judged precisely, independently of the hours of operation of the image forming apparatus, and operations can be stopped.
Techniques are provided for allowing a print driver to recognize a paper size that is not supported by the print driver. A printing device informs the print driver (executing on a client device) that an input tray of the printing device supports a particular paper size. Alternatively, the printing device informs the print driver that a feature and/or option supported by the printing device has changed. The print driver requests the new paper size (or the set of features and options) from the printing device. The print driver receives the new paper size data from the printing device and updates its user interface to allow a user to select the new paper size as a supportable option.
An information processing apparatus includes a storage unit configured to store shared printer drivers classified into a plurality of product categories each including one or more printing apparatuses, and correspondence information between the shared printer drivers and the printing apparatuses, an acquisition unit configured to acquire product specifying information for specifying a printing apparatus from among the printing apparatuses, a determination unit configured to determine a shared printer driver corresponding to a product category corresponding to the product specifying information acquired by the acquisition unit based on the correspondence information stored in the storage unit, even if the shared printer driver is not included in the correspondence information, a setup unit configured to perform setup using the shared printer driver determined by the determination unit.
The invention relates to a system and to a corresponding method for optical coherence tomography having an interferometer (10) for emitting light with which a specimen (1) is irradiated, the interferometer (1) comprising a beam splitter (13) and at least one reflector (12) the optical distance (I) of which from the beam splitter (13) is changeable, a specimen objective by means of which light emitted by the interferometer (10) is focussed in a focus lying within the specimen (1), and a detector (30) for collecting light which is reflected by the specimen (1).For simpler and quicker recording of the sharpest possible images of the specimen (1) provision is made such that during a change of the optical distance (I) between the reflector (12) and the beam splitter (13) the light respectively reflected at a number of different depths of the specimen (1) is collected by the detector (30), and during the collection of the light respectively reflected at the different depths of the specimen (1) the imaging properties of the specimen objective are changed such that the focus comes within the range of the respective depth of the specimen (1).
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
A method of measuring a relative phase of a bio-cell using a digital image sensor, comprising the steps of firstly filtering a light emitted from a light source, using a first polarizer and a first wave plate, which are arranged in order in a optical path, exposing a bio-cell to the firstly filtered light, secondly filtering the light passing through the bio-cell, using a second wave plate and a second polarizer, which are arranged in order in the optical path, and sensing an intensity of the secondly filtered light, by each of pixels of the image sensor, wherein, as conditions of the second filtering are varied, optical properties of the bio-cell are calculated using the intensity of the light in a pixel-wise manner.
Fiber optic probe scatterometers for spectroscopy measurements are disclosed. An example device includes an optically transparent illumination tube, an opaque tube, an inner surface of the opaque tube being adjacent an outer surface of the illumination tube and the illumination tube being disposed within the opaque tube, and an optical fiber disposed within and spaced a first distance from the illumination tube, wherein the opaque tube is to be coupled to a spectrometer and an illumination source to provide a light signal along the illumination tube and to collect a scattered light signal via the optical fiber for the spectrometer.
The invention relates to a miniaturized spectrometer for investigating the spectrum of emission radiation excited in an object by incident radiation. For the miniaturized spectrometer according to the invention, a diode laser is preferably used as an edge emitter (without a perforated shutter). The window of the edge emitter is arranged at the focal point of the converging lens at the input of the illuminating beam path (without an optical fiber), preferably without a perforated shutter. The edge emitter produces a divergent beam pencil with an elliptical cross-section. The length ratio of the main axes of the ellipse is more than 2:1. The large main axis of the ellipse runs parallel to the longitudinal axis of the entry slit of the microspectrometer.
The invention relates to a method for positioning a surface in relation to a light source using sensors. The method can be used to control the position of a reflective surface (2) such that the reflected light (7) originating from a light source (1) falls on an objective point (8), through the use of a first sensor (4) which determines the position of the light source (1) in relation to a reference direction (9) and a second sensor (4) which is solidly connected to the reflective surface (2) and which determines the relative position of the reflective surface (2) in relation to the light source (1). Having ascertained these positions and the relative position of the reflective surface (2) in relation to the objective point (8), the method is used to determine the necessary movement to be applied to the reflective surface (2) so that the reflected light (7) falls on the objective point (8). The invention is intended to be used to reflect sunlight on a remote collector in order to illuminate buildings and, in general, for any use requiring reflected light to be directed to an objective point (8).
A liquid crystal display includes a first substrate, and a first optical conversion layer disposed on the first substrate. The first optical conversion layer includes a reflecting unit reflecting incident light, and a polarizing unit. The polarizing unit transmits light which oscillates in a first direction among the incident light, and reflects light which oscillates in a second direction different from the first direction among the incident light. The reflecting unit and the polarizing unit of the first optical conversion layer may be disposed in at least one pixel area.
A multi-view liquid crystal display for different users to watch different images from different viewing angles is provided. The multi-view liquid crystal display includes a liquid crystal display panel, a first backlight module and a second backlight module. The first backlight module is disposed below the liquid crystal display panel. The second backlight module is disposed between the first backlight module and the liquid crystal display panel. Furthermore, the first backlight module provides a first plane light source and the second backlight module provides a second plane light source. An included angle α formed between transmitting directions of the first and the second plane light sources ranges from 6 degrees to 176 degrees. Therefore, when different users watch the multi-view liquid crystal display which displays different images from different viewing angles, the resolutions of the images are the same as the resolution of the multi-view liquid crystal display panel.
The present invention provides an assembly structure for a liquid crystal module, which is extended to form installation margins by increasing the size of a liquid crystal panel. The installation margins are directly formed with a plurality of installation holes for connecting with a plurality of corresponding positioning holes of a backlight module by positioning elements. Thus, the liquid crystal panel and the backlight module can directly construct a liquid crystal module, without any front frame. As a result, the size of the entire liquid crystal module in relation to X, Y and Z axes can be reduced, the assembly structure for the entire liquid crystal module can be simplified, and the installation cost of the entire liquid crystal module can be saved, while the compactness and the lightweight design of a liquid crystal display can be carried out.
A display panel includes; a lower substrate including a display area which includes a pixel and a peripheral area surrounding the display area, the peripheral area including a first peripheral area, a second peripheral area, a third peripheral area and a fourth peripheral area, the lower substrate including; a signal line electrically connected to the pixel, an electrostatic control pattern disposed in the first peripheral area and which provides an electrostatic dissipation path, and a repair line disposed between the display area and the electrostatic control pattern and which is vertically aligned with the signal line, an upper substrate facing the lower substrate and a liquid crystal layer disposed between the lower substrate and the upper substrate.
A video display device comprising a casing having a front wall and a rear wall. The front wall defines an opening for display screen. The rear wall has formed therein a plurality of clip-receiving portions. The plurality of clip-receiving portions face outwardly of the casing and have a predetermined spacing relative to one another. Each of the plurality of clip receiving portions is configured to receive from outside the casing a respective clip for receiving a fastener for mounting the video display device.
A communication apparatus (100) includes: a communication unit (10) connectable to one end of a cable (50); a first detection unit (111) which detects a maximum transmission capability of an external device based on a communication standard with which the external device complies, the external device being connected to an other end of the cable (50) connected to the communication unit (10); a second detection unit (112) which detects a maximum transmission capability of the cable (50) connected to the communication unit (10); and an alert output unit (114) which outputs an alert when the maximum transmission capability of the cable (50) is smaller than the maximum transmission capability of the external device, the maximum transmission capability of the cable having been detected by the second detection unit (112), and the maximum transmission capability of the external device having been detected by the first detection unit (111).
A frame extraction unit detects a luminance change point frame in which the brightness change amount between frames is equal to or higher than a threshold value from a moving image formed by a plurality of frames. A flash check unit checks the presence/absence of a flash portion in the moving image on the basis of the detected luminance change point frame.
In an embodiment, a system generates multiple video streams. The system includes a color grading device and an appearance mapping device. The appearance mapping device operates on the data generated by the color grading device, and both the output of the color grading device and the output of the appearance mapping device may be displayed (and edited) simultaneously. In this manner, the efficiency of the editing process is improved.
An electronic billboard includes a display unit, a storage unit, a distance detection unit, and a processing unit. The storage unit stores a relationship table recording a relation between viewer distances and zoom proportions of displayed content by the display unit. The distance detection unit detects viewer distances of viewers. The processing unit controls a display mode of the display unit according to a comparison result of a viewer distance with a predetermined distance.
Modular digital camera systems, such as modular digital still and motion cameras are disclosed. Individual modules may be removed from the system and replaced, such as to benefit from upgraded technology, while preserving the remaining modules in the system. The modules may be disassembled and reconstructed to convert the physical form of the camera, such as between still configurations, motion configurations, ENG configurations, DSLR configurations and studio configurations. Universal lens mount modules are provided, to enable use of lens systems from a variety of commercial manufacturers.
An image capturing apparatus capable of switching between an optical viewfinder and live view which involves periodically reading out an image signal out of an image sensor and sequentially displaying the image signal on a display unit, comprises a phase difference focus control unit that performs auto focus control using a phase difference detection method; a selection unit that selects one of a plurality of focus detection areas used for the auto focus control; an electronic zoom unit that changes an angle of view; and a control unit that causes the phase difference focus control unit to perform auto focus control by the phase difference detection method using the selected focus detection area if the selected focus detection area is located within the changed angle of view, otherwise not to perform auto focus control by the phase difference detection method using the selected focus detection area.
An image sensing apparatus comprises an image sensor having a pair of focus detection pixel groups and a plurality of image sensing pixels, and a control unit that, in a thinning readout mode that reads out signal charges from a portion of pixels disposed within a part of pixels of the image sensor, controls so that at least the pair of focus detection pixel groups are included in the part of the pixels from which signal charges are read out.
An image capturing device may include a detector including a plurality of sensing pixels, and an optical system adapted to project a distorted image of an object within a field of view onto the sensing pixels, wherein the optical system expands the image in a center of the field of view and compresses the image in a periphery of the field of view, wherein a first number of sensing pixels required to realize a maximal zoom magnification {circumflex over (Z)} at a minimum resolution of the image capturing device is less than a square of the maximal zoom magnification times a second number of sensing pixels required for the minimum resolution.
A method of controlling a digital photographing apparatus including a plurality of display units includes displaying a replay image file on a first display unit, determining whether additional information exists in the replay image file, searching for the additional information when the additional information exists in the replay image file, and displaying the additional information on a second display unit.
An image capturing apparatus which is connectable to and able to communicate with an external control apparatus, comprises an image capturing unit configured to capture an object image and generates image data; a recording unit configured to divide image data generated by the image capturing unit into a plurality of files and records the files; and a notifying unit configured to notify the external control apparatus of individual files divided into the plurality of files and recorded as information of a single file.
A device and a method for predicting photograph timing. First, a detection step is performed. Then, a face determination step is performed to determine whether or not a face is shown. A face-classifying step is then performed. If a detected image is a non-front face, a difference generation step is then performed. A difference determination step is performed when a plurality of differences are obtained to determine whether or not the sequentially adjoined differences are reduced, wherein if the sequentially adjoined differences are reduced, a photographing timing is predicted according to a reduction degree of the differences. As a result, the probability of successfully photographing the front face can be enhanced. In addition, a training database that has both front face information and non-front face information can be utilized. As a result, it is not easy to determine the non-front face as the front face incorrectly.
A solid-state imaging apparatus according to the present invention is characterized in that a reset gate voltage VresH to be applied to a gate of a reset MOS transistor is lower than a power supply voltage SVDD of a power supply to which drains of an amplifying MOS transistor and the reset MOS transistor are connected.
The system control unit executes the following control when switching the mode from the first mode to the second one. When the first accumulation period is shorter than the first readout period, the system control unit controls the image sensor driving circuit and readout circuit so that the sum of the first and second readout periods fits into a 2-frame period. When the first accumulation period is longer than the first readout period, the system control unit controls the image sensor driving circuit and readout circuit so that the sum of the first accumulation period and second readout period fits into a 2-frame period.
Aspects of the present invention are related to systems, methods and apparatus for automatic quality assessment of a video sequence. According to a first aspect of the present invention, a quality index may be generated by combining a spatial quality index and a temporal quality index. According to a second aspect of the present invention, a spatial quality index may be calculated using a modified exponential moving average model to pool multi-scale structural similarity indices computed from test frame—reference frame pairs. According to a third aspect of the present invention, a temporal quality index may be generated by averaging multi-scale structural similarity indices computed from difference image pairs, wherein one difference image is formed between reference frames and another difference image is formed between a reference frame and a test frame.
An assistance system for visually handicapped persons with visual impair in a part of their visual field aims at providing a technical solution for these persons, informing them actively about objects or movements in the visually impaired side, by way of body-worn sensors.
A semiconductor laser driver to drive a semiconductor laser, the semiconductor laser includes a drive circuit to generate a drive current to cause the semiconductor laser to emit, and a current control circuit to cause the driving current to repeatedly increase and decrease in a predetermined cycle.
A thermal head enables printing even after printing for a long time to a print medium with low paper quality. A thermal head 20 to which a print medium P is pressed by a platen roller 10 has a heat unit 21 with a plurality of heat elements 21a arrayed on an axis, and an electrode connection unit 26 that is formed on an extension of the axis. A receptive space A to which the end 11a of the platen roller 10 contact surface 11 that is pressed to the thermal head 20 is positioned is formed on this axis between the heat unit 21 and the electrode connection unit 26.
It is intended to enable enlarging or reducing a screen with a simple operation. A mobile phone 1 includes a touch panel 11 that displays a screen and receives a predetermined input, a detection unit 12 that detects a start point and an end point of a physical touch on the touch panel 11, and a display control unit 13 that calculates a moving direction of the touch on the basis of the detection result, enlarges the screen displayed on the touch panel 11 when the moving direction is in a predetermined first range, and reduces the screen when the moving direction is in a predetermined second range different from the first range.
Embodiments of the present invention provide a method, system and computer program product for content driven selection of a rendering engine. In an embodiment of the invention, a method for or content driven selection of a rendering engine can include retrieving content for display in a content browser executing in memory by a processor of a host computer, mapping at least one directive embedded in the retrieved content to a target rendering engine, selecting the target rendering engine for rendering the content, and passing the content to the selected target rendering engine. In this regard, in an aspect of the embodiment, multiple directives embedded in the retrieved content can be mapped, each to one of a selection of different target rendering engines, and a most often mapped one of the target rendering engines can be selected for rendering the content.
Some embodiments include a graphics processing with thermal management capabilities. The graphics processing unit may include a display controller, a microprocessing engine coupled to the display controller, and a clock circuit coupled to the display controller and the microprocessing engine. The clock circuit may further include a raw clock signal coupled to the display controller, a divider coupled to the raw clock signal, and a multiplexer coupled to the divider. The divider may generate a divided version of the raw clock signal, which may be coupled to the multiplexer along with the raw clock signal. The multiplexer may selectively provide the raw clock signal and/or the divided version of the clock signal to the microprocessing engine such that the microprocessing engine may receive a timing signal that is independent of operations of the graphics processing unit and result in fewer glitches.
A method and apparatus for displaying information on a device acquiring data is provided. The method includes the steps of receiving an input data, generating a version of the received input data to be displayed in accordance with one or more display parameters and displaying the generated version of the received input data. A requested change in one or more display parameters is received and the requested change of the one or more display parameters is implemented on the displayed data. Processing continues on the further received input data in accordance with the requested change in the one or more display parameters and the display is ultimately updated with the processed further received input data.
Technologies are described herein for providing visualization of fit, flow, and texture of clothing to an online consumer. A merchant maintains detailed measurements and a number of 3-D models for a clothing item offered for sale. The 3-D models may represent a representative size of the clothing item as worn by similarly sized mannequins or body models of varying body shapes. Each of the 3-D models captures the fit, flow, and texture of the clothing item as worn by the corresponding mannequin. When a consumer selects the clothing item, a 3-D virtualization representing the clothing item worn by the consumer may be generated by scaling the appropriate 3-D model based on dimensional data regarding the consumer, and then combining the scaled 3-D model with a 3-D avatar for the consumer. The dimensional data and 3-D avatar for the consumer may be supplied from a user profile associated with the consumer.
The present invention relates to using image content to facilitate navigation in panoramic image data. In an embodiment, a computer-implemented method for navigating in panoramic image data includes: (1) determining an intersection of a ray and a virtual model, wherein the ray extends from a camera viewport of an image and the virtual model comprises a plurality of facade planes; (2) retrieving a panoramic image; (3) orienting the panoramic image to the intersection; and (4) displaying the oriented panoramic image.
A pixel array module includes a substrate, a pixel electrode array, a patterned conductive layer and a semiconductor circuit unit. The substrate has a first surface and a second surface opposite to the first surface. The pixel electrode array is disposed on the first surface of the substrate. The patterned conductive layer is disposed on the second surface of the substrate, and the patterned conductive layer is electrically connected to the pixel electrode array. The semiconductor circuit unit has at least one input terminal and at least one output terminal, which is electrically connected to the patterned conductive layer. A flat display apparatus is also disclosed.
There is offered a signal processing device of touch panel using an electrostatic capacity, which realizes improvement in noise tolerance and linear detection. An excitation pad, a first touch pad and a second touch pad are disposed on a substrate in a way that the excitation pad is interposed between the first and second touch pads. On the other hand, an alternating current power supply that provides the excitation pad with an alternating voltage through a wiring is provided on a sensor IC side of the signal processing device of touch panel. Also, there is provided an electric charge amplifier. The first touch pad is connected to a non-inverting input terminal (+) of the electric charge amplifier through an wiring, while the second touch pad is connected to an inverting input terminal (−) of the electric charge amplifier through a wiring.
Provided are a method and apparatus for inputting a three-dimensional (3D) location. The method determines whether a control signal for moving a pointer existing at a point in a two-dimensional (2D) coordinate plane is a 3D movement signal for moving the pointer into a 3D space; and based on a result of the determination, the method selectively moves the pointer to a point in the 3D space existing in a direction perpendicular to the 2D coordinate plane, according to the control signal.
A haptic device includes a substrate that is subjected to lateral motion such as lateral oscillation with one or more degrees of freedom together with modulation of a friction reducing oscillation in a manner that can create a shear force on the user's finger or on an object on the device.
A display panel includes a gate line circuit. The gate line circuit includes a gate driver, a control circuit and a gate line. The gate driver generates a first driving signal with alternate high and low levels. The first driving signal has a first rising edge and a first falling edge. The control circuit receives the first driving signal and generates a second driving signal. The second driving signal has a second rising edge and a second falling edge. The second rising edge and the second falling edge are respectively smoother than the first rising edge and the first falling edge. The control circuit includes at least one capacitor. The capacitor is charged in a first direction in response to the first rising edge of the first driving signal. The capacitor is charged in a second direction in response to the first falling edge of the first driving signal.
An active matrix substrate is provided which does not cause reductions in the brightness of electroluminescence elements, and which comprises appropriate peripheral circuitry occupying a small area. The active matrix substrate comprises peripheral circuits to supply current to EL elements provided for each pixel, and corresponding to EL elements, and further comprises a holding element (C) which holds a control voltage, a first active element (T1) connected to the holding element (C) and which supplies current to a light-emitting portion (OLED) based on a control voltage, and a second active element (T2) connected to the holding element (C) and which controls the charging and discharging of the holding element. In particular, the second active element (T2) is configured as a multiple-control-terminal type active element. As a result, there are no fluctuations in the programmed current.
A display device includes: horizontal scan lines; vertical scan lines; an electro-optical element disposed at each of positions where the horizontal scan lines and the vertical scan lines intersect and selectively turned on based on a video signal and a vertical scan signal; a defect information storing section that stores defect information indicating whether each of the electro-optical elements has a defect; and a video signal generating section that generates a video signal to be supplied to the electro-optical element in each position based on a video signal supplied from outside and the defect information, wherein the video signal generating section supplies a video signal to the electro-optical elements such that the supply of a level required for turning on an element is stopped for an electro-optical element having a defect and the video signal supplied from the outside is supplied to an electro-optical element having no defect.
A phased array antenna system includes a first radiation element that is made of a material and has a length selected to resonate at a desired frequency. A phase-shift element is coupled to one end of the first radiation element. A second radiation element is coupled to the end of the phase-shift element opposite the first radiation element, so that a radio signal passes through the first radiation element through the phase-shift element and through the second radiation element, the second radiation element is made of a material and has a length selected to resonate such that the first and second radiation elements cooperate to form a desired beam pattern from the antenna system.
A radiation electrode 132 is printed on the upper surface of the dielectric body, side surface thereof, and bottom surface thereof in a folded configuration. A feeding electrode 130 and ground electrode 134 are printed on the bottom surface of the antenna elements 124. The feeding electrode 130 and radiation electrode 132 on the upper surface are opposed to each other as parallel planes. The ground electrode 134 and radiation electrode 132 are also opposite to each other as parallel planes. No electrode is formed on one of the side surfaces of the antenna element 124 that is opposed to the side surface at the side of which the radiation electrode 132 is folded.
The present disclosure describes a method and system for detecting and determining the position of a target or intruder using a plurality of sensors positioned throughout a secured perimeter and a single antenna. The system of the present disclosure detects and determines the position of a target by first analyzing the return signal strength values of each of the sensors. Next, Zvalues for each of the sensors are calculated. Based on the Zvalues, certain sensors are selected to compute a signal strength center-of-mass location, which is then used to determine the position of the target.
A successive approximation analog to digital converter (SA-ADC) employs a binary-weighted digital to analog converter (DAC) to perform a non-binary search in determining a digital representation of a sample of an analog signal. In an embodiment, a subset of iterations needed to convert an analog sample to a digital value is performed using non-binary search with a radix of conversion less than two. As a result, search windows in iterations corresponding to the non-binary search overlap, and correction of errors due to a comparator used in the SA-ADC is rendered possible. Error correction being possible due to the non-binary search, the comparator is operated in a low-bandwidth, and hence low-power, mode during the non-binary search. The non-binary search in combination with the binary-weighted architecture of the DAC offer several benefits such as for example, less-complex implementation, shorter conversion time, easier and compact layout and lower power consumption.
According to the invention, as a function of the altitude, the vertical speed and the heading of the aircraft, as well as of the deviation of the actual trajectory of the aircraft with respect to the automatic trajectory, a time interval (T) is determined, during which it is tolerable for said aircraft to be able to fly without any control command, both on the part of the stick (1) and on that of said automatic pilot (2) and an alert is emitted for the attention of the crew in the case where it is noted that the absences of manual piloting and of automatic piloting extend simultaneously over a duration at least equal to said tune interval (T).
Various inventive features are disclosed for efficiently generating regulation-compliant audible alerts, including but not limited to 520 Hz square wave alert/alarm signals, using an audio speaker. One such feature involves the use of a non-linear amplifier in combination with a voltage boost regulator to efficiently drive the audio speaker. Another feature involves speaker enclosure designs that effectively boost the output of the audio speaker, particularly at relatively low frequencies. These and other features may be used individually or combination in a given alarm-generation device or system to enable regulation-compliant audible alerts to be generated using conventional batteries, such as AA alkaline batteries. Various examples of efficiently generated regulation-compliant audible alerts and further enhancing such audible alerts by utilizing speaker enclosure designs are provided.
The RFID circuit element cartridge stores multiple RFID circuit elements for producing RFID labels. Each of the elements includes an IC circuit part configured to store information and an antenna connected to the IC circuit part. The RFID circuit element cartridge is detachably mounted to an apparatus for communicating with a RFID tag. The apparatus includes an antenna configured to carry out wireless communication with each RFID circuit element for producing a RFID label. The RFID circuit element cartridge includes a RFID circuit element Tc for cartridge identifying configured to store identification information for identifying the cartridge. The identification information serves as a communication factor that determines a performance of communication between the antenna and each RFID circuit element for producing a RFID label.
An anti-theft security device is particularly useful with bottles and is typically secured to a bottle neck. The device may carry an onboard alarm. The device typically includes a catch member which engages the bottle neck to secure the device to the bottle and a blocking structure to help block access to the catch member.
A mechanism and method for making status reporting devices for container handlers, including: providing a micro-controller module, and installing a program system into memory accessed by a computer directing the micro-controller module. The micro-controller module communicatively couples with means for wirelessly communicating and for sensing a state of the container handler. Means for wirelessly communicating may include means for wirelessly determining container handler location. The micro-controller module may be communicatively coupled to a separate means for determining location. An apparatus making the devices may include a second program system directing the invention's method through a second computer, which may control an assembly device in creating the micro-controller, coupled with the means for sensing and for wirelessly communicating.
A method for operating obstacle or hazard lighting of a wind power plant with a red beacon unit and a white beacon unit is provided. The red beacon unit is operated 24 hours a day and the white beacon unit is switched on and off, depending on the ambient brightness.
A driving condition evaluation device is provided. The device includes a vehicle speed detection portion configured to detect a vehicle speed. A driving force estimation portion is configured to estimate driving force for driving a vehicle generated in accordance with a driving operation performed by a driver. A threshold value setting portion is configured to set a threshold value of the driving force based on the vehicle speed detected by the vehicle speed detection portion. A driving force information informing portion is configured to inform the driver of a relationship between the driving force estimated by the driving force estimation portion and the threshold value set by the threshold value setting portion.
Systems and methods are operable to initiate a pairing process and a de-pairing process between a controlled device and a radio frequency (RF) remote control. An exemplary embodiment detects presence of a radio frequency identifier (RFID) tag in an interrogation zone established by an RFID tag reader, automatically initiates a pairing process in response to detecting the presence of the RFID tag in the interrogation zone, and completes the pairing process between the RF remote control and the controlled device, wherein the pairing process identifies a unique identifier associated with the RF remote control. A subsequently received RF signal emitted by the RF remote control includes at least one command configured to control operation of the controlled device and includes the unique identifier.
An identification device is configured to be coupled externally to an optoelectronic device to provide connectivity and/or identification information in an optical network in which the optoelectronic device is implemented. The identification device may include an integrated circuit with unique identification information and a plurality of contacts coupled to the integrated circuit and configured to be coupled to an outside identification system. The outside identification system communicates with the identification device via the plurality of contacts to collect unique identification information, the ability to retrieve the unique identification information additionally implicating connectivity in some embodiments. The identification device may include a plurality of clips configured to engage corresponding posts on a latch of the optoelectronic device.
A vehicular electronic key system includes a vehicle having a key cylinder and a portable device. The portable devise includes a key body and a mechanical key. The key body is communicatable with the vehicle. The mechanical key is attachable to and detachable from the key body and mechanically rotates the key cylinder whereby the communication between the vehicle and the portable device allows the vehicle to execute predetermined functions. The key body includes a key detector configured to detect an attachment state and a detachment state of the mechanical key to and from the key body so that the key body transitions to a valet mode to limit some of the predetermined functions executable by the vehicle in accordance with the communication between the vehicle and the portable device while the key detector detects the detachment state of the mechanical key from the key body.
A current sense resistor and a method of manufacturing a current sensing resistor with temperature coefficient of resistance (TCR) compensation are disclosed. The resistor has a resistive strip disposed between two conductive strips. A pair of main terminals and a pair of voltage sense terminals are formed in the conductive strips. A pair of rough TCR calibration slots is located between the main terminals and the voltage sense terminals, each of the rough TCR calibration slots have a depth selected to obtain a negative starting TCR value observed at the voltage sense terminals. A fine TCR calibration slot is formed between the pair of voltage sense terminals.
A chip varistor is provided with a varistor section, a plurality of electroconductive sections, and a plurality of terminal electrodes. The varistor section is comprised of a sintered body containing ZnO as a major component and is configured to exhibit the nonlinear voltage-current characteristics. The plurality of electroconductive sections are comprised of sintered bodies containing ZnO as a major component and arranged with the varistor section in between, and each electroconductive section has a first principal surface connected to the varistor section and a second principal surface opposed to the first principal surface. The plurality of terminal electrodes are connected respectively to the corresponding electroconductive sections. Each terminal electrode has a first electrode portion connected to the second principal surface and a second electrode portion connected to the first electrode portion.
A laminated inductor having a laminate structure constituted by magnetic layers and internal conductive wire-forming layers, wherein the magnetic layer is formed by soft magnetic alloy grains, the internal conductive wire-forming layer has an internal conductive wire and a reverse pattern portion around it, and the reverse pattern portion is formed by soft magnetic alloy grains whose constituent elements are of the same types as those of, and whose average grain size is greater than that of, the soft magnetic alloy grains constituting the magnetic layer.
A solenoid for a vehicle starter comprises a spool including a first coil bay, a second coil bay, and an interior passage defining an axial direction. A first coil is positioned in the first coil bay of the spool, and a second coil positioned in the second coil bay of the spool. A plunger is positioned within the interior passage of the spool and configured to move in the axial direction when the first coil is energized. The first coil bay is positioned adjacent to the second coil bay in the axial direction. The spool further includes two end flanges and a middle flange. The middle flange separates the first coil bay from the second coil bay.
A short-circuit release is disclosed, in particular for a power circuit-breaker. In at least one embodiment, the short circuit release includes an armature and pole that are located inside a coil former and further includes a yoke plate and terminal connection that are positioned around the coil former. Arranged opposite the yoke plate is a magnetic plate resting against the terminal connection.
A unit of a metamaterial includes an uppermost part electrode, a lowermost part electrode, a first internal electrode, a second internal electrode, a third internal electrode, a fourth internal electrode, and a transmission line. The transmission line connects a section of the uppermost part electrode which extends in the −z direction to a section of the lowermost part electrode which extends in the +z direction. The length of the transmission line is set to substantially ½ of a resonant wavelength. The first internal electrode and the fourth internal electrode are respectively placed so as to be opposed to the uppermost part electrode and the lowermost part electrode. The first internal electrode and the fourth internal electrode are not electrically connected directly to each other.
A common-mode filter including, in series between a first input terminal and a first output terminal, a first and a second positively coupled inductive elements; in series between a second input terminal and a second output terminal, a third and a fourth positively coupled inductive elements; and in series between each midpoint of said series connections of inductive elements and the ground, a capacitive element and a fifth inductive element.
An antenna feed network includes a septum polarizer including a waveguide defining a cavity, wherein a septum is disposed in the cavity to divide the cavity to form a first port and as second port, a diplexer in signal communication with at least one of the first port and the second port of the septum polarizer to route a signal based upon a frequency, and a wave coupler/splitter in signal communication with the diplexer to send and receive signals therebetween, the wave coupler/splitter including a first signal path and a second signal path, wherein the wave coupler/splitter controls a phase shift of a signal transmitted through at least one of the first signal path and the second signal path.
The present invention relates to an oscillator arrangement, arranged for providing an oscillator output and phase noise detection and/or control of said oscillator output, the arrangement comprising a mixer (1) connected to a low-pass filter (2). The oscillator arrangement comprises a first oscillator (7) and a second oscillator (8), where the oscillators (7, 8) are inter-injection locked to each other by means of at least one coupling element (Q) in such a way that the oscillator output is acquired in quadrature automatically. The present invention also relates to a corresponding method.
Aspects of a method and system for frequency tuning based on characterization of an oscillator are provided. A value of a first control word which controls a variable impedance of an oscillator may be determined. The determined value may be mapped to a corresponding value of a second control word which controls a variable impedance of a tuned circuit. The mapping may be based on a relationship between the variable impedance of the oscillator and the variable impedance of the tuned circuit, such as logical and/or mathematical relationship. The value of the first control word may be determined based on desired frequency of the tuned circuit and/or based on a desired impedance of the variable impedance of the tuned circuit. The tuned circuit may comprise, for example, an oscillator or a filter.
A digital to analog converter (DAC) that reduces sub-threshold leakage current in PLLs includes three series connected transistors, a unity gain buffer, and a switch. The system is connected between the voltage-to-current converter and a current-controlled oscillator. The DAC receives and accurately mirrors a current signal generated by a voltage-to-current converter.
Power amplification devices are described, which are configured to amplify a radio frequency (RF) transmission signal. The power amplification device includes a voltage regulation circuit and a power amplification circuit. The voltage regulation circuit includes a voltage regulator that is operable to generate a regulated voltage from the supply voltage and a feedback circuit that sets a voltage adjustment gain of the voltage regulation circuit. To help prevent the voltage regulation circuit from saturating, the feedback circuit reduces the voltage adjustment gain in response to a voltage difference reaching a threshold voltage level. The voltage difference is between a voltage regulator control signal level of a voltage regulator control signal and the regulated voltage level of the regulated voltage. This configuration can be utilized to reduce a drop-out voltage level of the voltage regulator and get better performance despite supply voltage degradation and variations in operational conditions, such as temperature.
A radio frequency amplifier circuit according to the present invention is for providing a radio frequency amplifier circuit with high output and high efficiency, and includes (i) a first harmonic processing circuit (102) and (ii) a second harmonic processing circuit (103) which are connected to an output terminal of transistors (101), and a (iii) fundamental matching circuit (104) connected to a downstream of the first harmonic processing circuit (102) and the second harmonic processing circuit (103). The radio frequency amplifier circuit includes plural first harmonic processing circuits (102) and plural second harmonic processing circuits (103).
A power amplifier amplifies a signal. An error signal calculating unit calculates an error signal in accordance with an input signal and an output from the power amplifier. A distortion compensation unit performs predistortion on the input signal by using distortion compensation coefficients that are generated in accordance with a plurality of delay signals obtained by giving different amounts of delay to the input signal and by using an error signal and outputs the input signal subjected to the predistortion to the signal amplifying unit. A tap interval control unit controls the delay intervals of the delay signals that are used for the predistortion performed by the distortion compensation unit in accordance with signal correlation information calculated from the input signal.
A switching amplifying method or a switching amplifier for obtaining one or more linearly amplified replicas of an input signal, is highly efficient, and does not have the disadvantage of “dead time” problem related to the class D amplifiers. Said switching amplifier comprises: an inductance means; a switching unit for switching a current from a DC voltage to the inductance means; a switching power transmitting unit for blocking a current when the switching unit switches on, and conducting the current from the inductance means to a filter unit positively or negatively according to the polarity of the input signal when the current from the DC voltage to the inductance means is switched off; an amplifier control unit to control the switching unit and the switching power transmitting unit according to the input signal; said filter unit filtering the current from the switching power transmitting unit to get an output signal.
An object is to provide a demodulation circuit having a sufficient demodulation ability. Another object is to provide an RFID tag which uses a demodulation circuit having a sufficient demodulation ability. A material which enables a reverse current to be small enough, for example, an oxide semiconductor material, which is a wide bandgap semiconductor, is used in part of a transistor included in a demodulation circuit. By using the semiconductor material which enables a reverse current of a transistor to be small enough, a sufficient demodulation ability can be secured even when an electromagnetic wave having a high amplitude is received.
In one embodiment, a bootstrap switch circuit has (i) a switch device that selectively provides a input signal as an output signal and bootstrap circuitry that provides a relatively high-voltage control signal to the gate of the switch device to turn on the switch device while preventing any over-voltage conditions from being applied to the switch device. The bootstrap circuitry includes a capacitor and a number of transistors configured as either switches or inverters. The circuit has two operating phases: one in which the capacitor gets charged while the switch device is turned off and the other in which the charged capacitor is isolated and used to generate the high-voltage control signal to be a fixed voltage difference above the current voltage level of the input signal applied to the switch device, thereby preventing an over-voltage condition.
In one embodiment of the invention, a method for convolution of signals is disclosed including generating four phased half duty cycle clocks each being out of phase by a multiple of ninety degrees from the others; coupling the four phased half duty cycle clocks into a four phase half duty cycle mixer; and switching switches in the four phase half duty cycle mixer in response to the four phased half duty cycle clocks to convolve a differential input signal with the four phased half duty cycle clocks to concurrently generate a differential in-phase output signal and a differential quadrature-phase output signal on a dual differential output port.
Provided is a pipeline circuit capable of flexibly controlling clock frequencies regardless of whether a pipeline operation by a flow control is stopped or not, without significantly increasing a processing latency even if a clock frequency is decreased, and in response to performance requests for a processing throughput. Among P clocks (P is a positive integer), the phases of which are delayed in the order from a first clock to a P-th clock, for example, among six clocks of P0 to P5, two successive clocks, the phases of which are delayed from each other by a predetermined phase, are allocated to a plurality of stages, for example, five-stage pipeline buffers 32a to 32e, in the order from a previous stage to a subsequent stage, and also are allocated so that one clock signal having an identical phase is shared between two adjacent pipeline buffers.
Disclosed herein is a device that includes a coarse adjusting circuit generating first and second clock signals having different phases from each other, and a fine adjusting circuit generating a third clock signal having a phase between a phase of the first clock signal and a phase of the second clock signal. The fine adjusting circuit includes a plurality of first transistors receiving the first clock signal and a plurality of second transistors receiving the second clock signal. The fine adjusting circuit controls the phase of the third clock signal by synthesizing the first clock signal output from selected zero or more of the first transistors based on adjustment codes and the second clock signal output from selected zero or more of the second transistors based on the adjustment codes. The adjustment codes are not a binary system.
A time-interleaved sample-and-hold system includes a first sample-and-hold circuit and a second sample-and-hold circuit. The first sample-and-hold circuit and the second sample-and-hold circuit share a common sampling switch. A method of remediating a timing offset between a first sample-and-hold circuit and a second sample-and-hold circuit in a time-interleaved sample-and-hold system includes switching at least one shunt capacitor disposed between two logic gates in a timing circuit to adjust a delay between a timing signal for a common sampling switch electrically coupled to the first and second sample-and-hold circuits and a timing signal for at least one of the sample-and-hold circuits.
In one example, an oxide-based negative differential resistance comparator circuit includes a composite NDR device that includes a first electrode, a first thin film oxide-based negative differential resistance (NDR) layer in contact with the first electrode and a central conductive portion. The composite NDR device also includes a second thin film oxide-based NDR layer disposed adjacent to the first NDR layer and a second electrode. A resistor may be placed in series with the composite NDR device and an electrical energy source can apply applying a voltage across the first electrode and second electrode. The composite NDR device produces a threshold based comparator functionality in the comparator circuit.
A USB-based isolator system conveys USB signals between a pair of galvanically isolated circuit systems and supports controlled enumeration by a downstream device on upstream USB signal lines. The isolator system provides a multi-mode voltage regulator to support multiple voltage supply configurations. The isolator system further provides control systems for each of the isolated circuit systems and provides robust control in a variety of start up conditions. Additionally, the isolator system includes refresh timers and watchdog mechanisms to support persistent operation but manage possible communication errors that can arise between the isolated circuit systems.
Described is an electric circuit which is intended, in particular, for the testing of a power producer in a wind power plant. The power producer is connected to a terminal point and is provided with a converter circuit which can be used to influence a voltage that is present at the terminal point. Also provided is a series connection configured with a choke coil and a first switch and connected to the terminal point. In at least one embodiment, a control and/or regulating system is provided for influencing, in a time-synchronized manner, on the one hand the converter circuit, such that the voltage at the terminal point transitions to a desired value and, on the other hand, the closing of the first switch.
A test method of a liquid crystal display panel is provided. The liquid crystal display panel includes a plurality of pixels and a testing pad. The pixels are disposed at intersections between a first, a second, and a third data lines and a plurality of scan lines. In the test method, each of the scan lines is driven to connect liquid crystal capacitors of the pixels to the first, the second, and the third data lines. A first and a second test voltages are respectively supplied to the first and the second data lines, wherein the first test voltage is not equal to the second test voltage. The first data line is floated. The floated first data line is measured through the testing pad to determine whether the liquid crystal capacitors of the pixels electrically connected to the first and the second data lines are electrically connected with each other.
A test body for use in determining moisture content in a laminated insulation of a power transformer by measuring a dielectric frequency response of the test body. The test body has a laminated structure of the same material as the laminated insulation, and has a shape and a size to obtain moisture content characteristics that resembles the moisture content characteristics of the laminated power transformer insulation. The test body further includes electrodes, which are embedded in the laminated structure.
A partial discharge analysis (PDA) coupling device is provided. In one embodiment, a device includes: a connector electrically connecting a first coupling capacitor and a second coupling capacitor; a first conductive rod for electrically connecting the first coupling capacitor to a high voltage input; a second conductive rod for electrically connecting the second coupling capacitor to ground; a current transformer substantially surrounding a portion of the second conductive rod, the current transformer configured to generate a pulse signal; and a reference signal generator adjacent to the current transformer configured to generate a reference signal in phase with the pulse signal.
Impedance matching between the RF probe and the spectrometer is a standard requirement for NMR probes. Both lumped element and branched transmission line methods are in wide use. Here we propose to use a segmented transmission line structure. It relies upon reflections between transmission lines of different impedances that are serially connected to match the impedance of a coil or resonator to the characteristic impedance of the NMR spectrometer. In an embodiment, two quarter-wave length dielectric slugs are placed within a coaxial transmission line. Adjustment of the positions of the slugs allows the variable tuning and matching needed for NMR probes, eliminating the need for variable capacitors and inductors.
The invention relates to an angular position measuring device (20) including a magnetic sensor (10) cooperating with a moving magnetic element (12), the sensor including at least one first (R1-R4) and one second (R5-R8) group of magnetoresistive elements each configured as a Wheatstone bridge, suitable for supplying a first and a second measurement signal (Sin, Cos) respectively proportional to the sine and the cosine of twice the angular position (α) of the moving magnetic element, and a processing unit supplying a response corresponding to the angular position from the first and second measurement signals, characterized in that the sensor is deliberately offset relative to an axis (14) of the moving magnetic element and in that the latter is deliberately offset relative to its rotation axis (30), by offset values that are deliberately selected so that the angular measurement range extends beyond 180°.
A Faraday optical current sensor arrangement for measuring the current through a power line comprises a Faraday optical current sensor (38) having an elongated and substantially cylindrical shape defining a first end and a second end opposite the first end. The Faraday optical current sensor has a first optical conduit (48) extending from the first end and a second optical conduit (48) extending from the second end. Furthermore, the Faraday optical current sensor arrangement comprises a hollow housing (12,14) enveloping the Faraday optical current sensor and fixating the Faraday optical current sensor in a specific measurement position relative to the hollow housing. The hollow housing defines a channel for accommodating the Faraday optical current sensor and the first and second optical conduits and an opening (15) for communicating with the channel. The hollow housing includes a holder (16) for fixating the power line and the hollow housing relative to one another in a juxtaposed position and positioning the Faraday optical current sensor in a specific measuring position relative to the power line.
A power conversion controller includes: a correction-value calculating unit that calculates a correction value DE2 to correct a voltage value BEFC from a voltage signal BEFC that is obtained by converting the voltage value BEFC detected by a first voltage detector into a digital signal by an A/D converter and from a series-total voltage value EBAT detected by a second voltage detector; a corrected-voltage calculating unit that calculates a voltage signal BEFC1 as a corrected voltage value that is obtained by correcting the voltage value BEFC by the correction value DE2; and a gate controller that controls a power converting unit based on the voltage signal BEFC1.
A connecting device includes: a shaft; a drum that has a container defined therein and is rotatably disposed on the shaft; a stator that is fixed to the shaft and is contained inside of the container; a rotator that is fixed to the drum, is rotatably disposed on the shaft, and is contained inside of the container with an interval with respect to the stator; first terminals that are disposed in the stator; second terminals that are disposed in the rotator and are brought into contact with the first terminals, respectively; a connecting cord that is wound around the drum, and has a connecting plug to be connected to a vehicle at one end thereof whereas is electrically connected to the second terminals at the other end thereof; a power supply cord having a power source plug electrically connected to the first terminals at one end thereof whereas connected to an outside power supply at the other end thereof; and a leakage detector contained inside of the container.
A magnet and panel assembly including at least a first panel having a first surface and a second wherein the panel has a configuration such that a magnetic field can extend past the first surface; a first magnetic source located on or near the second surface of the first panel; one or more magnetic source securing features adapted to hold the magnetic source on or near the second surface of the first panel wherein the source securing features are adapted to allow the first magnetic source to articulate in the x and y directions along a plane substantially parallel to the plane of the first panel.
A method for controlling a motor drive system, the system comprising an AC-DC converter coupled to a DC-AC inverter by a DC bus, a motor coupled to and driven by the inverter, and a load coupled to and driven by the motor is provided. The method includes accessing a motion profile for the motor and load and determining power losses of the converter, the inverter, the motor and the load. The method also includes controlling the voltage of the DC bus based upon the motion profile and the power losses to enhance the motor drive system efficiency, reliability and motor shaft performance.
A feedback switching device and a method allow a drive control loop for a servo motor to actively switch the feedback mode in accordance with the rotating speed of the servo motor. When the servo motor is under a high speed operation, a sensorless position estimation feedback technology is used as the feedback mode; on the other hand, when the servo motor is under a low speed operation, the switching mode is automatically switched to a position sensing feedback technology. Therefore, the development needs for multi-function, high performance and low cost in the field of the servo motor control are met, and the conventional problem is solved that, when being applied to a servo driving system having a wide speed range, the single use of the position sensing feedback technology or the sensorless position estimation feedback technology fails to satisfy the application for a wide speed range.
The present invention relates to a circuit for detecting a functional status of an electro-motor. Typical electro-motors need additional components to identify the functional status of the motor. This means additional weight for such motors determining the functional status. According to the present invention, a circuit is provided using a part of a motor as a sensor for detecting the functional status of the electro-motor.
In a motor control device that is used for, for example, an electric power steering system or another vehicle steering system equipped with a motor, a relay circuit (40) that serves as a power supply breaker is provided in a power feed line (Lp2) of a pre-driver (22) of a circuit that is a component of the motor control device. The operation of the relay circuit (40) is controlled by a relay signal (S_rly) output from a microcomputer (21).
A first light on/off check portion 3 checks the on/off of a light depending on the brightness, and a second light on/off check portion 9 checks the on/off of the light depending on the rain. A light control portion 10, when the rain-dependent on/off check shows the turn-on of the light, turns on a head lamp to avoid the visibility difficulty caused by the rain and, when the rain-dependent on/off check shows the turn-off of the light, according to the result of the check of the brightness-dependent on/off of the light, controls the head lamp and small lamp. A running scene check portion 8 checks the states of the inside and outside of a tunnel, and the second light on/off check portion 9, when the rain-dependent on/off check shows the turn-on of the light, continues the turn-on of the light on/off check for a given time.
The invention relates to a lighting device (10) with at least four light emitters (1 IR, 1 IG, 1 IB, 1 IW) of different primary colors that shall be controlled according to given primary target values, for example target values for the color point (x, y) and flux (Φ). This object is achieved by determining secondary target values, for example for the total power consumption (P) of the light emitters, that are in accordance with primary target values and with the possible control commands (r, g, b, w) (e.g. duty cycles between 0% and 100%). By fixing the secondary target values, the control commands for the light emitters can uniquely be determined, in preferred embodiments by a simple matrix multiplication.
An LED lighting system includes a power supply module, a data input line routed through the power supply module, an AC power input, and an LED fixture. The power supply module includes a power supply unit and an AC power cable. The AC power input is electrically connected to the power supply unit and the AC power cable. The LED fixture is electrically connected to an output of the power supply unit and the data input cable, and includes one or more LED assemblies disposed on a circuit board, a data signal output, and a power output. The AC power cable may be routed through the LED fixture.
Disclosed herein is a device for controlling current of an LED including a constant current generator, a current mirror, and a current amplifier, the device controlling current of an LED, comprising: a selector outputting an L signal or an H signal according to an input control signal; and a current changing unit formed by connecting at least one switching unit in parallel, the switching unit including a transistor and a switch connected to the transistor in series. The device for controlling current of an LED adjusts current supplied to the current amplifier using a SEL input without an effect of a noise, thereby making it possible to change the current of the LED without separately changing a resistor.
A lighting apparatus for a high-pressure discharge lamp that has an electric discharge container made of quartz glass, and containing a pair of counter electrodes and a power supply unit that supplies AC current to the high-pressure discharge lamp. The power supply unit has a stationary power lighting mode and a modulated power lighting mode that supplies current having power less than power in the stationary power lighting mode. The modulated power lighting mode supplies a rectangular AC current having a first term and a second term. A mean high-frequency current value supplied to a first electrode is greater than a mean current value supplied to a second electrode in the first term. A current is supplied to the second electrode for a term longer than the half-cycle period in the second term, the current being lower than the mean high-frequency current value supplied to the first electrode.
A power supply system includes a transformer having a primary winding on its primary side for coupling to a power source and one or more secondary windings on its secondary side. A first control circuit is disposed on the primary side of the transformer for controlling a current flow in the primary winding. A second control circuit disposed on the secondary side of the transformer, and the second control circuit is configured to provide a regulated output voltage. In the power supply system, the first control circuit is configured to generate a control signal for controlling the current flow in the primary winding without using a feedback control signal from the secondary side of the transformer.
A backlight apparatus includes light emitting diode (LED) modules. Each LED module includes a first connection pin set, a second connection pin set, a driving circuit, a first LED string, and a second LED string. Each of the connection pin sets has a first and second power connection pins and a first and second ground connection pins. The first and second power connection pins are coupled to each other, and the first and second ground connection pins are coupled to each other. The first ground connection pin of the first connection pin set is coupled to the first power connection pin of the second connection pin set. The driving circuit is used to provide a driving signal. Each of the LED strings is serially connected between the second power connection pin and the second ground connection pin of each of the connection pin sets and receives the driving signal.
A lighting element is disposed in an array of lighting elements. At the lighting element, a lighting status of at least one neighboring lighting element is sensed. Independent of any other lighting element, a lighting adjustment for the lighting element by applying the sensed lighting status to a predetermined rule is determined. The lighting adjustment is applied to the lighting element to adjust an illumination of the lighting element.
A luminaire includes a primary HID light source housing having at least one selectively powerable HID lamp and an LED arm assembly having a secondary LED light source. In some embodiments the LED arm assembly may extend between a support structure and the HID light source housing and in other embodiments the LED arm assembly may be a stand alone assembly and extend from a support structure remote from the HID light source housing. The HID lamp may be powered during user selected peak hours and the LED light source may be powered during user selected non-peak hours.
A plasma lamp system is described with the capability to tune the resonant frequency of the resonator of the plasma lamp system after the manufacturing process has been completed. The tuning method developed allows a simple low-cost approach to continuously tune the resonant frequency and set the desired frequency to an ISM (Industrial Scientific Medical) band or set the resonant frequency to optimize the performance of the system. The tuning ability of the resonator relaxes the tolerance required for the dimensions of the resonator reducing the manufacturing cost and improving the manufacturing yield of the plasma lamp.
A short arc type discharge lamp wherein a cathode and an anode are arranged opposite to each other in an interior of a light emitting tube and said cathode comprises a main part made from tungsten and a tip end part made from thoriated tungsten, wherein thorium oxide particles having been peripherally coated with thorium are contained in the tip end part of said cathode.
To stabilize the illumination fluctuation rate of a short arc type discharge lamp of the type having a pair of electrodes disposed inside an arc tube in a manner of facing each other and a hydrogen getter, by absorbing hydrogen gas in an arc tube without causing a decline in the performance of the short arc type discharge lamp arising out of a hydrogen getter, the hydrogen getter is formed of a hollow container made of a material that allows the transmission of hydrogen with a getter material sealed tightly inside the hollow container, and a holder for the hydrogen getter is held on the electrode with the hydrogen getter fixed in the holder.
An OLED display includes a first substrate including a thin film transistor and an organic light emitting element and a second substrate facing the first substrate and having a gully pattern recessed on a surface facing the first substrate. By having the gully pattern on the second substrate, a mechanical strength of the OLED may be improved, and thus, the OLED may minimize the thickness without reducing the mechanical strength.
A multi-component LED lamp is disclosed herein. The multi-component LED lamp comprises an outer case housing with at least one heat sink and an array of LEDs disposed therein. The outer case comprises a plurality of vent openings and a light projecting end. The array of LEDs is disposed proximate the light projecting end in the outer case. Each heat sink disposed in the outer case is a separate component part of the LED lamp. The vent openings and heat sink(s) are disposed and configured to provide convective air flow pathways through the multi-component LED lamp and remove heat therefrom.
A method for harvesting energy from a high-G acceleration of a munition. The method including: proving a vibrating mass-spring unit in a housing of an energy harvesting device; and reducing an effective acceleration on the mass-spring unit by one or more of: offsetting the vibration of the mass-spring unit with respect to a direction of the high-G acceleration; biasing a mass of the mass-spring unit in a direction having at least a component in the direction of the high-G acceleration; limiting a vibration deflection of at least a portion of the mass-spring unit in the direction of the high-G acceleration; or limiting an amount of vibration of the mass-spring unit in a direction offset from the direction of the high-G acceleration and removing such limit after the acceleration.
A motor includes a vibrating plate having a projection part to be pressed against a driven member and a piezoelectric material provided on the vibrating plate, wherein a Young's modulus EL in the pressing direction of the vibrating plate and a Young's modulus ES in a direction crossing the pressing direction are different.
An orthotic device comprises a flexible support structure comprising at least one surface for contacting a body part of a user, a plurality of pressure sensors configured for coupling to a microcontroller, and a plurality of displacement regions. Each region defines a portion of said flexible support structure, wherein each portion includes at least one sensor disposed on or below the at least one surface and at least one electrically deformable unit. Each unit comprises at least one electroactive material and is configured for coupling to the microcontroller and to a power source. The device is dynamically adjustable to change its shape and support properties, when an electrical voltage is applied to the electroactive material under the control of a microcontroller.
A dynamoelectric machine includes a rotor having a plurality of adjacent coils; a spaceblock disposed between adjacent coils to define at least one cavity adjacent the spaceblock and between mutually adjacent coils; and the spaceblock including a body having one of: a substantially T-shaped cross-section, a substantially hexagonal cross-section and a substantially truncated arrow cross-section, the cross-section providing at least one flow deflector structure on at least one cavity facing surface of the spaceblock for intercepting and redirecting circulating coolant flow in the cavity towards a central region of the at least one cavity.
Provided is an electric motor that has a stator including a stator iron core having a stator winding, a rotor including a rotary member and a shaft, a bearing for supporting the shaft, and a bracket for fixing the bearing. Further included is an impedance adjusting member for adjusting at least one impedance of the impedance between the stator winding and the inner ring of the bearing, and the impedance between the stator winding and the outer ring of the bearing. The impedance adjusting member is a matching member for matching the individual impedances. The matching member is a capacitor interposed between the stator iron core and the bracket.
An oscillatory system for a motorized drive unit for the generation of a rotary oscillatory movement is provided. The system includes a first oscillatory component and a second oscillatory component, the components capable of oscillating relative to one another around an axis of oscillation; and at least two elongate spring elements, each spring element having a first fastening point and a second fastening point spaced apart from one another. The spring elements are elastic in the direction of the rotary oscillatory movement. For each spring element the first fastening point is connected to the first oscillatory component and the second fastening point is connected to the second oscillatory component such that the spring elements intersect at the axis of oscillation, the axis of oscillation having an angle of intersection different from 0 degrees.
A circuit board assembly includes a multiple layer substrate, a wireless power transmitter control module, a wireless power coil assembly, and a plurality of ICs. The wireless power transmitter control module is supported by a layer of the multiple layer substrate and the wireless power coil assembly is fabricated on an inner layer of the multiple layer substrate. The ICs are mounted on an outer layer of the multiple layer substrate, wherein an IC of the plurality of IC is aligned to substantially overlap a coil of the wireless power coil assembly and is wirelessly powered by the wireless power transmitter control module via the coil.
A device for generating electric energy (1) from a renewable source, in particular from wave energy, comprising an oscillating device (2) that can transform the thrust of a natural agent on the first extremity of oscillating device (2) into kinetic energy; a motor unit, operatively connected to a second extremity of the oscillating device in such a way as to receive the kinetic energy transmitted by the oscillating device (2); and an electrical rotating machine operatively connected to the motor unit and suitable for producing electricity when it is set to rotating by the said motor unit.
The invention is an apparatus and method for harnessing wave energy by transforming it in a continuous flow of water to be converted in mechanical energy through a water turbine. The energy wave device maximizes the throughput by discharging the water crest in a continuous flow through turbines into the trough, absorbing the water of the neighboring wave's crest and sharing the facilities.
A hydrokinetic water turbine system includes a frame structure, first and second shafts rotatably supported by the frame structure, and first and second rotors secured to the first and second shafts respectively and each having a plurality of spaced-apart blades so that the flowing stream of water revolves the first and second rotors about a central axis of the first and second shafts respectively. The first and second shafts are horizontally-disposed and coaxial and the first and second rotors are adapted to rotate in opposite directions. The blades are hollow and filled with a foam material to reduce weight and increase buoyancy. The frame structure is a substantially rectangular and open frame structure and includes frame members adapted to reduce a coefficient of drag of the frame structure. The frame members can be hollow and filled with a foam material to reduce weight and increase buoyancy.
A pedal power generating device includes a base having two supporting arms upwardly extending therefrom. The base has a gearbox mounted thereon. A pedal assembly is mounted between the two supporting arms. The pedal assembly has a pedal, a supporter extending from the pedal, a connecting rod assembled with the supporter and connected to the gearbox, and a twist spring mounted between the pedal and the two supporting arms. A transmitting assembly is mounted in the gearbox. The transmitting assembly includes a driver, a first gear train engaged with the driver, a second gear train engaged with the first gear train, and a steering gear set simultaneously engaging with the first gear train and the second gear train. A generator is mounted adjacent to the gearbox, and the generator has a rotor engaged with the second gear train.
A multi-die package includes a first semiconductor die and a second semiconductor die each having an upper surface with a plurality of bond pads disposed thereon. The upper surface of the second semiconductor die may be substantially coextensive with the upper surface of the first semiconductor die and extend substantially along a plane. The multi-die package also includes a plurality of bonding wires each coupling one of the bond pads on the upper surface of the first semiconductor die to a corresponding one of the bond pads on the upper surface of the second semiconductor die. A bonding wire of the plurality of bonding wires has a kink disposed at a height above the plane, a first hump disposed between the first semiconductor die and the kink, and a second hump disposed between the second semiconductor die and the kink.
A semiconductor package includes a first package including a first substrate and at least one first semiconductor chip mounted on the first substrate, a redistribution wiring layer provided on the first package and including a connection pad, a bonding pad electrically connected to the connection pad and a dummy bonding pad electrically connected to the bonding pad, a second package stacked on the first package via the redistribution wiring layer and electrically connected to the connection pad of the redistribution wiring layer by a first connection member, a bonding wire electrically connecting the bonding pad to the first substrate, and a dummy bonding wire electrically connecting the dummy bonding pad to the first substrate.
A semiconductor package having an embedded die and solid vertical interconnections, such as stud bump interconnections, for increased integration in the direction of the z-axis (i.e., in a direction normal to the circuit side of the die). The semiconductor package can include a die mounted in a face-up configuration (similar to a wire bond package) or in a face-down or flip chip configuration.
An electronic device includes the electronic element, the interposer substrate, on one surface of which the electronic element is mounted, and the interconnection substrate, on one surface of which the interposer substrate is mounted. One portion of the connection parts is an electrical connection part that electrically interconnects the interposer substrate and the interconnection substrate. The remaining portion is a dummy connection part that produces no functional deficiency even when the dummy connection part does not electrically interconnect the interposer substrate with the interconnection substrate. The dummy connection part includes at least one of the connection parts that at least partially overlap with the electronic element in a plan projection and are preferably arranged along an outer rim of the plan projection of the electronic element.
Provided is a connecting part for a semiconductor device including a semiconductor element, a frame, and a connecting part which connects the semiconductor element and the frame to each other, in which an interface between the connecting part and the semiconductor element and an interface between the connecting part and the frame respectively have the area of Al oxide film which is more than 0% and less than 5% of entire area of the respective interfaces. The connecting part has an Al-based layer and first and second Zn-based layers on main surfaces of the Al-based layer, a thickness ratio of the Al-based layer relative to the Zn-based layers being less than 0.59.
A semiconductor package is provided, which includes: a micro electro mechanical system (MEMS) chip; a cap provided on the MEMS chip; an electronic element provided on the cap including a plurality of first conductive pads and second conductive pads; a plurality of first conductive elements electrically connected to the first conductive pads and the MEMS chip; a plurality of second conductive elements formed on the second conductive pads, respectively; and an encapsulant formed on the MEMS chip covering the cap, the electronic element, the first conductive elements and the second conductive elements, with the second conductive elements being exposed from the encapsulant. Thus, the size of the semiconductor package is reduced. A method of fabricating the semiconductor package is also disclosed.
The present invention is: a package main body section having a hollow section; and an electronic device provided in the hollow section in the package main body section, in the package main body section, there being formed a through hole, through which the hollow section communicates with outside of the package main body section, and in the through hole, there being provided a sealing section in which a vicinity of the through hole is partly heated and a constituent material of the package main body section is melted to thereby block the through hole.
In one implementation, an apparatus includes a semiconductor die, a lead, a non-conductive epoxy, and a conductive epoxy. The semiconductor die includes an upper surface and a lower surface opposite the upper surface. The lead is electrically coupled to the upper surface of the semiconductor die. The non-conductive epoxy is disposed on a first portion of the lower surface of the semiconductor die. The conductive epoxy is disposed on a second portion of the lower surface of the semiconductor die. In some implementations, a conductive wire extends from the lead to the upper surface of the semiconductor die to electrically couple the lead to the upper surface of the semiconductor die.
A stacked semiconductor package includes first and second semiconductor chips including semiconductor chip bodies which have circuit units, first through-electrodes which pass through the semiconductor chip bodies at first positions, and second through-electrodes which pass through the semiconductor chip bodies at second positions and provide a chip enable signal to the circuit units. A spacer including a spacer body may be interposed between the first semiconductor chip and the second semiconductor chip, with an inverter chip embedded in the spacer body. Wiring patterns formed on the spacer body may connect the first through-electrodes of the first semiconductor chip with the second through-electrodes of the second semiconductor chip, the first through-electrodes of the first semiconductor chip with input terminals of the inverter chip, and output terminals of the inverter chip with the second through-electrodes of the first semiconductor chip.
A method for fabricating heterojunction bipolar transistors that exhibit simultaneous low base resistance and short base transit times, which translate into semiconductor devices with low power consumption and fast switching times, is presented. The method comprises acts for fabricating a set of extrinsic layers by depositing a highly-doped p+ layer on a substrate, depositing a masking layer on highly-doped p+ layer, patterning the masking layer with a masking opening, removing a portion of the highly-doped p+ layer and the substrate through the masking opening in the masking layer to form a well, and growing an intrinsic layered device in the well by a combination of insitu etching and epitaxial regrowth, where an intrinsic layer has a thickness selected independently from a thickness of its corresponding extrinsic layer, thus allowing the resulting device to have thick extrinsic base layer (low base resistance) and thin intrinsic base layer (short base transit times) simultaneously.
A semiconductor device includes a substrate, a transistor formed over the substrate, insulating layers formed over the substrate, a multilayer wiring formed in the insulating layers, a first inductor formed in the insulating layers, and a second inductor formed over the first inductor and overlapping the first inductor. The insulating layers contain a silicon, wherein at least the two insulating layers are formed between the first inductor and the second inductor, and the first inductor and the second inductor are a spiral wiring pattern.
High performance bipolar transistors with raised extrinsic self-aligned base are integrated into a BiCMOS structure containing CMOS devices. By forming pad layers and raising the height of an intrinsic base layer relative to the source and drain of preexisting CMOS devices and by forming an extrinsic base through selective epitaxy, the effect of topographical variations is minimized during a lithographic patterning of the extrinsic base. Also, by not employing any chemical mechanical planarization process during the fabrication of the bipolar structures, complexity of process integration is reduced. Internal spacers or external spacers may be formed to isolate the base from the emitter. The pad layers, the intrinsic base layer, and the extrinsic base layer form a mesa structure with coincident outer sidewall surfaces.
A semiconductor device having a substrate including a photodiode; a resin layer formed on an upper surface of the substrate, the resin layer not covering a light receiving region of the photodiode, the resin layer including at least one groove surrounding the light receiving region; and a molding resin portion formed by mold-sealing the photodiode with the resin layer thereon so as not to cover the light receiving region.
Embodiments of the invention provide for three-terminal pressure sensors (“3-TPS”), a method of measuring a pressure with a 3-TPS, and a method of manufacturing a 3-TPS. In some embodiments, the 3-TPS includes a semiconducting layer with cavity and a 3-TPS element having at least one piezoresistive layer overlapping at least a portion of the cavity and oriented at an angle selected to provide a desired sensitivity for the 3-TPS. The method of measuring a pressure with a 3-TPS is performed with a 3-TPS that includes an input terminal, first and second output terminals, and a 3-TPS element, the 3-TPS element overlapping at least a portion of a cavity at a predetermined angle. The method comprises providing an input signal to the input terminal of the 3-TPS, determining a difference between two output signals from the respective output terminals of the 3-TPS, and correlating the determined difference to a pressure.
A MEMS device includes a substrate, an insulating layer section formed above the substrate and having a cavity, a functional element contained in the cavity, and a fuse element contained in the cavity and electrically connected with the functional element. It is preferable that the fuse element is spaced apart from the substrate.
A switching transistor includes a substrate having a substrate dopant concentration and a barrier region bordering on the substrate, having a first conductivity type and having a barrier region dopant concentration that is higher than the substrate dopant concentration. A source region is embedded in the barrier region, and has a second conductivity type and has a dopant concentration that is higher than the barrier region dopant concentration. A drain region is embedded in the barrier region and is offset from the source region. The draining region has the second conductivity type and a dopant concentration that is higher than the barrier region dopant concentration. A channel region extends between the source region and the drain region, wherein the channel region comprises a subregion of the barrier region. An insulation region covers the channel region and is disposed between the channel region and a gate electrode. The barrier region dopant concentration and the substrate dopant concentration are chosen for generating a space-charge region around the source region and the drain region and for depleting the barrier region.
The present invention disclosed a recessed gate transistor with buried fins. The recessed gate transistor with buried fins is disposed in an active region on a semiconductor substrate. Two isolation regions disposed in the semiconductor substrate, and sandwich the active region. A gate structure is disposed in the semiconductor substrate, wherein the gate structure includes: an upper part and a lower part. The upper part is disposed in the active region and a lower part having a front fin disposed in one of the two isolation regions, at least one middle fin disposed in the active region, and a last fin disposed in the other one of the two isolation regions, wherein the front fin are both elliptic cylindrical.
A power semiconductor structure with schottky diode is provided. In the step of forming the gate structure, a separated first polysilicon structure is also formed on the silicon substrate. Then, the silicon substrate is implanted with dopants by using the first polysilicon structure as a mask to form a body and a source region. Afterward, a dielectric layer is deposited on the silicon substrate and an open penetrating the dielectric layer and the first polysilicon structure is formed so as to expose the source region and the drain region below the body. The depth of the open is smaller than the greatest depth of the body. Then, a metal layer is filled into the open to electrically connect to the source region and the drain region.
A semiconductor device as described herein includes a silicon carbide semiconductor body. A trench extends into the silicon carbide semiconductor body at a first surface. A gate dielectric and a gate electrode are formed within the trench. A body zone of a first conductivity type adjoins to a sidewall of the trench, the body zone being electrically coupled to a contact via a body contact zone including a higher maximum concentration of dopants than the body zone. An extension zone of the first conductivity type is electrically coupled to the contact via the body zone, wherein a maximum concentration of dopants of the extension zone along a vertical direction perpendicular to the first surface is higher than the maximum concentration of dopants of the body zone along the vertical direction. A distance between the first surface and a bottom side of the extension zone is larger than the distance between the first surface and the bottom side of the trench.
Grafting M13 bacteriophage into an array of poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires generated hybrids of conducting polymers and replicable genetic packages (rgps) such as viruses. The incorporation of rgps into the polymeric backbone of PEDOT occurs during electropolymerization via lithographically patterned nanowire electrodeposition (LPNE). The resultant arrays of rgps-PEDOT nanowires enable real-time, reagent-free electrochemical biosensing of analytes in physiologically relevant buffers.
In an example embodiment, an image sensor includes a semiconductor layer and isolation regions disposed in the semiconductor layer. The isolation regions define active regions of the semiconductor layer. The image sensor further includes photoelectric converters disposed in the semiconductor layer and at least one wiring layer disposed over a top surface of the semiconductor layer. The image sensor also includes color filters disposed below a bottom surface of the semiconductor layer and lenses disposed below the color filters. Each lens is arranged to concentrate incoming light into an area spanned by a corresponding photoelectric converter.
A semiconductor structure which includes a semiconductor substrate and a metal gate structure formed in a trench or via on the semiconductor substrate. The metal gate structure includes a gate dielectric; a wetting layer selected from the group consisting of cobalt and nickel on the gate dielectric lining the trench or via and having an oxygen content of no more than about 200 ppm (parts per million) oxygen; and an aluminum layer to fill the remainder of the trench or via. There is also disclosed a method of forming a semiconductor structure in which a wetting layer is formed from cobalt amidinate or nickel amidinate deposited by a chemical vapor deposition process.
A semiconductor device includes a channel layer, an electron-supplying layer provided on the channel layer, a cap layer provided on the electron-supplying layer and creating lattice match with the channel layer, and ohmic electrodes provided on the cap layer. The cap layer has a composition of (InyAl1-y)zGa1-zN (0≦y≦1, 0≦z≦1). The z for such cap layer monotonically decreases as being farther away from the electron-supplying layer.
Semiconductor-on-insulator (XOI) structures and methods of fabricating XOI structures are provided. Single-crystalline semiconductor is grown on a source substrate, patterned, and transferred onto a target substrate, such as a Si/SiO2 substrate, thereby assembling an XOI substrate. The transfer process can be conducted through a stamping method or a bonding method. Multiple transfers can be carried out to form heterogenous compound semiconductor devices. The single-crystalline semiconductor can be II-IV or III-V compound semiconductor, such as InAs. A thermal oxide layer can be grown on the patterned single crystalline semiconductor, providing improved electrical characteristics and interface properties. In addition, strain tuning is accomplished via a capping layer formed on the single-crystalline semiconductor before transferring the single-crystalline semiconductor to the target substrate.
The light emitting device has a light emitting element 101, and translucent material 102 that passes incident light from the light emitting element 101 and emits that light to the outside. The sides of the translucent material 102 perimeter are inclined surfaces 107 that become wider from the upper surface to the lower surface. The area of the lower surface of the translucent material 102 is formed larger than the area of the upper surface of the light emitting element 101. The lower surface of the translucent material 102 and the upper surface of the light emitting element 101 are joined together, and the part of the lower surface of the translucent material 102 that is not joined with the light emitting element 101 and the inclined surfaces 101 are covered by light reflecting resin 103.
Provided are a light emitting device package and a lighting device. The light emitting device package includes a base having a via hole passing through a top surface thereof and a bottom surface thereof, a plurality of electrodes formed on the top surface of the base, the plurality of electrodes being electrically connected to a lower portion of the base through the via hole of the base, a frame disposed on the base, the frame having an opening and a light emitting device electrically connected to at least one of the plurality of electrodes in the opening of the frame. A width of the base is wider than a width of the frame, and material having light reflectivity is disposed on the frame.
A semiconductor light emitting device including a second electrode layer; a light emitting unit including a plurality of compound semiconductor layers under one portion of the second electrode layer; a first insulating layer under the other portion of the second electrode; an electrostatic protection unit including a plurality of compound semiconductor layer under the first insulating layer; a first electrode layer electrically connecting the light emitting unit to the electrostatic protection unit; and a wiring layer electrically connecting the electrostatic protection unit to the second electrode layer.
A light-emitting diode package is described comprising a body including a hollow having a rim that extends outwardly from an open end of the hollow. A light emitting diode is positioned in the hollow and opposite the open end. A nongaseous transparent optical medium fills the hollow and a phosphor-containing element (PCE) is disposed over the hollow sealing the open end. The PCE has a solid body and a lateral portion including a periphery and dividing a top and a bottom. The bottom of the PCE is convex and in contact with the nongaseous transparent optical medium and the periphery of the PCE is in contact with the rim.
An illumination device is specified which comprises an optoelectronic component having a housing body and at least one semiconductor chip provided for generating radiation, and a separate optical element, which is provided for fixing at the optoelectronic component and has an optical axis, the optical element having a radiation exit area and the radiation exit area having a concavely curved partial region and a convexly curved partial region, which at least partly surrounds the concavely curved partial region at a distance from the optical axis, the optical axis running through the concavely curved partial region.
According to one embodiment, an LED package includes first and second lead frames, an LED chip and a resin body. The first and second lead frames are apart from each other. The LED chip is provided above the first and second lead frames, and the LED chip has one terminal connected to the first lead frame and another terminal connected to the second lead frame. In addition, the resin body covers the first and second lead frames and the LED chip, and has an upper surface with a surface roughness of 0.15 μm or higher and a side surface with a surface roughness higher than the surface roughness of the upper surface.
A UV LED device and the method for fabricating the same are provided. The device has aluminum nitride nucleating layers, an intrinsic aluminum gallium nitride epitaxial layer, an n-type aluminum gallium nitride barrier layer, an active region, a first p-type aluminum gallium nitride barrier layer, a second p-type aluminum gallium nitride barrier layer, and a p-type gallium nitride cap layer arranged from bottom to top on a substrate. A window region is etched in the p-type gallium nitride cap layer for emitting the light generated.
A nitride-based semiconductor LED includes a substrate; an n-type nitride semiconductor layer formed on the substrate; an active layer and a p-type nitride semiconductor layer that are sequentially formed on a predetermined region of the n-type nitride semiconductor layer; a transparent electrode formed on the p-type nitride semiconductor layer; a p-electrode pad formed on the transparent electrode, the p-electrode pad being spaced from the outer edge line of the p-type nitride semiconductor layer by 50 to 200 μm; and an n-electrode pad formed on the n-type nitride semiconductor layer.
According to one embodiment, a semiconductor light emitting device includes n-type and p-type semiconductor layers, a light emitting portion, a multilayered structural body, and an n-side intermediate layer. The light emitting portion is provided between the semiconductor layers. The light emitting portion includes barrier layers containing GaN, and a well layer provided between the barrier layers. The well layer contains Inx1Ga1-x1N. The body is provided between the n-type semiconductor layer and the light emitting portion. The body includes: first layers containing GaN, and a second layer provided between the first layers. The second layer contains Inx2Ga1-x2N. Second In composition ratio x2 is not less than 0.6 times of first In composition ratio x1 and is lower than the first In composition x1. The intermediate layer is provided between the body and the light emitting portion and includes a third layer containing Aly1Ga1-y1N (0
According to one embodiment, a nitride semiconductor device includes a foundation layer and a functional layer. The foundation layer is formed on an Al-containing nitride semiconductor layer formed on a silicon substrate. The foundation layer has a thickness not less than 1 micrometer and including GaN. The functional layer is provided on the foundation layer. The functional layer includes a first semiconductor layer. The first semiconductor layer has an impurity concentration higher than an impurity concentration in the foundation layer and includes GaN of a first conductivity type.
An optoelectronic device assembly can include: a coated element and an optoelectronic device on the coated element. The coated element can include a thermoplastic substrate and a protective weathering layer. The thermoplastic substrate can include a bisphenol-A polycarbonate homopolymer and a polycarbonate copolymer, and wherein the polycarbonate copolymer is selected from a copolymer of tetrabromobisphenol A carbonate and BPA carbonate; a copolymer of 2-phenyl-3,3-bis(4-hydroxyphenyl)phthalimidine carbonate and BPA carbonate; a copolymer of 4,4′-(1-phenylethylidene) biphenol carbonate and BPA carbonate; a copolymer of 4,4′-(1-methylethylidene) bis[2,6-dimethyl-phenol]carbonate and BPA carbonate; and combinations comprising at least one of the foregoing. The protective weathering layer can include resorcinol polyarylate and polycarbonate.
The invention provides a STI structure and method for forming the same. The STI structure includes a semiconductor substrate; a first trench embedded in the semiconductor substrate and filled up with a first dielectric layer; and a second trench formed on a top surface of the semiconductor substrate and interconnected with the first trench, wherein the second trench is filled up with a second dielectric layer, a top surface of the second dielectric layer is flushed with that of the semiconductor substrate, and the second trench has a width smaller than that of the first trench. The invention reduces dimension of divots and improves performance of the semiconductor device.
A thin film transistor including a substrate, a semiconductor layer, a patterned doped semiconductor layer, a source and a drain, a gate insulation layer, and a gate is provided. The semiconductor layer is disposed on the substrate. The patterned doped semiconductor layer is disposed on opposite sides of the semiconductor layer. The source and the drain are disposed on the patterned doped semiconductor layer and the opposite sides of the semiconductor layer, wherein a part of the semiconductor layer covered by the source and the drain has a first thickness, a part of the semiconductor layer disposed between the source and the drain and not covered by the source and the drain has a second thickness ranging from 200 Å to 800 Å. The gate insulation layer is disposed on the source, the drain and the semiconductor layer. The gate is disposed on the gate insulation layer.
Aspects of the invention provide a semiconductor tunneling device including voltage controlled negative resistance. In one embodiment, the semiconductor tunneling device includes: at least one pair of spaced apart terminals; an inter-level dielectric (ILD) layer between the at least one pair of spaced apart terminals; and a dielectric capping layer extending continuously over the at least one pair of spaced apart terminals and the ILD layer.
A photon source comprising: a quantum dot; electrical contacts configured to apply an electric field across said quantum dot: and an electrical source coupled to said contacts, said electrical source being configured to apply a potential such that carriers are supplied to said quantum dot to form a bi-exciton or higher order exciton, wherein said photon source further comprises a barrier configured to increase the time which a carrier takes to tunnel to and from said quantum dot to be greater than the radiative lifetime of an exciton in the quantum dot, the quantum dot being suitable for emission of entangled photons during decay of a bi-exciton or higher order exciton.
A semiconductor device that may control a formation of a channel is disclosed. The semiconductor device includes a gate region including a first area, an insulating layer disposed on portions of a top surface of the gate region corresponding to both ends portions of the first area, first and second electrodes formed on the insulating layer to be spaced apart from each other, an elastic conductive layer disposed between the first and second electrodes and the insulating layer and having a shape that varies according to an electrostatic force based on voltages applied to the first electrode, the second electrode, and the gate region, and a gate insulating region disposed between the elastic conductive layer and the first area of the gate region.
A chamber apparatus for operating with a laser apparatus includes a chamber, a target supply unit, a first optical system and a second optical system. The chamber has an inlet for introducing a laser beam thereinto. The target supply unit supplies a target material to a region inside the chamber. The first optical system focuses the laser beam in the region. The guide beam output device outputs a guide beam. The second optical system directs the guide beam such that an axis of a beam path of the guide beam substantially coincides with an axis of a beam path of the laser beam and such that the guide beam enters the focusing optical system through the region.
A system and method for improved electron beam writing that is capable of taking design intent, equipment capability and design requirements into consideration. The system and method determines an optimal writing pattern based, at least in part, on the received information.
Provided is a flat panel detector which prevents aging deterioration of characteristics of a phosphor layer, protects the phosphor layer from chemical alteration or physical impact, and maintains a stable contact state between a scintillator panel and a flat light receiving element. Disclosed is a flat panel detector comprising a scintillator panel comprising a scintillator provided with a phosphor layer on a substrate and a protective layer covering the phosphor surface of the scintillator, and the scintillator panel being placed on the surface of a flat light receiving element comprising plural picture elements which are two-dimensionally arranged, wherein a releasable adhesive layer is provided on the protective layer surface.
The present invention relates to a UV fluid sterilizer, which is suitably formed to sterilize fluid having poor UV transmission. According to the present invention, the UV fluid sterilizer includes a plurality of UV sterilization units. The UV sterilization units include: small quartz tubes; inside UV lamps mounted in the small quartz tubes for radiating UV rays at the inside of fluid; large quartz tubes concentrically mounted outside the small quartz tubes for forming the flow spaces of the fluid; spring type coils spirally fixed to the outer diameter surfaces of the small quartz tubes for applying rotation force to the fluid; and UV transmission shrinks films for fixing the spring type coils to the outer diameter surfaces of the small quartz tubes in close contact and preventing foreign substances from being trapped in the flow spaces of the fluid, and are characterized in that a plurality of outside UV lamps are provided outside the large quartz tubes for radiating UV rays to the fluid, which flows through the UV sterilization units, from the outside.
A liquid metal ion source for use in an ion mass spectrometric analysis method contains, on the one hand, a first metal with an atomic weight ≧190 U and, on the other hand, another metal with an atomic weight ≦90 U. One of the two types of ions are filtered out alternately from the primary ion beam and directed onto the target as a mass-pure primary ion beam.
A radiological image detection apparatus, includes: two scintillators that convert irradiated radiation into lights; and a photodetector arranged between two scintillators, that detects the lights converted by two scintillators as an electric signal; in which: an activator density in the scintillator arranged at least on a radiation incident side out of two scintillators in vicinity of the photodetector is relatively higher than an activator density in the scintillator on an opposite side to a photodetector side.
Embodiments of the present invention pertain to an apparatus that provides four simultaneous ion and neutral measurements as a function of altitude with variable sensitivity for neutral atmospheric species. The variable sensitivity makes it possible to extend the measurements over the altitude range of 100 to more than 700 kilometers. The four instruments included in the apparatus are a neutral wind-temperature spectrometer, an ion-drift ion-temperature spectrometer, a neutral mass spectrometer, and an ion mass spectrometer. The neutral wind-temperature spectrometer and ion-drift ion-temperature spectrometer are configured to separate O and N2 and O+ from H+ while the neutral mass spectrometer and the ion mass spectrometer are configured to separate mass with a resolution of one in sixty-four to enable metallic ion identification in the lower thermosphere. The energy analyzer features of the wind-temperature spectrometer and ion-drift ion-temperature spectrometer also enable the measurement of the thermosphere-to-exosphere transition in the Earth's upper atmosphere.
This invention relates to a position transmitter for the acquisition of the position of a shaft, rotatable about an axis of rotation, with a first optical sensor arrangement for the acquisition of the single-turn position of the shaft, and a second optical sensor arrangement for the acquisition of the multi-turn position of the shaft.
A nanothermocouple detector includes a nanowire coupled across two electrodes. The two electrodes are electrically connected to an amplifier. The two electrodes generally have a separation of about five micrometers to about thirty micrometers across which the nanowire is coupled. A focusing element is disposed to admit photons that fall on the focusing element onto the nanowire to heat it. A voltage change across the nanowire caused by the heating of the nanowire by the light is detected by the amplifier. The voltage change corresponds to the energy absorbed from the light by the nanowire. The color of a single photon can be detected using such device. An array of such devices can be used for sensing light on a two-dimensional scale, thereby providing an image showing small variances in the energies of the light impinging upon the detector array.
There are provided a photodiode 11, an inverting amplifier 12 which includes an operational amplifier 12a and a first resistor 12b, a second resistor 21 which has a smaller resistance value than the first resistor 12b and which is inserted between the positive side of a power supply and the photodiode 11, a differential amplifier 22 which outputs a voltage across both ends of the second resistor 21, and a diode 23 which is connected between a ground and a connection point between the photodiode 11 and an inverting input terminal of the operational amplifier 12a and which changes to a non-conductive state when the inverting amplifier 12 is not saturated and changes to a conductive state when the inverting amplifier 12 is saturated so that the output current of the photodiode 11 is bypassed.
A data processing method may include counting one of a plurality of clock signals with a first mode, counting clock signals based on a predetermined number of the plurality of clock signals with the first mode, to output a first clock signal every time a counter value becomes a first predetermined value, counting the first clock signal with the first mode, counting one of the clock signals with a second mode while the counted value is considered as a first initial value, counting clock signals based on the predetermined number of the plurality of clock signals with the second mode, to output a second clock signal every time the counter value becomes a second predetermined value while the counted value is considered as a second initial value, counting the second clock signal with the second mode, and outputting the counter values with the second mode as difference data between a first data signal and a second data signal.
Multi-purpose food preparation kits for foods which include dough, at least a portion of which is exposed for cooking, browning, and crisping, and optionally rising. The kits include a support base of susceptor material elevated above a support surface by an elevator member either incorporated with a base or separate therefrom. Kits further include a ring component of susceptor material which surrounds the food product, and which is dimensioned larger than the initial dimensions of the food product, so as to be spaced therefrom, at least initially, prior to cooking The space inside the ring component allows the dough to rise during cooking without obstruction by the susceptor ring and without imparting thermal energy from the susceptor ring to the dough surface. In one embodiment the susceptor base it provided in the form of a shipping carton.
A microwave heating appliance, capable of achieving a locally concentrated heating in answer to the purpose while achieving a uniform heating in the overall heating chamber in a normal mode, is provided. The microwave heating appliance includes a microwave generating unit, a waveguide for transmitting a microwave from the microwave generating unit, a heating chamber for housing a heated subject heated by the microwave, a rotating antenna for radiating the microwave to the heating chamber, a driving unit for rotating and driving the rotating antenna, a temperature distribution detecting unit for detecting a temperature distribution in the heating chamber, and a controlling unit for controlling a direction of the rotating antenna based on a detected result of the temperature distribution detecting unit so that a sharp part of radiation directivity of the rotating antenna in a direction decided based on the detected result.
The present invention is to provide a laser irradiation apparatus for forming a laser beam which has a shape required for the annealing and which has homogeneous energy distribution, by providing a slit at an image-formation position of a diffractive optical element, wherein the slit has a slit opening whose length is changeable.The laser irradiation apparatus comprises a laser oscillator, a diffractive optical element, and a slit, wherein the slit has a slit opening whose length in a major-axis direction thereof is changeable, wherein a laser beam is delivered obliquely to a substrate, and wherein the laser beam is a continuous wave solid-state, gas, or metal laser, or a pulsed laser with a repetition frequency of 10 MHz or more.
A laser irradiation apparatus is provided with a laser oscillator, an articulated beam propagator in which a plurality of pipes are connected to each other in an articulated portion, and a course change means of a laser beam in the articulated portion. At least one pipe of the plurality of pipes includes a transfer lens for suppressing stagger of a laser beam in a traveling direction, in each pipe. The articulated portion produces degree of freedom in disposition of a laser oscillator, and the transfer lens enables suppression of change in beam profile.
An improved electrode for use in a plasma arc torch. The electrode includes an electrode body, a cavity in a front face at a first end of the electrode body, and an insert disposed in the cavity. The first end of the electrode body is formed of high purity copper containing at least 99.81% copper. The insert has a first end and a second end and is formed of a high emissivity material. A diameter of the first end of the insert is less than a diameter of a second end of the insert. An electrode is compressed to retain the insert using radial compression. The invention also includes a method for forming the electrode, and a method of operation of an electrode in a plasma torch.
Spot welding electrodes with generally dome shaped welding faces are provided with surface features for welding both aluminum alloy sheet assemblies and steel sheet assemblies. A raised circular plateau is formed on the central axis of the dome and, in one embodiment, a suitable number of round bumps are formed in concentric spacing from adjacent the circumference of the plateau toward the circular edge of the welding face. For welding steel workpieces the plateau mainly serves as the engaging feature of the electrode. Both the plateau and concentric bumps are used in penetrating light metal surfaces for suitable current passage. In another embodiment, the domed surface is shaped with concentric terraces for engagement with the workpieces.
A wire electric discharge machining apparatus for machining a workpiece (7) by supplying current pulses to a work gap formed between a wire electrode (8) and the workpiece comprises a person detection sensor (10) for generating a person detection signal (EX) when the existence of a person is detected, and an NC device (20) that is configured to receive the person detection signal. When the NC device receives the person detection signal, it selects first machining conditions which improve machining speed. When the NC device does not receive the person detection signal, it selects second machining conditions which reduce the risk of wire breakage.
A circuit breaker and mechanism are provided for opening circuit breaker contact arms when the circuit breaker is moved between an installed and a withdrawn position in a drawout installation. The circuit breaker has a cross shaft coupled to a first linkage that rotates in response to the circuit breaker being moved. A second linkage translates in response to said first linkage rotating. A cam surface is operably coupled between the cross shaft and the first linkage. An opening latch shaft is coupled between the second linkage and a contact arm assembly such that the opening latch shaft moves the contact arm assembly from a closed position to an open position in response to the translation of the second linkage.
The disclosure relates to a switch arrangement for medium and high-voltage switching devices having switches, with which at least one of the contacts is a moving contact which can be actuated by an ignition charge. For a plurality of switches, a dedicated ignition device is provided for each switch, and the ignition devices are coupled together with regard to the time of the ignition.
A combination weigher capable of high-speed operation comprises plural weighing units each of which includes a weighing hopper group including plural weighing hoppers arranged along an inner side of an imaginary circle and fed with objects; and a collecting chute disposed below the weighing hopper group and configured to collect the objects discharged from the weighing hoppers and to discharge the objects from a discharge outlet at a bottom part thereof, wherein weighing hopper groups of the respective weighing units include plural weighing hoppers arranged on inner sides of different imaginary circles, the different imaginary circles partially overlap with each other, and the weighing hoppers are not disposed in circular-arc regions of the imaginary circles corresponding to the overlapping region of the different imaginary circles.
A flex-rigid wiring board includes a flexible board including a flexible substrate and a conductor pattern formed over the flexible substrate, a non-flexible substrate disposed adjacent to the flexible board, an insulating layer including an inorganic material and covering the flexible board and the non-flexible substrate, the insulating layer exposing at least one portion of the flexible board, a conductor pattern formed on the insulating layer, and a plating layer connecting the conductor pattern of the flexible board and the conductor pattern on the insulating layer.
A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
[Task] To provide a solar battery sealing material obtained by using an olefin-based (co)polymer, which is excellent in flexibility, stress-absorbing property, transparency, and impact-resistant strength at low temperature, and with which the productivity is improved by omitting a cross-linking treatment if necessary.[Solving Means] A solar battery sealing material containing 1 to 40 parts by weight of polypropylene (i) which has a propylene unit of more than 90 mol %; and 60 to 99 parts by weight of a propylene.ethylene-based copolymer (ii) which has a propylene unit of 45 to 90 mol %, an ethylene unit of 10 to 25 mol %, and an α-olefin unit (a) having 4 to 20 carbon atoms of 0 to 30 mol % ((i)+(ii)=100 parts by weight). The solar battery sealing material further contains 5 to 95 parts by weight of an ethylene.α-olefin copolymer (B), based on 95 to 5 parts by weight of the total amount of (i) and (ii) ((i)+(ii)+(B)=100 parts by weight).
A thermoelectric device may include a thermoelectric element including a layer of a thermoelectric material and having opposing first and second surfaces. A first metal pad may be provided on the first surface of the thermoelectric element, and a second metal pad may be provided on the second surface of the thermoelectric element. In addition, the first and second metal pads may be off-set in a direction parallel with respect to the first and second surfaces of the thermoelectric element. Related methods are also discussed.
A DC battery powered sound effect pedal housing with sound effect circuitry mounted therein and a battery terminal connector for being connected to battery terminals for powering the circuitry, a base and an adapter frame removably mounted intermediate the housing and the base with the adapter having said frame and an adapter power cord mounted to frame for transmitting DC power to the battery terminal connector whereby a conventional DC battery power sound effect pedal is converted to one being powered from an online AC power source without physically changing the base and housing. A convention power cord is used be powered from an AC power source to provide a DC power output that is plugged into the jack of the adapter power cord.
A multi-function pedal controller may be used with a musical instrument, such as a keyboard percussion instrument, to allow control of both vibrato and damper functions. The multi-function pedal controller may control damper functions with a first range of motion and vibrato functions with a second range of motion, thereby facilitating intuitive control of both functions by the instrumentalist.
A stringed musical instrument comprises of a headstock with tuners, a neck having a fretboard, a body having a top and back, a saddle with a bridge secured to the body and one or more strings stretched from the headstock over the neck, fretboard, and over a portion of the top of the body to contact points on the bridge saddle. The instrument is further provided with a means for adjusting the saddles up or down in any interval to change individual string action height while the saddles maintain full contact to the body of the instrument without the employment of inferior air gaps between the bottom of the string and the instrument's body. The elimination of air gaps under the instrument's saddle or bridge offer improved sonic sustain and enhanced musical tone.
To provide an action of an upright piano which permits playing of repeated notes on the single key and touch of the keys that are comparable to a grand piano. A first spring (59) is provided to a pushing-up portion (20) of a jack (18), a first spring rest (71) is provided to a jack stop rail (53), and when a jack tail (19) moves away from a regulating button (47), the first spring (59) bent between the pushing-up portion (20) and the first spring rest (71) forces the pushing-up portion (20) to be pushed under a pushed-up portion (27) to be thrust up of a hammer butt (25). A second spring (66) is provided to a damper stop rail (56), a second spring rest (72) is provided to a hammer shank (33), and the second spring (66) bent between the damper stop rail (56) and the second spring rest (72) stops the rotational movement of a hammer (32) before the hammer (32) that moves rotationally by the force of the first spring (59) strikes a string (90).
The invention relates to the soybean variety designated D6854249. Provided by the invention are the seeds, plants and derivatives of the soybean variety D6854249. Also provided by the invention are tissue cultures of the soybean variety D6854249 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety D6854249 with itself or another soybean variety and plants produced by such methods.
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH407490. The invention thus relates to the plants, seeds and tissue cultures of the variety CH407490, and to methods for producing a corn plant produced by crossing a corn plant of variety CH407490 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH407490.
A novel maize variety designated PH18N5 and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH18N5 with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH18N5 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH18N5 or a locus conversion of PH18N5 with another maize variety.
Basically, this invention provides for an inbred corn line designated NPAF4543, methods for producing a corn plant by crossing plants of the inbred line NPAF4543 with plants of another corn plant. The invention relates to the various parts of inbred NPAF4543 including culturable cells. This invention also relates to methods for introducing transgenic transgenes into inbred corn line NPAF4543 and plants produced by said methods.
A soybean cultivar designated 17140094 is disclosed. The invention relates to the seeds of soybean cultivar 17140094, to the plants of soybean cultivar 17140094, to the plant parts of soybean cultivar 17140094, and to methods for producing progeny of soybean cultivar 17140094. The invention also relates to methods for producing a soybean plant containing in its genetic material one or more transgenes and to the transgenic soybean plants and plant parts produced by those methods. The invention also relates to soybean cultivars or breeding cultivars, and plant parts derived from soybean cultivar 17140094. The invention also relates to methods for producing other soybean cultivars, lines, or plant parts derived from soybean cultivar 17140094, and to the soybean plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid soybean seeds, plants, and plant parts produced by crossing cultivar 17140094 with another soybean cultivar.
A novel soybean variety, designated XB34AV11 is provided. Also provided are the seeds of soybean variety XB34AV11, cells from soybean variety XB34AV11, plants of soybean XB34AV11, and plant parts of soybean variety XB34AV11. Methods provided include producing a soybean plant by crossing soybean variety XB34AV11 with another soybean plant, methods for introgressing a transgenic trait, a mutant trait, and/or a native trait into soybean variety XB34AV11, methods for producing other soybean varieties or plant parts derived from soybean variety XB34AV11, and methods of characterizing soybean variety XB34AV11. Soybean seed, cells, plants, germplasm, breeding lines, varieties, and plant parts produced by these methods and/or derived from soybean variety XB34AV11 are further provided.
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH310852. The invention thus relates to the plants, seeds and tissue cultures of the variety CH310852, and to methods for producing a corn plant produced by crossing a corn plant of variety CH310852 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH310852.
The present invention relates to a α-L-iduronidase knock-out mouse. More particularly, this invention relates to a α-L-iduronidase knock-out mouse to be designed for developing a treatment or an agent for mucopolysaccharidosis type I (Hurler syndrome or Hurler-Scheie syndrome) as an animal model.
A process for maximizing p-xylene production includes producing a naphtha fraction and a light cycle oil fraction from a fluid catalytic cracking zone. These fractions are combined and hydrotreated. Fractionation of the hydrotreated product makes a hydrocracker feed that is sent to a hydrocracking zone to make a naphtha cut and a hydrocracker product. The hydrocracker product is recycled back to the fractionation zone, and the naphtha cut is dehydrogenated in a dehydrogenation zone to make aromatics. Reforming catalyst from a catalyst regenerator moves downward through the dehydrogenation zone. Straight run naphtha and raffinate from the aromatics unit are introduced to an additional series of reforming zones. The reforming catalyst moves in parallel through the first reforming zone and the dehydrogenation zones, then is combined for entry to the second and subsequent reforming zones prior to regeneration.
Disclosed is a process for small-scale operation of biomass catalytic cracking. The process is suitable for lab scale and pilot plant operation, as well as for small-scale commercial operation. The process is suitable for simulating a continuous biomass catalytic cracking (BCC) process. The process comprises a biomass conversion cycle and a catalyst regeneration cycle.A fluid bed reactor and a reaction feed fluidizer suitable for use in the process are also disclosed.
Disclosed is a method of purifying (Z)-1-chloro-3,3,3-trifluoropropene of the formula [1], comprising: distilling a mixture containing (Z)-1-chloro-3,3,3-trifluoropropene and 1-chloro-1,3,3,3-tetrafluoropropane (CF3CH2CHClF), wherein the distilling is performed by extractive distillation of the mixture in the coexistence of at least one kind of compound selected from the group consisting of halogenated hydrocarbons of the formula [2], halogenated unsaturated hydrocarbons, nitriles, ketones, carbonates, ethers, esters and alcohols as an extractant [Chem. 8] CFnCl3-nCHXCClFmH2-m [2] where X represents a hydrogen atom (H), a fluorine atom (F) or a chlorine atom (Cl); n represents an integer of 0 to 3; and m represents an integer of 0 to 2.
The present disclosure relates to acylsulfonamides and processes for their preparation. The processes involve a target-guided synthesis approach, whereby a thioacid and a sulfonyl azide are reacted in the presence of a biological target protein, a Bcl-2 family protein, to form the acylsulfonamide.
The invention relates to a method for producing acrolein by dehydrating an aqueous glycerin phase in an acrolein reaction region, obtaining an aqueous acrolein reaction phase; at least partially separating the aqueous acrolein reaction phase into an acrolein-rich acrolein phase and an acrolein-poor residual phase comprising glycerin, water and various other residuals; and recirculating at least part of the residual phase into the acrolein reaction region. Additionally, removing at least one of the residuals, other than glycerin or water, from either of the glycerin phase or a mixture phase obtained by mixing the glycerol phase with the low-acrolein residue phase and feeding the resulting purified glycerin or mixture phase into the acrolein reaction region. The invention furthermore relates to a method for producing acrylic acid, water-absorbing polymer formations, compounds and hygiene articles, and to devices for carrying out those methods.
The present invention relates to a process for lightening the color of polyol esters by reacting polyols with linear or branched aliphatic monocarboxylic acids having 3 to 20 carbon atoms, wherein the reaction product is worked up without using adsorbents and comprises a treatment with ozone or ozone-containing gases and an immediately subsequent steam treatment with subsequent drying.
Precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of strontium ruthenium oxide (SrRuO3) thin films, e.g., in the manufacture of microelectronic devices, as well as processes of making and using such precursors, and precursor supply systems containing such precursor compositions in packaged form. Cyclopentadienyl compounds of varied type are described, including cyclopentadienyl as well as non cyclopentadienyl ligands coordinated to ruthenium, strontium or barium central atoms. The precursors of the invention are useful for forming contacts for microelectronic memory device structures, and in a specific aspect for selectively coating copper metallization without deposition on associated dielectric, under deposition conditions in a forming gas ambient.
This invention relates to a process comprising reacting ethylene and oxygen or a source of oxygen in a process microchannel in the presence of a catalyst to form a product comprising ethylene oxide.
Furfural is produced from a lignocellulosic feedstock comprising glucan and xylan. The feedstock is contacted with water in the presence of an acid catalyst. The resulting mixture is contacted with at least one water-immiscible organic solvent to form a mixture comprising an aqueous phase and an organic phase. Under suitable reaction conditions, furfural is produced and preferentially partitions into the organic phase, from which it may be recovered.
[Object] A prophylactic or therapeutic agent for a cardiovascular disease is provided.[Means for Resolution] An atropisomer of a compound represented by the following general formula (I): (wherein R1 is a C1-C3 alkyl group or a hydroxy-C1-C3 alkyl group; and R2 is a hydrogen atom or a C1-C3 alkoxy group).
The invention provides compounds represented by the formula I, each of which compounds may have sphingosine-1-phosphate receptor agonist and or antagonist biological activity: and wherein the variables Y, R4, n, o, A, A1, A2, X, Z, R1, R3, R2, p, q and r are as defined in the specification. These compounds are useful for treating a disease or condition selected from the group consisting of glaucoma, dry eye, angiogenesis, cardiovascular conditions and diseases, and wound healing.
The invention relates to a process for the preparation of a compound of formula (I), which process comprises a) reacting a compound of formula (II), wherein X is chloro or bromo, with an organometallic species to (III) reacting the halobenzyne of formula (III) so formed with (IV) wherein R1 and R2 are hydrogen or C1-C6alkyl; to (V), b) hydrogenating V in the presence of a metal catalyst to (VI), c) ozonising (VI) to (VII) d) converting (VII) in the presence of a phosphane and CCI4 or CHCI3 to (VIII) (VIII), and either e1) reacting VIII with NH3 in the presence of a catalyst to (IX) and f) reacting IX in the presence of a base with the compound of formula (X), to the compound of formula (I); or e2) reacting the compound of formula (VIII), in the presence of a solvent, a base, a copper catalyst and at least one ligand with (Xa), to the compound of formula (I).
The present invention relates to novel intermediate compounds used in preparing Rosuvastatin or the pharmaceutically acceptable salts thereof, to a method for preparing same, and to a method for preparing Rosuvastatin or the pharmaceutically acceptable salts thereof from the intermediates. The preparation method of the present invention has the effect of providing Rosuvastatin hemi-calcium salts with an excellent yield rate.
α-Trifluoromethyl-β-substituted-β-amino acids can be produced by allowing α-trifluoromethyl-β-substituted-α,β-unsaturated esters to react with hydroxylamine to convert α-trifluoromethyl-β-substituted-α,β-unsaturated esters into dehydrogenated closed-ring body of α-trifluoromethyl-β-substituted-β-amino acid, and by hydrogenolyzing the dehydrogenated closed-ring body. According to this production process, novel α-trifluoromethyl-β-substituted-β-amino acids which are free amino acids whose functional groups are not protected can be produced, in which β-position substituent is not limited to aromatic ring group or substituted aromatic ring group while the relative stereochemistry of α-position and β-position can be also controlled.
A process for the preparation of [1-hydroxy-2-(1H-imidazol-1-yl)-ethylidene]bisphosphonic acid consists of the reaction of aqueous solution of 1H-imidazole-1-acetic acid hydrochloride with phosphorus trichloride followed by removal of the excess of phosphorus trichloride, addition of water and hydrolysis of the reaction products. In order to isolate the product the post-reaction mixture is filtered and the anti-solvent is added to the aqueous filtrate in order to crystallize out [1-hydroxy-2-(1H-imidazol-1-yl)-ethylidene]bisphosphonic acid monohydrate.
The present invention is directed to the preparation of 6-hydroxy morphinans having formula (II) or N-alkylated 6-hydroxy morphinans having formula (III).
Novel iminium-type coupling agents containing proton acceptors in their iminium moiety, which can be used beneficially as coupling agents in various chemical polypeptide and/or polynucleotide syntheses, and are particularly useful as yield enhancing and racemization suppressing coupling agents for use in peptide syntheses, are disclosed. Further disclosed are a process of preparing such iminium-type coupling agents and their use in the preparation of polypeptides and/or polynucleotides.
The invention relates to 5-cyano-3-methyl-pyridine-2-carboxylic acid [3-((3R,6R)-5-amino-3,6-dimethyl-6-trifluoromethyl-3,6-dihydro-2H-[1,4]oxazin-3-yl)-4-fluoro-phenyl]-amide in crystalline form, to its preparation, its medical use and to medicaments comprising said compound in crystalline form.
A compound of the formula (I) where, for example, W, X and Y are each CH; R1 and R6 together with the adjacent nitrogen forms a 3 to 10-membered saturated ring, wherein the ring may contain, in addition to the nitrogen and carbon ring members, 1, 2 or 3 heteroatoms and/or heteroatom groups as ring members, independently of one another, selected from the group consisting of sulfur, CO, SO, SO2 and N—R7 and/or the ring may carry 1, 2 or 3 radicals, independently of one another, each selected, for example, from the group consisting of halogen, cyano, nitro, amino, and C1-C6-alkyl. R2 is, for example, halogen, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C1-C6-haloalkoxy or C1-C6-alkoxy-C1-C6-alkoxy, and R7 is for example, R10C(═O), C1-C6 alkyl or C1-C6-haloalkyl; and/or salts thereof; and their use as pesticidal agents.
This invention relates a cellulose solution comprising cellulose and at least one tetraalkylammonium alkylphosphate and processes to produce the cellulose solution. Another aspect of this invention relates to shaped articles prepared from a cellulose solution comprising cellulose and at least one tetraalkylammonium alkylphosphate. Another embodiment of this invention relates to compositions comprising derivatives of cellulose prepared from a cellulose solution comprising at least one tetraalkylammonium alkylphosphate. Another embodiment of this invention relates to compositions comprising regioselectively substituted cellulose esters prepared from a cellulose solution comprising cellulose and at least one tetraalkylammonium alkylphosphate. In another embodiment of the invention, the cellulose esters of the present invention are used as protective and compensation films for liquid crystalline displays.
An outer layer material having an entanglement comprising an intermingling of cloaked hydrophilic guest and a hydrophobic polymer host, wherein molecules of the guest have been crosslinked with each other. Under certain circumstances, using complexes of the guest may be desirable or even necessary. Prior to intermingling with the guest, a host blend may be produced to include a physical blend of a hydrophobic polymer host and a maleated hydrophobic co-host (preferably, an anhydride functionalized hydrophobic polymer, whereby the polymer so functionalized, is the same as that selected for the host). The intermingling of the guest and host, or host-co-host blend, includes a physical tangling, whether it also comprises crosslinking by primary bonding (e.g., chemical/covalent bonding) there-between. Also a method of producing an outer layer material having such an entanglement, including the steps of: temporarily cloaking at least a portion of the hydrophilic groups of the guest; intermingling at least a portion of the cloaked groups with a porous polymeric structure by diffusing the guest with cloaked groups into at least a portion of the structure's pores; within the pores, crosslinking at least a portion of the molecules of the guest with the guest; and removing the cloaking. Cloaking may be performed by silylation or acylation. Intermingling may be performed by producing a mixture of guest and host, or host blend, (whether in solution, powdered, granular, etc., form); next, a crosslinking of the guest with itself is performed; then, the mixture is molded into the outer layer with or without additional crosslinking of the host to the host.
This invention provides a novel RNAi molecule that can significantly potentiate antitumor effects of a 5-FU antitumor agent. The RNAi molecule comprises the nucleotide sequence shown in SEQ ID NO: 2. The invention also provides an antitumor agent comprising such RNAi molecule and a 5-FU antitumor agent.
The present invention is directed to antigen-binding polypeptides, or variants or derivatives thereof which specifically bind the LIGHT polypeptide. The invention is also directed to methods of making and using such antibodies specifically in the treatment or diagnosis of immune, inflammatory and malignant diseases or conditions (e.g. inflammatory bowel disease; Crohn's disease, ulcerative colitis, multiple sclerosis, rheumatoid arthritis and transplantation).
A new class of compounds, namely diamino alcohols, is described, along with a process for their production and their use as hardeners, or curing agents, for epoxy resin systems, some of which have high glass transition temperatures, Tgs, such as greater than about 120° C.
A silicon-based hardmask composition, including an organosilane polymer represented by Formula 1: {(SiO1.5—Y—SiO1.5)x(R3SiO1.5)y(XSiO1.5)z}(OH)e(OR6)f (1).
Hydrophilic silicone copolymers are the addition polymerization product of an unsaturated silicone macromer, and unsaturated polyoxyalkylene polyether, and optionally further unsaturated addition polymerizable monomers.
Disclosed is a peroxide-crosslinkable fluoroelastomer obtained by copolymerization of 0.1 to 20 mol % of a mixture of fluoroolefin iodides represented by the general formulae: CnF2n+1CF2CH═CF(CF2CF2)mI [Ia] and CnF2n+1CF═CHCF2(CF2CF2)mI [Ib], wherein n is an integer of 0 to 5, and m is an integer of 1 to 3. The peroxide-crosslinkable fluoroelastomer is copolymerized with a monomer having a side chain containing a peroxide-crosslinkable halogen atom, and has excellent vulcanizate physical properties and improved compression set characteristics when subjected to peroxide crosslinking.
A resin composition includes a polyester capable of forming a crystal structure, and a substance represented by the following general structural formula (1), the substance represented by the following general structural formula (1) has a dehydration-condensed structure of two molecules of natural product-derived α-amino acids or a substitution structure thereof, and the two molecules of α-amino acids are not simultaneously glycine. In the above general structural formula, R1, R2, R3, and R4 indicate groups or substituent groups thereof bonded to the α carbons of the α-amino acids.
A one or two part organopolysiloxane composition capable of cure to an elastomeric body, the composition comprising a polymer having a polymer backbone selected from an organopolysiloxane backbone and a telechelic backbone, which polymer has not less than two reactable silicon-bonded groups selected from alkenyl group, condensable groups, silyl-hydride groups, 5 to 50% by weight of the composition of an extender; a suitable cure catalyst; and optionally a siloxane and/or silane cross-linker having at least two groups per molecule which are reactable with the reactable groups in (a) and/or one or more fillers. The extender is selected from an alicyclic ester having at least two ester groups, and a boiling point of at least 180° C. or a mixture thereof having a boiling point range commencing at 180° C. or above; each ester group being the same or different and comprising from 2 to 30 carbon atoms.
To provide a resin composition comprising an aromatic polycarbonate resin and having excellent appearance, impact strength, thermal stability, hydrolysis resistance, and flame retardancy.The present invention relates to a resin composition comprising (A) 75 to 99.98 wt % of an aromatic polycarbonate resin (component A), (B) 0.01 to 5 wt % of a mixture of polytetrafluoroethylene particles and an organic polymer (component B) and (C) 0.01 to 20 wt % of a flame retardant (component C), wherein the sodium metal ion content of the component B (excluding sodium metal ion contained in the polytetrafluoroethylene particles) is 10 ppm or less, and molded articles therefrom.
One embodiment of the invention includes a product including a coating comprising (a) a primary resin and a blocked isocyanate, and (b) at least one bio-diesel fuel degradation product neutralizing material.
The first invention relates to a water-based ink for ink-jet printing which includes colorant-containing polymer particles (A) obtained by dispersing a colorant with a water-soluble polymer (x) and a water-insoluble polymer (y), a water-soluble organic solvent (B) and water, wherein a weight ratio of the water-insoluble polymer (y) to the water-soluble polymer (x) [(y)/(x)] is from 2.0 to 5.0, and a content of the water-soluble organic solvent (B) in the ink is from 10 to 70% by weight. The water-based ink for ink-jet printing according to the first invention is excellent in ejection property and optical density and exhibits a low viscosity. The second invention relates to a process for producing a water dispersion for ink-jet printing, which includes a step (I) of mixing a dispersion of a colorant with an emulsion of a water-insoluble polymer containing an organic solvent; a step (II) of subjecting the resulting mixture to dispersing treatment to obtain a dispersion of the colorant onto which the water-insoluble polymer is deposited; and a step (III) of removing the organic solvent from the resulting dispersion. The water dispersion produced by the process of the second invention is capable of exhibiting a high optical density suitable for high-speed printing.
A method of coating a polymer comprising the step of treating the polymer with an activating agent to produce a reactive polymer, for example treating a polymer bearing at least one X (halogen) group and at least one H with base to eliminate HX. The reactive polymer is then reacted with a reactive coating, for example PVP, preferably in the presence of an initiator like persulfate anions, to produce a coated polymer, which may be hydrophilic in nature.
The flexible, resilient polyurethane foam is prepared by reacting at least one polyisocyanate with one or more liquid compounds which have at least two isocyanate reactive groups and at least one of which contain one or more solid polymers stably dispersed therein in an amount of 2.5 to 35 parts per 100 parts of said liquid isocyanate reactive groups containing compounds. The wet compression set of the flexible polyurethane foam could be considerably reduced by including in said liquid isocyanate reactive groups containing compounds, per 100 parts thereof, (I) 50 to 80 parts of one or more polyoxyalkylene polyols having an oxyethylene unit content of at least 40 wt. %, a hydroxyl number of between 20 and 100, and a nominal functionality of 2 to 4; and (II) 20 to 50 parts of one or more further polyoxyalkylene polyols containing no oxyethylene units or having an oxyethylene unit content lower than 40 wt. %, and having a hydroxyl number of between 20 and 100 and a nominal functionality of 2 to 4.
A biodegradable starch film is provided. The biodegradable starch film includes a starch which is cross-linked by means of a cross-linking agent. The cross-linking agent comprises glycidyl methacrylate (GMA), octenyl succinic anhydride (OSA), or dodecyl succinic anhydride (DDSA) or combinations thereof. The cross-linking agent is 1 to 10 weight parts based on the starch of 100 weight parts. Furthermore, a method for manufacturing starch foam is also provided.
The present invention is directed to the use of one or more rebaudioside C polymorphs, or stereoisomers thereof, to enhance the sweet taste of a flavoring, such as glucosylated steviol glycoside, rebaudioside A, ammoniated glycyrrhizin, neohespherdin dihydrochalcone or thaumatin.
Organosulfur compounds of the general formula (2) are described, wherein R1 and R2 are linear or branched C1-C5 alkyl; linear or branched C1-C5 alkenyl with the proviso that R1 is not prop-1-enyl (allyl); substituted linear or branched C1-C5 alkenyl or substituted linear or branched C1-C5 alkyl, in which the substituents are selected from OR3, NR4R5, COOR6, CON—R7R8, in which R3 is selected from H, COR9, para-methoxybenzyl and trialkylsilyl, in which R9 is alkyl or substituted alkyl; R4 N and R5 are alkyl or R4 and R5 together form a phthalimido group; R6 is alkyl or substituted alkyl; and R7 and R8 are alkyl or substituted alkyl; substituted or unsubstituted aromatic specifically where R1 and R2 are benzyl, para-methoxybenzyl and/or ortho,para-methoxybenzyl and substituted or unsubstituted heteroaromatic. The compounds can be used for inhibiting the growth of tumor cells and for treating cancer. A pharmaceutical composition and a method of preparing the compounds are also described.
Composition containing quaternary ammonium compounds in which the nitrogen atom is substituted by at least one alkyl group having at least 12 carbon atoms, the composition including at least 20% in weight by weight of the total composition, of ammonium halides in which the nitrogen atom is substituted by at least one alkyl group having at least 14 carbon atoms and more than 5%, preferably more than 7% in weight by weight of the total composition, of ammonium halides in which the nitrogen atom is substituted by at least one alkyl group having at least 16 carbon atoms. Ophthalmic oil-in-water emulsions containing such compositions, the ophthalmic emulsions being useful for eye care or for the treatment of eye conditions are also disclosed.
A process for treating psoriasis and similar skin disorders whereby two formulations are used. The first formulation in a cream, gel, lotion, foam or ointment base is used two or more times daily, and contains effective amounts of (but not limited to) methylcobalamin, niacinamide, select cetylated fatty esters, and antioxidants. This formulation is used to suppress immunoproliferative and inflammatory mediated activities that play significant roles in hyperproliferation and erythema. The second formulation, used selectively to reduce plaque thickening and to reduce irritation, contains effective amounts of (but not limited to) salicylic acid and select cetylated fatty esters in a cream, gel, lotion or ointment base, with pH optimized for exfoliation properties. The unique combination of salicylic acid (or other β- or α-hydroxy acid) and cetylated fatty esters provides keratolytic activity while suppressing irritation and inflammation. The invention for this novel two-step polytherapy, are disclosed including the mode of sequential administration.
The present invention provides a controlled-release composition which provides a therapeutically effective plasma concentration of N-acetylcysteine over prolonged period of time. The present invention also includes the use of the controlled-release composition, either alone or in combination with at least one additional active agent, for reduction of vascular inflammation marker and treatment of diseases, conditions, and/or symptoms associated with systemic and/or vascular inflammation in a patient. Furthermore, the present invention provides a process of making granules comprising N-acetylcysteine, or a salt, solvate, prodrug, and/or analog thereof.
The invention provides compositions and methods that employ compounds that can stimulate proliferation of fibroblasts or keratinocytes and/or stimulate production of collagen by fibroblasts. These compositions and methods are useful for treating gum- and skin-related conditions.
Provided are compounds of Formula I: and pharmaceutically acceptable salts and esters thereof. The compounds, compositions, and methods provided are useful for the treatment of Flaviviridae virus infections, particularly hepatitis C infections.
The present specification provides compositions comprising a thioxanthone-based autophagy inhibitor and/or a cancer therapeutic autophagy inducing compound, pharmaceutical kits comprising these compositions, and methods of treating cancer using such compounds, compositions and kits. Additionally, the present specification provides methods of treating cancer using a thioxanthone-based autophagy inhibitor and a radiotherapy.
The invention is directed to certain novel compounds. Specifically, the invention is directed to compounds of formula (I): and salts thereof. The compounds of the invention are inhibitors of kinase activity, in particular PI3-kinase activity.
The invention relates to the use of an oxodiazolyl compound (I) for the preparation of a medicament for the prevention or treatment of central and peripheral nervous system associated disorders, wherein said medicament is administered according to a dosing regimen having a dosing periodicity ranging from about twice a day to about once every other day.
The subject invention provides stereoisomeric compounds of formula (X): wherein the variables are as defined herein, and compositions for the safe and effective treatment of various gastrointestinal disorders including, but not limited to, gastroparesis, gastroesophageal reflux and related conditions. The compounds of the subject invention are also useful in treating a variety of conditions involving the central nervous system.
Disclosed herein are formulations of fluoroquinolones suitable for aerosolization and use of such formulations for aerosol administration of fluoroquinolone antimicrobials for the treatment of pulmonary bacterial infections. In particular, inhaled levofloxacin specifically formulated and delivered for bacterial infections of the lungs is described. Methods include inhalation protocols and manufacturing procedures for production and use of the compositions described.
This invention comprises the novel compounds of formula (I) wherein R1, R2, R3, X and Y have defined meanings, having histone deacetylase inhibiting enzymatic activity; their preparation, compositions containing them and their use as a medicine.
The present invention provides compounds of formula (I), their use as PARP inhibitors as well as pharmaceutical compositions comprising said compounds of formula (I) wherein n, R1, R2, R3, R4, R5, R6 and X have defined meanings.
The present invention relates to compounds according to formulae (IA) to (ID) and compositions that inhibit the activity of Hsp90. The invention further relates to methods of inhibiting the activity of Hsp90 in a subject in need thereof and methods for preventing or treating hyperproliferative disorders, such as cancer, in a subject in need thereof comprising administering to the subject a compound of the invention, or a composition comprising such a compound.
The present invention discloses and claims compounds of general formula in which X, R1, P, Q, R and W are as described herein. The compounds of the invention are useful in a variety of therapeutic applications.
The present application relates to indole and indoline derivatives of formula (I), formula (II), formula (III), or formula (IV) wherein a, R2, R3, h, k, m, n, L, Q, X, and Z are as defined in the specification. The present application also relates to compositions comprising such compounds, and methods of treating disease conditions using such compounds and compositions.
Provided are compositions and methods useful for modulation of signaling through the Toll-like receptors TLR7 and/or TLR8. The compositions and methods have use in treating or preventing disease, including cancer, autoimmune disease, infectious disease, inflammatory disorder, graft rejection, and graft-verses-host disease.
The present application relates to novel substituted dihydropyrazolone derivatives, processes for their preparation, their use for treatment and/or prophylaxis of diseases and their use for the preparation of medicaments for treatment and/or prophylaxis of diseases, in particular cardiovascular and hematological diseases and kidney diseases, and for promoting wound healing.
In various embodiments, the present invention provides methods of treating and/or preventing cardiovascular-related disease and, in particular, a method of blood lipid therapy comprising administering to a subject in need thereof a pharmaceutical composition comprising eicosapentaenoic acid or a derivative thereof.
Sterol derivatives of formula (I) and a method for the production of the compounds, a medicament using one of the compounds and a pharmaceutical composition comprising the medicament.
The present invention relates to therapeutic targets for cancer. In particular, the present invention relates to small molecules and nucleic acids that target EZH2 expression in prostate cancer.
The present invention provides a novel CXCL12-α2 locked dimer polypeptide, pharmaceutical compositions thereof, and methods of using said dimer in the treatment of cancer, inflammatory disorders, autoimmune disease, and HIV/AIDS.
The invention provides for peptides from the Mucin 1 (MUC1) cytoplasmic domain and methods of use therefor. These peptides can inhibit MUC1 oligomerization, thereby preventing tumor cell growth, inducing tumor cell apoptosis and necrosis of tumor tissue in vivo.
The present invention relates to novel complex peptidomimetic products comprising multiple homogeneous or heterogeneous pendant groups that are site-specifically positioned along a linear oligomer or polymer scaffold and methods of making thereof. More specifically, the invention relates to N-substituted glycine peptoid oligomers or peptoids and their use as substrates for azide-alkyne [3+2]-cycloaddition conjugation reactions and subsequent additional rounds of oligomerization and cycloaddition. The methods of the invention may also be used to generate peptoid-peptide hybrid or peptide products comprising multiple homogeneous or heterogeneous pendant groups, which are positioned precisely along the linear oligomer or polymer scaffold.
Methods and compositions are disclosed for an intra-articular injection for the treatment of osteoarthritis. The methods and compositions comprising combinations of hyaluronic acid and a bone morphogenetic protein, like rhGDF-5, can be useful for any synovial joint, including the knee, shoulder, hip, ankle, hands, spinal facet, or temporomandibular joint, both for the relief of pain and for slowing disease progression.
The present invention relates generally to the field of brain development and brain health. One embodiment of the present invention relates to a composition that can be used for the treatment or prevention of a delayed brain development and/or a delayed development of the nervous system. Also cognitive performance can be increased.
The invention provides improvements in the color protection properties of detergents and cleaning agents during their utilization for washing or cleaning colored textile fabrics. Specific polycarbonate-, polyurethane- and/or polyurea-polyorganosiloxane compounds or a precursor compound thereof containing specific reactive groups, which can be used for the production of the polycarbonate-, polyurethane- and/or polyurea-polyorganosiloxane compounds, are utilized.
A composition which is effective in removing a wide variety of contaminants, such as organic compounds, from a wide variety of environments, such as printing systems, is provided. A process of preparing such composition includes contacting hydrogen peroxide, glycolic acid, and water. The process can additionally include contacting with one or more additional components such as isopropyl alcohol.
A multi-compartment pouch comprising a first compartment and a second compartment, wherein, the first compartment comprises a solid composition, wherein the solid composition comprises; an oxygen bleach source; a bleach activator; a polycarboxylate polymer; and the second compartment comprises a liquid composition, wherein the liquid composition comprises; a low molecular weight solvent.
A lubricant composition comprising an oil of lubricating viscosity; (A) 0.05 to 1.5 percent by weight of a copolymer comprising 70 to 79 percent by weight of units derived from ethylene (“E”), having a Mw of 50,000 to 100,000, Mw/ Mn less than 3, density (“D”) of 860 to 896 kg/m3, and a melting point (“Tm”) of 15° C. to 60° C., wherein E and Tm fulfill the expression 3.44E−206≧Tm; and (B) 0.05 to 1.5 percent by weight of a block copolymer comprising a first block which comprises a vinyl aromatic comonomer and a second block which comprises a diene comonomer, the diene monomer-containing block being hydrogenated; wherein the weight ratio (A):(B) is 20:80 to 60:40; exhibits good low temperature performance and durability.
Complementary surfactant systems and downhole fluids made using the systems are disclosed along with methods for making and using same, where the surfactant systems include from 0 wt. % to 100 wt. % of a first surfactant subsystem, from 100 wt. % to 0 wt. % of a second surfactant subsystem, and from 0 wt. % to 100 wt. % of a solvent subsystem based on the wt. % of the surfactant subsystems, where the system is tailored to foam the fluid including the analyzed crude and/or condensate.
A method for determining a Plug Normal Stress Difference (ΔN1(P)) may include providing a test base drilling fluid that is characterized by N1(TB); adding a first concentration of a test particulate to the test base drilling fluid; adjusting the concentration of the test particulate in the test base drilling fluid to achieve a minimum concentration of the test particulate in the test base drilling fluid that will substantially plug a tapered slot, wherein the test base drilling fluid with the minimum concentration of the test particulate is characterized by N1(TA); and calculating ΔN1(P)=|N1(TA)|−|N1(TB)| wherein each First Normal Stress Difference is measured by the same procedure.
A method of producing a catalyst material with nano-scale structure, the method comprising: introducing a starting powder into a nano-powder production reactor, the starting powder comprising a catalyst material; the nano-powder production reactor nano-sizing the starting powder, thereby producing a nano-powder from the starting powder, the nano-powder comprising a plurality of nano-particles, each nano-particle comprising the catalyst material; and forming a catalyst precursor material from the nano-powder, wherein the catalyst precursor material is a densified bulk porous structure comprising the catalyst material, the catalyst material having a nano-scale structure.
Presented are one or more aspects and/or one or more embodiments of catalysts, methods of preparation of catalyst, methods of deoxygenation, and methods of fuel production.
The present invention relates to a process for preparing an activating support for metallocene complexes in the polymerization of olefins comprising the steps of: I) providing a support consisting in particles formed from at least one porous mineral oxide; II) optionally fixing the rate of silanols on the surface of the support; III) functionalizing the support with a solution containing a metallic salt; IV) heating the functionalized support of step c) under an inert gas or hydrogen; V) oxidizing the support of step IV by treatment under N2O and then under oxygen; VI) retrieving an active support having a controlled number of OH groups. That activating support is used to activate a metallocene catalyst component for the polymerization of olefins.
Processes for enhancing solubility and the reaction rates in supercritical fluids are provided. In preferred embodiments, such processes provide for the uniform and precise deposition of metal-containing films on semiconductor substrates as well as the uniform and precise removal of materials from such substrates. In one embodiment, the process includes, providing a supercritical fluid containing at least one reactant, the supercritical fluid being maintained at above its critical point, exposing at least a portion of the surface of the semiconductor substrate to the supercritical fluid, applying acoustic energy, and reacting the at least one reactant to cause a change in at least a portion of the surface of the semiconductor substrate.
An anisotropically conductive member has an insulating base material, and conductive paths composed of a conductive material which pass in a mutually insulated state through the insulating base material in a thickness direction thereof and which are provided in such a way that a first end of each conductive path is exposed on a first side of the insulating base material and a second end of each conductive path is exposed on a second side of the insulating base material. The conductive paths have a density of at least 2 million paths/mm2 and the insulating base material is a structure composed of an anodized aluminum film having micropores therein.
Embodiments of the invention provide methods for forming materials on a substrate used for metal gate and other applications. In one embodiment, a method includes forming a cobalt stack over a barrier layer disposed on a substrate by depositing a cobalt layer during a deposition process, exposing the cobalt layer to a plasma to form a plasma-treated cobalt layer during a plasma process, and repeating the cobalt deposition process and the plasma process to form the cobalt stack containing a plurality of plasma-treated cobalt layers. The method further includes exposing the cobalt stack to an oxygen source gas to form a cobalt oxide layer from an upper portion of the cobalt stack during a surface oxidation process and heating the remaining portion of the cobalt stack to a temperature within a range from about 300° C. to about 500° C. to form a crystalline cobalt film during a thermal annealing crystallization process.
An apparatus and a process for the manufacture of a solder-bump adhered wafer substrate for use in the semiconductor industry, comprising one or more of the following steps including: arranging a first compressive member and a second compressive member in an opposed, compressibly displaceable, spaced-apart relationship, with a pattern plate disposed therebetween with the pattern plate having a plurality of aligned through-holes arranged thereon; filling the through-holes with a molten solder; compressing the solder and the pattern plate between the first and second opposed compressive members to compact the solder therein and cleans the pattern plate of excess solder; chilling the pattern plate to solidify the molten solder in the through-holes; and removing the pattern plate from the spaced-apart compressive members to produce a wafer with solder bumps thereon.
Methods and apparatus for depositing thin films incorporating the use of a surfactant are described. Methods and apparatuses include a deposition process and system comprising multiple isolated processing regions which enables rapid repetition of sub-monolayer deposition of thin films. The use of surfactants allows the deposition of high quality epitaxial films at lower temperatures having low values of surface roughness. The deposition of Group III-V thin films such as GaN is used as an example.
A semiconductor wafer has a plurality of semiconductor die distributed over a surface area. The semiconductor die are singulated from the semiconductor wafer. The semiconductor die are mounted to a carrier to form a reconstituted semiconductor wafer. The carrier has a surface area 10-50% larger than the surface area of the semiconductor wafer. The number of semiconductor die mounted to the carrier is greater than a number of semiconductor die singulated from the semiconductor wafer. The reconstituted wafer is mounted within a chase mold. The chase mold is closed with the semiconductor die disposed within a cavity of the chase mold. An encapsulant is dispersed around the semiconductor die within the cavity under temperature and pressure. The encapsulant can be injected into the cavity of the chase mold. The reconstituted wafer is removed from the chase mold. An interconnect structure is formed over the reconstituted wafer.
Semiconductor devices are formed without full silicidation of the gates and with independent adjustment of silicides in the gates and source/drain regions. Embodiments include forming a gate on a substrate, forming a nitride cap on the gate, forming a source/drain region on each side of the gate, forming a first silicide in each source/drain region, removing the nitride cap subsequent to the formation of the first silicide, and forming a second silicide in the source/drain regions and in the gate, subsequent to removing the nitride cap. Embodiments include forming the first silicide by forming a first metal layer on the source/drain regions and performing a first RTA, and forming the second silicide by forming a second metal layer on the source/drain regions and on the gate and performing a second RTA.
Improved MOSFET devices are obtained by incorporating strain inducing source-drain regions whose closest facing “nose” portions underlying the gate are located at different depths from the device surface. In a preferred embodiment, the spaced-apart source-drain regions may laterally overlap. This close proximity increases the favorable impact of the strain inducing source-drain regions on the carrier mobility in an induced channel region between the source and drain. The source-drain regions are formed by epitaxially refilling asymmetric cavities etched from both sides of the gate. Cavity asymmetry is obtained by forming an initial cavity proximate only one sidewall of the gate and then etching the final spaced-apart source-drain cavities proximate both sidewalls of the gate along predetermined crystallographic directions. The finished cavities having different depths and nose regions at different heights extending toward each other under the gate, are epitaxially refilled with the strain inducing semiconductor material for the source-drain regions.
A method of forming a plurality of transistor gates having at least two different work functions includes forming first and second transistor gates over a substrate having different widths, with the first width being narrower than the second width. A material is deposited over the substrate including over the first and second gates. Within an etch chamber, the material is etched from over both the first and second gates to expose conductive material of the first gate and to reduce thickness of the material received over the second gate yet leave the second gate covered by the material. In situ within the etch chamber after the etching, the substrate is subjected to a plasma comprising a metal at a substrate temperature of at least 300° C. to diffuse said metal into the first gate to modify work function of the first gate as compared to work function of the second gate.
This invention discloses a trenched metal oxide semiconductor field effect transistor (MOSFET) cell. The trenched MOSFET cell includes a trenched gate opened from a top surface of the semiconductor substrate surrounded by a source region encompassed in a body region above a drain region disposed on a bottom surface of a substrate. The trenched gate further includes at least two mutually insulated trench-filling segments each filled with materials of different work functions. In an exemplary embodiment, the trenched gate includes a polysilicon segment at a bottom portion of the trenched gate and a metal segment at a top portion of the trenched gate.
A technique for and structures for camouflaging an integrated circuit structure. The integrated circuit structure is formed having a well of a first conductivity type under the gate region being disposed adjacent to active regions of a first conductivity type. The well forming an electrical path between the active regions regardless of any reasonable voltage applied to the integrated circuit structure.
In general, in a semiconductor active element such as a normally-off JFET based on SiC in which an impurity diffusion speed is significantly lower than in silicon, gate regions are formed through ion implantation into the side walls of trenches formed in source regions. However, to ensure the performance of the JFET, it is necessary to control the area between the gate regions thereof with high precision. Besides, there is such a problem that, since a heavily doped PN junction is formed by forming the gate regions in the source regions, an increase in junction current cannot be avoided. The present invention provides a normally-off power JFET and a manufacturing method thereof and forms the gate regions according to a multi-epitaxial method which repeats a process including epitaxial growth, ion implantation, and activation annealing a plurality of times.
A method and structure comprise a field effect transistor structure that includes a first rectangular fin structure and a second rectangular fin structure, both positioned on a substrate. The sides of the second rectangular fin structure are parallel to the sides of the first rectangular fin structure. Further, a trench insulator is positioned on the substrate and positioned between a side of the first rectangular fin structure and a side of the second rectangular fin structure. A gate conductor is positioned on the trench insulator, positioned over the sides and the top of the first rectangular fin structure, and positioned over the sides and the top of the second rectangular fin structure. The gate conductor runs perpendicular to the sides of the first rectangular fin structure and the sides of the second rectangular fin structure. Also, a gate insulator is positioned between the gate conductor and the first rectangular fin structure and between the gate conductor and the second rectangular fin structure. The gate conductor is positioned adjacent to a relatively larger portion of the sides of the second rectangular fin structure and is positioned adjacent to a relatively smaller portion of the sides of the first rectangular fin structure.
Nanowire-channel metal oxide semiconductor field effect transistors (MOSFETs) and techniques for the fabrication thereof are provided. In one aspect, a MOSFET includes a nanowire channel; a fully silicided gate surrounding the nanowire channel; and a raised source and drain connected by the nanowire channel. A method of fabricating a MOSFET is also provided.
A transition layer 38 is provided on a die pad 22 of an IC chip 20 and integrated into a multilayer printed circuit board 10. Due to this, it is possible to electrically connect the IC chip 20 to the multilayer printed circuit board 10 without using lead members and a sealing resin. Also, by providing the transition layer 38 made of copper on an aluminum pad 24, it is possible to prevent a resin residue on the pad 24 and to improve connection characteristics between the die pad 24 and a via hole 60 and reliability.
Of three chips (2A), (2B), and (2C) mounted on a main surface of a package substrate (1) in a multi-chip module (MCM), a chip (2A) with a DRAM formed thereon and a chip (2B) with a flash memory formed thereon are electrically connected to wiring lines (5) of the package substrate (1) through Au bumps (4), and a gap formed between main surfaces (lower surfaces) of the chips (2A), (2B) and a main surface of the package substrate (1) is filled with an under-fill resin (6). A chip (2C) with a high-speed microprocessor formed thereon is mounted over the two chips (2A) and (2B) and is electrically connected to bonding pads (9) of the package substrate (1) through Au wires (8).
One aspect of the invention pertains to an integrated circuit package with an embedded power stage. The integrated circuit package includes a first field effect transistor (FET) and a second FET that are electrically coupled with one another. The FETs are embedded in a dielectric substrate that is formed from multiple dielectric layers. The dielectric layers are laminated together with one or more foil layers that help form an electrical interconnect for the package. Various embodiments relate to method of forming the above package.
Nanostructures are joined using one or more of a variety of materials and approaches. As consistent with various example embodiments, two or more nanostructures are joined at a junction between the nanostructures. The nanostructures may touch or be nearly touching at the junction, and a joining material is deposited and nucleates at the junction to couple the nanostructures together. In various applications, the nucleated joining material facilitates conductivity (thermal and/or electric) between the nanostructures. In some embodiments, the joining material further enhances conductivity of the nanostructures themselves, such as by growing along the nanostructures and/or doping the nanostructures.
A method for forming a back contact for a photovoltaic cell that includes at least one semiconductor layer is provided. The method includes applying a continuous film of a chemically active material on a surface of the semiconductor layer and activating the chemically active material such that the activated material etches the surface of the semiconductor layer. The method further includes removing the continuous film of the activated material from the photovoltaic cell and depositing a metal contact layer on the etched surface of the semiconductor layer.
The present invention discloses a MEMS microphone device and its manufacturing method. The MEMS microphone device includes: a substrate including a first cavity; a MEMS device region above the substrate, wherein the MEMS device region includes a metal layer, a via layer, an insulating material region and a second cavity; a mask layer above the MEMS device region; a first lid having at least one opening communicating with the second cavity, the first lid being fixed above the mask layer; and a second lid fixed under the substrate.
Epitaxial formation support structures and associated methods of manufacturing epitaxial formation support structures and solid state lighting devices are disclosed herein. In several embodiments, a method of manufacturing an epitaxial formation support substrate can include forming an uncured support substrate that has a first side, a second side opposite the first side, and coefficient of thermal expansion substantially similar to N-type gallium nitride. The method can further include positioning the first side of the uncured support substrate on a first surface of a first reference plate and positioning a second surface of a second reference plate on the second side to form a stack. The first and second surfaces can include uniformly flat portions. The method can also include firing the stack to sinter the uncured support substrate. At least side of the support substrate can form a planar surface that is substantially uniformly flat.
Implementations and techniques for semiconductor light-emitting devices including one or more copper blend I-VII compound semiconductor material barrier layers are generally disclosed.
In one embodiment, a body region of a body-contacted silicon-on-insulator (SOI) metal-oxide-semiconductor-field-effect-transistor (MOSFET) is connected to a gate of another MOSFET in a sensing circuit to form a floating body node. The voltage at the floating body node is accurately obtained at the output of the sensing circuit and used to provide an estimate of required floating body voltage over a full device operating range.
Methods for sampling a liquid flow are provided. The method includes supplying a continuous liquid flow from a continuous flow fluid input source to a surface along a first flow path. The method additionally includes sampling the continuous liquid flow by performing an electric field-based technique to split off a sample droplet from a portion of the liquid flow, whereby the sample droplet is distinct from the liquid flow and controllable independently of the liquid flow, wherein the electric field-based technique is performed by providing a set of electrodes on the surface and selectively biasing the set of electrodes, whereby the sample droplet is formed on one of the set of electrodes.
The methods and compositions described herein are based, in part, on the discovery of a stem cell state in human cells that resembles the morphology observed in murine-derived stem cells. Induction of such a state in human stem cells permits an increase in the efficiency of homologous recombination. Thus, the methods and compositions described herein relate to cells and methods for increasing the efficiency of homologous recombination in human stem cells.
A method of culturing adherent cells from a placenta or adipose tissue is disclosed. The method comprising culturing the adherent cells from the placenta or adipose tissue under 3 dimensional (3D) culturing conditions which allow cell expansion, the conditions comprising perfusion.
Methods are provided for treating blood monocytes to produce functional antigen presenting dendritic cells. An extracorporeal quantity of a subject's blood is treated to separate the blood into a plasma component containing proteins, a platelet component and a buffy coat component. A plastic treatment device is provided having plastic channels that allow transmittance of light to the interior of the plastic device and a light source that produces light of a wave length selected to activate the photoactivatable agent. The plasma component containing proteins is first pumped through the plastic treatment device, followed by the platelet component and finally the buffy coat component. The resulting treated cells may be incubated or reinfused directly to the subject.
The present invention is a method for amplifying a large numbers of hair follicle stem cells in vitro by using microspheres as carriers for cell culture and a revolving bottle as a fermentation tank for cell proliferation. The method includes digesting hair follicles to obtain hair follicle stem cells, seeding the cells on microcarriers, transferring the microcarriers to a revolving bottle, feeding liquid culture media into the revolving bottle, placing the revolving bottle into a cell incubator, growing the cells on the microcarrier and harvesting the hair follicle stem cells.
To reduce the pixel size to the smallest dimensions and simplest form of operation, a pixel may be formed by using only one ion sensitive field-effect transistor (ISFET). This one-transistor, or 1T, pixel can provide gain by converting the drain current to voltage in the column. Configurable pixels can be created to allow both common source read out as well as source follower read out. A plurality of the 1T pixels may form an array, having a number of rows and a number of columns and a column readout circuit in each column. A cascoded device enabled during readout may be used to provide increased programmable gain.
A culture method of a fruiting body of Antrodia camphorata is provided, which includes: (a) fermenting a culture medium containing yeast at 5-35° C. for 3-30 days; (b) adding wood flour to the fermented culture medium with stirring; (c) placing the wood flour and the culture medium into a vessel; (d) sterilizing the vessel containing the wood flour and the culture medium; (e) inoculating Antrodia camphorata strains into the sterilized vessel containing the wood flour and the culture medium, and culturing at 5-35° C., to form mycelia; (f) inoculating the wood flour containing Antrodia camphorata mycelia into a wood segment; (g) placing the wood segment inoculated with Antrodia camphorata mycelia in an environment where the temperature is 5-35° C. and the humidity is 65-85%, and culturing for a period of time; and (h) removing the wood flour remained on the wood segment, then placing the wood segment in an environment where the temperature is 15-35° C. and the humidity is 80-98%, and culturing for a period of time, to form a fruiting body of Antrodia camphorata. A culture method of Antrodia camphorata mycelia, a culture method of a fruiting body of Antrodia camphorata, and a fruiting body of Antrodia camphorata cultured by the same method are also provided. The fruiting body of Antrodia camphorata cultured by the method of the present invention is thick and solid, and the content of triterpenoids is comparable to that of wild Antrodia camphorata.
A method for manufacturing a product of a reaction catalyzed by a protein having 2-oxoglutarate-dependent enzyme activity such as (2S,3R,4S)-4-hydroxy-L-isoleucine or a salt thereof using a bacterium transformed with a DNA fragment containing a gene coding for a protein having 2-oxoglutarate-dependent enzyme activity such as L-isoleucine dioxygenase activity; and wherein said bacterium has the ability to produce a product such as (2S,3R,4S)-4-hydroxy-L-isoleucine.
An improved ethanol production process providing novel stillage treatment is disclosed wherein the stillage is separated into four value added product streams that are subjected to drying conditions reducing or eliminating volatization of any VOC's in the product streams.
The present invention relates to methods and compositions for monitoring, diagnosis, prognosis, and determination of treatment regimens in subjects in the context of renal artery stenosis (RAS). In particular, the invention relates to using assays that detect NGAL, their use to diagnose RAS in subjects suffering from hypertension, and their use in prognosis, particularly of mortality and worsening renal function.
The present invention relates to a method for the in vitro diagnosis of stroke and transient ischemic attack (TIA) in an individual, comprising the following steps: (a) measuring the level of proBNP(1-108), or of fragments of proBNP(1-108) comprising a RAPRSP sequence (SEQ ID NO: 1), in a biological sample of the individual; (b) comparing the measured level with a cut-off value; (c) determining therefrom whether a stroke or a TIA has occurred in the individual.
The present invention provides a photoresist composition comprisinga resin which comprises a structural unit represented by the formula (I): wherein Q1 and Q2 independently represent a fluorine atom etc., U represents a C1-C20 divalent hydrocarbon group etc., X1 represents —O—CO— etc., and A+ represents an organic counter ion, and a compound represented by the formula (D′): wherein R51, R52, R53 and R54 independently represent a C1-C20 alkyl group etc., and A11 represents a C1-C36 saturated cyclic hydrocarbon group which may have one or more substituents and which may contain one or more heteroatoms.
A method of fabricating a thin film pattern improve the life of a blanket and reduce the cost and improve reliability in forming the thin film pattern. The method includes injecting an etch resist solution into a blanket on a printing roller, wherein the etch resist solution includes a printing solvent that satisfies the condition 6>δsolvent or δsolvent>11, where δsolvent is the solubility parameter of the solvent, or satisfies the condition 6<δsolvent<11 and μ<2(D), where μ is the dipole moment of the solvent; rotating the printing roller to uniformly coat the etch resist solution on the blanket; rolling the printing roller coated with the etch resist solution onto a printing plate to pattern the etch resist solution to thereby form an etch resist pattern; transferring the etch resist pattern from the printing roller to a substrate; hardening the etch resist pattern; and forming a desired thin film pattern on the substrate using the etch resist pattern.
An electrophotographic photoconductor includes a conductive substrate and an outermost surface layer formed on the conductive substrate and containing a binder resin and a copolymer derived from a reactive monomer having charge transport property and a reactive monomer having no charge transport property, the copolymer having a side chain with 4 or more carbon atoms in a constitutional unit derived from the reactive monomer having no charge transport property.
The present invention relates to an electrophotographic photosensitive member obtained by providing an intermediate layer and a photosensitive layer on a conductive support in the stated order, the electrophotographic photosensitive member being characterized in that the intermediate layer contains a specific polyolefin resin and a specific organic electron-transporting substance, and a process cartridge and an electrophotographic apparatus each having the electrophotographic photosensitive member.
A method of forming assist feature patterns includes providing an original layout pattern having at least a first region defined therein, the first region having a first light transmission rate larger than 0%; performing a search step to the original layout pattern to define at least a second region having a second light transmission rate equal to 0% in the original layout pattern; forming a plurality of assist features in the second region to increase the second light transmission rate to larger than 0%; and outputting the original layout pattern and the assist features to a reticle blank.
A microbial fuel cell for generating electricity. The microbial fuel cell includes an anode and a cathode electrically coupled to the anode. The anode is in contact with a first fluid including microorganisms capable of catalyzing the oxidation of ammonium. The anode is in contact with a second fluid including microorganisms capable of catalyzing the reduction of nitrite. The anode and the cathode may be housed in a single compartment, and the cathode may rotate with respect to the anode. The microbial fuel cell can be used to remove ammonium from wastewater, to generate electricity, or both.
The battery has an electrolyte activating one or more anodes and one or more cathodes. At least one of the one or more cathodes includes or consists of one or more first active materials selected from the group consisting of: fluorinated carbon (CFx),CuCl2, and LiCuCl2; and includes or consists of one or more second active materials selected from the group consisting of lithium vanadium oxide, such as Li1+yV3O8, where y is greater than zero and/or less than 0.3, TiS2, polypyrrole, MoO2, MoS2, MnO2, V2O5, V6O13, H2V3O8, and metal vanadium oxides represented by MyH1−yV3O8 where 0
The present invention relates to nonaqueous electrolyte secondary batteries and durable anode materials and anodes for use in nonaqueous electrolyte secondary batteries. The present invention also relates to methods for producing these anode materials. In the present invention, a metal-semiconductor alloy layer is formed on an anode material by contacting a portion of the anode material with a displacement solution. The displacement solution contains ions of the metal to be deposited and a dissolution component for dissolving a part of the semiconductor in the anode material. When the anode material is contacted with the displacement solution, the dissolution component dissolves a part of the semiconductor in the anode material thereby providing electrons to reduce the metal ions and deposit the metal on the anode material. After deposition, the anode material and metal are annealed to form a uniform metal-semiconductor alloy layer.
A pouch-type rechargeable battery and its method of manufacture includes: an electrode assembly having a resin layer attached to the outer surface of an electrode tab, and a pouch having a sealing part formed on the ends of the top and bottom thereof, housing the electrode assembly. The resin layer is positioned inside the sealing part and sealed by heat and pressure for preventing it from being exposed outside the sealing part. Thus, the pouch-type rechargeable battery is adapted to seal the resin layer in the sealing part, instead of exposing it outside the sealing part so as to reduce the longitudinal length of the battery, thereby improving the capacity of the battery.
A secondary battery including an electrode assembly; a case housing the electrode assembly; a current collecting terminal electrically connected to the electrode assembly; a cap plate capping the case to seal the electrode assembly, the case, and the current collecting terminal; an insulation member interposed between the current collecting terminal and the cap plate; an electrode terminal electrically connected to the current collecting terminal and extending through the insulation member and the cap plate; and shock damping members between the electrode assembly and the cap plate, the shock damping members being coupled with the insulation member.
The present invention relates to a plate (20), particularly for a bipolar battery (10), the plate (20) being of the type that comprises a base graphite material (2), a positive active material (3) applied to a first surface (4) of the base material (2) and a negative active material (5) applied to a second surface (6) of the base material (2) opposite the first surface (4), the positive active material (3) having a composition that comprises lead dioxide, conductive carbon fibers and glass microspheres, and the negative active material (5) having a composition that comprises spongy lead, graphite additives and glass microspheres. One further describes a bipolar battery (10) formed by a plurality of plates (20), each plate (20) comprising a graphite base material (2), positive active material (3) applied to the first surface (4) of the base material (2) and negative active material (5) applied to a second surface (6) of the base material (2), opposite the first surface (4), the positive active material (3) of the plurality of plates (20) having a composition that comprises lead dioxide, conductive carbon fibers and glass microspheres, and the negative active material (5) of the plurality of plates (20) having a composition that comprises spongy lead, graphite additives and glass microspheres.
A rechargeable battery including an electrode assembly, the electrode assembly including a positive electrode and a negative electrode; a case accommodating the electrode assembly; a cap plate coupled with the case; and a vent member welded to the cap plate, the vent member including a notch thereon, wherein a welded unit, by which the vent member and the cap plate are welded together, is separately formed toward a center of the cap plate in a thickness direction from an outer side of the cap plate so as to be spaced apart from the outer side of the cap plate.
The disclosure provides tissue webs, and products incorporating the same, where the webs comprise wood and bamboo fibers. More specifically the disclosure provides soft and durable through-air dried tissue webs comprising at least about 10 percent bamboo fiber by weight of the web. In the through-air dried tissue webs of the present disclosure, bamboo typically replaces high average fiber length wood fibers, which increases the bulk of the through-air dried web without negatively effecting softness or durability.
A gypsum plasterboard with a covering paper forming the outside of the plasterboard and a coating slip deposited on the covering paper. The coating slip has plastic pigments as whitening agent.
An intermediate transfer media, such as a belt, that includes a first optional polyimide substrate layer, and a second layer of a fluoropolyimide polymer.
Organosilicone fine particles which are capable of responding to the highly advanced requirements of recent years imposed on them for purposes of actual use, including further improvement in optical characteristics such as total light transmittance and haze as well as heat-resistant colorability related to resin compositions, further improvement in usability (extensions and expansions at the time of use) and feeling (stickiness, roughness and durability) related to cosmetic materials and further improvement in matte effect and factual sense related to paint compositions, as well as methods of their production and cosmetic materials, resin compositions and paint compositions containing such particles are provided. Organosilicone fine particles have tetrahedral general shapes with surfaces each having a concave part with an approximately circular opening. The maximum external diameters L of the organosilicone fine particles have an average value in the range of 0.5-20 μm, the average value being taken from arbitrarily selected 20 of a scanning electron microscope photograph image of the organosilicone fine particles.
Embodiments of the invention are directed to doped pnictogen chalcogenide nanoplates, where each nanoplate comprises a rhombohedral crystal of Bi2Te3, Bi2Se3, or Sb2Te3 that is sulfur doped. Another embodiment of the invention is directed to a microwave activated method of preparation of the doped pnictogen chalcogenide nanoplates. Other embodiments of the invention are directed to bulk assemblies or fused films of the doped pnictogen chalcogenide nanoplates and their preparation from the doped pnictogen chalcogenide nanoplates such that the bulk assembly or fused film can be employed in a thermoelectric device.
Structural components are traditionally made by rolling or extruding to define a desired shape. Such processes lead to extra costs and inflexibility with regard to custom design. By providing a structural component comprising plates having edges extending regularly in a cruciform appropriate structural components can be provided. The plates are secured together through lock tabs passing through lock apertures and twisted into locking engagement. Either side of the locking tabs respective orientation tabs are provided to engage orientation apertures to facilitate local stability in the plates for robust locking location. Components can be formed from sheet materials and the outer profile of the components specifically shaped for particular requirements.
The method of manufacturing a gas barrier film feeds long lengths of a substrate and forms a silicon nitride film as the gas barrier film on the substrate by a capacitively coupled plasma-enhanced CVD technique while transporting the substrate in a longitudinal direction. Gaseous raw materials using in the forming step of the silicon nitride film includes at least silane gas and ammonia gas, and a ratio P/Q [W/sccm] is not less than 1 when a flow rate of the silane gas is denoted as Q [sccm] and a power input for generating a capacitively coupled plasma is denoted as P [W], a tension applied to the substrate transported between two transporting elements is not more than 100 [N/m], and a pair of electrodes for at least forming the silicon nitride film on the substrate is interposed between the two transporting elements.
The present invention relates generally to methods and apparatus for the controlled growing of material on substrates. According to embodiments of the present invention, a precursor fed is split in to two paths from a precursor source. One of the paths is restricted in a continuous manner. The other path is restricted in a periodic manner. The output of the two paths converges at a point prior to entry of the reactor. Therefore, a single precursor source is able to fed precursor in to a reactor under two different conditions, one which can be seen as mimicking ALD conditions and one which can be seen as mimicking CVD conditions. This allows for an otherwise single mode reactor to be operated in a plurality of modes including one or more ALD/CVD combination modes.
A method for manufacturing a device, including evaporating a material at a first position, and moving a container that includes the material to a second position, so that an opening of the container is heated at a second temperature higher than a first temperature, the first temperature being a temperature of the opening at the first position, is provided.
The present invention relates generally to functional sweetener compositions comprising non-caloric or low-caloric natural and/or synthetic high-potency sweeteners and methods for making and using them. In particular, the present invention relates to different functional sweetener compositions comprising at least one non-caloric or low-caloric natural and/or synthetic high-potency sweetener, at least one sweet taste improving composition, and at least one functional ingredient, such as a probiotic, a prebiotic, or combination thereof. The present invention also relates to functional sweetener compositions and methods that can improve the tastes of non-caloric or low-caloric high-potency sweeteners by imparting a more sugar-like taste or characteristic. In particular, the functional sweetener compositions and methods provide a more sugar-like temporal profile, including sweetness onset and sweetness linger, and/or a more sugar-like flavor profile.
The wet pet food product of the present invention has more appeal to a consumer and ease of access for a pet. The wet pet food product contains a base food; a first layer; optionally a coating associated with said base food; and wherein said first layer is bonded with the base food.
A pressed agglomerate (compacted material) which is suitable for consumption, a process for its preparation, its use for aromatizing products and products comprising such a pressed agglomerate are described.
The present invention provides a method for producing a carotenoid-containing composition, comprising the steps of: subjecting a culture of a carotenoid-producing microorganism to an extraction treatment using a water-soluble organic solvent; dispersing the resulting extract solution in water for micellization; heat stirring the resulting micellized solution in a solvent break the micelles and precipitate the carotenoid component of interest to obtain the precipitate; collecting and heat washing the precipitate with ethanol; and further subjecting the precipitate to pulverization/drying; and food, a pharmaceutical composition and a cosmetic product comprising the carotenoid-containing composition.
The present invention provides compositions and methods for improving stool quality of a puppy by adjusting the balance of metabolizable cations to metabolizable anions consumed by the puppy.
The present invention relates to a method for the prevention and treatment of postmenopausal syndrome containing the step of administering a pharmaceutically effective dose of the Aceriphyllum rossii or its fractions to a subject. The present inventors confirmed that the Aceriphyllum rossii extract or its fractions of the invention prepared by using water, alcohol or a mixed solvent thereof could promote the expression of the promoter containing estrogen responsive element (ERE) and accelerated the growth of MCF-7, the human breast tissue originated cell line, suggesting that they had estrogen activity. The inventors further confirmed that the extract or its fractions of the invention had the effect of promoting osteocyte differentiation, so that they could be effectively used for the prevention and treatment of postmenopausal syndrome such as hot flush, osteoporosis and phlebothrombosis caused by estrogen deficiency.
Solid dosage formulations of nitazoxanide or a nitazoxanide analogue are provided that comprise a controlled release portion and an immediate release portion. The pharmaceutical composition is typically in the form of a bilayer solid oral dosage form comprising (a) a first layer comprising a first quantity of nitazoxanide or analogue thereof in a controlled release formulation; and (b) a second layer comprising a second quantity of nitazoxanide or analogue thereof in an immediate release formulation. Method of using the formulations in the treatment of hepatitis C are also provided.
A membrane system comprising an interior wall, a fluid-permeable exterior wall surrounding the interior wall and an internal compartment defined by the membrane system, wherein fluid permeability of the interior wall is responsive to osmolarity of an osmotic core within the internal compartment are disclosed. A controlled release dosage form comprising the membrane system and a process for delivering an osmotically active formulation from an osmotic pump over an extended period of time are also disclosed.