There is provided a method and apparatus for tuning an optical discriminator to the carrier frequency of an optical signal to allow superior reception of said signal. The carrier frequency of the signal is dithered during a test phase in order to provide information that allows a subsequent tuning phase to optimise the reception of the optical signal, as measured by a signal quality metric. The tuning phase may comprise adjustment of one or both of the carrier frequency and the optical discriminator.
Terminals of upstream and downstream sides of an in-service line and a detour line are connected by optical couplers. An optical oscilloscope is connected to one optical coupler, and a chirped pulse light source is connected to the other optical coupler to thereby form dualized lines. The detour line includes an optical line length adjuster for compensating for the phase difference of optical transmission signals that occurs because of the optical line length difference with the in-service line. Pulse light in which an optical frequency is chirped is transmitted from the chirped pulse light source. The pulse light is branched by the second optical coupler, passes through the in-service line and the detour line, is multiplexed again by the first optical coupler, and is measured by the optical oscilloscope. While matching an arrival time of the pulse light, the optical line length is adjusted by the optical line length adjuster so as to minimize the size of upper and lower limits of an interference waveform generated in an upper part of the pulse light waveform or so as to make a frequency of an interference waveform become zero.
The present disclosure provides a multi-lens device and method having improved autofocus. The method comprises: determining from a first focus value and second focus value whether a focus distance of a first lens or a focus distance of a second lens corresponds to a peak focus position; and adjusting the focus distance of the first lens and second lens when neither the focus distance of the first lens nor the focus distance of the second lens corresponds to the peak focus position.
An imaging unit includes an incident-side reflecting surface provided in a casing and reflects object-emanating light, entering the casing in a thickness direction thereof, along a lengthwise direction of the casing; a movable lens group movable along the lengthwise direction of the casing; an exit-side reflecting surface reflecting the light in the thickness direction of the casing; an image sensor provided in the casing and receiving the light from the exit-side reflecting surface; and a plurality of light shield frames provided in the casing between the movable lens group and the exit-side reflecting surface, the light shield frames being arranged in the lengthwise direction of the casing and moving in the lengthwise direction of the casing when the movable lens group performs a power-varying operation.
The present invention generally relates to manufacturing electric volatile substance evaporators for evaporating aromatic substances and/or insecticides for example and the invention more specifically allows the modular construction of these types of devices such that based on a basic evaporator, a manufacturer of electric evaporators can incorporate additional elements to the device in order to produce different types of evaporators without altering the basic evaporator design, where the module comprises a casing having a first surface configured to be assembled with a volatile substance evaporator and internally carries an electric device intended to cooperate in the operation of the evaporator.
There is disclosed a stream data reception/reproduction device capable of suppressing deterioration of quality of stream data reproduced even when the stream data is received via an IP network or the like in which the packet arrival timing and the order are not guaranteed. In this device, a reproduction speed control unit (107) sets various conditions in accordance with the value of the synchronization difference reported from a synchronization difference calculation unit (102). Only when the set conditions are satisfied, the speed of reproduction of a frame decompressed and inputted from a decoding unit (105) is adjusted. The reproduction speed control unit (107) interpolates a predetermined amount of sample data into the frame or decimates it from the frame when adjusting the reproduction speed.
A method for processing a source frame is disclosed. The method generally includes the steps of (A) generating a intermediate video frame by de-mosaicing the source frame, wherein (i) the source frame has a source resolution and has a source color space and (ii) the intermediate video frame has the source resolution and has an intermediate color space, (B) generating a video stream by compressing the intermediate video frame with a video compression technique and (C) generating a still picture from the source frame, wherein (i) the still picture has the source resolution and comprises a raw picture and (ii) generating the still picture occurs substantially simultaneously with generating the video stream.
A portable device includes a setting means that sets a recording reservation; an acquisition means that acquires information that indicates the contents of a recording reservation set in a recording device by requesting the information processing device; an integrating means contained in the portable device that combines a recording reservation set in the portable device with the recording reservation set in the recording device; and a display control means that displays the contents of the recording reservation set in the portable device and the contents of the recording reservation set in the recording device on the basis of the recording reservations combined by the integrating means, and displays information that indicates which recording site the contents will be recorded in, the recording medium of the portable device or a recording medium of the recording device, when recorded in accordance with the respective recording reservations.
Some embodiments of the invention provide a media-editing application that performs frame rate conversion detection on a video. For a video that has been converted from one frame rate and format to another frame rate and format, the application detects the conversion method that has been used in the conversion of the video. Some embodiments perform this frame rate conversion detection by detecting patterns of repeating fields and/or frames in a video sequence created by the different conversion processes.Some embodiments compute (i) a frame difference value for each consecutive frames, (ii) a correlation score for the first and second fields of each frame, and (iii) a correlation score for the second field of each frame and the first field of a succeeding frame. Frame difference values are compared with each other to detect repeated frames and correlation scores are compared with each other to detect repeated fields.
A method and apparatus for providing multimedia data using an event index are provided. The method includes; to detect a biometric signal of a user when the user captures a multimedia data, digitize the detected biometric signal and indexing the multimedia data using the result of the digitization, and selectively edit the indexed multimedia data and playing back the result of the selectively editing. Accordingly, it is possible to facilitate the management of moving data files by indexing part of a moving data corresponding to an emotional event of a user who has captured the moving data, editing the moving data according to the results of the indexing, and playing back the edited moving data to provide a preview of the moving data.
A method is provided to perform anti-aging techniques in an informational display. An informational display is located on the front bezel of a consumer recording device that displays information related to the content being recorded or played or the operation of the device. To increase the life of the display, displayed text is shifted within the display so that pixel use in the display is more evenly distributed with the pixels in the display. To determine the direction and shape of the shift, real-time calculations of pixel use are made or a simulator is used to compute the probable use of each pixel in the display over a certain period of time. Another anti-aging technique is to dim the display of information after a specified amount of time of display at normal brightness.
A method for forming a tapered region in a first layer of a first material is disclosed. The method comprises forming an accelerator layer of a second material on the first layer and forming a mask layer disposed on the accelerator layer. The accelerator layer is exposed to a first etch that removes the second material in a first region and laterally etches the accelerator layer along a second region to expose the first layer in the second region to the first etch. Since the time for which the first layer is exposed to the first etch in the second region is based on the progress of the lateral etch of the accelerator layer, the first etch tapers the first layer in the second region.
A double clad optical fiber having a portion extending along its length along which an outer waveguide cladding and a protective jacket are absent and having faces of the second waveguide cladding at two lengthwisely opposite ends, wherein a water impervious sealant is applied to impede lengthwise diffusion of water through the faces of the second waveguide cladding.
The present invention relates to a multicore optical fiber having a structure for suppressing core-to-core crosstalk. The multicore optical fiber (100A) comprises a plurality of cores extending along a predetermined axis while being arranged like a hexagonal lattice on a cross section perpendicular to the axis and a cladding region (120) integrally surrounding the plurality of cores. All of core portions, each constituting at least a part of the associated one of the plurality of cores, have substantially the same structure.
An optical signal transmitting device includes a substrate, light emitting modules, an optical coupling element, an optical fiber module, and a pressing pole. The substrate has a first loading surface and a second loading surface. The optical coupling element is positioned on the first loading surface and includes a first cladding portion and coupling lenses. Each coupling lens has a first sloped surface and a second sloped surface. The light emitting modules are positioned on the second loading surface and spatially correspond to the respective first sloped surfaces. The optical fiber module is positioned on the first loading surface and includes a second cladding portion and fiber cores. Each fiber core has a bare end. The pressing pole presses each bare end to the corresponding second sloped surface. The refractive indexes of the substrate, the coupling lenses, the fiber cores and the air are n1, n2, n3, n0, wherein n3>n2>>n1>n0.
An optical branching element includes: an input waveguide; a tapered waveguide connected to the input waveguide; two branched waveguides that are connected to the tapered waveguide and arranged so as to form a Y-shape with the input waveguide and the tapered waveguide; and a plurality of strip-like waveguides that are provided so as to connect between the two branched waveguides and not to protrude outside the two branched waveguides, and formed so as to decrease in width as becoming distant from the tapered waveguide.
An optical modulation apparatus includes: a substrate; a first optical waveguide and a second optical waveguide formed at an interval on the substrate; an electrode provided along at least one of the first optical waveguide and the second optical waveguide; and a power source coupled to the electrode to apply a voltage to at least one of the first optical waveguide and the second optical waveguide, wherein at least one of the first optical waveguide and the second optical waveguide includes a diffraction grating region where light having a wavelength λ is reflected, and a phase shift region where a phase of the light is shifted by an amount in a range of 0 to λ/2.
In verification of image data of a captured image as to whether it is original one, the verification is possible even for image data subjected to a peripheral illumination correction or an exposure correction. An order information calculation unit selects a pixel set including two or more pixels based on pixel values and information on an image space of image data of a captured image, and calculates an order of magnitude between pixels in the selected pixel set. A verification data producing unit generates verification data used in verification of whether the image data has not been tampered with, based on the calculated order of magnitude. An image output unit outputs the image data and the verification data.
An image processing system includes an image reconstruction unit. The image reconstruction unit is configured to receive an image at a first resolution, apply the image to a look-up table and output a version of the image at a second resolution. The second resolution includes a higher resolution than the first resolution. In addition, the look-up table is generated inputting a plurality of training images; classifying, into a number of classes, a plurality of images patches corresponding to each of the plurality of training images; re-classifying the number of classes into a final class; and synthesizing filters corresponding to each of the class into a final filter value.
A depth generation method adapted for a 2D to 3D image conversion device is provided. The depth generation method includes the following steps. Motion vectors in an image frame are obtained by motion estimation. A global motion vector of the image frame is obtained. Motion differences between the motion vectors of each block and the global motion vector are calculated. A depth-from-motions of each block is obtained based on the motion differences. Furthermore, a depth generation apparatus using the same is also provided.
A fluoroscopy apparatus including: an illumination unit having a light source radiating illumination light and excitation light onto an observation target, a fluorescence-imaging unit acquiring a fluorescence image by imaging fluorescence generated at the observation target by the excitation light, a white-light-imaging unit acquiring a reference image by imaging light returning from the observation target by the illumination light, and an image-correction unit obtaining a correction fluorescence image by raising the luminance value of the fluorescence image to the power of a reciprocal of a first and second exponent obtained by a power approximation of a distance characteristic of luminance versus observation distance, for the fluorescence image, and that obtains a corrected fluorescence image by dividing the correction fluorescence image by the correction reference image.
Image encoding and decoding methods and related devices are provided. An image encoding and decoding method includes: for a sub-image block obtained by partitioning an image block, determining at least two position parameters, in which the at least two position parameters include a first position parameter and a second position parameter, the first position parameter identifies whether the sub-image block is a rectangle or not a rectangle, and the second position parameter identifies endpoint information of the sub-image block; determining an encoding sequence of the first position parameter and the second position parameter according to a partition manner of the image block; and encoding the at least two position parameters according to the determined encoding sequence.
A method and apparatus for segmenting an image are provided. The method may include the steps of clustering pixels from one of a plurality of images into one or more segments, determining one or more unstable segments changing by more than a predetermined threshold from a prior of the plurality of images, determining one or more segments transitioning from an unstable to a stable segment, determining depth for one or more of the one or more segments that have changed by more than the predetermined threshold, determining depth for one or more of the one or more transitioning segments, and combining the determined depth for the one or more unstable segments and the one or more transitioning segments with a predetermined depth of all segments changing less than the predetermined threshold from the prior of the plurality of images.
A method for identifying siding includes receiving particular texture data associated with a physical texture of a particular siding sample, accessing a reference database including reference texture data associated with physical texture of multiple different reference siding samples, performing an automated texture data analysis by analyzing the particular texture data associated with the particular siding sample and the reference texture data associated with different reference siding samples, and automatically identifying at least one reference siding sample that matches the particular siding sample based at least on the automated texture data analysis. The particular texture data associated with the physical texture of the particular siding sample may comprise a digital image, such as a photographic or scanned image of the particular siding sample, or a photographic or scanned image of an ink image physically transferred from the particular siding sample onto a substrate.
A shape of an object is represented by a set of points inside and outside the shape. A decision function is learned from the set of points an object. Feature points in the set of points are selected using the decision function, or a gradient of the decision function, and then a local descriptor is determined for each feature point.
A method and apparatus for detecting tampering with an image capturing device. The method includes determining a change has occurred in average intensity if an image, determining a percentage area of a foreground mask, detecting related at least one edge and determining at least one edge weight, utilizing the average intensity, the percentage area of the foreground mask, and the at least one edge weight to determining offset of edge blocks of an image, and utilizing the determining offset of edge blocks to detect tampering with an image capturing device.
A method and an apparatus for processing an image generate a first vector of a first number dimension for the image from a first number of points of the image based on topological information of the first number of points, and the first vector for the image is invariant to rotation and scaling in creating the image. The first number of points may be locations of a set of rotation and scaling invariant feature points for the image, and the generated first vector may be a graph spectrum of a pair-wise distance matrix generated from the first number of points of the image.
Techniques for facilitating a shape-based search of content items are disclosed. In some situations, the techniques include receiving a request for search of content that includes an image of an item and a glyph input by the user on the image that indicates a shape of the first item, extracting features associated with the item from an area of the image on which the glyph is input; identifying a shape category of the first item based at least in part on the indicated shape of the glyph; and conducting a search for items having features that match the extracted features of the first item, the search being conducted among a plurality of items associated with the identified shape category. The retrieved search results may be returned to a user.
The invention relates to methods and systems for extracting information about a scene from a set of image data by interdependently smoothing the data, segmenting the imaged scene into coherent elements by determining edges, and estimating attributes present within the scene. These methods and systems include attribute estimation, adaptive neighborhood adjustment and preferential use of different images or imaging modalities for information extraction.
An image processing apparatus and a method thereof for correcting image data in accordance with a feature of the image data, calculates a brightness component of image data and a color difference component of image data, determines whether the image data is a nightscape image or an underexposed image using the calculated brightness component and color difference component, and corrects the image data which has been determined as a nightscape image or an underexposed image.
The present invention is a filler metal installation position checking method and a filler metal installation position checking system for confirming difference between installation position and designed position of a filler metal embedded in a wall surface. A standard surface target 16 having known actual dimension and position to a wall surface 12 is provided to the wall surface 12 where a filler metal 14 is installed. The wall surface 12 is photographed together with the standard surface target 16 to create image data 18. Using actual position and dimension of the standard surface target 16 and position and dimension of the standard surface target 16 on an image displayed by the image data 18, the image data 18 is converted into corrected image data 20 displaying an image corrected in a manner that the image is photographed from front of the wall surface. Design CAD data 22 showing actual designed position of the filler metal is read out and the images shown by the corrected image data 20 and the design CAD data 22 are outputted as images on one same display.
The present invention relates to accurate positioning for vessel intervention procedures, particularly to a method for accurate positioning for vessel intervention procedures, a medical imaging system for accurate positioning for vessel intervention procedures and a catheterization laboratory system for accurate positioning for vessel intervention procedures. First, at least one X-ray image of a vessel region of interest is acquired (24) with injected contrast agent. Further, vessel information data is identified (26) within the at least one acquired image. Then, first calcification features of the vessel in the vessel region of interest in the at least one acquired image are detected (28). Further, vessel representation is generated (30) using the vessel information data and the detected calcification features. Further, at least one current fluoroscopic image of the vessel region of interest is acquired (32). Then, second calcification features of the vessel in the vessel region of interest in the at least one current fluoroscopy image are detected (34), wherein the second calcification features are according to the first calcification features. Further, the vessel representation is registered (36) with the fluoroscopy image, wherein the calcification features are used for the registration. Then, a composite image is generated (38) by combining the vessel representation with the at least one fluoroscopy image. Further, a composite image is displayed (40).
Method and system for obtaining brain characteristic parameters, thrombolysis decision guideline system and method thereof, provide middle of reference data for early diagnosis and treatment of acute ischemic brain death, and provide effective reference data for thrombolytic therapy. The present invention uses diffusion-weighted imaging, comparing to the clinical programs of diffusion-weighted imaging and perfusion weighted imaging, perfusion weighted imaging can omitted and the degree of functional characterization of perfusion abnormalities is reflected without the perfusion weighted imaging, to provide middle data of brain tissue can be saved and the risk of thrombolytic therapy. The present invention based on ADC low signal constraint and DWI high signal constraint DWI binarization processing to obtain the core area and transition area, that is more accurate.
The present invention relates to a method and system for detecting biologically relevant structures in a hierarchical fashion, beginning at a low-resolution and proceeding to higher levels of resolution. The present invention also provides probabilistic pairwise Markov models (PPMMs) to classify these relevant structures. The invention is directed to a novel classification approach which weighs the importance of these structures. The present invention also provides a fast, efficient computer-aided detection/diagnosis (CAD) system capable of rapidly processing medical images (i.e. high throughput). The computer-aided detection/diagnosis (CAD) system of the present invention allows for rapid analysis of medical images the improving the ability to effectively detect, diagnose, and treat certain diseases.
Systems and methods are provided for identifying an individual(s) whose face closely resembles a face that is ideal for a role, or who has a facial feature or combination of facial features that closely resembles a facial feature or combination of facial features that is ideal for the role, and who—in addition to having an ideal face, facial feature, or combination of facial features—possesses at least one trait or qualification that is preferable for the role. For example, the systems and methods can be used to identify at least one individual, such as an actor or model, whose face or facial features closely resembles a face or facial features that is ideal for a role, such as a role in a recorded or live performance, a photo shoot, or a fashion show, and who possesses the at least one trait or qualification, such as gender, height, weight, ability to speak a particular language, star power, or a guild affiliation, that is preferable for the role.
A distance acquisition device is for acquiring a first rounded distance from a reference point to a basis point, and for subsequently acquiring a second rounded distance from an adjacent point to the basis point. The reference, adjacent, and basis points are disposed on a plane. The adjacent point is adjacent to the reference point. The distance acquisition device includes: a reference distance acquisition unit for acquiring a precise distance from the reference point to the basis point, and for subsequently performing rounding upon the precise distance so as to obtain the first rounded distance; a reference error acquisition unit for obtaining a first reference error corresponding to a difference between the precise distance and the first rounded distance; and a distance estimating unit for setting the second rounded distance based on the first rounded distance and the first reference error.
A method of detecting a clear path in a road of travel for a vehicle utilizing a top-down view classification technique. An input image of a scene exterior of the vehicle is captured. The captured input image represents a perspective view of the road of travel. The captured input image is analyzed. A segmented top-down image that includes potential clear path regions and potential non-clear path regions are generated. The segmented top-down image represents a viewing angle perpendicular to a ground plane. The segmented regions of the segmented top-down view are input to a classifier for identifying the clear path regions of travel. The identified clear path regions are utilized for navigating the road of travel.
The embodiments described herein relate to systems and techniques for processing batch detection information received from one or more sensors configured to observe objects of interest. In particular the systems and techniques are configured to enhance track performance particularly in dense target environments. A substantially large number of batch detections can be processed in a number of phases of varying complexity. An initial phase performs relatively low complexity processing on substantially all detections obtained over an extended batch period, approximating object motion with a simplified model (e.g., linear). The batch detections are divided and redistributed into swaths according to the resulting approximations. A subsequent phase performs greater complexity (e.g., quadratic) processing on the divided sets of detections. The subdivision and redistribution of detections lends itself to parallelization. Beneficially, detections over extended batch periods can be processed very efficiently to provide improved target tracking and discrimination in dense target environments.
A fingerprint of an image identified within a received message is generated following analysis of the message. A spam detection engine identifies an image within a message and converts the image into a grey scale image. The spam detection engine analyzes the grey scale image and assigns a score. A fingerprint of the grey scale image is generated based on the score. The fingerprint may also be based on other factors such as the message sender's status (e.g. blacklisted or whitelisted) and other scores and reports generated by the spam detection engine. The fingerprint is then used to filter future incoming messages.
A mounting bracket system for mounting a loudspeaker monitor onto a microphone stand pole without requiring disassembly of either the loudspeaker monitor or the microphone stand. First and second mounting brackets may be mounted to a loudspeaker monitor or other product to be mounted. An indent on each mounting bracket is configured to engage a microphone stand or another elongated, pole-like structure, supporting the weight of the loudspeaker monitor through frictional forces.
Methods for audio processing suitable for use with an earpiece are provided. A method includes delivering audio to an ear canal, measuring a residual background noise level within the ear canal, and adjusting the audio based on characteristics of the residual background noise level to maintain a natural audio level. A mixing of an ambient sound signal and an ear canal signal can be used to calculate the residual background noise level. The method can include compensating the residual measurement based on microphone sensitivities.
A portable electronic device includes an earphone jack capable of receiving different types of earphone plugs, a switch, a detecting terminal, and a controlling terminal. The switch is connected to the earphone jack, and capable of switching between a first state and a second state. The detecting terminal is connected to the earphone jack by the switch, and capable of detecting the type of the earphone plug received in the earphone jack. The detecting terminal is connected to the earphone jack by the switch, and capable of detecting the type of the earphone plug received in the earphone jack. The controlling terminal is connected to the switch, and switches the switch to either the first state or the second state according to the type of the earphone plug.
It includes a microphone for detecting noise emitted from a noise source, a noise controller for generating control sound signal to reduce noise detected by the microphone based on information from the microphone, and a speaker for outputting control sound based on control sound signal from the noise controller, wherein a plurality of microphones and speakers are arranged for each seat, and a plurality of microphones are arranged in higher density for each seat in a specific direction.
Disclosed herein, among other things, is a system for customizing a hearing assistance device for a wearer. According to various embodiments, data corresponding to the wearer's acoustic environment is logged using the hearing assistance device. In various embodiments, the hearing assistance device is fitted by an adaptive fitting process controlled by the wearer, the adaptive fitting process having access to the data logged by the hearing assistance device to customize settings of the hearing assistance device for the wearer. In an embodiment, data related to fitting the hearing assistance device is sent via a network connection to a location accessible by the wearer's audiologist and/or device manufacturer. The sent data is used to create an interactive database, and the database is used for fitting hearing assistance devices for one or more wearers, in various embodiments.
A multi-channel signal decoding method is provided. A down-mixed signal representative of a multi-channel signal is decoded, and parameters representing characteristic relations between channels of the multi-channel signal are decoded. An additional parameter is estimated by using the decoded parameters, and the decoded down-mixed signal is up-mixed by using the decoded parameters and the estimated parameter so as to decode the multi-channel signal.
Apparatus and method for provisioning an access key used for a controlled access broadcast service is disclosed. In one aspect, a method for secure processing in a device that securely stores a secret key comprises receiving a plurality of challenges from a network, generating a plurality of ciphering keys based on the secret key and the plurality of challenges, and generating an access key based on the plurality of ciphering keys.
A method for an encryption of a data stream is provided. The method includes: providing the data stream, providing at least two first random number generators having a first cryptographic strength, wherein each of the at least two first random number generators is switchable between states including a clocked state and a working state, and providing a second random number generator having a second cryptographic strength, wherein the second cryptographic strength is higher than the cryptographic strength. The method further includes switching the states of the at least two first random number generators using an output of the second random number generator and using an XOR-function for combining the data stream with an output of one of the at least two first random number generators, which is in the working state, such that a ciphered data stream is created.
A system and method for routing calls based on the different fee structure between voice and data is disclosed. The origination type for an incoming call is determined. When the incoming call is a VoIP call then the call is routed based, in part, on selecting the minimum fee required to terminate the call.
A technique for scheduling conferences includes receiving a conference request, which includes an invitee list, a prioritized list of preferred media types, and one or more times for a conference associated with the conference request. The conference is requested with respective invitees associated with the invitee list (via respective subscriber terminals) and it is determined whether the respective invitees can be scheduled for the conference. The conference is scheduled between a conference requester (associated with the conference request) and available ones of the respective invitees, when mandatory attendees, included within the respective invitees, are available.
A system that includes a tandem access controller (TAC) coupled to the PSTN, where the TAC allows a subscriber to set-up and change the configuration of the phone line or other communications device, including selective call forwarding, using the web. The TAC is coupled internally to the PSTN in a local service area and is outside the central office of the subscriber. A calling party makes a first call to the subscriber using the subscriber's public telephone number. The TAC receives the first call prior to the call reaching the subscriber's terminating central office, which in some cases avoids a toll. The TAC then carries out the subscriber's instructions for the first call, such as making one or more second calls using telephone numbers different from the subscriber's public telephone number. When the second call is answered, the answering phone is connected by the TAC to the caller.
One embodiment of a method for controlling disposition of a call comprises detecting an incoming call to a network station; checking for an active instant messaging session for the network station; and if the active instant messaging session exists, sending an instant message to the network station with call disposition choices with regard to the incoming call. Other methods and systems are also provided.
The present invention discloses a method and a system for implementing an MRBT service, comprising: Step S102, a calling terminal initiates a call to a called terminal which has registered a multimedia MRBT service, and triggers an MRBT service module of the MRBT Application Server according to service template information subscribed in a Home Subscriber Server by the called terminal; Step S104, the MRBT service module calls the called terminal through an IMS network, and performs query on an MRBT platform according to the call related information to obtain the MRBT information to be played for the calling terminal; and Step S106, the calling terminal performs negotiation with the MRBT platform and performs negotiation with the called terminal, and the MRBT platform plays the MRBT information inquired by the MRBT service module according to the call related information to the calling terminal on condition that the negotiations are successful. In this way, the problem in the relative art that the MRBT service can not be implemented in the IMS network is solved.
A permanent, secure, on-line electronic repository (i.e., electronic safety deposit box or virtual safety deposit box) where a member/customer can store personal information (in electronic form) is provided within the confines and behind the security layers provided by a financial institution such as a bank. Features include catalog functionality for easy management and retrieval of data, access control facilities for the owner to designate other individuals authorized for access, event-driven access dedicated privacy with a subset space for shared elements with the bank (provider), and survivorship functionality with regard to disposition of contents, and intelligent retention rules.
A multi-leaf collimator includes leaf drives and two sets of displaceable leaves arranged side by side and facing each other to impress a high-energy beam with the shape of an irregularly formed treatment object. Each of the leaves assumes a position oriented along the shape of the treatment object by means of a leaf drive and each are equipped with a gear rod-like drive engagement in the direction of the displacement. A leaf-side pivotable gear segment is located, together with a motor-side gear segment, on a segment disk that engages with the gear rod-like drive engagement. A pinion drivable by a motor engages with the motor-side gear segment. The segment discs are arranged side by side for each set of leaves as a package on one axis. The motor-side gear segments of two segment disks located next to each other are staggered so that they will not abut each other.
A method for determining the constituent content of a multiphase fluid includes the following steps: x-rays at single-energy or dual-energy levels are produced by an x-ray machine, after said x-rays pass through the multiphase fluid, the data at each energy level are detected by a detector sub-system which is composed of one or two detectors, and the mass percents of the components in the multiphase fluid are calculated by a controlling and data processing sub-system based on the detected data. Said multiphase fluid is a two-phase or three-phase mixture in crude oil or natural gas. The method can be used for automatic online measurement of the production in oil and gas fields.
The present invention relates generally to both a system and method for determining the composition of an off-gas from a solution nuclear reactor (e.g., an Aqueous Homogeneous Reactor (AHR)) and the composition of the fissioning solution from those measurements. In one embodiment, the present invention utilizes at least one quadrupole mass spectrometer (QMS) in a system and/or method designed to determine at least one or more of: (i) the rate of production of at least one gas and/or gas species from a nuclear reactor; (ii) the effect on pH by one or more nitrogen species; (iii) the rate of production of one or more fission gases; and/or (iv) the effect on pH of at least one gas and/or gas species other than one or more nitrogen species from a nuclear reactor.
An embodiment of the invention comprises a digital phase detector with substantially zero phase offset. The digital phase detector receives a clock signal and a reference clock signal and provides a phase indicator signal to identify whether the clock signal leads or lags the reference clock signal. An embodiment of the invention comprises a method that adds substantially zero phase offset in processing an input clock signal and a delayed clock signal to generate a control signal. The control signal is processed in a variable delay line to generate the delayed clock signal. In an embodiment, a first processor comprises a delay locked loop having a digital phase detector, the digital phase detector comprising a first differential sense amplifier cross-coupled to a second differential sense amplifier, the digital phase detector receiving a clock signal and generating one or more delayed clock signals, a control signal, and a gated data signal.
Reducing jitter in signal wiring without requiring a larger circuit scale is difficult in the technology of the related art. A signal wiring system to resolve the above problem therefore includes an output unit to output a differential signal, a receiver unit to receive differential signals from the output unit, a jitter suppression circuit to suppress the amount of the jitter in the differential signal received by the receiver unit according to a suppression coefficient, and a signal wiring unit for conveying a differential signal from the output unit and including a wiring length set according to a suppression coefficient in the jitter suppression circuit.
A clock synchronization method, apparatus, and system are provided according to the embodiments of the present invention. The method includes: receiving time information TM1 from a central office side, in which the time information TM1 is obtained by the central office side by reading a local clock of the central office side when transmission data at a first designated location starts to be transferred, and the local clock of the central office side is synchronous with a Global Positioning System (GPS) clock or a Building Integrated Timing Supply (BITS) clock; determining whether transmission data at a second designated location starts to be received, if so, reading a local clock of the Customer Premises Equipment side to obtain time information TS1; and synchronizing a clock frequency of the Customer Premises Equipment side to the central office side according to the time information TM1 and the time information TS1.
Low complexity methods for hard and soft bit level demapping in a receiver of QAM signals with non-square, Gray coded constellations created as per U.S. Pat. No. 8,422,579 B1. In these methods the received signal is equalized to remove channel distortion, demodulated into in-phase and quadrature phase related symbols, and these symbols converted into hard-bits or preliminary soft-bits bits via the application of bit decision rules. Further, if converted into preliminary soft-bits, they may be multiplied by a factor to account for the impact of the received signal's signal-to-noise ratio on bit reliability, thereby creating final-soft-bits.
In a chip-to-chip communication system and apparatus, a set of physical signals to be conveyed over a communication bus is provided, and mapped to a codeword of a vector signaling code using the physical signals and a state information, wherein a codeword is representable as a vector of plurality of real-valued components, and wherein a vector signaling code is a set of codewords in which the components sum to zero and for which there is at least one component and at least three codewords having different values in that component; and wherein the state information is a plurality of information present in continuous or discrete form which may have been obtained from previous codewords transmitted over the communication bus.
A satellite communication system includes a satellite earth station operably coupled to a data network, and a plurality of satellite modems, each satellite modem of the plurality of satellite modems communicating in an upstream and downstream data communication mode with the satellite earth station via at least one servicing satellite. The satellite earth station includes a host processor for receiving data packets from the data network and processing DOCSIS management packets, a DOCSIS MAC coupled to the host processor for encrypting the transmit packet data from the host memory, framing data in MAC headers and inserting MAC timestamps in the transmit packet data, a satellite modulator coupled to the DOCSIS MAC for modulating the encrypted transmit packet data to generate downstream output data for transmission to at least one of the plurality of satellite modems, a burst demodulator for demodulating upstream data received from at least one of the plurality of satellite modems, and a turbo decoder coupled to the burst demodulator and the DOCSIS MAC for turbo decoding the demodulated data from the burst demodulator and sending the decoded data to the DOCSIS MAC. The DOCSIS MAC sends DOCSIS management packets portion of the decoded data to the host processor and sends transmit packet data portion of the decoded data to the data network.
A method and apparatus for transmitting control information in a wireless communication system is provided. The method includes transmitting common control information including a multiple input multiple output (MIMO) indicator indicating single user-MIMO (SU-MIMO) or multi user-MIMO (MU-MIMO) to a receiver, generating first precoded dedicated control information by performing precoding on dedicated control information including information for the MU-MIMO by the use of a first precoding matrix, generating second precoded dedicated control information by performing precoding on the first precoded dedicated control information by the use of a second precoding matrix and transmitting the second precoded dedicated control information to the receiver.
Techniques are provided for generating a precoding matrix for a multi-user multiple-input multiple-output wireless communication system. A first wireless communication device is provided that has a plurality of antennas from which multiple spatial streams are to be simultaneously transmitted to a plurality of second wireless communication devices. A channel matrix is computed between the antennas of the first device and the antennas of each of the second wireless communication devices to produce a plurality of client-specific channel matrices. A singular value decomposition is computed of each client-specific channel matrices. A number of strongest singular values and their corresponding singular vectors are stored from the singular decomposition of each of the client-specific channel matrices. From each client-specific channel matrix, a principal component-like single-client channel matrix is computed. The principal component-like single-client channel matrices are combined to form a principal component-like multi-user channel matrix, from which the precoding matrix is computed.
A DMT system and method with the capability to adapt the system bit rate on-line in a seamless manner. The DMT system provides a robust and fast protocol for completing this seamless rate adaptation. The DMT system also provides a framing and encoding method with reduced overhead compared to conventional DMT systems. The DMT system and method provide seamless rate adaptation with the provision of different power levels. This framing and encoding method enables a system with seamless rate adaptation capability. The system and method of the invention can be implemented in hardware, or alternatively in a combination of hardware and software.
The present invention provides an optical communication method, comprising: performing modulation on the obtained bit stream data to generate modulated signals; performing differential encoding on the modulated signals to generate differentially encoded signals; converting the differentially encoded signals into electrical signals; and mapping the electrical signals onto optical carriers to generate optical signals for transmission. With the present invention, it is possible to enhance the system's capability of resisting inter-carrier interference without decreasing spectrum efficiency, hence improving the tolerance of existing optical communication systems towards laser linewidth, fast-changing PMD, optical fiber nonlinearity, inter-channel interference and other damages, greatly enhancing system performances.
A user equipment (UE) performs a transform domain (DFT) based method to detect the cyclic prefix (CP) length that is being used by a base station for cellular communications. The detected CP length is then used to reduce the amount of time required to complete the synchronization and cell search procedures. In particular, the UE uses the detected CP length information to obtain Cell Identification parameters (NID1, NID2) along with information including a Maximum energy Tap location and a reference signal receive power (RSRP) while completing the synchronization and cell search procedures.
A transmission method according to the present invention has been conceived assuming an environment where two information source nodes independently communicate with one destination node, and thus is applicable to such a simple topology. The transmission method provides an inter-node cooperation relationship which provides a sufficient advantageous effect even in an environment in which there is a difference in the power levels of the received signals that reach the address node via two routes. The transmission method is performed by a node U1 (40) and a node U2 that is located closer to the node D (60) than the node U1 (40) to transmit signals to a node D (60) which iteratively detects a log likelihood ratio between mutually corresponding pairs of bits included in the signals at constellation points. According to the transmission method, the node U1 (40) modulates the first bit sequence to generate a first signal and transmits the generated first signal, and the node U2 (50) receives the first signal, performing logical operation on the second bit sequence and the first bit sequence included in the received first signal to generate a third bit sequence, modulates the generated third bit sequence to generate a second signal, and transmits the generated second signal.
An image coding method for improving coding efficiency by using more appropriate probability information is provided. The image coding method includes: a first coding step of coding a first set of blocks included in a first region sequentially based on first probability information; and a second coding step of coding a second set of blocks included in a second region sequentially based on second probability information. In the first coding step, the first probability information is updated depending on data of a target block to be coded, after coding the target block and before coding a next target block. In the second coding step, the second probability information is updated depending on the first probability information updated in the first coding step, before coding the first target block.
A relative quality score is provided that takes into account properties of an encoded version of a source video. For example, one such quality score calculates a difference of higher and lower quality transcoded versions of the source video, and computes quality metrics for each to evaluate how similar the transcoded versions are to the source video. A relative quality score quantifying the quality improvement of the high-quality version over the low-quality version is computed. The relative quality score is adjusted based on a measurement of the quality of the source video. If the relative quality score for the video indicates a sufficient quality improvement of the high-quality version over the low-quality version, various actions are taken, such as retaining the high-quality version, and making the high-quality version available to users, e.g. via a video viewing user interface.
In an image encoding apparatus including an intra-frame prediction unit that executes intra-frame prediction regarding an input image, when locally decoded pixels are not available, pseudo reference pixels are set to calculate an intra-frame-prediction evaluation value, and a method of encoding to be used for a block to be encoded is determined on the basis of the intra-frame-prediction evaluation value.
An apparatus is disclosed comprising collocated primary receiver (PR) and a time synchronized receiver (TSR), with a Low Noise Amplifier (LNA) configured by a LNA gain control signal to create a shared amplified signal sent to the PR and the TSR for them to concurrently receive packets. The TSR is configured to generate a timed signal strength prediction signal based on the shared amplified signal and the LNA gain control signal. The primary receiver is configured to generate the LNA gain control signal based, at least in part, on the timed signal strength prediction signal. The PR may include a spread spectrum receiver, and the TSR may include a frequency hopping receiver.
According to the repetition frequency control device, a master laser outputs a master laser light pulse the repetition frequency of which is controlled to a predetermined value. A slave laser outputs a slave laser light pulse. A reference comparator compares a voltage of a reference electric signal the repetition frequency of which is the predetermined value and a predetermined voltage with each other, thereby outputting a result thereof. A measurement comparator compares a voltage based on a light intensity of the slave laser light pulse and the predetermined voltage with each other, thereby outputting a result thereof. A phase difference detector detects a phase difference between the output from the reference comparator and the output from the measurement comparator. A loop filter removes a high-frequency component of an output from the phase difference detector.
An apparatus includes a pulsed laser source that produces a pulsed laser beam at an input repetition rate and an input pulse power; a passive pulse splitter that receives the pulsed laser beam and outputs a signal including a plurality of sub-pulses for each input pulse of the pulsed laser beam, where the sub-pulses have a repetition rate that is greater than the input repetition rate and at least two of the sub-pulses have power less than the input pulse power; a sample accommodating structure configured to accommodate a sample placed in the path of a sample beam that is formed from the beam that exits the pulse splitter; and a detector that receives a signal of interest emitted from a sample accommodated by the sample accommodating structure based on the incident sample beam.
A method that implements a timing advance for an uplink communication from a user equipment (UE) comprises: selecting at least one subframe; reducing a duration of at least one selected symbol of each of the at least one subframe to generate at least one reduced duration subframe; replacing a remaining portion of payload data of each of the at least one selected symbol with a pre-selected replacement value; by-passing each of the at least one selected symbol during pre-transmission processing of the at least one reduced duration subframe; processing any remaining symbols of the at least one reduced duration subframe, such that a processing time of the remaining symbols of the at least one reduced duration subframe is reduced by at least the value of the timing advance; and transmitting the at least one reduced duration subframe via the uplink communication to the base station.
The present invention discloses a method for transmitting a frame sequence number and a node B and a serving radio network controller, which method comprises: a node B receiving a protocol data unit from a carrier and de-multiplexing the protocol data unit into media access control data streams; the node B inserting a carrier symbol into a carrier indicator field of an enhanced-dedicated transport channel data frame and generating a frame sequence number for every the enhanced-dedicated transport channel data frame transmitted on the carrier; and the node B transmitting the media access control data streams to a serving radio network controller SRNC by using the enhanced-dedicated transport channel data frame. By virtue of the present invention it achieves that the SRNC is capable of obtaining the information regarding network layer data transmission in dual-carrier situation so as to detect the loss of data frames.
A communication network system is disclosed in which local-branch-site-line network switches accommodating local-branch-site lines, and at least one data-center-site-line network switch accommodating at least one data-center-site line, are interconnected via a carrier network. This system include: a first bandwidth controller, disposed at each local-branch-site-line network switch, configured to limit a bandwidth of each of inbound packets and/or outbound packets to a pre-selected bandwidth α, wherein the inbound packets flow from the instant local-branch-site-line network switch or other local-branch-site-line network switches, and the outbound packets flow to the instant local-branch-site-line network switch or other local-branch-site-line network switches; and a second bandwidth controller, disposed at each local-branch-site-line network switch, configured to limit a bandwidth of each of inbound packets and/or outbound packets to a pre-selected bandwidth β broader than the bandwidth α, wherein the inbound packets flow from the data-center-site-line network switch, and the outbound packets flow to the data-center-site-line network switch.
Method and network nodes for adapting policy control function, wherein a load of a first network entity on which a policy execution function like a policy and charging enforcement function (PCEF) or a bearer binding and event reporting function (BBERF) is located is monitored (S4) and policy decisions are adapted based on said load. Particularly, the load may be reported to (N) or determined by a second network entity on which a policy supervision function like a policy and charging rules function (PCRF) is located, and said second network entity adapts policy decisions based on said load. When making policy decisions, the load status of a network entity like a gateway may thus be taken into account in addition to other factors.
An apparatus comprising an edge virtual bridging (EVB) bridge, and an EVB station coupled to the EVB bridge, wherein the EVB station is configured to send to the EVB bridge a virtual station interface (VSI) discovery and configuration protocol (VDP) request comprising a filter information (info) field without specifying a virtual local area network (VLAN) identifier (ID), and wherein the EVB bridge is configured to send a VLAN ID (VID) to the EVB station in a second filter info field in a VDP response to the VDP request.
A wireless communication apparatus which is capable of communicating with a first wireless terminal holding a first data packet by Bluetooth includes a search unit, a first transceiver transmitting, a first controller, and a scheduling unit. The search unit reserves a search, and executing the search. The first transceiver transmits the first and second control packets, and receives the first data packet and a second data packet. The first controller reserves a transmission of the second control packet to the first wireless terminal, the first controller giving instructions to transmit the second control packet to the first transceiver. The scheduling unit accepts the reservation from the first controller and the search unit, the scheduling unit preferentially allowing a transmission of the second control packet compared with the search, and allowing the search when no reservation of the transmission of the second control packet is made.
Protocols or methods are presented for encapsulating data from packets of different priorities and pre-emption techniques therefor using (N+M) byte frames for transmission in a communications system. The methods involve selectively suspending encapsulation of low-priority data packets to encapsulate a higher priority pre-empting data packet, and resuming encapsulation all or a portion of remaining data from a suspended low-priority data packet in a frame in which a pre-empting higher priority data packet is completed.
The present invention relates to the reduction of handoff delays for mobile telematics applications. In particular, the present invention provides a method employing GPS technology to define IP addresses in a mobile environment in order to reduce delays and transient data loss caused by handoff from one network to another.
A network device acting as a forwarding element within a software-defined network receives a representation of configurable flow table definitions and configurable logic for selecting between flow tables. The network device creates a flow table based on each of the configurable flow table definitions and installs the configurable logic for selecting between flow tables. The network device receives data to populate configurable key columns and action columns of the flow tables and populates the flow tables using that data. The network device then selects from forwarding decisions for packets according to the configurable logic for selecting between flow tables, the flow tables, and each packet's values in relevant header fields required by the configurable logic.
In one embodiment, a local node in a communication network determines a set of its neighbor nodes, and determines a respective occurrence frequency at which each particular neighbor node is to be probed based on a rate of change in distance between the local node and the particular neighbor node. The local node may then probe each particular neighbor node according to the respective occurrence frequency to determine the rate of change in distance between the local node and each particular neighbor node, and one or more routing metrics for reaching each particular neighbor node. As such, the local node may select, based on the probing, a suitable preferred next-hop node of the set of neighbor nodes for a corresponding routing topology.
A method includes providing a user interface, at a mobile communication device, that includes a first area to receive text input and a second area to receive an identifier associated with an addressee device. The text input and the identifier are received via the user interface. A short message service (SMS) message including the text input is transmitted to a Text to Speech (TTS) server for conversion into an audio message and for transmission of the audio message to the addressee device associated with the identifier. An acknowledge message transmitted from the TTS server permits the addressee device to allow delivery of the audio message or to decline delivery of the audio message. The TTS server transmits the audio message in response to the addressee device allowing delivery of the audio message. A confirmation message is received from the TTS server that indicates that a reply voice message has been received from the addressee device in response to the audio message.
A node system includes a first node, a second node, and a supervisory node which transmit frames while increasing or decreasing the cycle microtick count, and determines reduced cycle microtick counts by subtracting or adding a rate correction limit value from or to the cycle microtick count of the supervisory node when reception of the first frame transmitted by the first node stop and the cycle microtick count of the supervisory node when reception of the first and second frames stop.
A circuit processes requests to access an antenna, the requests from a plurality of wireless communication protocols components including (i) a first wireless communication protocol component and (ii) a second wireless communication protocol component. The circuit causes a switch to provide the second wireless communication component with access to the antenna while the circuit is in a power saving mode of operation, and, upon the circuit exiting the power saving mode of operation, determines whether the second wireless communication component is utilizing the antenna. The circuit, upon the circuit exiting the power saving mode of operation, applies a first set of arbitration rules when it is determined that the second wireless communication component is utilizing the antenna, and, upon the circuit exiting the power saving mode of operation, applies a second set of arbitration rules when it is determined that the second wireless communication component is not utilizing the antenna.
A user equipment (UE) is provided which reduces uplink signaling overhead in the process of reporting inter-frequency measurement results over a RACH. For measurement reporting, the UE receives an SIB including a cell information list for non-used frequency cells and a threshold from an RNC, compares signal strengths of signals received from the non-used frequency cells with the threshold, and acquires at least one inter-frequency cell ID indicating at least one non-used frequency cell having signal strength exceeding the threshold from the cell information list. The at least one inter-frequency cell ID is included in a RACH message as measurement result information for the at least one non-used frequency cell, and transmitted to the RNC. The RNC determines that the cell corresponding to the inter-frequency cell ID has signal strength exceeding the threshold.
Because attachment processing is executed as a trigger of handover between different types of access networks by the Proxy MIP, not only link set-up but also various processing including authentication processing and IP acquisition processing are required to make a handover time longer.A mobile communication system that accommodates different types of access networks, which includes an IWK device 60 having a unit which manages information of correspondence between a base station ID for identifying a base station of an access network of a handover destination and a virtual base station ID for identifying the base station in an access network of a handover source whose ID space is different and a unit which executes protocol conversion based on the correspondence information, and a mobile terminal 50 having a unit which solves a virtual base station ID from a base station ID and a unit which executes handover between different types of access networks by using the virtual base station ID.
A method of transmitting a frame of a relay station (RS) in a wireless communication system employing the RS is provided. The method includes: receiving frame configuration information on an RS frame from a base station (BS); configuring a frame including a downlink (DL) access zone for transmitting a signal to a relay user equipment (UE), a DL receive zone for receiving a signal from the BS, an uplink (UL) access zone for receiving a signal from the relay UE connected to the RS, a UL transmit zone for transmitting a signal to the BS, and a transition gap; and transmitting a signal in at least one of the UL access zone and the UL transmit zone, wherein the transition gap is a switching time between a transmission operation and a reception operation of the RS and is included in at least one of the DL access zone and the UL transmit zone.
Methods and apparatus are provided for transmitting control information in an SC-FDMA system. A UE generates a random cyclic shift value based on an SC-FDMA symbol index and a slot index. The UE cyclically shifts a sequence by the random cyclic shift value. The UE multiplies a control channel signal, including the control information, by the cyclically shifted sequence on an SC-FDMA symbol basis. The UE transmits the multiplied control channel signal in an SC-FDMA symbol to a Node B.
To prevent a collision from occurring at the time of random access in cases such as handover, response to paging and the like where a mobile station apparatus performs random access in response to directions from a base station apparatus. In a mobile communication system in which a mobile station apparatus 200 uses a signature of a beforehand determined signature group at the time of random access with a base station apparatus 100, the signature group is comprised of a signature group managed by the base station apparatus 100 and another signature group managed by the mobile station apparatus 200. The signature group managed by the base station apparatus 100 includes signatures associated with particular random access reasons to be selected by the base station apparatus 100.
Methods and apparatus adapted to address asymmetric conditions in a multi-antenna system. In one embodiment, the multi-antenna system comprises a wireless (e.g., 3G cellular) multiple-input, multiple-output (MIMO) system, and the methods and apparatus efficiently utilize transmitter and receiver resources based at least in part on a detected asymmetric condition. If an asymmetric condition is detected by the transmitter on any given data stream, the transmitter can decide to utilize only a subset of the available resources for that stream. Accordingly, the signal processing resources for that data stream are adapted to mirror the reduction in resources that are necessary for transmission. The transmitter signals the receiver that it will only be using a subset of the resources available, and the receiver adapts its operation according to the signaling data it receives. The multi-antenna system can therefore reduce power consumption as well as increasing spectral efficiency on the network.
The technology described in this case facilitates random access by a user terminal with a radio base station. A user terminal determines one of a first type of uplink scrambling sequences and generates a random access message using the determined one of the first type of uplink scrambling sequences. The random access message is transmitted to the base station. The user terminal receives from the base station a second, different type of uplink scrambling sequence and uses it for subsequent communication with the radio base station. For example, the first uplink scrambling sequences may be specifically associated with the radio base station's cell area or a random access radio channel associated with the radio base station, but they are not specifically assigned to any user terminal, and the second uplink scrambling sequence may be selected from a second set of uplink scrambling sequences specifically assignable to individual user terminals.
A method for transmitting a reference signal for a maximum of eight antenna ports includes mapping a portion of common reference signals (CRSs) for a maximum of four antenna ports into a downlink subframe that includes a 1st slot and a 2nd slot; mapping channel status information reference signals (CSI-RSs) for the maximum of eight antenna ports into the downlink subframe according to a preset pattern; and transmitting the downlink subframe into which the common reference signal and the channel status information reference signal are mapped, wherein the preset pattern defines the CSI-RSs for the maximum of eight antenna ports to be mapped onto two OFDM symbols of the data region in the downlink subframe, and wherein the portion of the CRSs for the maximum of four antenna ports is limited to the CRSs for a maximum of two antenna ports.
Even when communication is performed independently in each CC (Component Carrier), the occurrence of an error in communication is prevented. Provided is a wireless communication system in which a wireless transmission apparatus and a wireless reception apparatus communicate with each other using a plurality of system frequency bands, wherein the wireless transmission apparatus performs transmission power control on transmission data in each of the system frequency bands, and furthermore, a maximum transmission power which can be transmitted in each of the system frequency bands can be controlled so as to be different from each other. Priorities are set on each of the system frequency bands, and transmission powers of the system frequency bands are determined in descending order of the priorities.
A method of transmitting data comprising a plurality of data streams in a broadcasting system is provided. The method includes dividing a frame into a plurality of physical layer zones, allocating the plurality of data streams to the plurality of physical layer zones, allocating signaling information associated with the plurality of physical layers to at least one of the plurality of physical layer regions, and transmitting the frame to which the signaling information is allocated.
The invention discloses a method for generating a group identifier of the random access response message. The group identifier is determined according to the serial number of the subframe in which the random access time slot of random access preamble message transmitted by the terminal lies and the serial number of the random access channel in which the random access time slot lies. A random access method and a random access response method in a cellular radio communication system are also provided. Using the method of the present invention, the terminal needs not acquire the absolute system time of the cellular system in which the random access time slot lies, and can access the cellular radio communication system rapidly and accurately.
The technology in this application multiplexes transmission associated with multiple users onto the same unsolicited grant service (UGS) radio resource(s) in a packet-based, radio communications system. Normally, the radio resources in a packet-based communications system are dynamically scheduled in response to radio resource requests associated with specific user devices, and the scheduled communications are designed not to use the same radio resource at the same time. However, an unsolicited grant of radio resources for communication between multiple user devices and the packet-based communications system is also established. The communications between those multiple user devices and the packet-based communications system use at least some of the same radio resources associated with the unsolicited grant at the same time. Because of this at least partial radio resource overlap/collision, each of the multiple user's data to be transmitted via the UGS is associated with a user-specific radio resource pattern. A user's radio resource pattern permits a radio receiver to extract that user's data from the received UGS signal that include multiple user transmissions.
The various embodiments described herein generally provide apparatus, systems and methods which facilitate the transmission of data between a client device and a remote device over a voice channel of a telephone network. More particularly, data from a client device is modulated into an audio signal using multiple frequency shift keying (MFSK) techniques and transmitted to the remote device over a voice channel of a wireless telephone network during a phone call. The frequency of the audio signal is selected based on the value of the data to be transmitted. The remote device receives the audio signal and determines the frequency of the audio signal to extract the transmitted data.
Embodiments of the present disclosure describe methods, computer-readable media and system configurations for wireless communications. A method may include receiving a transmission of a series of symbols, including an index, and determining a plurality of configurations of a physical downlink channel based on the index. In various embodiments, the plurality of configurations of the physical downlink channel may include one or more antenna ports that are reserved for a reference signal. A relay node (RN) may include a processor and a memory storing a plurality of potential combinations of a plurality of configurations of a physical downlink channel. The processor may be configured to receive a transmission of a series of symbols, including an index, and match the index to one of the plurality of potential combinations. A donor evolved NodeB (DeNB) may be configured to encode such an index into a transmission. Other embodiments may be described and/or claimed.
Provided are a method and apparatus for transporting a broadcast and a method and apparatus for receiving a broadcast. In the method of transporting a broadcast service for mobile communications, the method includes generating an encapsulation packet including configuration information adaptive to application data that is to be transmitted and the application data; generating transport packets having data regarding the encapsulation packet by dividing the encapsulation packet into predetermined-sized packets, where the transport packets include information regarding the structures of the transport packets; and generating service configuration information including information set about a channel having the transport packets, and including the service configuration information in a service information channel at a predetermined location from among at least one transport channel on a transport stream. Accordingly, it is possible to efficiently use a data region and increase the speed of data transmission.
A method, apparatus, and communication network system that allows an endpoint to be simultaneously registered with more than one communications server is described. In one embodiment, the communication network system includes a network, a plurality of communications servers that are coupled to the network, and a plurality of endpoints coupled to the network. Each endpoint is capable of being simultaneously registered with more than one communications server. A communication method for an endpoint involves registering a first logical line of the endpoint with a first communications server, and registering a second logical line of the endpoint with a second communications server. Consequently, flexibility is obtained by allowing an endpoint to choose the registering communications server for each logical line of the endpoint.
A technique for providing an asymmetric multipoint call between a plurality of network nodes (10, 12, 14, 16, 18) in a communication network supporting distributed call and connection management (DCM) features is provided, wherein a first call is established between a master node (10) and a first slave node (12) and a second call is established between the master node (10) and a second slave node (14). A method implementation of the technique comprises the steps of exchanging call management information for the asymmetric multipoint call between the master node (10) and the first slave node (12) based on the first call, exchanging call management information for the asymmetric multipoint call between the master node (10) and the second slave node (14) based on the second call, and excluding the first (12) and the second (14) slave node from directly exchanging call management information relating to the asymmetric management call between each other.
In a method of providing load measurements in an interference suppression capable radio base station node associated with a plurality of users in a heterogeneous wireless communication system, applying interference suppression to received signals in the radio base station node, to provide interference suppressed received signals. Subsequently, estimating neighbor cell interference based on the interference suppressed received signals, and estimating a reference received total wideband power, based on the interference suppressed received signals. Then performing the steps of determining a first load measure based on the interference suppressed received signals and the estimated reference received total wideband power, and determining a second load measure based on the interference suppressed received signals, the estimated reference received total wideband power and on the estimated neighbor cell interference.
Methods of performing intra-band carrier aggregation in a multi-tiered wireless network include determining a capability of a user equipment unit located within an overlapping coverage area of first and second radio network nodes to simultaneously receive data on a first component carrier and on a second component carrier from the first and second network nodes, and simultaneously transmitting data to the user equipment unit using the first and second component carriers from different radio network nodes in response to determining that the user equipment unit is capable of simultaneously receiving data on the first component carrier and on the second component carrier from different radio network nodes.
A system and method for managing transactional data in a mobile communication network utilizes selectively sampling of a portion of data of transactions to and from mobile communication devices of the mobile communication network. An extract, transform and load process is then performed one the sampled data of the transactions and the resulting data is stored in a warehouse database, which can be used for analytics reporting.
A first network device determines flow statistics information associated with a flow. The first network device modulates the time-to-live (TTL) header field in a packet associated with the flow to include flow statistics information. The packet includes a header and a payload. The first network device transmits the packet to a second network device. The second network device demodulates the TTL header field to determine flow statistics information.
The present invention relates to receiving access signals from a plurality of terminals over a radio channel and in particular to determining a detection threshold level on the radio channel. A detection threshold level should balance the risk of missed detections to the risk of false detections. A problem in finding an equilibrium threshold is the radio environment, with noise and interference, change and then also the radio false detections or missed detections change. According to the present invention some access signals can be identified as being not assigned and therefore not being in use, and any detection of a non-used signal is identified as a false detection. By monitoring the ratio of false detections vs. correct detections the threshold level for detection is tuned into an equilibrium level, and that is adapted to the changing radio environments. In addition the detection threshold level for access signals detection threshold for data and/or control signalling may be adjusted in relation to the access signal threshold level.
A system and method for advertising out-of-resources (OOR) conditions for entities, such as nodes, line cards and data links, in a manner that does not involve using a maximum cost to indicate the entity is “out-of-resources.” According to the technique, an OOR condition for an entity is advertised in one or more type-length-value (TLV) objects contained in an advertisement message. The advertisement message is flooded to nodes on a data network to inform them of the entity's OOR condition. Head-end nodes that process the advertisement message may use information contained in the TLV object to determine a path for a new label switched path (LSP) that does not include the entity associated with the OOR condition.
Some embodiments provide a virtualizer for managing a plurality of managed switching elements that forward data through a network. The virtualizer comprises a first set of tables for storing input logical forwarding plane data and a second set of tables for storing output physical control plane data. It also includes a table mapping engine for mapping the input logical forwarding plane data in the first set of tables to output physical control plane data in the second set of tables by performing a set of database join operations on the input logical forwarding plane data in the first set of tables. In some embodiments, the physical control plane data is subsequently translated into physical forwarding behaviors that direct the forwarding of data by the managed switching elements.
The present invention discloses as synchronization method of a layered wireless access system, which is applied to the layered wireless access system including an access point management unit located in an access layer and its linked access points. The access point management unit has a timing server, each access point having a timing client. The timing server generates timing information and distributes it to the timing client of each linked access point, and the timing client recovers the timing information as a local timing reference signal. The method may implement clock synchronization between the access point management unit and the access points to ensure the normal operation of the system. The present invention also provides network management, scheduling, frequency assignment and flow control methods based on the layered wireless access system.
A shaping apparatus includes a plurality of buffers that are set with a writable upper limit size and a buffer where a read processing is carried out is switched every predetermined time. A flow information table includes specific information for specifying a buffer in which input data should be written for each of flows of the input data, maximum amount information indicating a maximum data amount writable in each of the plurality of buffers for each of the flows, and remaining amount information indicating a remaining data amount writable in the buffer specified by the specific information for each of the flows. A shaper writes the input data in the buffer specified by the specific information among the plurality of buffers for each of the flows.
A packet scheduling method and apparatus with the knowledge of application behavior, anticipated usage/behavior based on the type of content, and underlying transport conditions during the time of delivery, is disclosed. This type of scheduling is applicable to a content server or a transit network device in wireless (e.g., 3G, WIMAX, LTE, WIFI) or wire-line networks. Methods for identifying or estimating rendering times of multi-media objects, segmenting a large media content, and automatically pausing or delaying delivery are disclosed. The scheduling reduces transit network bandwidth wastage, and facilitates optimal sharing of network resources such as in a wireless network.
In some embodiments, an apparatus includes a module within a first stage of a switch fabric, a module within a second stage of the switch fabric, and a module within a third stage of the switch fabric. The module within the first stage is configured to send data to the module within the second stage. The module within the second stage is configured to send data to the module within the third stage. The module within the second stage is configured to send a first suspension indicator to the module within the third stage. The module within the third stage is configured to send a second suspension indicator to the module within the first stage in response to the first suspension indicator. The module within the first stage is configured to stop sending data to the module within the second stage in response to the second suspension indicator.
Devices, systems, methods, and other embodiments associated assigning signals to cable channels are described. One example device includes a networking device that includes a transceiver to connect to a cable and communicate signal over the cable to a remote terminal. The cable can include two or more cable channels to carry signals. If a cable channel fails to operate, a switching logic reassigns signals initially carried on the failed cable channel to another cable channel.
A packet-based multimedia service is provided to a terminal in a network. A packet signaling connection is established between the terminal and the network. Signaling information for the multimedia service is transferred via the packet signaling connection using Session Initiation Protocol (SIP) or a similar protocol. A circuit bearer connection is also established with the terminal. Data for the multimedia service is transferred via the circuit bearer connection. This allows the data to be carried across networks which do not support the required QoS functionality for the packet-based service, or which cannot efficiently carry packet-based data. The circuit bearer connection can be established by a network entity or by the terminal. The circuit bearer can be interworked to a packet-switched bearer at some point in the network, such as at a gateway, so as to provide a remote party with the appearance that a fully packet-switched connection is being used.
A method of channel-to-port assignment is described where the distribution of channels is performed in the digital domain of the CATV/QAM upconverter/modulator. This channel distribution allows for the possibility of simple failover, power combining of multiple outputs, and a fine granularity of channel to port mapping, QAM or analog channel, in a multi-port device.
When a damaged packet has been forwarded to or towards a destination terminal, a forwarding device or a destination terminal will determine if the packet is damaged, and if it is damaged, determine whether the content of the packet is time-sensitive. If the content is time-sensitive, the damage to the packet is assessed, and if possible, an attempt to repair the damage is made. Repair may include correcting the damaged data or packet, deciding to use the damaged data because the damage is minimal, or replacing all or a part of the damaged data with a normalized set of data. If repair is not possible and replacement of the damaged portion is not available or desirable, the packet is discarded.
A machine readable information storage medium, a reproducing method and apparatus which reproduces data from the storage medium, and a recording method and apparatus for recording data on the storage medium. The information storage medium includes a control area which stores within a data structure information usable by the recording or reproducing apparatus to record or reproduce the data on or from the storage medium. The information stored within the data structure includes a version corresponding to a specification, a revision number of recording speed, and an extended part version field.
Apparatus for ultrasound image acquisition is integrated into the casing of an ultrasound probe that includes an array of electro-acoustic transducers, which transmit and receive ultrasound pulses. The array communicate with a processing unit, to which reception signals are fed, and are connected to a unit generating signals for exciting the transmission of ultrasound waves. In one aspect of the invention, at least the processing unit is fitted into the probe casing and is configured to convert the reception signals into an image, and to generate video signals for generating an image on a display unit. The transmission between the probe and a remote unit displaying and possibly storing the images as video signals may be operated wirelessly.
A semiconductor memory device includes a plurality of N external ports, each of which receives commands, and an internal circuit which performs at least N access operations during a minimum interval of the commands that are input into one of the external ports.
Apparatuses and methods for compensating for differing power supply sensitivities of a circuit in a clock path. One such method includes altering signal timing of at least one of reference and feedback clock signals differently according to variations in power supply voltage to compensate for differences in delay power supply sensitivities of delays of a forward clock path and of a feedback clock path. Another example method includes providing an output clock signal in phase with an input clock signal and compensating for delay error between delays used in providing at least some of the delay of the output clock signal relative to the input clock signal by providing delays having power supply sensitivities resulting in a combined power supply sensitivity that is inverse to the delay error.
A memory circuit may include a shift register ring including single-bit shift registers. The circuit may include a clock connected to the shift registers to shift bits within the shift register ring, and a counter connected to the clock and indicating positions of the bits in the shift register ring.
Disclosed is a semiconductor memory device that includes a plurality of channel memories mounted within a package and is capable of minimizing or reducing the number of through-silicon vias. With the semiconductor memory device, a row command or a row address on two or more channels is applied through a shared bus. The semiconductor memory device is capable of reducing an overhead of a die size by reducing the number of through-silicon vias. A method of driving a multi-channel semiconductor memory device including a plurality of memories, using a shared bus, is also provided.
In one embodiment, the method includes receiving a request to read data stored in a first memory cell associated with a first word line, and performing a first read operation on at least one memory cell associated with a second word line in response to the request. The second word line follows the first word line in a word line programming order, and the first read operation is performed over a first time period. The method further includes performing a second read operation on the first memory cell based on output from the first read operation. The second read operation is performed for a second time period, and the first time period is shorter than the second time period if output from performing the first read operation indicates the first memory cell is not coupled.
The program method of a nonvolatile memory device includes detecting temperature, setting a step voltage, corresponding to an increment of a program voltage in a program operation of an incremental step pulse program (ISPP) method, wherein the step voltage changes based on the detected temperature, and performing the program operation and a program verification operation based on the set step voltage.
A method for electrically programming a non-volatile memory in which a programming cycle includes prior addressing of memory cells from an initial address corresponding to a first row and a column of a memory plane. The method may include addressing the memory cells in a second consecutive row when the end of the first row is reached to store data on bits with consecutive and increasing addresses in two consecutive rows.
A method of programming a non-volatile memory device including a plurality of strings arranged in rows and columns comprises activating all or a part of selection lines in one column at the same time depending upon data to be programmed, driving a bit line corresponding to the one column with a bit line program voltage, and repeating the activating and the driving until bit lines corresponding to the columns are all driven.
A programmable resistance memory device includes a semiconductor substrate, at least one cell array, in which memory cells are arranged formed above the semiconductor substrate. Each of the memory cells has a stack structure of a programmable resistance element and an access element, the programmable resistance element storing a high resistance state or a low resistance state determined due to the polarity of voltage application in a non-volatile manner. The access element has such a resistance value in an off-state in a certain voltage range that is ten time or more as high as that in a select state. A read/write circuit is formed on a semiconductor substrate as underlying the cell array for data reading and data writing in communication with the cell array.
A method for sensing at least one parameter indicative of a logical state of a multi-level memory cell includes the steps of: measuring the parameter of the multi-level memory cell; comparing the measured parameter of the multi-level memory cell with a prescribed reference signal, the reference signal having a value which varies as a function of time; and storing a time value corresponding to a point in time at which the reference signal is substantially equal to the measured parameter of the multi-level memory cell, the stored time value being indicative of a sensed logical state of the multi-level memory cell.
An FRAM device can comprise a sense amplifier and at least a first bitcell. The first bitcell can have a bit line and a complimentary bit line that connects to the sense amplifier. A first precharge circuit responds to a first control signal during a test mode of operation to precharge the bit line with respect to a first voltage while a second precharge circuit responds to a second control signal (that is different from the first control signal) during the test mode of operation to precharge the complimentary bit line with respect to a test voltage that is different than the first voltage (such as, but not limited to, a test voltage of choice such as a voltage that is greater than ground but less than the first voltage).
A variable resistance memory element and method of forming the same. The memory element includes a first electrode, a resistivity interfacial layer having a first surface coupled to said first electrode; a resistance changing material, e.g. a phase change material, having a first surface coupled to a second surface of said resistivity interfacial layer, and a second electrode coupled to a second surface of said resistance changing material.
A plant for transmitting electric power through HVDC includes two converter stations interconnected by a bipolar direct voltage network and each connected to an alternating voltage network. Each converter station has a Voltage Source Converter with switching cells each including at least one energy storing capacitor. The Voltage Source Converters are configured to utilize a direct voltage having a higher magnitude for a first of the poles than for a second thereof with respect to ground.
A method and apparatus for power conversion. In one embodiment, the apparatus comprises at least two power stages, each power stage of the at least two power stages capable of converting DC input power to DC output power; and a controller for dynamically selecting, based on a first DC power, one or more power stages of the at least two power stages for converting the first DC power to a second DC power.
An electronic device including: a circuit board on which an electronic component is mounted; a plate material which is used as a ground, the plate material being extended in parallel with the circuit board; and a ground connection member which includes a fixed section and multiple elastic leg sections, the fixed section being tightened to the circuit board and connected to a ground on the circuit board, the elastic leg sections being extended from the fixed section toward different directions along the circuit board, each of the elastic leg sections being extended onto the plate material side to elastically press the plate material.
The present technology relates to fused capacitor structures provided with a leadframe design configured to accepting a plurality of selectively placed fuses. The leadframe and fuse configuration enables construction of fused capacitors exhibiting low Equivalent Series Resistance (ESR) and allows construction of a variety of fuse configuration using a single leadframe design.
A printed wiring board (PWB) including one or more embedded capacitors. The PWB defines a planar area and includes a plurality of first conductive plates that are substantially parallel to the planar area and extend from a first normal axis towards a second normal axis. The first normal axis and the second normal axis extend substantially perpendicularly through the planar area. The PWB also includes one or more second conductive plates that are substantially parallel to the planar area and extend from the second normal axis towards the first normal axis. The second conductive plates are positioned between the first conductive plates. A non-conductive material is positioned between the first and second conductive plates. At least one first conductive via extends substantially collinear with the first normal axis in contact with the first conductive plates. A plurality of second conductive vias extends substantially collinear with the second normal axis in contact with the second conductive plate.
An integrated-inverter electric compressor and an inverter unit thereof are provided, with which sufficient anti-vibration properties can be ensured and weight reduction can be achieved. In an integrated-inverter electric compressor, an inverter unit includes an inverter module in which a power-system metallic board having mounted thereon semiconductor switching elements and so forth is integrated with a plastic case, and a CPU board having mounted thereon a control and communication circuit that operates at a low voltage, such as a CPU, is provided on a top face of the inverter module, and inside the plastic case, a thermosetting resin layer for insulation and anti-humidity purposes is provided so as to cover a top face of the power-system metallic board, and a vibration-absorbing elastomeric adhesive layer that maintains a rubber state in an operating temperature range of the integrated-inverter electric compressor is provided between a bottom face of the CPU board and the thermosetting resin layer.
A fan module is detachably mounted in a chassis. The chassis includes a sidewall defining a locking slot. The fan module includes a bracket including a base plate defining a first through slot, a fan fixed to the base plate, a fan duct fixed to the base plate beside the fan, and a locking member. The fan duct includes a side plate defining a second through slot. The locking member is fixed to the fan duct. The locking member includes a locking portion extending through the second through slot of the fan duct and the first through slot of the bracket to lock into the locking slot of the chassis.
A high-voltage apparatus includes a battery device, a high-voltage control device, a housing, and a cooling structure. The cooling structure includes a first cooling channel to cool the battery device, a second cooling channel to cool the high-voltage control device, a connection channel connecting the first cooling channel to the second cooling channel, and a ventilator. The connection channel has a first opening portion connected to the first cooling channel, a second opening portion connected to the second cooling channel, and an inner flow path to communicate the first opening portion to the second opening portion. A sectional area of the first opening portion and a sectional area of the second opening portion are each set to be smaller than a sectional area of the inner flow path.
An electric power conversion apparatus includes first and second electric power conversion devices and a housing. The first and second electric power conversion devices are arranged to overlap each other in an overlap direction. The housing receives both the first and second electric power conversion devices therein. The housing has a partition wall that extends between the first and second electric power conversion devices to partition the housing into first and second parts in which the first and second electric power conversion devices are respectively received. The partition wall has a coolant passage formed therein, thereby allowing a coolant to flow through the coolant passage.
An electronic device includes: a casing in which electronic components including a heat-emitting component which emits heat during operation are accommodated; a heat-dissipating component including a plurality of fins to which heat emitted in the heat-emitting component transfers; a fan operable to supply cooling air to the heat-dissipating component; and a cleaning component movable on an end surface of the fins along the side nearer the fan with the cleaning component abutting against the end surface of the fins. In these features, dust on the end surface of the fins can be automatically removed by moving the cleaning component in the case of the spatial orientation of the electronic device being changed. Therefore, an effect of removing heat emitted in the heat-emitting components, by using cooling air supplied from the fan, can be continuously obtained.
A latching device for latching a storage device module into a storage chassis is provided. The latching device includes a latch member having a latching end and a spring end opposite the latching end, the latch member slidingly disposed within a front bezel of the storage device module and being movable between a latching position and a releasing position. The latching device also includes a latch spring between a bearing surface of the front bezel and the spring end of the latch member. The latch spring is in increased compression when the latch member transitions from the latching position to the releasing position, and the latch spring is in decreased compression when the latch member transitions from the releasing position to the latching position. The latching end extends through a latch hole in a side member of the storage chassis for locking the storage device module in the chassis.
A computing system comprises a bottom, a channel in the bottom, and a continuous elastomeric member in the channel. The continuous elastomeric member extends includes a foot portion projecting out of the channel.
An electrolytic capacitor in which a capacitor element can be fixed firmly into a metal case without having adverse effects on the electrical characteristics of the electrolytic capacitor. An anode foil provided with an anode internal terminal and a cathode foil provided with a cathode internal terminal are wound or laminated through a separator to produce a capacitor element. The capacitor element is then contained in a metal case together with a driving electrolyte, and then the side surface of the metal case is caulked to press and fix the capacitor element, thus producing an electrolytic capacitor. The electrolytic capacitor is characterized in that a tape material is wound by a plurality of turns around the outer circumference of the capacitor element between the capacitor element and the caulking of the metal case such that a total thickness of the tape material is so large as to relax deformation of the capacitor element when the side surface of the metal case is caulked.
A sealant 34 filled into a cap 30A is caused to overflow through both an opening in a first end portion 30a of the cap 30A and a through-hole 40 of the cap 30A when the cap 30A is pressed against a fastener member 25. With regard to the cap 30A, a ratio between inside diameter D1 of the opening on the side of the first end portion 30a and hole diameter D2 of the through-hole 40 in the second end portion 30b is set as follows: 0.10≦D2/D1≦0.27.
Self-balancing, corona discharge for the stable production of electrically balanced and ultra-clean ionized gas streams is disclosed. This result is achieved by promoting the electronic conversion of free electrons into negative ions without adding oxygen or another electronegative gas to the gas stream. The invention may be used with electronegative and/or electropositive or noble gas streams and may include the use of a closed loop corona discharge control system.
An ESD protection device includes an insulating ceramic substrate excluding a glass ceramic substrate, first and second discharge electrodes provided on the insulating ceramic substrate and including respective edges that face each other with a gap therebetween, and a discharge supporting electrode provided on the insulating ceramic substrate so as to electrically connect the first and second discharge electrodes to each other, the discharge supporting electrode including a ceramic material and metal particles whose surfaces are coated with insulating inorganic material powder. A thermosetting resin-cured layer including a cavity is provided on the insulating ceramic substrate so that the portions of the first and second discharge electrodes that face each other with a gap therebetween are present in the cavity.
A comparator includes a first potential supply terminal, a second potential supply terminal supplying a different potential from that of the first potential supply terminal, a first transistor of a first conductivity type coupled between the first potential supply terminal and a first node, and including a control terminal coupled to a first terminal, a second transistor of the first conductivity type coupled between the first potential supply terminal and a second node, and including a control terminal coupled to a second terminal, a third transistor of a second conductivity type coupled between the first node and a third terminal, and including a control terminal coupled to the second node, and a fourth transistor of the second conductivity type coupled between the second node and the second potential supply terminal, and including a control terminal coupled to the second node.
A high impedance fault isolation system for a radially connected three phase electric power line that utilizes three phase current measurements to determine the presence of a fault without the need for any voltage measurements or a battery powered controller. This eliminates the need for costly phase voltage measuring devices conventionally required to detect high impedance faults, which makes it economical to install fault isolation system at a greater number of locations throughout the power system. The system detects faults using current measurements by computing the negative and zero sequence current components and comparing the amplitudes of the negative and zero sequence components. A fault is detected when the ratio of the amplitudes of the negative and zero sequence components falls within a predefined fault detection range, such as the range from 0.5 to 1.5.
According to one embodiment, a magnetic data system includes a magnetic disk medium, a magnetic head having a writer element and/or a reader element, an exothermic resistor element for thermal fly-height control (TFC), a contact detection sensor having a resistor element and at least one contact detection electrode, and an insulating film on a medium facing side of the magnetic head to protect the contact detection sensor, the insulating film having a thickness greater than the contact detection electrode, a drive mechanism for passing the magnetic disk medium over the magnetic head, and a controller electrically coupled to the magnetic head for controlling operation of the magnetic head, wherein the controller adjusts magnetic spacing between the magnetic head and the magnetic disk medium via thermal distortion of the exothermic resistor element. The contact detection sensor may be used as a second TFC resistor element.
According to one embodiment, there is provided a controller including an interference cancelling module, a boosting module, and a decoding module. The interference cancelling module generates a first correction signal by cancelling an interference component from an adjacent track in a signal read from a target track of a disk medium. The boosting module generates a second correction signal by boosting a low frequency component of a signal corresponding to the first correction signal. The decoding module decodes a signal based on the second correction signal.
A disk drive is disclosed comprising a head actuated over a disk, and control circuitry including a shock detector. A shock threshold of the shock detector is initialized, and a first number of shock events is detected in response to the shock detector operating at the initial shock threshold. When the first number of shock events exceeds an upper event threshold, a control signal is adjusted in order to adjust a frequency spectrum of noise affecting the shock detector. After adjusting the control signal, a second number of shock events is detected in response to the shock detector operating at the initial shock threshold. When the second number of shock events exceeds the upper event threshold, the shock threshold is increased.
A disk drive tester is disclosed operable to test a plurality of disk drives, each disk drive comprising a head actuated over a disk. The disk drive tester comprises a plurality of test slots, where each test slot is operable to receive one of the disk drives. The disk drive tester further comprises an interface for receiving vibration data from the disk drives, wherein the vibration data at least partially represents a vibration applied to each disk drive by the respective test slot. The disk drive tester further comprises control circuitry operable to detect when one of the test slots is defective in response to the vibration data.
A miniature image pickup lens includes a first lens, a second lens, a third lens, an aperture, a fourth lens, and a fifth lens in sequence along an optical axis from an object side to an image side. The first lens is a meniscus lens with negative refractive power and has a convex side facing the object side. The first lens has at least an aspheric side. The second lens is a biconvex lens with positive refractive power. The third lens is a biconcave lens with negative refractive power. The fourth lens is a biconvex lens with positive refractive power and has at least an aspheric side. The fifth lens has a negative refractive power.
An optical system WL has, in order from an object, a first lens group G1 having negative refractive power and a second lens group G2 having positive refractive power, wherein the first lens group G1 is fixed and the second lens group G2 moves upon focusing from an object at infinity to an object at a finite distance, and the second lens group G2 is formed of a front group G2a located closer to the object than an aperture stop S disposed in the second lens group G2, and a rear group G2b located closer to an image than the aperture stop S.
Provided is an optical system with an excellent anti-reflection effect and ghost suppression effect including an aspherical lens having at least one of an incident surface and an exiting surface of an optical glass formed of an aspherical surface, in which: the aspherical surface includes an anti-reflection structure formed thereon, the anti-reflection structure having an anti-reflection function and including multiple inorganic structural parts finer than a used wavelength; and the aspherical surface has a point that satisfies the following expression: |(1/Rm−1/Rs)/Rm|>5.0×10−5, where Rm denotes a radius of curvature in a meridional direction at an arbitrary point, and Rs denotes a radius of curvature in a sagittal direction at the arbitrary point.
A coating including a liquid-phobic and/or liquid-philic material, the coating configured to control the shape of a corresponding liquid to form a liquid lens of specific focal length on the coating.
The present invention relates to a lens for use with a lamp having at least one LED light source. The lens preferably includes a plurality of projections each having a substantially flat top surface and a plurality of sloping side surfaces, preferably suitable for dispersing the emitted light. Such a variance in light emission may enhance the light being viewed from different angles and positions therefrom.
A diffractive light outcoupling unit for forming a part of a directive light outcoupling system of a lighting device including a plurality of diffractive outcoupling units. The diffractive light outcoupling units each include a carrier element for accommodating a diffractive surface relief pattern, and a diffractive surface relief pattern including a plurality of consecutive diffractive surface relief forms defined on a surface area of the carrier element arranged to couple light incident on the diffractive surface relief pattern outside the carrier element via interaction involving at least two surface relief forms of the plurality of surface relief forms of the diffractive surface relief pattern so as to enhance the directivity of the coupled light. A diffractive light outcoupling system includes a plurality of diffractive light outcoupling units. A lightguide includes the outcoupling system.
An filter, apparatus and method for preparing microscope slides is presented. After filtration of the specimen is performed, the filter containing the filtrand is configured to be microscopically examined. The filter may either be affixed to a microscope slide or, in an embodiment, the filter may be incorporated into a microscope slide.
A first optical fiber (12) having a first end and a second end is connected to a multimode second optical fiber (14) at the second end. The first optical fiber (12) outputs a substantially single mode optical beam at its second end. The multimode second optical fiber (14) converts light in the optical beam of single mode from the first optical fiber to light of multiple modes, and provides an output beam that has less diffractive spreading than that of a Gaussian beam.
A combined large mode area, fiber cable amplifier and laser beam transport fiber cable is disclosed that transports laser beams output from a compact, high power, solid state laser to remote locations while improving the beam quality and amplifying the beam to compensate for losses in the fiber cable. The fiber cable is clad and is cladding pumped to compensate for the losses in the fiber cable.
An optical scanner includes a light source for projecting a light beam, a deflector for deflecting the light beam, a reflective member for reflecting the light beam toward a target, a contact member, and a pressing member. The reflective member includes a reflective plane and a rear plane opposite the reflective plane. The contact member contacts one of the rear plane of the reflective member and a first lateral plane perpendicular to the reflective plane to position the reflective member in place. The pressing member presses the reflective member against the contact member and includes a first pressing portion to press the reflective plane of the reflective member and a second pressing portion to press a ridge of the reflective member at which the reflective plane and a second lateral plane opposite the first lateral plane and perpendicular to the reflective plane of the reflective member meet.
A printed image erasing system in an embodiment is configured to erase image information obtained by printing both characteristic identification information and document information or only the document information with an erasable color material on a printing medium, comprising: a printer unit configured to print the image information on the printing medium; an erasing unit configured to erase an image printed on the printing medium with the erasable color material; a reading unit configured to read the characteristic identification information on the printing medium to be erased by the erasing unit; and a document management unit configured to manage an erasability condition of the document information on the basis of the characteristic identification information and instruct the printer unit to output new document information according to the erasability condition of the document information that is contained in the characteristic identification information read by the reading unit.
An image formation control apparatus capable of reducing vain power consumption of an image forming apparatus that cannot continue printing. The image formation control apparatus executes a print job by controlling a first image forming apparatus and a second image forming apparatus connected to a downstream side of the first image forming apparatus. A determination unit determines whether the first image forming apparatus is able to execute the print job based on status information about the first image forming apparatus. A control unit shifts the first image forming apparatus to a power saving mode and controls the second image forming apparatus to execute the print job when the determination unit determines that the first image forming apparatus cannot execute the print job.
Embodiments of the present invention provide a handheld device comprising an input/output (I/O) module configured to at least one of print and scan images on a surface adjacent to the handheld device, a position module operatively coupled with the I/O module to determine at least one of a position and a velocity of the handheld device, and a filter coupled to the I/O module to regulate a rate of deposition of a printing substance by the I/O module.
A communication apparatus includes a communication start request receiving unit and a response notification output unit. The communication start request receiving unit receives, via a first communication path, a communication start request that is output from a source communication apparatus and is transmitted via a relay apparatus. The response notification output unit outputs a first response notification or a second response notification to the relay apparatus via the first communication path when the communication start request receiving unit receives, via the first communication path, a communication start request for starting communication using a second communication standard in a case where the number of apparatuses with which the communication apparatus is communicating using the second communication standard has reached a predetermined number. The first response notification indicates that communication is being performed. The second response notification has a lower priority than the first response notification in an arbitration process.
An image forming apparatus that includes a power supply unit to convert AC power input to the image forming apparatus into DC power, a high-voltage power unit to convert the converted DC power to high voltage, an image forming unit to form an image using the converted high voltage, and a controller to control operation of the image forming unit, where the power supply unit, the high-voltage power unit, and the controller are disposed on a single circuit board.
A sensor apparatus for detecting an overhang on a load of a carrier device, having a sensor arrangement with at least one transmitter and a receiver and also an electronic unit for control purposes. According to the invention, the sensor arrangement senses two regions of the carrier device with a load during a movement of the carrier device such that evaluation of the geometrical position of the regions in relation to one another is made possible, wherein the first region relates to the carrier device and the second region relates to the load. Furthermore, the electronic unit is designed for generating a signal for each region and linking the signals such that it is possible to ascertain an overhang from this.
Systems and methods for environmentally insensitive high-performance fiber-optic gyroscopes are provided. In one embodiment, a loop closure electronics apparatus for a fiber optic gyroscope having an optical phase modulator characterized by a transfer function that includes an error component of at least second order is provided. The apparatus comprises: a first digital circuit that generates a digital bias modulation signal; a second digital circuit that generates a digital feedback signal; at least one digital-to-analog converter that produces an electrical signal that drives the phase modulator from the digital bias modulation signal and the digital feedback signal; and a compensator that includes an analog filter of at least second order and a digital filter of at least second order, wherein the analog filter and the digital filter pre-filter the electrical signal to compensate for the error component.
A detector of light transmitted through a turbid medium, comprising: one or more Digital Optical Phase Conjugation (DOPC) devices, wherein the DOPC devices include (1) a sensor for detecting input light that has been transmitted through the turbid medium and inputted on the sensor; and (2) a spatial light modulator (SLM) for outputting, in response to the input light detected by the sensor, output light that is an optical phase conjugate of the input light.
A method and system for optically determining a substantially fully activated doping profile are disclosed. The substantially fully activated doping profile is characterized by a set of physical parameters. In one aspect, the method includes obtaining a sample comprising a fully activated doping profile and a reference, and obtaining photomodulated reflectance (PMOR) offset curve measurement data and DC reflectance measurement data for the sample including the fully activated doping profile and for the reference. The method also includes determining values for the set of physical parameters of the doping profile based on both the photomodulated reflectance offset curve measurements and the DC reflectance measurements.
A method and an apparatus for positioning a first device in relation to a second device. An optical signal from a first device is sent to a second device. A reflection of the optical signal from the second device is received. A position of one of the devices relative to the other device is adjusted based upon the reflection.
A system and method for searching an incident light field for atypical regions (e.g., hot spots or cool spots or spectrally distinctive regions) within the incident light field using a light modulator and a spectral sensing device. Once the atypical regions are identified, the light modulator may be used to mask the incident light field so that the spectral sensing device can make spatially-concentrated measurements of the wavelength spectrum of the atypical regions (or alternatively, the exterior of the atypical regions). Furthermore, in a compressive imaging mode, a sequence of spatial patterns may be supplied to the light modulator, and a corresponding sequence of wavelength spectra may be collected from the spectral sensing device. The wavelength spectra comprise a compressed representation of the incident light field over space and wavelength. The wavelength spectra may be used to reconstruct a multispectral (or hyperspectral) data cube.
In certain aspects, imaging optical systems with a plurality of mirrors image an object field in an object plane into an image field in an image plane. In the light path between non-obscured mirrors, imaging rays pass through at least one multiple pass-through region between spaced-apart planes which are arranged parallel to the object plane and/or parallel to the image plane. The imaging optical systems have at least one pupil plane. The pupil plane is arranged outside the multiple pass-through region between the non-obscured mirrors. This can provide an imaging optical system which provides for an easier correction of image errors.
Exposure apparatus and methods expose a substrate with an energy beam via a projection optical system and has first and second tables on each of which a substrate is mountable. A mark detection system is arranged in a second area different from a first area in which the projection optical system is arranged. A substrate mounted on one of the first and second tables is moved in the first area while the one table is held by a first movable member. A substrate mounted on another of the first and second tables is moved in the second area while the another table is held by a second movable member. The tables held by the first and second movable members are driven so that the another table is moved from the second to the first movable member to be held in place of the one table.
The invention relates to a lens comprising several optical elements that are disposed in a lens housing. At least one sensor array encompassing at least one capacitive sensor unit and/or at least one inductive sensor unit is provided for determining the relative position between a first optical element and a second optical element or between a load-bearing structural element of the lens and a second optical element.
An apparatus for forming an alignment film and a method for fabricating a liquid crystal display panel using the same are disclosed. A steam inspecting unit for inspecting a defective alignment film is disposed for two lines of rubbing equipment, so that a facility investment expense can be reduced and a space of a clean room can be effectively utilized. The apparatus for forming an alignment film comprises a rubbing equipment comprising at least one rubbing unit; and an alignment film inspecting unit installed between the two lines of rubbing equipment and inspecting an alignment film formed on a substrate.
In a display device that provides a first observation region with a first picture and provides a second observation region with a second picture, a double image made of the first picture and the second picture is suppressed. First columns of pixels that display the first picture and second columns of pixels that display the second picture are disposed alternately with a black matrix interposed between each neighboring pair of them. A light-shielding plate having light-shielding portions and openings is disposed above the panel. When a distance between the first observation region and the second observation region is denoted by V, a distance between the first observation region or the second observation region and the light-shielding plate is denoted by D, a distance between the light-shielding plate and the display panel is denoted by G, an interval of the first columns of pixels or the second columns of pixels is denoted by P, and the width of the black matrix is denoted by Q, an equation K≦Q×D/(D+G) is satisfied. The openings are disposed on lines connecting between a position directly above a center of the display panel and the black matrix.
An illumination device (3) is provided with a light-emitting diode (light source) (9), and a light guide plate (10) that guides light from the light-emitting diode (9) toward a prescribed propagation direction and that outputs the light toward a liquid crystal panel (object to be irradiated) (2). The illumination device is also provided with an optical sheet (optical member) (15) that is disposed so as not to make contact with the optical sheet (13) and that separates the optical sheet (13) from the liquid crystal panel (2) so as to create a prescribed space therebetween.
A Liquid Crystal Display (LCD) device includes a liquid crystal panel in which a plurality of common electrodes are formed; an interred touch sensor for applying a common voltage to the common electrodes, and detecting a touch point of the liquid crystal panel with a capacitance that is induced in the common electrodes; a plurality of common electrode lines for connecting the common electrodes to the touch sensor; and an equivalent potential unit formed in the common electrode lines, and discharging residual electric charges of the common electrodes.
In a television device (audio output device), audio output performance information of the television device is pre-stored in an EDID-ROM. When an AV amplifier is connected to the television device, a control unit rewrites “2ch” audio output performance information of the television device stored in the EDID-ROM of an HDMI port which is different from the HDMI port to which the AV amplifier is connected, to “5.1ch” audio output performance information of the AV amplifier.
A method and apparatus for displaying a plurality of secondary images based on image data of a primary image include displaying a primary image and a plurality of secondary images based on the image data of the primary image. Each of the plurality of secondary images is displayed having a size based on a relevance of each respective one of the plurality of secondary images to the primary image. The primary image can be selected from a plurality of images or a frame of a video. Subsets of secondary images can be displayed in clusters including images having content similar to particular content of the primary image.
Provided is a digital camera including: a camera body (1) that includes a body mount to which a lens unit, which forms an optical image of a subject, can be attached; an image sensor (8) that is disposed in a body chassis (3) of the camera body (1) to convert the optical image of the subject into image data; a main circuit board (11) to which an image sensor (8) is electrically connected; and an electronic viewfinder (6) that includes a monitor on which a through image captured by the image sensor (8) is displayed, wherein a conductive shielding member (33) is disposed in the body chassis (3) in order to electromagnetically shield a region between a space in which the image sensor (8) and the main circuit board (11) are disposed from a space in which the electronic viewfinder (6) is disposed.
An imaging apparatus, comprises: an imaging section; a detecting section to detect an image area of a subject from an image imaged by the imaging section; an area setting section to set one or a plurality of evaluation areas to calculate focusing evaluation values in the image area of the subject detected by the detecting section; a calculating section to calculate the focusing evaluation values with regard to the one or the plurality of evaluation areas set by the area setting section; and a focusing section to be in focus based on a calculated result by the calculating section.
An interior housing of a compact camera module is insulated from external shocks in a direction along the optical path to an external housing that is spaced from the interior housing by a compression distance of one or more shock absorbing sponges that are disposed between the outer housing and the interior housing and that are configured to compress to absorb external physical shocks in two or three spatial dimensions.
A compressive imaging system including a light modulator, a light sensing device and a TIR prism. The TIR prism is configured to receive an incident light beam, to provide the incident light beam to the light modulator, to receive a modulated light beam MLB from the light modulator, and to direct the modulated light beam onto a sensing path. The light sensing device receives the modulated light beam (or at least a portion of the modulated light beam) and generates an electrical signal that represents intensity of the modulated light beam (or the “at least a portion” of the modulated light beam). The TIR prism may reduce a distance required to separate the incident light beam from the modulated light beam.
According to one embodiment, a solid-state imaging device includes a pixel array, two signal lines and a row scanning circuit. The row scanning circuit simultaneously renders conductive, by the first read-out row scanning circuit and the second read-out row scanning circuit, the two transfer transistors, which are connected to two photoelectric conversion elements do not share a floating diffusion portion neighboring in the column direction, thereby reading out signals in parallel from the photoelectric conversion elements of the pixels of two rows of an odd-numbered row and an even-numbered row.
The area of a subject image in an image is changed. The correction strength is determined based on the area-change amount between the area before the area change and that after the area change for the subject image whose area has been changed. A correction process is performed for the image in accordance with the correction strength.
An image pickup apparatus includes an image pickup unit that acquires a first image without a flash and a second image with the flash; a down-sampling unit that generates a third image by down-sampling the second image; a brightness difference calculator that calculates a brightness difference between the first image and the third image; a flash reflection intensity calculator that calculates a first flash reflection intensity from the brightness difference; and a white balance gain calculator that calculates a white balance gain based on the first flash reflection intensity. An image pickup method includes acquiring a first image without a flash and a second image with the flash, generating a third image by down-sampling the second image, calculating a brightness difference between the first image and the third image, calculating a first flash reflection intensity from the brightness difference, and calculating a white balance gain.
An apparatus includes a plurality of pixels each including a charge storage part, a photoelectric conversion part, a first transfer part and a second transfer part, when a signal charge generated during one period is transferred to an amplifier, a control unit supplies pulses such that a turning-on pulse is supplied to the second transfer part while supplying a turning-off pulse to the first transfer part thereby transferring the stored signal charge to the amplifier, a turning-on pulse is then supplied to a reset part to reset the signal charge transferred to the amplifier, and subsequently a turning-on pulse is supplied to the first transfer part and the second transfer part to transfer the signal charge held in the photoelectric conversion part to the amplifier.
An image capturing unit 1 acquires a plurality of images being temporally continuous. Based on external operations from a key input unit 4, a control unit 9 selects an image serving as reference of synthesis, from the plurality of images acquired by the image capturing unit 1. An image processing unit 10 compares the reference image selected by the key input unit 4 with other images acquired by the image capturing unit 1, and detects an image with a difference value being higher than a predetermined threshold value as a result of such comparison. The image processing unit 10 sets a synthetic rate, based on the image thus detected. A synthesis unit 11 generates a single image by executing synthesis of the plurality of acquired images including the image serving as reference, by using the synthetic rate that is set by the image processing unit 10.
A method and apparatus for controlling a live avatar include features for directing the live avatar gaze to be consistent with a remote operator's view of the live avatar's surroundings. Indication of gaze direction may be continuously provided to the live avatar using movable optics, for example a heads-up display, or a movable optical prism or lens. Gaze direction or operator commands may be communicated using a haptic device. Video and control streams from multiple live avatars may be aggregated through a host server and allocated via an online interface to multiple prospective remote operators.
For use in calibration of an onboard camera, there are provided a calibration index free of erroneous detection and a method of calibrating an onboard camera using such calibration index. The calibration index for use in onboard camera calibration includes a curved graphic formed of a curved line surrounding a predetermined region and a linear graphic comprising at least two straight lines forming an intersection point within the region surrounded by the curved graphic, the curved graphic and the linear graphic being formed in a same plane. A plurality of segments separated by the curved line forming the curved graphic and the straight lines forming the linear graphic are colored in a checkered pattern.
In a method for evaluating mechanical tests of a coating on a substrate, in a first step a mechanical stress is applied onto the coating, in a second step the substrate having the coating is isothermally clamped, in a third step an infrared photograph is generated of the region in which the mechanical stress is applied onto the coating in the first step, and in a fourth step the infrared photograph is evaluated. A device is arranged for carrying out the method.
A surveillance method monitors a monitored area using a monitoring station. The monitoring station in electronic communication with an actuator, an image capture device, and a plurality of motion sensors. The presence of motion in the monitored area is detected in real-time using the motion sensors. When the motion is detected, a target region in the monitored area where the motion is detected is determined, and a control signal is sent to the actuator according to the target region to control the image capture device to aim at the target region using the actuator. Real-time images of the target region are captured, and stored in a storage system of the monitoring station.
Moving pictures, as may be exemplified by television programming, are viewed stereoscopically. The system preferably comprises a visual display screen upon which may be displayed a left-to-right reversed visual display. A reflecting surface is positioned opposite the visual display screen for reflecting imagery from the visual display screen toward the viewer. The reflected imagery provides a reflected left-to-right correct visual display. The visual display screen is spaced from the reflecting surface such that the viewer's perception of the visual display screen causes the viewer to focus on a point behind the reflecting surface thereby requiring the viewer to perceive laterally offset reflections of the visual display screen at the reflecting surface. In one embodiment, a cabinet assembly enables the viewer or user to selectively position the visual display screen relative to the primary reflecting surface for enhancing the perception of depth in imagery effected by the perceived laterally offset reflections.
An imaging device capable of capturing depth information or surface profiles of objects is disclosed herein. The imaging device uses an enclosed flashing unit to project a sequence of structured light patterns onto an object and captures the light patterns reflected from the surfaces of the object by using an image sensor that is enclosed in the imaging device. The imaging device is capable of capturing an image of an object such that the captured image is comprised of one or more color components of a two-dimensional image of the object and a depth component that specifies the depth information of the object.
A virtual image generation apparatus includes an image recording unit configured to record a plurality of images, each containing photography position data. An image selection unit selects, from the images recorded, an image from which to generate a virtual image. A map-image acquiring unit acquires an image corresponding to a map image containing the photography position data contained in the image selected A virtual scene image generation unit generates, from the image corresponding to the map image, a virtual image showing the image selected or showing a scene related to the photography position data contained in the image selected. An output unit outputs the virtual image data, thereby to display the scene represented by the virtual image generated.
Conducting a private videoconference within a videoconference. A videoconference may be established between a plurality of endpoints. Input may be received requesting the private videoconference for a plural subset of the plurality of endpoints. The private videoconference may be established between the plural subset of the plurality of endpoints. The initial videoconference may continue during the private videoconference. Private videoconference data may be transmitted only to the plural subset of endpoints of the private videoconference. The private videoconference may be sent directly between the plural subset of endpoints or may be sent via a multipoint control unit, e.g., of the initial videoconference. The private videoconference data may not be sent to the remaining endpoints of the initial videoconference.
Performing a videoconference. The videoconference may be established at a first videoconferencing location between at least three videoconferencing locations. The locations may include the first location, a second location, and a third location. The first location may maintain a plurality of videoconferencing units and the second and third locations may each maintain a single videoconferencing unit. A first videoconferencing unit of the first location acts as a multipoint control unit (MCU) of the videoconference. The MCU may receive respective videoconferencing information from each videoconferencing unit of the videoconference. The MCU may provide active videoconferencing information of an active participant to ones of the videoconferencing units at the second and third locations corresponding to non-active participants. The MCU may provide second and third videoconference information from the videoconferencing units of the second and third locations for presentation at the first location. This provision may be performed independently of the active participant.
Customizing a conferencing system based on proximity of a participant. A first participant may be detected as being proximate to a first conferencing system. For example, the first participant may provide user input to check in to the first conferencing system. Alternatively, the conferencing system may automatically detect the first participant (e.g., by automatically detecting a personal device of the first participant). In response to detecting the proximate participant, the first conferencing system may be automatically customized for the participant.
An image forming apparatus is provided. The image forming apparatus includes: plural photosensitive members; plural exposing units opposed to the photosensitive members, respectively, each of the exposing units including a plurality of light emitting elements arranged in a first direction; and a body frame which is provided at both sides of the exposing units in the first direction. Each of the exposing units includes: a gap maintaining member which abuts a respective one of the photosensitive members to define a distance between the exposing unit and the photosensitive member; a first-direction positioning portion which abuts the body frame in the first direction to position the exposing unit in the first direction; and a second-direction positioning portion which abuts the body frame in a second direction perpendicular to the first direction and an exposing direction of the light emitting elements, to position the exposing unit in the second direction.
Apparatus for producing a print on a recording medium includes a printhead providing drops of hydrophilic liquid. A hydrophobic drop-retention layer of an intermediate member receives the drops in cells including ion donors, forming a liquid pattern corresponding to image data. The ion donor in liquid-containing cells dissolves into ions. A transport member brings the recording medium into contact with the liquid pattern on the intermediate member. A voltage source applies a bias across the recording medium in contact with the liquid pattern to move ions to form a charge pattern corresponding to the liquid pattern on the recording medium. A development station applies charged dry ink to the recording medium bearing the charge pattern, so that a dry ink image corresponding to the image data is formed on the recording medium.
A method and system providing boundary dispersion to pixel values displayed on a binary spatial light modulator to reduce temporal contouring artifacts. Pixel code values are offset from a nominal value when displayed on the SLM to disperse a large bit transition for a pulse width modulation (PWM) system. The offset value varies as a function of the pixel digital code, the pixel spatial location on the screen, and pixel temporal location in time. The set of offsets applied to pixels is varied over a repeating sequence of 2 displayed frames.
An integrated system and method for content-aware video retargeting. An interactive framework combines key frame-based constraint editing with numerous automatic algorithms for video analysis. This combination gives content producers a high level of control of the retargeting process. One component of the framework is a non-uniform, pixel-accurate warp to the target resolution that considers automatic as well as interactively-defined features. Automatic features comprise video saliency, edge preservation at the pixel resolution, and scene cut detection to enforce bilateral temporal coherence. Additional high level constraints can be added by the producer to achieve a consistent scene composition across arbitrary output formats. Advantageously, embodiments of the invention provide a better visual result for retargeted video when compared to using conventional techniques.
Misaligned map data received from different sources is corrected to generate a map that includes aligned features. Each data source is associated with a reliability value that identifies the likelihood that the map data received from the corresponding source is aligned with a particular map location. A corrected version of the map data is generated based on the reliability values of the data sources. Generally, map data from unreliable sources is adjusted toward map data from more reliable sources until the map data from the different sources is aligned.
Managing diagram elements in a drawing becomes more challenging as the number of diagram elements increases. Placing a new diagram element in a drawing often requires manual movement of one or more other diagram elements within the drawing. Functionality can be implemented within a drawing application to automatically manage diagram elements in a drawing by applying layouts to sets of diagram elements. A drawing tool can associate a set of diagram elements and assigns them a exclusive area or region in the drawing space. Since a layout occupies an exclusive area, the drawing tool can manage the drawing space by automatically moving elements within a first layout when overlap with a second layout is detected. Managing drawing spaces with layouts reduces time spent adjusting diagram elements as a result of applying operations to other elements.
The present invention provides a method for sharing a graphics card among multiple Operation Systems (OSs) and a computer system. The method comprises: detecting a first GOS to be displayed, the first GOS being one of at least two GOSs; calling a correspondence table to determine a first display control register bank corresponding to the first GOS, the first display control register bank including display mode parameters therein; controlling the first display control register bank to connect to a display output port; and displaying the first GOS based on the display mode parameters. According to the inventive method and computer system, it is possible to achieve sharing of the graphics card among the multiple OSs and quick display of the GOS to be displayed, without simulating registers of the graphics card.
An image processing apparatus and method are provided. The image processing apparatus includes: at least one image input unit, to which a plurality of input images are input according to respective frame rates; and a controller that arranges an operation time and an operation order of each of tasks for processing a corresponding image of the plurality of input images according to the respective frame rates, and performs each of the tasks according to the operation time and the operation order.
A method for transitioning from a first operational mode, where operations are executed on a first processor while a second processor is powered off, to a second operational mode, where operations are executed on the second processor while the first processor is powered off. A driver causes detects a first system event that indicates a transition from the first to the second operational mode is likely. The driver powers on the second processor in response to the first system event and detects a second system event. The driver determines whether each of the client applications can be transferred from the first processor to the second processor without resulting in any data loss, and depending on whether each of the client applications can be transferred, either transfers the client applications from the first to the second processor or continues to cause the operations to be executed in the first operational mode.
A method for transitioning from a first operational mode, where operations are executed on a first processor while a second processor is powered off, to a second operational mode, where operations are executed on the second processor while the first processor is powered off. A driver causes detects a first system event that indicates a transition from the first to the second operational mode is likely. The driver powers on the second processor in response to the first system event and detects a second system event. The driver determines whether each of the client applications can be transferred from the first processor to the second processor without resulting in any data loss, and depending on whether each of the client applications can be transferred, either transfers the client applications from the first to the second processor or continues to cause the operations to be executed in the first operational mode.
A method and system for automatically analyzing graphics processing unit (“GPU”) test results are disclosed. Specifically, one embodiment of the present invention sets forth a method, which includes the steps of identifying the GPU test results associated with a first register type, creating a template document associated with the same first register type, wherein the template document is pre-configured to store and operate on the GPU test results of the first register type, filling the GPU test results in the template document, aggregating the GPU test results associated with the first register type to establish a common output, and determining a suitable register value from a passing range of register values based on the common output without human intervention.
A method for computer-implemented rendering of an animation presentation includes receiving, at a server, a request to view the animation presentation on a computing device, obtaining information identifying a browser application running on the computing device, determining requirements of a presentation technology supported by the browse, decomposing the animation presentation into animation primitives compatible with the presentation technology, and transmitting the animation primitives to the computing device. A computer-implemented method to render an animation presentation include replacing an animation type within an animation page structure of the animation presentation with an animation primitive, flattening the animation, updating the animation page drawing objects to point to the rendered document module object, grouping the animation primitives into sequences to create a timeline for the animation page, and adjusting delays of the animations so as to begin at a correct point in time. A system for implementing the rendering of animations is described.
Disclosed herein is a method of controlling a computing device having a display. The method comprises identifying a point on the display at which a user's gaze is directed; determining whether an eye of the user has accommodated toward a near-field refractive state; and increasing, based on the determining, the resolution of a region on the display of the computer system, the region being centered on the identified gaze point.
Presenting a view based on a virtual viewpoint in a three dimensional (3D) scene. The 3D scene may be presented by at least one display, which includes displaying at least one stereoscopic image of the 3D scene by the display(s). The 3D scene may be presented according to a first viewpoint. A virtual viewpoint may be determined within the 3D scene that is different than the first viewpoint. The view of the 3D scene may be presented on the display(s) according to the virtual viewpoint and/or the first view point. The presentation of the view of the 3D scene is performed concurrently with presenting the 3D scene.
A system for controlling a rendering engine by using specialized commands. The commands are used to generate a production, such as a television show, at an end-user's computer that executes the rendering engine. In one embodiment, the commands are sent over a network, such as the Internet, to achieve broadcasts of video programs at very high compression and efficiency. Commands for setting and moving camera viewpoints, animating characters, and defining or controlling scenes and sounds are described. At a fine level of control math models and coordinate systems can be used make specifications. At a coarse level of control the command language approaches the text format traditionally used in television or movie scripts. Simple names for objects within a scene are used to identify items, directions and paths. Commands are further simplified by having the rendering engine use defaults when specifications are left out. For example, when a camera direction is not specified, the system assumes that the viewpoint is to be the current action area. The system provides a hierarchy of detail levels. Movement commands can be defaulted or specified. Synchronized speech can be specified as digital audio or as text which is used to synthesize the speech.
Provided is an image processing apparatus and process. The image processing apparatus may perform three-dimensional (3D) rendering by adaptively providing virtual point lights (VPLs). It is possible to adaptively adjust an amount of 3D rendering calculations according to a desired quality, and to provide a real-time rendering result for each calculation process.
Systems and methods for producing an acceleration structure provide for subdividing a 3-D scene into a plurality of volumetric portions, which have different sizes, each being addressable using a multipart address indicating a location and a relative size of each volumetric portion. A stream of primitives is processed by characterizing each according to one or more criteria, selecting a relative size of volumetric portions for use in bounding the primitive, and finding a set of volumetric portions of that relative size which bound the primitive. A primitive ID is stored in each location of a cache associated with each volumetric portion of the set of volumetric portions. A cache location is selected for eviction, responsive to each cache eviction decision made during the processing. An element of an acceleration structure according to the contents of the evicted cache location is generated, responsive to the evicted cache location.
System and method for synchronizing shutter glasses with a display system. An embodiment comprises displaying a first image from a first image stream on a display plane, displaying a second image from a second image stream on the display plane, and displaying a synchronization signal on the display plane, during a first, a second, and a third display period, respectively. The first image and the second image are displayed at least partially on the same area of the display plane and the first and the second display periods do not overlap. The display of the synchronization signal on the display plane enables the elimination of a dedicated synchronization signal broadcast unit, thereby reducing the cost while increasing the reliability of a display system.
A scanning projector includes an optical filter. The optical filter exhibits a variable attenuation as a function of position. The scanning projector may scan sinusoidally in at least one dimension. The variable attenuation of the optical filter compensates for brightness variations due to sinusoidal scanning.
An image display apparatus is for correcting an input image signal and displaying an image on a display unit based on the corrected image signal, and includes: an illuminance detector for sequentially detecting illuminance values around the apparatus; an illuminance analyzer for sequentially outputting image settings for correction of the image signal depending on the detected illuminance values; a setting selector for outputting an image setting which has been output from the analyzer a number of times greater than a number of times any other image setting has been output, or an image setting determined by the statistic of the image settings output from the analyzer; and a setting application unit for changing the image setting used to correct the image signal to be equal to the image setting output from the selector, when a predetermined change occurs in the input image signal or when a predetermined time has come.
A touch panel embedded liquid crystal display device is disclosed. A touch panel embedded liquid crystal display device includes a first substrate having a plurality pixels defined in a matrix, a second substrate comprising first, second and third color filters to form a first, second and third color sub-pixels. A second substrate is opposed to the first substrate. A first photo-sensor is provided on the first substrate in a region corresponding to the first color sub-pixel and a second photo-sensor is provided on the first substrate in a region corresponding to the second or third color sub-pixel. A liquid crystal layer is provided between the first substrate and the second substrate, with a first planarization plate and a second planarization plate formed on rear surfaces of the first substrate and the second substrate, respectively, a wave guide formed on the second planarization plate, and a light emitting diode adjacent to the wave guide to emit and transmit a first color light to be sensed by one of the photo sensors.
A light sensing panel includes sensors arranged in rows and columns, where the sensors receive a first bias voltage and a second bias voltage and output light sensing signals based on light incident thereto; first and second bias lines which transfers the first and second bias voltages, respectively, to the sensors, where each of the first and second bias lines includes a main line and sub lines diverged from the main line and arranged in a second direction corresponding to the columns;, where the sub lines of the first and second bias lines are alternately arranged, and where when two adjacent sub lines are shorted, the shorted sub line of the first bias line is separated from the main line of the first bias line.
An electrostatic capacity type touch panel having on one surface of a transparent substrate, a plurality of columns of column electrodes extending in a first direction and a plurality of columns of column electrodes extending in a second direction intersecting the first direction,such column electrodes extending in the first direction and such column electrodes extending in the second direction being eclectically disconnected from each other by an electrically insulating layer provided at least in a part of each intersection region of the column electrodes, and at least one of the two intersecting column electrodes being electrically connected by a bridge wire provided in the intersection region.
A flexible projective capacitive touch sensor structure includes following elements. A roll of first flexible transparent substrate has sensing unit regions thereon, and each of the sensing unit regions includes at least two first transparent patterned electrodes and at least three second transparent patterned electrodes. Bridging wires respectively stride over the corresponding first transparent patterned electrodes and respectively and electrically bridge the second transparent patterned electrodes located at two sides of each of the first transparent patterned electrodes to form at least one conducting wire. Dielectric pads are disposed between the bridging wires and the first transparent patterned electrodes. First connection wires are connected to the first transparent patterned electrodes and have first electrical connection terminals. Each of the second connection wires is connected to one second transparent patterned electrode of one end of the at least one conducting wire and has one second electrical connection terminal.
A touch sensitive display assembly includes a touch screen and a button array. The touch screen is configured to display one or more input keys. The button array includes one or more buttons corresponding to the one or more input keys. The button array is formed by a substrate attached to a button membrane thereby creating a set of button cavities corresponding to the input keys. The button cavities are configured to be inflated and deflated by a pump coupled to a fluid reservoir. The cavities can be inflated/deflated together, in subsets, and/or individually. In some embodiments, the button array is sandwiched between a touch sensing layer and a display of the touch screen. In other embodiments, the button array can be located either above or below the touch screen.
A method for compensating time difference between images and electronic apparatus using the same method are provided. Input images are received by a plurality of image capturing units respectively. Each input image is checked to see whether a reference area and a reference area background are the same. When the reference area of the input image received from one of the image capturing units is not the same as the reference area background, a compensation image number is accumulated, and other input images are received continually until the reference area of each input image received from the image capturing unit is not the same as the reference area background. Afterwards, time difference between the input images received from a plurality of image capturing units is compensated according to the compensation image numbers.
A holding structure for a touch pane has a display panel for forming a display screen, a touch panel for allowing an input operation, a piezoelectric device for applying vibration to the touch panel in accordance with the operation of the touch panel, a casing for accommodating the display panel and the touch panel and a protective sheet having a size larger than the touch panel. The casing has an opening through which the touch panel is exposed. The protective sheet is applied to an entire front surface of the touch panel. The protective sheet has a non-bonded portion at a peripheral edge. The non-bonded portion is not bonded partly to at least one of a peripheral edge of the touch panel and a peripheral edge of the opening of the casing.
A position-detecting device detects a position pointed to by a position-pointing instrument and includes an operation panel detecting the position pointed to by the position-pointing instrument; and a manipulation-detecting unit located at at least one of the interior and the exterior of the operation panel, and detecting a manipulation by a second instrument other than the position-pointing instrument, or detecting a manipulation by both the position-pointing instrument and the second instrument.
Touchscreen user interfaces for controlling software applications, computers, devices, machinery, and process environments with at least finger flick touch gestures. Such user interfaces can be manipulated by users and provide a wide range of uses with computer applications, assistance to the disabled, and control of electronic devices, machines, and processes. Enhancements can include velocity and pressure sensing capabilities. The touchscreen can be realized with a transparent touch sensor array positioned over a visual display. Dynamically assigned labels can be provided by the visual display. Gestures other than finger flicks can be recognized. Multitouch capabilities can be included that are responsive to additional contact, for example by other parts of a user hand. Displayed visual content, including visual content selection, motion, and sizing, can be controlled by finger flicks and other touch gestures. Finger movement trajectories can be tracked, and pluralities of control parameters can be associated with each gesture.
A mouse with multi-configurable buttons is provided. The mouse with multi-configurable buttons comprises a housing, a cylinder module and a signal processing device. The housing has an opening, and the cylinder module is received in the housing and partially exposed through the opening. The cylinder module at least comprises a first click portion and the second click portion, and the signal processing device at least comprises a first switch and a second switch. When the first click portion is exposed through the opening, the first click portion is used for activating the first switch. In contrast, when the second portion is exposed through the opening, the second click portion is used for activating the first and the second switch. Therefore, the mouse with multi-configurable buttons provides at least two configuration status via rotating the rotating cylinder to satisfy different user demands.
A wireless wrist mouse, used with an apparatus including a display having a cursor, has a body mountable to a user's hand/wrist by wrist mounting structure. A motion sensor and motion circuitry are carried by the body and are operably connected to one another. The motion circuitry includes a library of command motions. The motion circuitry is constructed to generate first and second command signals corresponding to the first and second command motions when the body has been moved in predetermined manners for receipt by and operation of the apparatus. The first command signals correspond to cursor movement directions for controlling movement of the cursor over the display. The second command signals correspond to control functions for the apparatus. In some examples, the motion sensor comprises a MEMS sensor. In some examples, the motion sensor comprises a translational, rotational, and vibrational movement motion sensor.
In a method and module for modifying a pointer signal generated by a 3D point in device and corresponding to motion of the pointing device, an angular velocity generating unit generates an angular velocity of the 3D pointing device based on the pointer signal. A control unit generates a control signal based on the angular velocity generated by the angular velocity generating unit and predetermined angular velocity threshold information. An adjustable low-pass filter is operable within a gain range, and determines a target gain thereof based on the control signal from the control unit. The low-pass filter filters the pointer signal with the target gain determined thereby to generate a modified output corresponding to the pointer signal.
An information processing apparatus executes a variety of processing operations in accordance with a user's operation detected by an operation detection device. The apparatus generates a data set from a data group in accordance with a predetermined condition. The apparatus determines the content of processing corresponding to the motion detected by the operation detection device. The apparatus adjusts the data set by increasing or decreasing data included in the data set generated, based on the determined processing.
Disclosed are methods, computer-readable media and systems for locking an orientation of content on a display to prevent automatic and inadvertent orientation changes. An orientation lock module receives input from a user and presents a lock control for a pre-determined time. When locked, orientation of content on the display remains unchanged regardless of motion. When unlocked, orientation of content on the display may automatically change in response to detecting a motion.
Systems, methods, and computer-readable media, for utilizing device motions to manipulate a display screen feature. One or more motion data that indicate a motion of a device are referenced. Upon referencing motion data, manipulations to apply to a display screen feature are identified. Thereafter, the display screen feature is manipulated in accordance with the one or more manipulations identified.
White particles for display including at least one of a chain or cyclic polysilane compound having a polysilane structure represented by the following Formula (I) or a halogen-substituted compound thereof: wherein in Formula (I), A represents a phenyl group, B represents an alkyl group or a phenyl group, and n represents an integer of from 5 to 1000.
A displaying method used in a portable electronic device is provided. The portable electronic device includes a display panel having a backlight module. The displaying method includes the following steps: turning off the backlight module when a rotation event occurs; waiting for a time period; turning on the backlight module.
A circuit includes a first logic circuit section that outputs a signal that could be in an active voltage level depending on a transfer-signal input from a shift register throughout a display period and outputs a signal whose voltage is constant at the active voltage level throughout an off sequence period; an enable signal output section that outputs an enable signal that is pulsed during the display period; and a second logic circuit section that outputs a signal corresponding to a logical product of the output signal of the first logic circuit section and the enable signal. The enable signal output section keeps the voltage of the enable signal constant at the active voltage level throughout the off sequence period.
An organic light emitting display device includes a scan driver for supplying a first scan signal to a first scan line during a first period and a second period, a second scan signal to a second scan line during the second period, and a light emitting control signal to a light emitting control line during a period at least spanning the first and second periods. A data driver sequentially supplies data signals to an output line during the first period. A demultiplexer is electrically coupled to the output line, receives the data signals and supplies the data signals to data lines which are connected to pixels. Each pixel receives one of the data signals during the first period, compensates a threshold voltage of a driving transistor during the second period, and generates light with a brightness corresponding to the one of the data signals after the second period.
The invention provides an active matrix EL display device which can perform a clear multi-gray scale color display. In particular, the invention provides a large active matrix EL display device at low cost by a manufacturing method which can selectively form a pattern. Power supply lines in a pixel portion are arranged in matrix by the manufacturing method which can selectively form a pattern. Further, capacitance between wirings is reduced by providing a longer distance between adjacent wirings by the manufacturing method which can selectively form a pattern.
Systems and methods are disclosed for various inversion techniques for an LCD array, such as a staggered 2-line inversion, a staggered 1-line inversion, or a staggered N-line inversion. The staggered inversion may invert 2-lines, 1-line or N-lines of an array over the duration of a frame displayed on the array. Additional systems and methods may include a high impedance power reduction technique that may be applied alone or in combination with the various inversion techniques. Specifically, electrode drivers for “idle” lines of a staggered 1-line, 2-line, or N-line inversion may be switched to a high impedance state such that the corresponding drivers for the idle lines use reduced power during the inversion of the “active” lines.
A displaying method includes the following steps. First, display image frames and display a first color to clean images of a preceding image frame between the displaying of two image frames. Afterward, whenever a counting number of the image frames which have been displayed reaches a predetermined number, change to display one of the first color and a second color to clean images of the preceding image frame and then to display the other one of the first color and the second color to clean images of the preceding image frame between the displaying of two image frames for a while.
An EL display panel 10 including an EL substrate 11 and a CF 12 facing each other and resin 1221 filling space between the EL substrate 11 and the CF 12. A common bank 112 having a greater width than banks between first, second, and third areas in each portion of the CF 12 lies between two portions corresponding to a first pixel and an adjacent second pixel. A portion of a CF layer 113 formed with respect to an outermost area among areas of the first pixel that covers a top surface of a bank closest to the second pixel extends towards the second pixel and overlaps a portion of a CF layer formed with respect to an area adjacent to the first pixel among areas of the second pixel that covers a top surface of a bank closest to the first pixel.
A light emitting display including data lines for transmitting data voltages, scan lines for selecting select signals, and pixel circuits. The pixel circuit is coupled to a data line and a scan line. The pixel circuit includes a transistor including first, second, and third electrodes, wherein the third electrode outputs a current corresponding to a voltage between the first and second electrodes. A light emitting element coupled to the third electrode emits light corresponding to the current outputted by the third electrode. A first switch transmits a data voltage in response to a select signal from the scan line. A voltage compensator receives the data voltage transmitted by the first switch and a second power supply voltage and applies a compensated data voltage based on the data voltage, a first power supply voltage and the second power supply voltage to the first electrode of the transistor.
The invention provides an antenna arrangement for a wireless communication system arranged to have at least one transmit mode and at least one receive mode, the arrangement comprising at least three directional antennas in an antenna configuration. Each directional antenna is arranged to have an azimuthal radiation pattern shaped as a beam, each beam covering an angular sector, such that a combined radiation pattern of all beams in a first transmit mode is arranged to provide a full 360° omnidirectional coverage. By combining localization and polarization of the directional antennas an omnidirectional radiation pattern substantially without null-depths in the azimuthal plane can be created when the radiation pattern of the directional antennas are combined.
A dipole antenna for wide-band communications. Some embodiments relate to a multilayer planar high-gain antenna for ultra-wideband communications having a broadband dipole structure, a tuning plate and a feed arranged roughly parallel to one another and separated from one another with dielectric materials. In one embodiment, the antenna includes four conductive layers, a reflector, which is preferably rectangular, a broadband bowtie preferably of bowtie shape, a feed structure and a parasitic element or tuning patch.
A multi-frequency antenna comprising an IMD element, one or more active tuning elements and one or more parasitic elements. The IMD element is used in combination with the active tuning and parasitic elements for enabling a variable frequency at which the antenna operates, wherein, when excited, the parasitic elements may couple with the IMD element to change an operating characteristic of the IMD element.
A multi-angle ultra wide band antenna for electronic devices is disclosed. The said antenna cover all mobile bands worldwide: 700/850/900/1700/1800/1900 and 2100 MHz and with sufficient bandwidth to include the 2400 and 2500 MHz mainly used in wireless networks, having a radiated element supported by a first substrate and expanding into a spatial geometry for transmission and reception of radio signal. An antenna base has a plurality of first solder pads on a second substrate for physical attachment to a printed circuit board and a second solder pad electrically connected to a terminal of said antenna to radio circuitry feed point, with compatible surface mount technology. The first and second substrates are joined by a bending line as a single substrate, where the said first substrate is allowed to be bent relative to the plane of the said second substrate.
Methods and apparatus are provided for processing a set of GNSS signal data derived from observations of GNSS signals of multiple transmitters over multiple epochs, the GNSS signals having a first signal and a second signal in a first band which can be tracked as a single wide-band signal and each of which can be tracked separately, comprising: obtaining carrier-phase observations of the first signal, obtaining carrier-phase observations of the second signal, obtaining code observations of the wide-band signal, and estimating from a set of observables comprising the carrier-phase observations of the first signal, the carrier-phase observations of the second signal and the code observations of the wide-band signal values for a set of parameters comprising: position of a receiver of the GNSS signals, clock error of a receiver of the GNSS signals, and an array of ambiguities comprising an ambiguity for each transmitter from which carrier-phase observations of the first signal are obtained and an ambiguity for each transmitter from which carrier-phase observations of the second signal are obtained.
A method of processing data signals suitable for providing positioning information comprises sequentially recording blocks of data samples of a satellite broadcast from the beginning of a period of time of interest, and storing them in memory. When the memory is full, previously stored blocks of data samples are overwritten, such that the average quantity of sample data decreases, and wherein the memory content includes blocks of data samples covering substantially the full period of time of interest. This method enables blocks of data samples to be kept in memory for a full period of interest (for example a journey) but allows a limited memory capacity. The use of the memory is intelligent and dynamic.
A method for mitigating the effects of multipath errors in GNSS devices is provided. Signals from GNSS satellites are received. Image data from an image sensor is received. Orientation data from an orientation sensor is received. The orientation data describes the orientation of the image sensor. Obstruction data is determined based on the image data. The obstruction data includes an obstruction region that indicates the sky in that region is obstructed by a structure. Based on the orientation data, obstruction data, and GNSS satellite location data, the position of GNSS satellites with respect to the obstruction region is determined. The location of the GNSS device is determined based on signals from some of the GNSS satellites and the position of GNSS satellites with respect to the obstruction region.
Techniques for adaptive gain adjustment in a signal processing path to achieve greater dynamic range. In an exemplary embodiment, a digital gain is applied to a digital input signal based on a detected level of the digital input signal. A corresponding analog gain is applied to the output of a digital-to-analog converter for converting the digital input signal to an analog signal, the product of the digital gain and the analog gain being kept constant. In an exemplary embodiment, a zero cross detector is employed to update the digital and analog gains only in the vicinity of zero crossings detected in the signal. In a further exemplary embodiment, a peak detector is employed to instantaneously adjust the digital and analog gains to avoid clipping in the signal path.
A method includes accepting an analog input signal including a sequence of pulses of a given pulse shape. The analog input signal is distributed to multiple processing channels (40) operating in parallel. The analog input signal is sampled by performing, in each of the multiple processing channels, the operations of: mixing the analog input signal with a different, respective modulating waveform to produce a mixed signal; filtering the mixed signal; and digitizing the filtered mixed signal to produce a respective digital channel output.
An image processor includes a readout arranged to read out an M-bit image data word from an image sensor pixel array and an adder arranged to add a noise contribution to the image data word to obtain a dithered M-bit word. A dither processor is arranged to derive correction data having a word size of M+1 bits from a combination of a plurality of M-bit reference words. The noise contribution are derived from said correction data, wherein different correction data are derived for different groups of pixels, each different group of pixels is associated with a specific pixel value DC shift.
Disclosed is a shift register (200, 400) comprising an input (205), an output (230) and a plurality of register cells (210) serially connected between the input and the output, each register cell being connected to a neighboring cell via a node, wherein at least some of said nodes comprise a multiplexer (220) having an output coupled to the downstream register cell and a plurality of inputs, each of said plurality of inputs being coupled to a different upstream register cell such that different length sections of the shift register can be selectively bypassed, the shift register further comprising a set of parallel IO channels (230, 410) facilitating conversion between interleaved and de-interleaved data, each of said channels being coupled to a different one of said nodes, the number of parallel IO channels being smaller than the total number of register cells in the shift register.
Illustrative embodiments of force sensitive input devices and methods are disclosed. In at least one embodiment, a force sensitive input device may comprise a button movable along a first axis between a first end position and a second end position, the button including a reflective surface, a resilient component biasing the button toward the first end position, and a reflectance sensor configured to emit light that impinges upon the reflective surface and to measure an amount of the light that is reflected from the reflective surface, wherein the light travels generally parallel to the first axis.
The application provides an electronic device. The electronic device includes a main body and a cover. The main body has a sheet and the sheet includes a first key set and a second key set. The cover, slidably disposed on the main body between a first configuration and a second configuration, includes a first portion and a second portion connected thereto. The first key set is visible through the first portion and the second portion covers the second key set when the cover is in the first configuration, and the second key set is visible through the first portion and the second portion covers the first key set when the cover is in the second configuration.
A solar powered device and a method of operating such a device to allow it to receive and store information about its physical location, from which it can determine the minimum expected solar energy levels that will be available to it. Based on the minimum expected levels, the device then limits its configurable settings to preferably enable only those configurations having maximum energy demands that can be met or exceeded by the minimum expected energy levels.
An RFID tag and an RFID access card configured to reduce detuning effects from a typical RFID environment. The present invention provides an RFID tag that is specifically configured to reduce the detuning effects caused by initiating communication between an RFID tag and an RFID tag reader in the presence of materials such as metal, liquid, and the human body. In one embodiment, the present invention provides an RFID tag comprising an electronic circuit portion attached to a main antenna body portion, the main antenna body portion having two opposite side portions, which are substantially symmetrical with respect to one another, wherein each side portion extends outwardly to form a generally side-oriented v-shape.
An apparatus and method for bi-directional communication with an external transceiver; the apparatus comprising a transmitter for transmitting an engagement request message from a tag to said external transceiver when said tag is in a non-engaged mode and for transmitting a directed message from said tag to an engaged external transceiver when said tag is in an engaged mode; a processor for bi-directional communication and for changing said engaged mode of said tag to the non-engaged mode, following a lost connection with said engaged external transceiver; and a receiver for receiving a response for said engagement request message from said external transceiver and for receiving an acknowledgement message to said directed message from said engaged external transceiver.
A monitoring and alerting system for installation in an air traffic control facility. The alerting system monitors the outgoing transmissions from the control facility to secondary locations, the responsiveness of the control facility personnel to aircraft communications or both. The monitoring and alerting system utilizes multiple stages of alerts for the air traffic controllers. In a first stage, a light source is displayed within the control facility. In a second stage, an audible noise is sounded within the control facility. In a third stage, an audible noise of increased volume is sounded in or near the control facility, a notice is sent to command and control and/or an indication is sent to a Central Control Facility. The three stages of alerts are progressively activated if the personnel in the control facility fail to adequately utilize connected equipment monitored by the alerting system within predetermined time periods.
A vehicle brake monitoring system comprises a sensor assembly configured to detect, during vehicle braking, relative position of a longitudinal member contacting a brake pad carrier, and processing structure communicating with the sensor assembly. The processing structure processes output of the sensor assembly to determine brake status.
A computing device and an automobile controlling method stores identification information in an electronic tag of authorized communication devices and a memory of the computing device. The identification information of an electronic tag of a communication device is obtained and a door of an automobile is unlocked if the obtained identification information matches identification information stored in the memory.
A haptic conversion system is provided that intercepts frames of audio data, such as a digital audio signal, converts the frames into a haptic signal, and plays the created haptic signal through an actuator to produce haptic effects. The haptic signal is based on a maximum value of each audio data frame, which defines a magnitude of the haptic signal. The haptic signal is applied to the actuator configured to receive the haptic signal, where the actuator utilizes the haptic signal to generate the one or more haptic effects.
The alarming device of the present invention includes a battery power supply; a sensor section that outputs an anomaly detection signal in the case of detecting an anomaly; a alert section that outputs an anomaly alarm based on the anomaly detection signal; a reception circuit section that receives an event signal from another alarming device; a transmission circuit section that transmits an event signal to the other alarming device; an anomaly monitoring section that, when the sensor section has detected an anomaly, causes the alert section to output the anomaly alarm based on the anomaly detection signal and causes the transmission circuit section to transmit an event signal according to the anomaly of the alarming device to the other alarming device, and on the other hand, when the reception circuit section has received an event signal according to an anomaly of the other alarming device from the other alarming device, causes the alert section to output the anomaly alarm; and a communication control section that detects a predetermined event and performs communication control by adjusting the transmitting and receiving of an event signal by the transmission circuit section and the reception circuit section.
A method for controlling an external device and a signal transmitting and receiving apparatus thereof. The method for controlling an external device in a receiving apparatus that receives media signals from a transmitting apparatus connected through a wireless network, includes according to an embodiment: receiving information on the external devices connected to the transmitting apparatus from the transmitting apparatus; and displaying the external devices connected to the transmitting apparatus by using the received information.
A system and method selectively reads radio frequency identification (“RFID”) tags within an RFID interrogation zone. A portion of the RFID tags have a first operating range and a portion of the RFID tags have a second operating range that is different from the first operating range. Each RFID tag is programmed with an identifier associated with the operating range of the RFID tag. A first interrogation signal is transmitted which has sufficient power to activate RFID tags that are located within the RFID interrogation zone and have the first operating range. A response signal is received from each RFID tag capable of receiving the first interrogation signal. Each response signal indicates the identifier of the associated RFID tag. Each RFID tag that has an identifier associated with the first operating range is selected.
A system in one embodiment includes a plurality of Radio Frequency Identification (RFID) readers, each reader being capable of using a single antenna for both transmit and receive functions, wherein, during operation, one of the readers transmits and at least another of the readers receives a response to the transmission from an RFID device. A system in another embodiment includes a plurality of Radio Frequency Identification (RFID) readers, each reader having at least one antenna mounted on a housing thereof, wherein, during operation, the reader transmitting emits a signal sufficient to communicate with a battery assisted passive RFID device at a range of at least 20 meters. Additional systems and methods are also presented.
An inductor including a primary coil coaxially arranged and operated in parallel with isolated secondary coils each including at least one loop winding with two open-circuited ports. At least one phase shifting device is arranged between open-circuited ports of at least one secondary coil. A method to operate an inductor by combining primary and secondary coils with phase shifting devices to get a wide tuning range is also provided. The method includes the step of phase shifting open-circuited ports of at least one secondary coil.
The present invention relates to a lacquer composition, particularly an adhesive and corrosion-protective lacquer for rare earth magnets, on the basis of an epoxy resin mixture, a setting accelerator, a silane-based epoxy functional adhesion promoter and a solvent or a solvent mixture, wherein the lacquer composition includes 5 to 20 wt. %, with respect to the amount of solid resin in the base of the epoxy resin mixture, of a highly viscous epoxy resin based on bisphenol-A with an elastomer content of more than 30 wt. %.
A transmission line structure, a transmission line thermal manager and/or process thereof. A transmission line thermal manager may include a thermal member. A thermal member may be configured to form a thermal path, for example away from one or more inner conductors of a transmission line. A part of a thermal member may be formed of an electrically insulative and thermally conductive material. One or more inner conductors may be spaced apart from one or more outer conductors in a transmission line. A transmission line and/or a transmission line thermal manager may be configured to maximize a signal through a system, for example by modifying the geometry of one or more transmission line conductors and/or of a thermal manager.
A bulk acoustic wave resonator includes a substrate, a resonator section in which a piezoelectric film is sandwiched between a pair of electrodes, and a vibration region where the electrodes overlap when viewed in a film thickness direction is defined, an elastically deformable support section that connects the substrate and the resonator section, a membrane arranged between the resonator section and the substrate to face the vibration region of the resonator section and be fixed on the substrate with a space in between, and driver sections that are defined in the resonator section and the substrate adjacent to the vibration region and the membrane, and that move the resonator section toward and away from the substrate. The vibration region of the resonator section contacts the membrane when the driver sections move the resonator section close to the substrate.
Methods for transformer signal coupling and impedance matching for flip-chip circuit assemblies are presented. In one embodiment, a method for providing an inductive coupling between dies may include fabricating a first inductor on a first die using a passive process, fabricating a second inductor on a second die using a semiconductor process, and assembling each die so the first and second inductor are configured as a transformer. In another embodiment, a method for matching impedance in an RF circuit fabricated using flip-chip techniques may include passing an RF input signal through a first inductor formed using a passive process, inducing a time varying magnetic flux in proximity to a second inductor formed using an active process, and passing an RF signal induced by the time varying magnetic flux through the second inductor.
Aspects describe a wideband active quasi-circulator that has the advantages of small size, lightweight, and compatibility with monolithic microwave integrated circuit (MMIC) technology. An active quasi-circulator is provided that comprises both a power amplifier and a low noise amplifier. The active quasi-circulator can operate over a wide frequency range with isolation or substantial isolation between a power amplifier and a low noise amplifier that is tunable with isolation or substantial isolation at any frequency within the wide frequency range. The provided quasi-circulator is suitable for use in mobile units in multi-band radio frequency communication systems, as well as in other configurations.
An oscillator and a semiconductor integrated circuit device with an internal oscillator capable of compensating the temperature characteristics even when there is a large parasitic capacitance too large to ignore directly between the output terminals of the oscillator. In an oscillator containing an inductance element L, and a capacitive element C, and an amplifier each coupled in parallel across a first and second terminal, the amplifier amplifies the resonance generated by the inductance element and capacitive element and issues an output from the first terminal and the second terminal, and in which a first resistance element with a larger resistance value than the parasitic resistance of the inductance element between the first terminal and the second terminal, is coupled in serial with the capacitive element between the first terminal and the second terminal.
An object is to provide a PLL having a wide operating range. Another object is to provide a semiconductor device or a wireless tag which has a wide operating range in a communication distance or temperature by incorporating such a PLL. The semiconductor device or the wireless tag includes a first divider circuit; a second divider circuit; a phase comparator circuit to which an output of the first divider circuit and an output of the second divider circuit are provided; a loop filter to which an output of the phase comparator circuit is supplied and in which a time constant is switched in accordance with an inputted signal; and a voltage controlled oscillator circuit to which an output of the loop filter is supplied and which supplies an output to the second divider circuit.
Apparatus and methods for biasing a power amplifier are disclosed. In one embodiment, a method of biasing a power amplifier includes shaping an enable signal using a time-dependent signal generator to generate a control current, amplifying the control current using a current amplifier to generate a correction current, and generating a bias current for a power amplifier using a primary biasing circuit. The primary biasing circuit is configured to use the correction current to correct for a variation in gain of the power amplifier when the power amplifier is enabled.
An opto-isolated amplifier and method are disclosed. The amplifier includes an input node configured to receive an input to be amplified. A pair of opto-isolators are coupled between an input node and an output node. The opto-isolators are configured to create gain between the input node and the output node. An amplification stage is coupled to the opto-isolators. The amplification stage includes an input coupled to the output node and an output configured to generate an amplified output. The opto-isolator outputs may be configured to generate a difference current. The input of the amplification stage may have a high impedance compared to an impedance at the output node, the difference current being directed at the high input impedance input of the amplification stage to generate a gained voltage.
An anti-fuse circuit includes: a rupture unit including an anti-fuse programmed in response to an input rupture signal during a program mode, and configured to generate an output rupture signal corresponding to a state of the anti-fuse to output the generated output rupture signal to a transmission node, a voltage clamp unit configured to generate a clamp voltage proportional to an external voltage level to generate the clamp voltage having a constant voltage level when the external voltage level rises to a predetermined level or more, and a fuse signal generation unit configured to reset the transmission node to the clamp voltage at the initial stage of the program mode to generate a fuse signal in response to the voltage level of the transmission node during an output mode.
According to one embodiment, a resonant gate driver comprises a resonant path configured to couple a gate of a power transistor to a supply capacitor, and a low impedance path configured to couple the gate of the power transistor to a voltage rail. The resonant gate driver selectively utilizes the resonant path during charging and discharging of the gate, and selectively utilizes the low impedance path to couple the gate to the voltage rail when the gate is neither charging nor discharging. A method for use by the resonant gate driver for driving the power transistor comprises charging and discharging the gate of the power transistor by selectively coupling the gate to a supply capacitor through a resonant path, and utilizing a low impedance path to selectively couple the gate to a voltage rail when the gate is neither charging nor discharging.
An integrated circuit 2 includes a transistor 26 which has a normal switching speed arising during normal operations of that transistor that apply electrical signals within normal ranges. If it is desired to change the speed of operation of the transistor, then speed tuning circuitry 12 applies a tuning electrical signal with a tuning characteristic outside of the normal range of characteristics to the transistor concerned. The tuning electrical signal induces a change in at least one of the physical properties of that transistor such that when it resumes its modified normal operations the switching speed of that transistor will have changed. The tuning electrical signal may be a voltage (or current) outside of the normal range of voltages applied to the gate of a transistor so as to induce a permanent increase in the threshold of that transistor and so slow its speed of switching. Temperature of a transistor may also be controlled to induce a permanent change in performance/speed.
The invention provides a flip-flop. In one embodiment, the flip-flop receives a low swing clock signal, and comprises a first NMOS transistor, a first latch circuit, a second NMOS transistor, and a second latch circuit. The low swing clock signal is inverted to obtain an inverted low swing clock signal. The first NMOS transistor is coupled between a receiving node and a first node, and has a gate coupled to the inverted low swing clock signal. The first latch circuit is coupled between the first node and a second node. The second NMOS transistor is coupled between the second node and a third node. The second latch circuit is coupled between the third node and a fourth node, and generates an output signal on the fourth node.
A capacitive load drive circuit may comprise a high current drive amplifier configured to be coupled to a capacitive load during a high current ramp up of the voltage across the capacitive load to a cut off voltage; a low current drive amplifier configured to be connected to the capacitive load during a low current ramp up of the voltage across the capacitive load, from the cut off voltage to a maximum voltage across the capacitive load; and the high current drive amplifier configured to be connected to the capacitive load during a high current ramp down of the voltage across the capacitive load. The low current drive amplifier may be connected to the capacitive load during a period of steady state of the voltage across the capacitive load, intermediate the low current ramp up and the high current ramp down.
A system and method are provided for transmission of data bits across a data bus. To reduce power usage, noise, or some combination of the two, the data bus utilizes differential transmission using a three level signal in which a reference signal signifies no difference between input bits. Before the signals are transmitted an analysis is made to choose which one of a set of predetermined polarity reversal combinations is advantageous to encode the data bits. The data bits are so encoded and a formatting value F associated with the chosen polarity reversal is differentially transmitted with the encoded bits over the data bus. The three level differential signal is received at the far end of the bus, the encoded bits are recovered and decoded with use of F. The system and method achieves up to N bits transmitted per N data lines.
A semiconductor integrated circuit capable of reducing unnecessary current consumption includes a plurality of bus drive circuits for receiving data input, a common bus coupled to the bus drive circuits, and a bus holder coupled to the common bus. One of the bus drive circuits is selected as the selected bus drive circuit. When a logical value corresponding to the data input to be output is the same as a logical value that has been held by the bus holder and output to the common bus, the selected bus drive circuit stops outputting the logical value corresponding to the data input to the common bus. With this configuration, it is possible to eliminate the unnecessary output of the selected bus drive circuit, and to reduce unnecessary current consumption compared to the conventional semiconductor integrated circuit.
Embodiments disclosed herein are directed to compliant probe structures for making temporary or permanent contact with electronic circuits and the like. In particular, embodiments are directed to various designs of cantilever-like probe structures. Some embodiments are directed to methods for fabricating such cantilever structures. In some embodiments, methods are used to form probe structures from a plurality of planar multi-material layers wherein the probe structures include a contact tip and a compliant body with the compliant body formed from at least one material that is different from the tip material and wherein compliant body provides for elastic compression of the probe in a plane of primary motion during use and wherein during formation a stacking direction of the plurality of layers is perpendicular to the plane of primary motion.
A method for instantaneously determining rates of distortion on variable frequency signals, and an associated device, in which a harmonic distortion rate is calculated across the shortest possible temporal window, corresponding to the duration of a period of a given signal's fundamental. Hence, the aim being to precisely determine the signal frequency value, whose HDR is to be calculated, an iteration of certain measurements, achieved at the time of a given calculation, is embodied in order to calculate the HDR on subsequent signals.
A main microcomputer abnormality determination section checks whether or not a voltage value of Vcc based on digital data output from a main microcomputer analog-to-digital converter is equal to or higher than a threshold value to thereby perform abnormality determination for the main microcomputer analog-to-digital converter and Vref. A sub microcomputer abnormality determination section checks whether or not the voltage value of Vcc is equal to or higher than a threshold value based on digital data output from a sub microcomputer analog-to-digital converter to thereby perform abnormality determination for the sub microcomputer analog-to-digital converter and Vref. An abnormality identifying section identifies an abnormality occurring site by using both results of the abnormality determination performed by the main microcomputer abnormality determination section and the sub microcomputer abnormality determination section.
A real-time calibration system and method for a mobile device having an onboard magnetometer uses an estimator to estimate magnetometer calibration parameters and a magnetic field external to the mobile device (e.g., the earth magnetic field). The calibration parameters can be used to calibrate uncalibrated magnetometer readings output from the onboard magnetometer. The external magnetic field can be modeled as a weighted combination of a past estimate of the external magnetic field and the asymptotic mean of that magnetic field, perturbed by a random noise (e.g., Gaussian random noise). The weight can be adjusted based on a measure of the statistical uncertainty of the estimated calibration parameters and the estimated external magnetic field. The asymptotic mean of the external magnetic field can be modeled as a time average of the estimated external magnetic field. are within the scope of the following claims.
A circuit comprises a first amplifier and a second amplifier. The first amplifier is configured to amplify a first voltage difference between a first voltage and a second voltage, and to generate a third voltage. The second amplifier is configured to amplify a second voltage difference between the third voltage and an input voltage, and to generate an output voltage. The first voltage is a voltage at a first terminal of a first transistor. The second voltage is a voltage at a second terminal of a second transistor. A first gate of the first transistor is adapted to receive the third voltage. A second gate of the second transistor is adapted to receive the input voltage. Threshold voltage values of the first transistor and the second transistor differ.
In various embodiments a circuit is provided including: an input terminal to receive an input voltage; a switch, a first controlled input of which being coupled to the input terminal; an inductor, a first terminal of which may be coupled in series to a second controlled input of the switch; a freewheeling diode, wherein a first diode terminal may be coupled with the second controlled input of the switch and with the first terminal of the inductor, and wherein a second diode terminal may be coupled with a reference potential; a capacitor coupled with a second terminal of the inductor; and a controller configured to operate the switch and the inductor in continuous current mode to charge the capacitor.
A multiplier multiplies a current signal of an Iy generator and a voltage signal from a Vx generator corresponding to a divided voltage value of an output voltage of a full-wave rectifier. The result of the multiplication is output as a current reference signal to the non-inversion input terminal of a current error amplifier. A current peak waveform generator circuit generates an envelope waveform of peak values of an inductor current. An Iz generator, when the envelope waveform exceeds a first threshold value smaller than a third threshold value set in an overcurrent protection circuit, curbs the inductor current by adjusting the size of a current signal output to the multiplier, and reducing the current reference signal.
Methods and apparatus are provided for electrically isolating an ambulatory medical device for infusing treatment materials into a patient when the medical device is connected to a peripheral device via an active communication cable. In one embodiment, the ambulatory medical device includes first circuitry controlling infusion of a medicament to the patient by a fluid conduit connectable to the patient and second circuitry controlling communications when an active communication cable is connected to the medical device. The first and second circuitry are electrically isolated using a pair of first and second isolation transceivers, where the first pair of isolation transceivers communicate a control signal and the second pair of isolation transceivers are giant magneto-resistive (GMR) transceivers that communicate at least one data signal.
Disclosed are a charging apparatus and a charging method for a battery of an electric vehicle. The charging apparatus for a battery of an electric vehicle includes: a communication module that communicates power information and information on a battery of the electric vehicle; a charging mode setting module that receives a user's order; a charging switch that connects the battery of the electric vehicle with the charging power in accordance with an input control signal; and a charging control module that sets the charging amount of the battery by using the power information and the information on the battery, sets charging information including charging power and at least one time period for charging the battery of the electric vehicle within a predetermined time range, and input the control signal to the charging switch on the basis of the charging information.
A portable charging device includes a case, a power generation module, a storage module, and different types of charging connectors. The power generation module is received in the case, and configured for generating an induced current. The storage module is electrically connected with the power generation module, and configured for storing the induced current generated by the power generation module. The charging connectors are connected to the storage module and protrude from the case for electrically connecting to and charging different types of electronic devices.
A motor control apparatus includes a power converter, a speed controller, and a stop position controller. The power converter outputs a current to drive a motor based on a torque command. The speed controller generates the torque command based on an error between a speed command of the motor and a speed of the motor. The stop position controller calculates an acceleration command to output a predetermined torque after detection of a reference position per revolution of a position detector for a first time during speed control of the motor, generates a torque feed-forward command based on the acceleration command, generates a position command based on the acceleration command, and generates the speed command based on an error between the position command and the motor position to execute position control of the motor.
A variable speed trigger mechanism that allows a user to reverse a direction of a motor and supply variable amounts of power to the motor using a single trigger mechanism. In a first motion, the user can actuate the reversing module to change the direction of the motor coupled to the trigger mechanism. In a second motion, the user can actuate the same trigger and apply variable amounts of power to the motor.
An LED drive circuit for driving an LED includes a reactor L1, a switch element, a current detection resistor R1 to detect a current of the switch element, a constant current circuit 2 that generates a first control signal to control a current of the switch element to be constant, a disconnection detection circuit 4a that generates a second control signal to keep the switch element OFF if determining that a current equal to or over a predetermined value passes through the switch element when a predetermined time elapses after the timing at which the switch element changes its state from ON to OFF, and a driver of the switch element that drives the switch element and keeps the switch element OFF in case of a disconnection according to the second control signal in priority to the first control signal.
The invention discloses an illumination controlling circuit coupled between a household electricity input and an illumination lamp. The illumination controlling circuit includes a dimmer module, a sampling-and-holding circuit, a differential circuit, an integrator circuit and a clamping circuit. The dimmer circuit is used for generating a dimming signal which includes a plurality of waveform pulses. The sampling-and-holding circuit samples from the dimming signal, so as to obtain an average waveform pulse. The differential circuit is used for extracting a voltage difference of the average waveform pulse. The integrator circuit performs integration on the average waveform pulse according to the voltage difference, so as to generate a direct current voltage signal. When a level of the direct current voltage signal exceeds a threshold voltage level of the clamping circuit, the direct current voltage signal is used for driving the illumination lamp.
Data may be encoded onto a direct current power line by modulating the current on that direct current power line. One method of modulating the current is by placing an inductor on the power line and then using a controlled transistor that turns on and turns off. The inductor will ensure that current keeps flowing but the transistor will induce changes in the current pattern. The excess current from when transistor is turned off must be diverted. Furthermore, to create symmetrical current changes, the inductor should be reverse biased. Thus, a circuit is created that sinks the excess current from when the transistor is turned off and used to reverse bias the inductor.
The embodiments disclosed herein describe the dynamic control of a switching power converter between different operation modes of the switching power converter. In one embodiment, the operation modes of the switching power converter include a switching mode and a linear mode. The switching power converter may be included in a LED lamp system according to one embodiment.
Disclosed is an improved light-emitting device for an AC power operation. A conventional light emitting device employs an AC light-emitting diode having arrays of light emitting cells connected in reverse parallel. The arrays in the prior art alternately repeat on/off in response to a phase change of an AC power source, resulting in short light emission time during a ½ cycle and the occurrence of a flicker effect. An AC light-emitting device according to the present invention employs a variety of means by which light emission time is prolonged during a ½ cycle in response to a phase change of an AC power source and a flicker effect can be reduced. For example, the means may be switching blocks respectively connected to nodes between the light emitting cells, switching blocks connected to a plurality of arrays, or a delay phosphor. Further, there is provided an AC light-emitting device, wherein a plurality of arrays having the different numbers of light emitting cells are employed to increase light emission time and to reduce a flicker effect.
A non-isolated AC/DC converter having power factor correction, comprising an active switch connected to a waveform controller for control, and sequentially showing conduction, cut off, making the alternating current power supply pass through one circuit rectifier for rectifying and forming one positive half sine wave electricity supply, which passes through a voltage step-down circuit to proceed with decreasing the voltage, then passing through a filter/storage circuit for filtering and forming direct current power supply, which is stored on this filter/storage circuit, then releasing the energy and supplying electricity to the electricity end; as a transformer isn't required, the circuit volume can be reduced, lowering costs, raising circuit conversion rates and achieving power factor correction and increasing the lifespan of the transformer, moreover, through the waveform controller controlling the output waveform, the storage circuit utilizes a lower capacity capacitor to avoid using an electrolytic capacitor, thereby increasing the circuits lifespan.
A sound adapting luminaire produces an amount of cooling output that depends on the ambient sound. When the ambient sound is high, the lamp is cooled more aggressively, since more fan noise is acceptable.
A thermionic emission device includes an insulating substrate, a patterned carbon nanotube film structure, a positive electrode and a negative electrode. The insulating substrate includes a surface. The surface includes an edge. The patterned carbon nanotube film structure is partially arranged on the surface of the insulating substrate. The patterned carbon nanotube film structure includes two strip-shaped arms joined at one end to form a tip portion protruded from the edge of the surface of the insulating substrate and suspended. The patterned carbon nanotube film structure includes a number of carbon nanotubes parallel to the surface of the insulating substrate. The patterned carbon nanotube film structure is connected between the positive electrode and the negative electrode in series.
A light-emitting device having the quality of an image high in homogeneity is provided. A printed wiring board (second substrate) (107) is provided facing a substrate (first substrate) (101) that has a luminous element (102) formed thereon. A PWB side wiring (second group of wirings) (110) on the printed wiring board (107) is electrically connected to element side wirings (first group of wirings) (103, 104) by anisotropic conductive films (105a, 105b). At this point, because a low resistant copper foil is used to form the PWB side wiring (110), a voltage-drop of the element side wirings (103, 104) and a delay of a signal can be reduced. Accordingly, the homogeneity of the quality of an image is improved, and the operating speed of a driver circuit portion is enhanced.
In an electron gun for use in a TWT, klystron, linear accelerator or other electron device, an electron gun header assembly and an input body assembly are coupled using a flexible bellows that allows the distance between the cathode and anode to be varied. As such, the perveance of the electron gun can be tuned, and the cathode magnetic field optimized for efficient operation. In addition, an external magnetic shield is adapted to be translated along the axial dimension of the electron gun to further optimize the cathode magnetic field and focusing characteristics to achieve improved electron gun performance.
In a vehicle AC generator, a stator core (42) is formed by laminating thin steel sheets, the stator core (42) being provided with a plurality of slot portions (43) which accommodate a stator winding (41) and tooth portions (44) which define adjacent ones of the slot portions; the stator winding (41) is disposed in the slot portions to constitute a stator (4); the stator core (42) is filled with varnish (45) between laminates of each tooth (44) at least in an inner diameter end surface region which faces the rotor (3) and is coated with epoxy resin varnish (46) on the tooth surface of the inner diameter end surface region to form an anti-rust film.
In some embodiments, an electromagnetic machine includes a rotor element configured for movement relative to a stator. The rotor element includes a support member, a backing member, and a magnetic pole assembly. The support member includes a first coupling portion. The backing member is formed, at least in part, from a ferromagnetic material and the magnetic pole assembly is configured to be coupled to the backing member. The magnetic pole assembly and/or the backing member include a second coupling portion configured to removably couple the backing member and the magnetic pole assembly collectively to the first coupling portion of the support member.
An electric machine a cylindrical stator core having an outer perimeter surface and an inner perimeter surface with a plurality of slots formed between the inner perimeter surface and the outer perimeter surface. The inner perimeter surface defines an inner cylindrical space for the stator that extends in an axial direction within the stator. The stator core is configured to retain a winding arrangement comprised of a plurality of conductor segments positioned in the plurality of slots of the stator core. The winding arrangement further includes a jumper extending into the inner cylindrical space and connecting two of the plurality of conductor segments. Accordingly, the jumper appears as a chord of a circular end shape of the stator core.
A substrate transport apparatus including a drive section and a first movable arm assembly. The drive section includes a first motor. The first motor includes a stator and a passive rotor. The first movable arm assembly is connected to the first motor. The substrate transport apparatus is configured for the first movable arm assembly to be positionable in a vacuum chamber with the passive rotor being in communication with an environment inside the vacuum chamber.
A circuit for generating a direct current voltage includes a three-axis antenna set, a first capacitor, a limiting direct current voltage generator, a second capacitor, and a low dropout regulator. The three-axis antenna set receives a signal transmitted by a reader. The first capacitor generates a first direct current voltage according to an X-axis component, a Y-axis component, and a Z-axis component of the signal. The limiting direct current voltage generator limits and converts the X-axis component, the Y-axis component, and the Z-axis component to generate an X-axis direct current voltage, a Y-axis direct current voltage, and a Z-axis direct current voltage. The second capacitor generates a second direct current voltage according to the X-axis direct current voltage, the Y-axis direct current voltage, and the Z-axis direct current voltage. The low dropout regulator generates a direct current output voltage according to the second direct current voltage.
A power supply device that switches one of a first power supply, a second power supply, and a third power supply, all of which supply power to an auxiliary device, to a transfer gate in a CMOS image sensor having a photodiode and outputs the corresponding power to the transfer gate is disclosed. The device includes: a first transistor driven by the second power supply and outputting power of the second power supply to the transfer gate; a second transistor driven by the second power supply and outputting power of the first power supply to the transfer gate; a third transistor driven by the third power supply and outputting power of the third power supply to the transfer gate; and a fourth transistor located before the second transistor, driven by the first power supply, and outputting power of the first power supply to a source of the second transistor.
It is an object to provide a circuit for equalizing voltages of energy storage cells, with less number of element and simpler circuit configuration than ever before.A plurality of field-effect transistors are arranged such that each of a plurality of parallel circuits formed, in one of connection states attained by switching of the switches, by connecting in parallel energy storage cells to perform mutual charging and discharging, includes a field-effect transistor adapted to avoid blocking a current having one of opposite polarities in the each of the plurality of parallel circuits, and a field-effect transistor adapted to avoid blocking a current having the other polarity in the each of the plurality of parallel circuits. This makes it possible to perform a voltage equalization operation using a small number of transistors.
A three phase inverter-type generator includes an engine, an AC generator driven by the engine, a rectifier for converting the output of the AC generator into a DC voltage, a three phase inverter for converting the output of the rectifier into a three phase AC voltage, a three phase transformer connected to the output side of the three phase inverter, and a filter, whereby the three phase transformer has a primary-side connection and a secondary-side connection having a three phase connection, the secondary-side connection having first through third windings forming a star connection in which one end of each is respectively connected to a neutral point, with each having the same number of windings and a mutual phase difference of 120°.
A semiconductor device package having direct write interconnections and method of manufacturing thereof is disclosed. A device package is formed by providing a substrate structure, attaching at least one device to the substrate structure that each include a substrate and one or more connection pads formed on the substrate, depositing a dielectric layer over the at least one device and onto the substrate structure by way of a direct write application, the dielectric layer including vias formed therethrough, and forming an interconnect structure on the dielectric layer that is electrically coupled to the connection pads of the at least one device, the interconnect structure extending through the vias in the dielectric layer so as to be connected to the connection pads.
A DBA-based power device includes a DBA (Direct Bonded Aluminum) substrate. An amount of silver nanoparticle paste of a desired shape and size is deposited (for example by micro-jet deposition) onto a metal plate of the DBA. The paste is then sintered, thereby forming a sintered silver feature that is in electrical contact with an aluminum plate of the DBA. The DBA is bonded (for example, is ultrasonically welded) to a lead of a leadframe. Silver is deposited onto the wafer back side and the wafer is singulated into dice. In a solderless silver-to-silver die attach process, the silvered back side of a die is pressed down onto the sintered silver feature on the top side of the DBA. At an appropriate temperature and pressure, the silver of the die fuses to the sintered silver of the DBA. After wirebonding, encapsulation and lead trimming, the DBA-based power device is completed.
An integrated circuit includes a gate of a transistor disposed over a substrate. A connecting line is disposed over the substrate. The connecting line is coupled with an active area of the transistor. A level difference between a top surface of the connecting line and a top surface of the gate is about 400 Å or less. A via structure is coupled with the gate and the connecting line. A metallic line structure is coupled with the via structure.
An integrated circuit system having an interposer and an integrated circuit with first and second bond pads, the integrated circuit die bonded to the interposer using the first bond pads. The integrated circuit having circuit blocks, that operate at different operating voltages and voltage regulator modules die bonded to the second bond pads of the integrated circuit. The voltage regulator modules converting a power supply voltage to the operating voltage of a respective circuit block and supply the respective operating voltage to the circuit block via the second bond pads.
A semiconductor device that can prevent reduction in the amplitude of electromagnetic waves transmitted from a reader/writer, and can prevent heating of an element forming layer due to a change in a magnetic field. The semiconductor device of the invention has an element forming layer formed over a substrate, and an antenna connected to the element forming layer. The element forming layer has at least wires such as a power supply wire and a ground wire that are arranged in a non-circular shape. The element forming layer and the antenna may be provided so as to overlap each other at least partially. The antenna may be provided above or below the element forming layer.
An eFuse structure having a first metal layer serving as a fuse with a gate including an undoped polysilicon (poly), a second metal layer and a high-K dielectric layer all formed on a silicon substrate with a Shallow Trench Isolation formation, and a process of fabricating same are provided. The eFuse structure enables use of low amounts of current to blow a fuse thus allowing the use of a smaller MOSFET.
A semiconductor device includes a layer of semiconductor material having an active transistor region defined therein, an isolation trench formed in the semiconductor material adjacent the active transistor region, and a trench liner lining the isolation trench, wherein the trench liner is formed from a material that substantially inhibits formation of high-k material thereon, and wherein the isolation trench and the trench liner together form a lined trench. The device has an insulating material in the lined trench, and high-k gate material overlying at least a portion of the insulating material and overlying at least a portion of the active transistor region, such that the trench liner divides and separates the high-k gate material overlying the at least a portion of the insulating material from the high-k gate material overlying the at least a portion of the active transistor region.
An optical article and method of making the same are provided. The optical article has optical multi-aperture operation. The optical article has one or more electrically conductive and selectively passivated patterns.
A backside illumination (BSI) image sensor pixel that includes microlenses with elevated refractive indices is provided. The image sensor pixel may include a photodiode formed in a silicon substrate, a first microlens formed in a back surface of the substrate, a second microlens formed over a front surface of the substrate, a dielectric stack formed on the front surface of the substrate, and a reflective structure formed in the dielectric stack above the second microlens. The first microlens may be fabricated by forming shallow trench isolation structures in the back surface. The second microlens may be fabricated by depositing polysilicon on the front substrate of the substrate. The first microlens may serve to concentrate light towards the photodiode, whereas the second microlens may serve to collimate light that traverses through the substrate so that light exiting the second microlens will reflect off the reflective structure and back into the photodiode.
According to one embodiment, a magnetic random access memory includes a plurality of magnetoresistance elements. The plurality of magnetoresistance elements each include a recording layer having magnetic anisotropy perpendicular to a film surface, and a variable magnetization direction, a reference layer having magnetic anisotropy perpendicular to a film surface, and an invariable magnetization direction, and a first nonmagnetic layer formed between the recording layer and the reference layer. The recording layer is physically separated for each of the plurality of magnetoresistance elements. The reference layer and the first nonmagnetic layer continuously extend over the plurality of magnetoresistance elements.
A MEMS coupler and a method to form a MEMS structure having such a coupler are described. In an embodiment, a MEMS structure comprises a member and a substrate. A coupler extends through a portion of the member and connects the member with the substrate. The member is comprised of a first material and the coupler is comprised of a second material. In one embodiment, the first and second materials are substantially the same. In one embodiment, the second material is conductive and is different than the first material. In another embodiment, a method for fabricating a MEMS structure comprises first forming a member above a substrate. A coupler comprised of a conductive material is then formed to connect the member with the substrate.
A method for fabricating recessed source and recessed drain regions of aggressively scaled CMOS devices. In this method a processing sequence of plasma etch, deposition, followed by plasma etch is used to controllably form recessed regions of the source and the drain in the channel of a thin body, much less than 40 nm, device to enable subsequent epitaxial growth of SiGe, SiC, or other materials, and a consequent increase in the device and ring oscillator performance. A Field Effect Transistor device is also provided, which includes: a buried oxide layer; a silicon layer above the buried oxide layer; an isotropically recessed source region; an isotropically recessed drain region; and a gate stack which includes a gate dielectric, a conductive material, and a spacer.
Disclosed are an LDMOS device and a method for manufacturing the same capable of decreasing the concentration of a drift region between a source finger tip and a drain, thereby increasing a breakdown voltage. An LDMOS device includes a gate which is formed on a substrate, a source and a drain which are separately arranged on both sides of the substrate with the gate interposed therebetween, a field oxide film which is formed to have a step between the gate and the drain, a drift region which is formed of first condition type impurity ions between the gate and the drain on the substrate, and at least one internal field ring which is formed inside the drift region and formed by selectively ion-implanting second conduction type impurity ions in accordance with the step of the field oxide film.
A semiconductor device includes at least one source region and at least one drain region. A plurality of fins extend between a source region and a drain region, wherein at least one fin has a different width than another fin. At least one gate is provided to control current flow through such fins. Fin spacing may be varied in addition to, or alternative to utilizing different fin widths.
A method includes providing a semiconductor substrate having a gate trench and depositing a metal layer, using a physical vapor deposition (PVD) process, over the substrate to partially fill the trench. The metal layer includes a bottom portion and a sidewall portion that is thinner than the bottom portion. The method also includes forming a coating layer on the metal layer, etching back the coating layer such that a portion of the coating layer protects a portion of the metal layer within the trench, and removing the unprotected portion of the metal layer. A different aspect involves a semiconductor device that includes a gate that includes a trench having a top surface, and a metal layer formed over the trench, wherein the metal layer includes a sidewall portion and a bottom portion, and wherein the sidewall portion is thinner than the bottom portion.
A semiconductor device and a method for forming the semiconductor device wherein the semiconductor comprises: a trench MOSFET, formed on a semiconductor initial layer, comprising a well region, wherein the semiconductor initial layer has a first conductivity type and wherein the well region has a second conductivity type; an integrated Schottky diode next to the trench MOSFET, comprising a anode metal layer contacted to the semiconductor initial layer; a trench isolation structure, coupled between the trench MOSFET and integrated Schottky diode, configured to resist part of lateral diffusion from the well region; wherein the well region comprises an overgrowth part which laterally diffuses under the trench isolation structure and extends out of it.
A memory device includes a planar substrate, a plurality of horizontal conductive planes above the planar substrate, and a plurality of horizontal insulating layers interleaved with the plurality of horizontal conductive planes. An array of vertical conductive columns, perpendicular to the pluralities of conductive planes and insulating layers, passes through apertures in the pluralities of conductive planes and insulating layers. The memory device includes a plurality of programmable memory elements, each of which couples one of the horizontal conductive planes to a respective vertical conductive column.
A prompt-shift device having reduced programming time in the sub-millisecond range is provided. The prompt-shift device includes an altered extension region located within said semiconductor substrate and on at least one side of the patterned gate region, and an altered halo region located within the semiconductor substrate and on at least one side of the patterned gate region. The altered extension region has an extension ion dopant concentration of less than about 1E20 atoms/cm3, and the altered extension region has a halo ion dopant concentration of greater than about 5E18 atoms/cm3. The altered halo region is in direct contact with the altered extension region.
A graded SiGe sacrificial layer is epitaxially grown overlying a silicon substrate. A single crystal silicon layer is then grown by an epitaxial process overlying the graded SiGe layer. A SiGe layer is next grown by an epitaxial process as a single crystal layer overlying the silicon layer. A subsequent silicon layer, which becomes the active silicon layer for the transistors, is epitaxially grown overlying the second silicon germanium layer. Together the epitaxially grown Si, SiGe and Si layers form a laminate semiconductor structure. A MOS transistor is then formed on the active area of the single crystal silicon. The graded SiGe sacrificial layer is removed by an etch process to electrically isolate the laminate semiconductor structure from the substrate.
A diode region and an IGBT region are formed in a semiconductor layer of a semiconductor device. A lifetime controlled region is formed in the semiconductor layer. In a plan view, the lifetime controlled region has a first lifetime controlled region located in the diode region and a second lifetime controlled region located in a part of the IGBT region. The second lifetime controlled region extends from a boundary of the diode region and the IGBT region toward the IGBT region. In the plan view, a tip of the second lifetime controlled region is located in a forming area of the body region in the IGBT region.
In a semiconductor device, an IGBT cell includes a trench passing through a base layer of a semiconductor substrate to a drift layer of the semiconductor substrate, a gate insulating film on an inner surface of the trench, a gate electrode on the gate insulating film, a first conductivity-type emitter region in a surface portion of the base layer, and a second conductivity-type first contact region in the surface portion of the base layer. The IGBT cell further includes a first conductivity-type floating layer disposed within the base layer to separate the base layer into a first portion including the emitter region and the first contact region and a second portion adjacent to the drift layer, and an interlayer insulating film disposed to cover an end of the gate electrode. A diode cell includes a second conductivity-type second contact region in the surface portion of the base layer.
A diode is defined on a die. The diode includes a substrate of P conductivity having an upper surface and a lower surface, the substrate having first and second ends corresponding to first and second edges of the die. An anode contacts the lower surface of the substrate. A layer of N conductivity is provided on the upper surface of the substrate, the layer having an upper surface and a lower surface. A doped region of N conductivity is formed at an upper portion of the layer. A cathode contacts the doped region. A passivation layer is provided on the upper surface of the layer and proximate to the cathode.
The present application provides an optoelectronic semiconductor device, comprising: a substrate; an optoelectronic system on the substrate; a barrier layer on the optoelectronic system, wherein the barrier layer thickness is not smaller than 10 angstroms; and an electrode on the barrier layer.
A semiconductor light-emitting device includes a light emitting structure on a substrate. The light emitting structure includes a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer. A plurality of transparent layers is disposed on the light emitting structure. A metal layer is disposed between the plurality of transparent layers. An electrode is electrically connected to the metal layer and contacts a portion of the metal layer.
The present disclosure provides an illuminating system including a light emitting diode (LED); and a tunable luminescent material disposed approximate the light-emitting diode, wherein the tunable luminescent material includes alkaline earth metal (AE) and silicon aluminum nitride doped by a rare earth element (RE), formulated as (AE)Si6−pAlpN8, wherein p is a parameter defining a relative aluminum content in weight and p is greater than zero.
An optoelectronic projection device which generates a predefined image during operation, including a semiconductor body having an active layer that generates electromagnetic radiation and a radiation exit side and is an imaging element of the projection device, wherein, to electrically contact the semiconductor body, a first contact layer and a second contact layer are arranged at a rear side of the semiconductor body, the rear side lying opposite the radiation exit side, and are electrically insulated from one another by a separating layer.
A method for manufacturing a photocoupler includes: mounting light emitting devices and light receiving devices on a lead frame sheet; positioning the lead frame sheet with respect to a die by cutting off the one set of column portions from a linking portion and inserting a first pilot pin formed on the die into a second pilot hole; opposing the light emitting devices and the light receiving devices to each other; connecting the light emitting side coupling bars and the light receiving side coupling bars to each other on the die; forming a resin body so as to cover a pair of the light emitting device and the light receiving device; and cutting off the light emitting side lead frame portion from the light emitting column portion and cutting off the light receiving side lead frame portion from the light receiving column portion.
Provided is a solid-state imaging device including: a first-conductivity-type substrate; a second-conductivity-type well formed in a surface side of the first-conductivity-type substrate; a photoelectric conversion area configured with a first-conductivity-type-impurity area formed in the second-conductivity-type well to convert incident light to charges; a first-conductivity-type-charge retaining area configured with the first-conductivity-type-impurity area formed in the second-conductivity-type well to retain the charges converted by the photoelectric conversion area until the charges are read out; a charge voltage conversion area configured with the first-conductivity-type-impurity area formed in the second-conductivity-type well to convert the charges retained in the charge retaining area to a voltage; and a first-conductivity-type-layer area configured by forming a first-conductivity-type-in a convex shape from a boundary between the first-conductivity-type substrate and the second-conductivity-type well to a predetermined depth of the surface side under at least one portion of the charge retaining area and the charge voltage conversion area.
A RESURF layer including a plurality of P-type implantation layers having a low concentration of P-type impurity is formed adjacent to an active region. The RESURF layer includes a first RESURF layer, a second RESURF layer, a third RESURF layer, a fourth RESURF layer, and a fifth RESURF layer that are arranged sequentially from the P-type base side so as to surround the P-type base. The second RESURF layer is configured with small regions having an implantation amount equal to that of the first RESURF layer and small regions having an implantation amount equal to that of the third RESURF layer being alternately arranged in multiple. The fourth RESURF layer is configured with small regions having an implantation amount equal to that of the third RESURF layer and small regions having an implantation amount equal to that of the fifth RESURF layer being alternately arranged in multiple.
An object of the invention is to improve the accuracy of light detection in a photosensor, and to increase the light-receiving area of the photosensor. The photosensor includes: a light-receiving element which converts light into an electric signal; a first transistor which transfers the electric signal; and a second transistor which amplifies the electric signal. The light-receiving element includes a silicon semiconductor, and the first transistor includes an oxide semiconductor. The light-receiving element is a lateral-junction photodiode, and an n-region or a p-region included in the light-receiving element overlaps with the first transistor.
A device is prepared using a chemical vapor deposition method and has a patterned thin film on a substrate that is applied using a deposition inhibitor material. The deposition inhibitor material is a hydrophilic polymer that is a neutralized acid having a pKa of 5 or less, wherein at least 90% of the acid groups are neutralized. The deposition inhibitor material can be patterned simultaneously or subsequently to its application to the substrate, to provide selected areas of the substrate effectively not having the deposition inhibitor material. A thin film is substantially deposited only in the selected areas of the substrate not having the deposition inhibitor material.
An organic light emitting diode module is provided and includes a substrate, a first electrode located on the substrate, a pair of second electrodes located on the substrate, a light emitting element located on the substrate, a first copper foil electrically connected to the first electrode, a pair of second copper foils respectively electrically connected to the second electrodes, and a cross connection conductor electrically connected to the second copper foils. The second electrodes are in an arrangement opposite to one another. The light emitting element includes a first electrode layer electrically connected to the first electrode, a second electrode layer located between the second electrodes and electrically connected to the second electrodes, and an organic light emitting layer located between the first and second electrode layers.
Embodiments of the invention are directed to an improved device for sensing infrared (IR) radiation with upconversion to provide an output of electromagnetic radiation having a shorter wavelength than the incident IR radiation, such as visible light. The device comprises an anode, a hole blocking layer to separate an IR sensing layer from the anode, an organic light emitting layer that is separated from the anode by the IR sensing layer, and a cathode. The hole blocking layer assures that when a potential is applied between the anode and the cathode the organic light emitting layer generates electromagnetic radiation only when the IR sensing layer is irradiated with IR radiation.
A semiconductor light emitting device includes: n-type and p-type semiconductor layers; and an active layer disposed between the n-type and p-type semiconductor layers. The active layer has a structure in which a plurality of quantum well layers and a plurality of quantum barrier layers are alternately disposed, wherein the plurality of quantum well layers are made of AlxInyGa1-x-yN (0≦x<1, 0
A light emitting device, a method of manufacturing the same, a light emitting device package, and a lighting system are disclosed. The light emitting device may include a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer interposed between the first and second conductive semiconductor layers. The first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer may include Al. The second conductive semiconductor layer may have Al content higher than Al content of the first conductive semiconductor layer. The first conductive semiconductor layer may have Al content higher than Al content of the active layer.
An electronic device includes a first electrode, a second electrode and a nanowire connected between the first and second electrodes to allow electric current flow. The nanowire is made from a conductive material exhibiting a variable resistance due to electromigration. The nanowire is repeatably switchable between two states. A voltage clamp operates through feedback control to maintain the voltage across the nanowire and prevent thermal runaway.
A canister for transporting and/or storing radioactive materials, the canister comprising two concentric shells between which is housed a radiological protection device comprising at least a first and a second metal components adjacent along a circumferential direction. According to the invention, the first component is supported against the outer shell and at a distance from the inner shell, whereas the second component is supported against the shell and at a distance from the shell. In addition, the components are in contact with each other along an interface taking, in section along any plane orthogonal to the longitudinal axis and crossing this interface, the form of a straight line segment defining with a radial straight line crossing it at its centre an acute angle (A).
A terahertz generating assembly generally includes a light emitting device that is configured to generate at least one pulsed light beam. A first dispersion member is positioned proximate to the light emitting device, wherein the first dispersion member is configured to facilitate a temporal dispersion of the light beam. A second dispersion member is positioned proximate to the first dispersion member and to the light emitting device, wherein the second dispersion member is configured to facilitate a spatial dispersion of the light beam. A lens is positioned proximate to each of the first and second dispersion members, wherein the lens is configured to focus the temporal and spatial dispersions to produce at least one moving spot of light. At least one waveguide is positioned proximate to the lens, wherein the waveguide is configured to apply a biased voltage to the spot of light to generate pulsed terahertz radiation.
The beam irradiation apparatus is featured by including a transport pipe which is vacuum-evacuated to be used as a transport channel of a beam taken out from an accelerator, a quadrupole magnet which modulates the beam diameter of the beam so that the beam is incident on an irradiation target existing in the atmosphere while maintaining the focusing angle of the beam, and one or more longitudinally movable range shifters which are provided to be capable of changing the distance to the irradiation target of the beam, and which modulate the beam range by reducing the energy of the beam by allowing the beam to pass through the movable range shifter, and is featured in that the beam is irradiated onto the irradiation target by modulating the beam diameter and the beam range.
A device is described that allows for the insertion and removal of a Transmission Electron Microscope (TEM) specimen stage and insertion rod into and out of a vacuum chamber. The device can be configured to accommodate specimen stage and insertion rods manufactured by all TEM producers. The device has a side-entry slot for accepting the cylindrical stage rod and a locking mechanism, such that unwanted contact with the specimen and the specimen stage itself is avoided during entry and exit from the plasma vacuum chamber. The devices hold said specimen stage and insertion rod in position during the process of plasma cleaning in a vacuum chamber.
A method for measuring a size of a specimen is provided. A first projected width of the specimen is obtained at a first angle with the help of an energy source then a second projected width of the specimen is obtained at a second angle with the help of the energy source. The first projected width, the first angle, the second projected width and the second angle are co-related to indirectly obtain a size of the specimen which has not been measured. The un-measured size is not directly involved with the first projected width and the second projected width.
A mass spectrometer is disclosed comprising a RF ion guide wherein in a mode of operation a continuous, quasi-continuous or pulsed beam of ions is orthogonally sampled from the ion guide and wherein the continuous, quasi-continuous or pulsed beam of ions is not axially trapped or otherwise axially confined within the RF ion guide. The ion guide is maintained, in use, at a pressure selected from the group consisting of: (i) 0.0001-0.001 mbar; (ii) 0.001-0.01 mbar; (iii) 0.01-0.1 mbar; (iv) 0.1-1 mbar; (v) 1-10 mbar; (vi) 10-100 mbar; and (vii) >100 mbar.
A high sensitivity desorption electrospray ionization mass spectrometry system that employs a heated platform, along with means for directing a liquid stream containing an analyte of interest onto a target location on the heated platform to heat the stream, an electrospray emitter for generating an electrospray and directing the electrospray at the target location on the heated platform to produce an ionized, desorbed analyte, and a mass spectrometer for receiving and detecting the ionized, desorbed analyte.
A gesture sensing device includes a single light source and a multiple segmented single photo sensor, or an array of photo sensors, collectively referred to herein as segmented photo sensors. A light modifying structure relays reflected light from the light source onto different segments of the segmented photo sensors. The light modifying structure can be an optical lens structure or a mechanical structure. The different segments of the photo sensor sense reflected light and output corresponding sensed voltage signals. A control circuit receives and processes the sensed voltage signals to determine target motion relative to the segmented photo sensor.
In a photoelectric conversion device including a photodiode and a current mirror circuit, a diode-connected transistor is provided in parallel with the photodiode. The transistor serves as a leakage path for rapidly discharging charge stored in the gate capacitance in the current mirror circuit. Thus, the response speed of the photoelectric conversion device is increased, and output of an abnormal value is reduced.
A single photon counting image sensor and method is provided. In one aspect, the method of an image sensor includes counting through a counter circuit a number of photons detected through a photodiode when a light is incident on the photodiode. The method also includes storing in a memory circuit a time a count of the number of photons take to match a reference count of the number of photons. In another aspect, an image sensor device includes a pixel circuit. The image sensor device also includes a photodiode circuit of the pixel circuit to detect photons when a light is incident on the photodiode circuit. The image sensor device further includes a counter circuit of the pixel circuit coupled to the photodiode circuit to count a number of photons detected when a light is incident on the avalanche photo diode.
The invention concerns the field of devices for improving the piloting of projectiles More specifically, the object of the invention is a piloting device for a missile or a projectile, for example, of small caliber, especially on the order of 40 mm, which has a lateral main surface with a nose at the level of one of its extremities, whereby said device includes at least one cavity consisting of a combustion chamber and filled, at least partially, by an explosive powder, and means of initiation of this explosive powder, and thereby the explosive powder includes nanothermites or gas-generating nanothermites.
A steerable projectile (30) comprises a body portion (32) and a nose portion (34). The nose portion and body portion are substantially coaxially arranged and rotatable relative to one another about their co-axis. The nose portion further comprises an asymmetric formation (36) operable to enable the projectile to be subjected to off-axis drag during flight.
An arrangement for induction hardening a part including a pair of separate inductors electrically isolated from each other and configured to substantially surround a part when brought into close juxtaposition with each other. The inductor sections are powered by respective secondary inductor loops brought into close juxtaposition with a primary inductor loop connected to an ac power source which induces an ac current in each inductor section.
A shielded metal arc welding machine having a characteristic with a constant current output characteristic and a drooping output characteristic properly combined is provided. A shielded metal arc welding machine having a constant current output characteristic, characterized by having a desired drooping output characteristic, which has an optional drooping degree with a point at which a characteristic line of said constant current output characteristic intersects a welding load characteristic line L as a base point, and replaces said constant current output characteristic.
An angle grinder is provided including a trigger assembly for selectively actuating the angle grinder. A particle separation assembly is provided for the removal of any dust, particle, or artifacts that may have entered into the housing of the angle grinder. A brush biasing system is also provided to ensure proper and efficient operation of the motor of the angle grinder. An overload monitoring system is included to monitor the loading on the motor. A clutch mechanism is also included to prevent overloading on the motor of the angle grinder. A gear wheel lock mechanism is also provided to prevent the wheel spindle from rotating during installation or removal of a grinding wheel on the wheel spindle. An anti-locking flange system is also included to prevent the over-tightening of the flanges and the grinder wheel during the operation of the angle grinder. A gear case labyrinth feature is also provided.
A power tool includes a linear activation switch incorporating features to prevent accidental activation. More particularly, the switch includes a switch cap that must be first rotated or pivoted before it can be linearly translated to activate the switch. The power tool includes a housing defining a guide track having a first section and an second section, offset from each other by a third section. The switch includes a switch cap having guide ribs, a first slidably disposed within the first section and a second rib one initially situated within the third section. The switch cap is pivotable about the first guide rib so that the second guide rib moves within the third section into alignment with the second section of the guide track. The switch cap can then be moved linearly with the second guide rib sliding within the second section, with this movement activating the switch.
Embodiments of the invention relate to a method and a checkweigher for weighing individual products moved along a production line. In various embodiments, the method compromises transferring at least one product from the production line to a checkweigher comprising at least one weighing cell; placing at least one product in a first position on a first support above a corresponding weighing cell; displacing the at least one product by means of said first support and placing said at least one product in a second position on a second support on the weighing cell; weighing the at least one product; displacing the at least one product back to the first position by means of said first support; and transferring the at least one product from the checkweigher back to the production line.
A corona resistant high voltage bushing assembly includes an insulating sleeve to surround a conductor, a flange located on an outside surface of the insulating sleeve, and a first band of semiconductive glaze located on the outer surface of the insulating sleeve spaced apart from an end of the insulating sleeve.
A method and structure for implementing enhanced dimensional stability with a graphite nanotube hybrid socket. A socket housing wall includes a plurality of aligned graphite nanofibers. The plurality of aligned graphite nanofibers distributing heat and providing enhanced dimensional stability. For example, the plurality of aligned graphite nanofibers more evenly distributes heat when the socket is undergoing solder reflow processes, thereby reducing strain.
A p- or n-conductive semiconductor material comprises a compound of the general formula (I) Pb1−(x1+x2+ . . . +xn)A1x1A2x2 . . . AnxnTe1+z (I) where: in each case independently n is the number of chemical elements different from Pb and Te 1 ppm≦x1 . . . xn≦0.05 −0.05≦z≦0.05 and n≧2 A1 . . . An are different from one another and are selected from the group of the elements Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Al, Ga, In, Tl, Si, Ge, Sn, As, Sb, Bi, S, Se, Br, I, Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu or n=1 A1 is selected from Ti, Zr, Ag, Hf, Cu, Gr, Nb, Ta.
The present invention extends to methods, systems, and computer program products for musical learning and interaction. Embodiments include presenting a grouping of keys that share the same tonal context, and that have a tonal context that fits with a particular song. A user is prompted to provide user input, while the particular song is being played, using any order of keys selected from the particular key grouping. User input is received and is used as part of a music lesson and/or as part of a remix of the particular song. In addition, a musical instrument includes a centered keyboard, which include top keys and bottom keys that are pressable to produce musical notes and that are symmetrically centered about the axis of symmetry.
A novel maize variety designated X95C383 and seed, plants and plant parts thereof, produced by crossing Pioneer Hi-Bred International, Inc. proprietary inbred maize varieties. Methods for producing a maize plant that comprises crossing hybrid maize variety X95C383 with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into X95C383 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. This invention relates to the maize variety X95C383, the seed, the plant produced from the seed, and variants, mutants, and minor modifications of maize variety X95C383. This invention further relates to methods for producing maize varieties derived from maize variety X95C383.
A soybean cultivar designated 11430023 is disclosed. The invention relates to the seeds of soybean cultivar 11430023, to the plants of soybean cultivar 11430023, to the plant parts of soybean cultivar 11430023, and to methods for producing progeny of soybean cultivar 11430023. The invention also relates to methods for producing a soybean plant containing in its genetic material one or more transgenes and to the transgenic soybean plants and plant parts produced by those methods. The invention also relates to soybean cultivars or breeding cultivars, and plant parts derived from soybean cultivar 11430023. The invention also relates to methods for producing other soybean cultivars, lines, or plant parts derived from soybean cultivar 11430023, and to the soybean plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid soybean seeds, plants, and plant parts produced by crossing cultivar 11430023 with another soybean cultivar.
Preparation and use of isolated nucleic acids useful in altering the oil phenotype in plants. Isolated nucleic acids and their encoded polypeptides that alter alpha- and beta-tocotrienol content in seeds and oil obtained from the seeds. Expression cassettes, host cells and transformed plants containing the foregoing nucleic acids.
A method for increasing cuticular wax biosynthesis of plant includes transforming a plant cell with the recombinant vector containing MYB96 (myb domain protein 96) gene from Arabidopsis thaliana. A method for producing a transgenic plant with increased cuticular wax biosynthesis includes transforming a plant cell with the recombinant vector containing the MYB96 gene, and regenerating the transformed plant cell into the transgenic plant. A plant and a seed with increased cuticular wax biosynthesis are produced by the method. A method for producing a biofuel using a cuticular wax includes separating and purifying a cuticular wax from the plant. A composition for increasing cuticular wax biosynthesis of plant includes the MYB96 gene.
The present invention relates to transgenic plants resistant to parasites that their normal life cycle includes feeding on the plant cytoplasm, including insects, nematodes and fungi, wherein the plants are engineered to produce small interfering RNAs (siRNAs) capable of silencing a parasite specific gene. Particularly the parasite gene is a stage-specific gene, more particularly a gene involved in essential, early developmental stages of the parasite in or on the plant.
A novel maize variety designated X95C381 and seed, plants and plant parts thereof, produced by crossing Pioneer Hi-Bred International, Inc. proprietary inbred maize varieties. Methods for producing a maize plant that comprises crossing hybrid maize variety X95C381 with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into X95C381 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. This invention relates to the maize variety X95C381, the seed, the plant produced from the seed, and variants, mutants, and minor modifications of maize variety X95C381. This invention further relates to methods for producing maize varieties derived from maize variety X95C381.
The present invention relates to a method for the provision of mutagenised populations by the introduction of mutations by chemically and or physically mutagens in a selected region of the genome of a plant and the subsequent selection of inheritable mutations by analysis of at least one section of a mutagenised primary M1 plant for the presence of a mutation in the region of interest using high throughput sequencing.
A disposable absorbent article to be worn about the lower torso of a wearer that facilitates an easy, intuitive change is provided. The disposable absorbent article includes at least one serviceable indicium that facilitates an easy change by providing alignment of the article relative to an anatomical feature of the wearer or by externally highlighting one or more components of the article thereby indicating alignment and fit about the wearer's lower torso.
A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. UZM-44 may be used to catalyze an aromatic transformation process by contacting a feed comprising at least a first aromatic with UZM-44 at hydrocarbon conversion conditions to produce at least a second aromatic.
Provided is a process for purifying an organic feedstock comprising (a) distilling a raw organic feedstock comprising hydrogen fluoride, 2-chloro-1,1,1,2-tetrafluoropropane, and 2-chloro-3,3,3-trifluoropropene to produce a first distillate stream comprising an azeotrope-like composition of 2-chloro-1,1,1,2-tetrafluoropropane, 2-chloro-3,3,3-trifluoropropene, and hydrogen fluoride, and a first bottoms stream rich in hydrogen fluoride; (b) cooling said first distillate stream to produce an intermediate composition comprising an organic layer rich in 2-chloro-1,1,1,2-tetrafluoropropane and 2-chloro-3,3,3-trifluoropropene, and an acid layer rich in hydrogen fluoride; and, optionally but preferably, (c) distilling said organic layer to produce a second distillate stream comprising an azeotrope-like composition of 2-chloro-1,1,1,2-tetrafluoropropane, 2-chloro-3,3,3-trifluoropropene, and hydrogen fluoride, and a second bottoms stream comprising a purified organic feedstock substantially free of hydrogen fluoride.
The invention provides alkene fluoroalkanol and fluorinated polyol precursors to fluoroalkanol-substituted α,β-unsaturated esters. The fluoroalkanol-substituted α,β-unsaturated esters are olefins that can be readily polymerized to provide fluoroalkanol-substituted polymers useful in lithographic photoresist compositions. Also provided are methods for synthesizing the alkene fluoroalkanol and fluorinated polyol precursors.
The present invention relates generally to the field of therapeutic treatment and compounds having utility therefor, in particular the therapy or management of conditions associated with excessive, unwanted or undesirable sodium ion passage through cellular membranes via voltage-gated sodium channels. In one embodiment the invention is concerned with the treatment of neuropathic pain. The invention contemplates to aryloxy-substituted amines, as sodium channel blockers or modulators. In further embodiments, the invention also relates to compounds which may advantageously have dual sodium channel blocker/modulating and antioxidative (free-radical scavenging) effects. Methods for their manufacture and compositions containing the compounds are also contemplated.
Methods of treating or suppressing oxidative stress diseases including mitochondrial diseases, impaired energy processing disorders, neurodegenerative diseases and diseases of aging are disclosed, as well as compounds useful in the methods of the invention, such as 2- substituted-p-quinone derivatives as disclosed herein.
A method for manufacturing a catalyst of which active components are partly neutralized salt of heteropoly acid comprising molybdenum, phosphorus, vanadium, cesium, antimony, and ammonia as essential components, wherein the method is characterized in mixing an antimony compound with a complex oxide of the essential active components in the catalyst containing active components other than antimony, wherein the antimony compound may be added during slurry preparation.
This invention provides stable, lyophilized formulations of canfosfamide as well as the methods of preparation of those stable lyophilized formulations.
The invention relates to novel cross-linkable monomers that may be polymerized with ethylenically unsaturated comonomers to form cross-linkable copolymers. Said copolymers may particularly be used in the form of aqueous dispersions as formaldehyde-free adhesives or as coatings with good water resistance. The cross-linkable monomer is a compound in acid or salt form comprising an anion of the formula (I) and one or more cations for producing electrical neutrality, where R1 and R2 represent, independently of one another, hydrogen alkyl, cycloalkyl, aryl, aralkyl, —COOR5, —COO− cat+ or —CON(R6R7), R6 and R7 represent, independently of one another, hydrogen, alkyl, or aryl, cat+ represents a monovalent cation, and one of the groups R1 or R2 may also represent a group —X—R4—CR5(OH)SO3−), wherein X, R4, and R5 assume one of the meanings listed below, R3 represents hydrogen, alkyl, or aryl, X is selected from the group of direct C—C bond, —O—, —CH2—O—, —CH2—NR8—, —COO— or —CONR8—, R8 represents hydrogen, alkyl, or aryl, R4 represents alkylene, polyoxyalkylene, cycloalkylene, or arylene, and R5 represents hydrogen, alkyl, cycloalkyl, or aryl.
A process for preparing diisocyanates by gas-phase phosgenation starting out from a feed stream comprising the corresponding diamines and a phosgene-comprising feed stream, in which the feed streams are separately converted into the gas phase and preheated to the reaction temperature of the gas-phase phosgenation, wherein the waste heat from a plant for preparing chlorine by heterogeneously catalyzed oxidation of hydrogen chloride by the Deacon process is utilized for this purpose, is proposed.
The present invention relates to a process for the preparation of polyether ester polyols starting from fatty acid esters and starter compounds having Zerewitinoff-active hydrogen atoms, and to their use in the production of solid or foamed polyurethane materials.
Process for preparing organoalkoxyhydrosilanes with a boron content less than 100 ppb and of the formula R1xHySi(OR2)z where x+y+z=4 and x, y, z are greater than or equal to 1, wherein, in a first step, a boron-contaminated organohalohydrosilane of the formula R1xHySiHalz where x+y+z=4, x, y, z are greater than or equal to 1, and R1 are linear or branched alkyl, cycloalkyl, aryl, alkenyl or arylalkyl radicals having 1 to 12 carbon atoms and Hal is F, Cl, Br or I, is subjected to a treatment with silica or aluminosilicate and the silica or the aluminosilicate is subsequently removed from the organohalohydrosilane in a second step and then the purified organohalohydrosilane is reacted with alcohol R2—OH where R2 is a methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl or tert-pentyl radical.
The invention relates to the use of a platinum-dicyano-bisisocyanide complex cluster, having a small ΔE distance, in particular between 500 cm−1 and 3000 cm−1, between the lowest triplet state and the overlying singlet state that is populated by means of thermal repopulation from the triplet, in an organic-electronic device for emission of blue light and for absorption in the ultraviolet and blue spectral range. The invention also relates to the use of the singlet harvesting method. Furthermore, the invention relates to the use of the high degrees of absorption of such platinum-dicyano-bisisocyanide complex clusters.
A process for preparing a divinylarene dioxide including reacting (a) at least one divinylarene with (b) at least one oxidant in the presence of (c) at least one transition metal complex catalyst, and (d) optionally, in the presence of a solvent, and (e) optionally in the presence of a catalyst modifier under conditions to form a divinylarene dioxide product.
The present invention relates to pyrrolidin-2-ones according to the formula (1), or salts thereof, wherein R1 is hydrogen or a nitrogen protecting group, methods for their preparation and their use in the preparation of NEP-inhibitors, particularly in the preparation of N-(3-carboxyl-1-oxopropyl)-(4S)-(p-phenylphenylmethyl)-4-amino-(2R)-methyl butanoic acid ethyl ester or salt thereof.
Disclosed are the ERK inhibitors of formula 1.0: and the pharmaceutically acceptable salts, and solvates thereof. Q is a tetrahydropyridinyl ring. All other substitutents are as defined herein. Also disclosed are methods of treating cancer using the compounds of formula 1.0.
The present invention is directed to novel substituted aminopiperidines of structural formula I which are inhibitors of the dipeptidyl peptidase-IV enzyme and which are useful in the treatment or prevention of diseases in which the dipeptidyl peptidase-ÏV enzyme is involved, such as diabetes and particularly Type 2 diabetes. The invention is also directed to pharmaceutical compositions comprising these compounds and the use of these compounds and compositions in the prevention or treatment of such diseases in which the dipeptidyl peptidase-IV enzyme is involved.
A process for preparing alfuzosin or a salt thereof comprising: (a) condensing 4-amino-2-chloro-6,7-dimethoxyquinazoline with 3-methylaminopropionitrile in the presence of a polar aprotic solvent selected from the group consisting of diglyme, dimethyl formamide, t-butanol, hexamethylphosphoramide or mixtures thereof to form N-(4-amino-6,7-dimethoxyquinazol-2-yl)-N-methyl-2-cyanoethylamine (b) hydrogenating the N-(4-amino-6,7-dimethoxyquinazol-2-yl)-N-methyl-2-cyanoethylamine using a hydrogenating agent under a pressure of less than 10 kg/cm2 to form N-(4-amino-6,7-dimethoxyquinazol-2-yl)-N-methylpropylenediamine and optionally converting the N-(4-amino-6,7-dimethoxyquinazol-2-yl)-N-methylpropylenediamine to an acid addition salt thereof; and (c) converting tetrahydrofuroic acid to an intermediate form and condensing the intermediate form with the N-(4-amino-6,7-dimethoxyquinazol-2-yl)-N-methylpropylenediamine or with the acid addition salt to yield alfuzosin base, and optionally converting alfuzosin base to a salt of alfuzosin.
The invention provides compounds of the formula (1): or salts or tautomers thereof; wherein X1 is N or N+(O−); X2 is N or CH; Q is a C1-3 alkylene group; R1 is selected from hydrogen, C1-4 hydrocarbyl and hydroxy-C2-4 hydrocarbyl; R2, R3 and R4 are the same or different and each is selected from hydrogen, fluorine, chlorine and methyl; Ar1 is an optionally substituted monocyclic 5 or 6-membered aryl or heteroaryl ring containing 0, 1 or 2 heteroatom ring members selected from O, N and S, or a naphthyl ring and Ar2 is an optionally substituted monocyclic 5 or 6-membered heteroaryl ring containing 1, 2 or 3 heteroatom ring members selected from O, N and S. The compounds of formula (1) are inhibitors of p70S6 kinase and are useful in the treatment of proliferative diseases.
Disclosed are devices and methods to synthesize polynucleotides and libraries of polynucleotides such as libraries of oligonucleotides. In exemplary embodiments, the device includes a support having a plurality of features. Each feature contains a plurality of oligonucleotides. Within each feature, each of the plurality of oligonucleotides includes an identical predetermined subunit sequence of X nucleosides and a degenerate sequence of Y nucleosides. A predetermined combination of a subset of the features can be used to produce a polynucleotide having a predetermined sequence of Z nucleosides.
Described herein are synthetic, modified RNAs for changing the phenotype of a cell, such as expressing a polypeptide or altering the developmental potential. Accordingly, provided herein are compositions, methods, and kits comprising synthetic, modified RNAs for changing the phenotype of a cell or cells. These methods, compositions, and kits comprising synthetic, modified RNAs can be used either to express a desired protein in a cell or tissue, or to change the differentiated phenotype of a cell to that of another, desired cell type.
The present invention provides compositions comprising therapeutic nucleic acids (e.g., interfering RNA such as siRNA) that target Ebola virus (EBOV) gene expression and methods of using such compositions to silence EBOV gene expression. More particularly, the invention provides unmodified and chemically modified interfering RNA which silence EBOV gene expression and methods of use thereof, e.g., for preventing or treating EBOV infections caused by one or more EBOV species such as Zaire EBOV. The invention also provides serum-stable nucleic acid-lipid particles comprising one or more interfering RNA molecules, a cationic lipid, and a non-cationic lipid, which can further comprise a conjugated lipid that inhibits aggregation of particles. Methods of silencing EBOV gene expression by administering one or more interfering RNA molecules to a mammalian subject are also provided.
The present invention relates to compositions comprising factor VII coagulation factors linked to extended recombinant polypeptide (XTEN), isolated nucleic acids encoding the compositions and vectors and host cells containing the same, and methods of making and using such compositions in treatment of coagulation factor-related diseases, disorders, and conditions.
The invention provides human signal peptide-containing proteins (HSPP) and polynucleotides which identify and encode HSPP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of HSPP.
The invention concerns polymer comprising residues of 2-(4-amino phenyl)-5 (6) amino benzimidazole (DAPBI), paraphenylene diamine, and terephthaloyl dichloride, the polymer having a IPC peak block ratio of 1.45 to 1.47 and an inherent viscosity of greater than 2 dl/g.
The invention concerns processes for forming a polymer comprising residues of 2-(4-amino phenyl)-5(6)amino benzimidazole (DAPBI), paraphenylene diamine, and terephthaloyl dichloride, comprising the steps of: (a) forming a slurry of DAPBI and paraphenylene diamine in a solvent system comprising an organic solvent and an inorganic salt; and (b) adding a stoichiometric amount of terephthaloyl dichloride to the slurry in a single addition and allowing the formation of the polymer.
In a curable coil coating composition comprising a mixture of: (a) a curable polyester that is a liquid at room temperature, (b) a cross-linking agent; and (c) a solvent; the improvement comprising preparing the polyester from a composition comprising a mixture of 1,3- and 1,4-cyclohexane dimethanol wherein the molar ratio of the 1,3 isomer to the 1,4 isomer is from about 60:40 to about 5:95. Cured coil coatings prepared from these compositions exhibit an excellent combination of flexibility and hardness.
An fluorinated polyester compound is disclosed. The fluorinated polyester compound can be made by combining ingredients comprising a hydroxyl terminated polyphenyl ether; a carboxylic acid terminated perfluoropolyether; an acid catalyst; and a solvent. A coating solution comprising the fluorinated polyester compound and a method of coating a substrate therewith are also disclosed.
An olefin polymerization catalyst and preparation method and use thereof are provided. The components of the catalyst comprise an active magnesium halide, a titanium compound containing at least one Ti-halide bond loaded on the active magnesium halide, and an internal electron donor selected from one or more silicon esters compounds having formula (I). The method for preparing the catalyst components is that: adding spherical magnesium chloride alcoholate particles and the electron donor into the solution of titanium compound in sequence, and processing with the titanium compound for one or more times to obtain the catalyst. The catalyst system used for the olefin polymerization comprises the catalyst components, a cocatalyst and an external electron donor. The catalyst has high activity for the propylene polymerization, and the activity is 4399 gPP/gTi·h(50° C., 1 h, slurry polymerization at atmospheric pressure), and the isotacticity of the polymer is 98%.
Disclosed is a method for producing a modified propylene polymer that exhibits low flowability and also exhibits little fluctuation in melt flow rate compared with the melt flow rate of the propylene polymer before modification, the method involving a heat treatment step of subjecting a mixture comprising 100 parts by weight of a propylene polymer (A), from 0.1 to 50 parts by weight of an ethylenically unsaturated bond-containing compound (B), and from 0.01 to 20 parts by weight of an organic peroxide (C) whose decomposition temperature at which the half-life thereof becomes 1 minute is lower than 120° C. to heat treatment by using an extruder at a temperature lower than the decomposition temperature of the organic peroxide (C) at which the half-life thereof becomes 1 minute.
A prepolymer prepared by condensation reaction between a first compound represented by Formula (1) below: Ar—H (1), where Ar is composed of a crosslinkable moiety at one end, a moiety selected from the group —O—, —S—, —COO—, —CO—, —COS—, —SO2—, and —NH—, and one or two repeating units selected from the group: where A is carbon or nitrogen, and X is hydrogen or halogen; and a second compound that is an aromatic moiety.
Described herein are nonfluorinated polyurethanes having (a) a plurality of silicon polyol units and (b) a plurality of organic polyol units, wherein at least one of the organic polyol units has an ionizable group. The polyurethanes can be applied to a variety of different articles. The polyurethanes can impart a number of beneficial properties to an article including, but not limited to, liquid repellency, stain resistance, and bleach resistance. The nonfluorinated polyurethanes described herein are as effective or perform substantially better than fluorinated compounds currently used in the market. Methods for making the nonfluorinated polyurethanes are also described herein.
Heterophasic polypropylene composition comprising (A) 45 to 70 wt % of a propylene homo- or copolymer matrix with an MFR2 in accordance with ISO 1133 (230° C., 2.16 kg load) of ≧80 g/10 min and (B) 25 to 40 wt % of an elastomeric propylene-ethylene copolymer, having an intrinsic viscosity IV (ISO 1628, with decalin as solvent) of ≧3.3 dl/g and an ethylene content of 20 to 50 wt %, (C) 0-15 wt % of an elastomeric ethylene/alpha-olefin random copolymer (D) 3-25 parts per weight of inorganic filler, the heterophasic polypropylene compositions having a total MFR2 (230° C./2.16 kg) in accordance with ISO 1133 of ≧5 g/10 min, a Charpy notched impact strength according to ISO 179/1eA at +23° C. of ≧15.0 kJ/m2, preferably ≧25.0 kJ/m2, a minimum value for the Charpy notched impact strength according to ISO 179/1eA at −20° C. of ≧7.0 kJ/m2, preferably ≧10.0 kJ/m2 and a tensile modulus according to ISO 527-3 of ≧1200 MPa; their preparation and use for producing injection moulded articles being free of flow marks.
Disclosed are a thermoplastic polyester elastomer resin composition and a molded article comprising the same. More specifically, disclosed is a thermoplastic polyester elastomer resin composition which comprises a glycidyl group-modified ethylene-octene based copolymer resin, as a chain extension/hydrolysis resistance agent for blow and extrusion molding to improve melt viscosity, and increases a molecular weight through reaction extrusion and thus exhibits superior heat resistance, weather resistance, heat aging resistance, hydrolysis resistance, fatigue resistance properties, melt viscosity and parison stability, and in particular, exhibits superior blow molding, contains no gel, reduces production of odor-causing substances such as volatile organic compounds (TVOC) during blow molding, and maintains a balance between physical properties, moldability and operation environments.
This invention relates to an organosilicon compound having a cyclic structure with nitrogen atom and silicon atom, and one or more sulfur atoms in its molecule, and having a bonding side of one or more groups having as small steric hindrance to silicon atom, a rubber composition formed by compounding an inorganic filler (B) and the organosilicon compound (C) into a rubber component (A) consisting of natural rubber and/or diene-based synthetic rubber, and a tire using such a rubber composition.
The present invention relates to reed composite which can be used as building material, method for manufacturing the composite, and building material using the composite. The reed composite contains reed stalk having a particle size of 40 to 180 mesh 25 to 45 wt % of thermoplastic polymer impregnated into fibers of the reed stalk. The reed composite is eco-friendly and has improved strength and no swelling.
Disclosed are phospholipid based compositions and implant devices, as well as methods and kits that include such compositions or components thereof. In particular, the present compositions include a polymer component such as a poloxamer or PEG component and a phospholipid component, such as a Phosal. The present compositions may include at least one additional component, such as granules, powder and/or particulates. The present compositions may further include one or more bone graft materials and/or active ingredients. The compositions may be used on their own or incorporated on or in a surgical implant.
A method of combating a somatosensory disorder in a subject, comprising administering to the subject an effective amount of a composition comprising bupranolol and/or pharmaceutically acceptable derivative(s) thereof. Compositions useful for such administration are described, including salts, esters, solvates, etc. of tert-butyl[3-(2-chloro-5-methylphenoxy)-2-hydroxypropyl]amine, in which such salt, ester, solvate, etc. compound is in enantiomeric excess or homoenantiomeric in the R isomer thereof, or is formulated with racemic mixtures of the R and S stereoisomers of the salts, esters, solvates, etc. of tert-butyl[3-(2-chloro-5-methylphenoxy)-2-hydroxypropyl]amine. Combination therapy compositions of opioid receptor agonists and such compounds are also described. A method is disclosed of referential genotypic screening of candidate subjects in connection with therapeutic intervention using the compositions of the disclosure to combat the somatosensory disorder.
A class of topomimetic calixarene-based peptide mimetics is described. Calixarene-based peptide mimetics have various biological activities such as, for example, bactericidal activity, antiangiogenic activity, and/or antitumor activity. Methods of use and methods of designing calixarene-based peptide mimetics are described.
The present invention relates to formulations of 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid in Form I, pharmaceutical packs or kits thereof, and methods of treatment therewith.
A pharmaceutical composition comprising a drug substance consisting essentially of a pharmaceutically acceptable organic acid addition salt of an amine containing pharmaceutically active compound wherein the amine containing pharmaceutical active compound is selected from the group consisting of racemic or single isomer ritalinic acid or phenethylamine derivatives and the drug substance has a physical form selected from amorphous and polymorphic.
The present application relates to processes for the preparation of intermediates useful in the manufacture of oseltamivir and the H3PO4 salt of oseltamivir, Tamiflu®. The application further relates to novel intermediate and compounds and oseltamivir analogs and to pharmaceutical compositions comprising said analog compounds. The application further relates to a method of using the novel analogs of oseltamivir to treat or prevent influenza.
The present invention relates to a dietary supplement composition made of: linolenic expeller pressed soybean oil in the range of 65%-85%, Omega 3 (18/12) fish oil 15%-35%, and 1%-20% alpha-tocopherol and a method to use this composition to supplement the diet of a domestic animal, such as a canine or an equine.
The present invention relates to a dietary supplement composition made of: linolenic expeller pressed soybean oil in the range of 65%-85%, Omega 3 (18/12) fish oil 15%-35%, and 1%-20% alpha-tocopherol and a method to use this composition to supplement the diet of a domestic animal, such as a canine or an equine.
The present invention relates to an amide compound or a pharmaceutically acceptable salt thereof, a preparation method thereof, and a pharmaceutical composition comprising the same. The inventive amide compound facilitates bone formation and inhibits bone loss, and is therefore useful for preventing and treating bone disorders such as osteoporosis, osteodystrophy, bone fracture, periodontal disease, Paget's disease, bone metastasis, and rheumatoid arthritis.
The present invention provides a means for prevention and treatment of cachexia and other chronic illnesses including but not limited to the promotion of weight gain, reduction or prevention of weight loss by administration of a substance that both reduces the sensitivity of beta-adrenergic receptors and of 5-HT1a receptors. (S)-pindolol, (S)-propranolol, tertatolol or bopindolol are preferred for this purpose.
The present invention relates to specific doses of and dosing regimens for using a 1,2,4-oxadiazole benzoic acid compound in treating or preventing diseases associated with nonsense mutations. In particular, the invention relates to specific doses and dosing regimens for the use of 3-[5-(2-fluoro-phenyl)-[1,2,4]oxadiazol-3-yl]-benzoic acid in mammals having diseases associated with nonsense mutations.
The present invention relates to phenylethynyl compounds of formula I wherein R1, R2, X, L, R3, R4, R4′, cyc, and n are as defined in the specification and claims and to a pharmaceutically acceptable acid addition salt, to a racemic mixture, or to its corresponding enantiomer and/or optical isomer and/or stereoisomer thereof. Compounds of formula I are positive allosteric modulators (PAM) of the metabotropic glutamate receptor subtype 5 (mGluR5). They are useful for the treatment of schizophrenia or cognitive diseases.
A number of thalidomide metabolites having superior anti-angiogenic properties have now been isolated and identified. In addition, thalidomide analogs that mimic the effects of the isolated and identified active thalidomide metabolites, and variations of such thalidomide analogs, have been developed. Such thalidomide analog compounds show enhanced potency in the inhibition of undesirable angiogenesis without the undesirable effects of administration of thalidomide.
The present invention is directed to methods of using a sirolimus drug and chloroquine or a quinoline derivative in combination. Methods of use are also described.
The present invention relates to a method for preparation of MLN4924 as an E1 activating inhibitor, and more specifically, to a method for efficient and stereoselective preparation of MLN4924 by means of key steps involving stereoselective reduction of cyclopentenone with isopropylidene, regioselective cleavage of isopropylidene moiety, and synthesis of cyclic sulfate.
A method for treating cancer in a subject, comprising administering to a subject having cancer a therapeutically effective amount of (i) a fluoroquinolone derivative that inhibits tyrosyl-DNA-phosphodiesterase 1 (Tdp1) activity or (ii) a sulfonamide moiety-containing compound that inhibits tyrosyl-DNA-phosphodiesterase 1 (Tdp1) activity, thereby treating the cancer in the subject. In certain embodiments, the fluoroquinolone derivative or sulfonamide moiety-containing compound is co-administered with a topoisomerase I (TopI) inhibitor.
The present invention relates to compounds and pharmaceutically acceptable salts thereof and formulations comprising tenilsetam or pharmaceutically acceptable salts thereof that are useful in modulating inflammation. In particular, the compounds or pharmaceutically acceptable salts thereof are useful for treating or preventing a disease or disorder involving inflammation, including, but not limited to, delayed type hypersensitivity and contact hypersensitivity.
The invention, in some aspects, relates to compounds and compositions useful for inhibiting Type III secretion systems in pathogenic bacteria, such as Yersinia Pestis. In some aspects, the invention relates to methods for discovering inhibitors of the Type III secretion system and uses of such inhibitors in the treatment and prevention of disease.
The present invention relates to novel bicyclic methyl amine derivatives, processes for preparing them, pharmaceutical compositions containing them and their use as pharmaceuticals as modulators of sphingosine-1-phosphate receptors.
There is provided a method of therapy of atherosclerosis, by providing microRNA let-7g, an analogue thereof or modified let-7g to organisms to inhibit the expression of lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), and the binding of LOX-1 and oxidized low-density lipoprotein (oxLDL), so as to block the pathogenesis of atherosclerosis. Also, a method of diagnosis of atherosclerosis comprises determining the levels of microRNA let-7g in serum or plasma samples of organisms, in which the levels of microRNA let-7g is estimated in individuals with atherosclerosis as compared to individuals without atherosclerosis.
The invention relates to the therapeutic use of oligonucleotides or oligonucleotide analogs as immunostimulatory agents in immunotherapy applications. The invention provides methods for enhancing the immune response caused by immunostimulatory oligonucleotide compounds.
Provided are (methylsulfonyl)ethyl benzene isoindoline compounds, and pharmaceutically acceptable salts, solvates, or stereoisomers thereof. Methods of use and pharmaceutical compositions of these compounds are also disclosed.
The embodiments include methods of treating conditions requiring removal or destruction of cellular elements, such as benign or malignant tumors in humans, using compounds based on small peptides. The method includes, but is not limited to, administering the compounds intramuscularly, orally, intravenously, intrathecally, intratumorally, intranasally, topically, transdermally, etc., either alone or conjugated to a carrier.
Azuvirin peptides are small peptide agents useful in delivering functional moieties, such as sensitizers, chemotherapeutic agents and the like to cancer cells expressing ephrin receptors. The peptides are also useful for administration to a patient suffering from a viral infection, or to an individual facing exposure to a viral infection, especially one caused by the Human Immunodeficiency Virus (HIV-1).
The present invention provides methods of identifying candidate compounds for the treatment of type I diabetes and also provides methods for treating patients with type I diabetes and for limiting pancreatic beta cell apoptosis. The present invention also provides methods for diagnosing type I diabetes or a propensity to develop type I diabetes and methods for identifying diabetic patients to be treated with anti-apoCIII therapy.
Methods, kits and compositions are described that include a non-naturally occurring kallikrein inhibitor and an anti-thrombolytic agent, e.g., an anti-fibrinolytic agent, for preventing or reducing blood loss and/or ischemia, e.g., ischemia associated with perioperative blood loss and cerebral ischemia, the onset of systemic inflammatory response, and/or reperfusion injury, e.g., reperfusion injury associated with cerebral ischemia or a focal brain ischemia, e.g., in patients subjected to invasive surgical procedures, especially procedures requiring cardiopulmonary bypass.
This invention relates to crosslinked protein nanoparticles and a method for producing the same. The method comprises the preparation and nanonization (i.e., size reduction to the nanoscale) of protein nanoparticle precursor materials—i.e., crosslinked proteins of the micron or greater size—via mechanical or hydrodynamic shear, mechanical crushing, sonic cavitation and/or hydrodynamic cavitation.
A structured liquid detergent composition in the form of a liquid matrix made up of an external structuring system of a bacterial cellulose network; water; and surfactant system including an anionic surfactant; a nonionic surfactant; a cationic surfactant; an ampholytic surfactant; a zwitterionic surfactant; or mixtures thereof, wherein said liquid matrix has a yield stress of from about 0.003 Pa to about 5.0 Pa at about 25° C. and provides suitable particle suspension capabilities and shear thinning characteristics.
The invention relates to an article for washing textiles able to absorb colorant substances (4) dissolved in the washing fluid (5) constituted by a flat matrix comprising at least a support material and at least an absorbing agent of colorant substances (4) borne by the support material. The flat matrix is folded and/or rolled-up on itself and compressed to define the conformation of the article (1), and in that the folded and/or rolled-up material compressed on itself is able to unfold and/or unroll when the article (1) is placed in contact with the washing fluid (5) in order to enable the article (1), with the unfolded and/or unrolled matrix, to absorb the colorant substances (4) present in the washing fluid (5) by means of the absorbing agent.
Material for cleaning using a tri-state body are disclosed. A substrate having a particle deposited thereon is provided. A tri-state body that has a solid portion, liquid portion, and a gas portion is generated. A force is applied over the tri-state body to promulgate an interaction between the solid portion and the particle. The tri-state body is removed along with the particle from the surface of the substrate. The interaction between the solid portion and the particle causes the particle to be removed along with the tri-state body.
A solid particulate laundry detergent composition including: (a) polyethylene glycol polymer including a polyethylene glycol backbone and polyvinyl acetate side chains, wherein the average molecular weight of the polyethylene glycol backbone is in the range of from 4,000 Da to 8,000 Da, wherein the molecular weight ratio of the polyethylene glycol backbone to the polyvinyl acetate side chains is in the range of from 1:1.2 to 1:2, and wherein the average number of graft sites per ethylene oxide units is in the range of from 0.2 to 0.4; (b) amylase with greater than 90% identity to the AA560 alpha amylase endogenous to Bacillus sp. DSM 12649 and including: (i) mutations at one or more of positions 9, 149, 182, 186, 202, 257, 295, 299, 323, 339 and 345; and (ii) mutations at four or more of positions 118, 183, 184, 195, 320 and 458; and (c) laundry detergent ingredients.
The present invention relates to a method of removing and preventing water and condensate blocks in wells by contacting a subterranean formation with a composition comprising a low molecular weight fluorinated copolymer having perfluoro alkyl moieties which are no longer than C6. A fluorinated copolymer of low molecular weight of about 50,000 g/mol and a method of preparing the same are also disclosed.
Methods and compositions directed to improved universal antibody libraries that rationally exploit human diversity information contained within reference antibody libraries, such as universal antibody libraries, are disclosed. The disclosed processes involve use of a query CDR sequence to guide incorporation of human antibody diversity present within the reference library into cohort libraries of the invention. Methods for making and screening such cohort libraries for isolating therapeutics suitable for treating disease are also disclosed.
A superconducting article includes first and second stacked conductor segments. The first stacked conductor segment includes first and second superconductive segments and has a nominal thickness tn1. The second stacked conductor segment includes third and forth superconductive segments and has a nominal thickness tn2. The superconducting article further includes a joint region comprising a first splice connecting the first and third superconductive segments together and a second splice connecting the second and forth superconductive segments together. The first splice is adjacent to and bridged portions of the first and third superconductive segments along at least a portion of the joint region, and the second splice is adjacent to and bridged portions of the second and forth superconductive segments along at least a portion of the joint region. The joint region has a thickness tjr, wherein tjr is not greater than at least one of 1.8tn1 and 1.8tn2.
A herbicide combination comprising a) at least one herbicide (A) selected from the group consisting of glyphosate (A1) and its agrochemically compatible salts, and glufosinate (A2) and its agrochemically compatible salts, and b) a herbicide (B) which is a hydrate of the compound 2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoromethyl)-1-(2H)-pyrimidinyl]-4-fluoro-N-[[methyl-(1-methylethyl)amino]sulfonyl]benzamide, and the use thereof for controlling harmful plants.
The present invention is generally directed to the use of gibberellin 4/7 (GA4/7) in the field of seed treatment, specifically to accelerate crop germination.
A production process of a sulfide containing nickel and cobalt by adding a sulfurizing agent under pressurization into an aqueous solution of sulfuric acid containing nickel and cobalt, which is capable of recovering nickel and cobalt as a sulfide in high yield, as well as enhancing the utilization efficiency of hydrogen sulfide gas.A production process of a sulfide containing nickel and cobalt by adding a sulfurizing agent under pressurization into an aqueous solution of sulfuric acid containing nickel and cobalt, characterized by supplying, as the above sulfurizing agent, hydrogen sulfide gas into the vapor phase of inside of a reactor, as a major sulfurizing agent, as well as, by supplying an aqueous solution containing a sodium hydrosulfide, which is recovered by absorbing unreacted hydrogen sulfide gas, which is discharged from inside of the reactor in producing the above sulfide, with an aqueous solution of sodium hydroxide, into the liquid phase.
There is provided a production method in which highly transparent fine metal hydroxide particles having a small particle size and excellent in monodispersibility can be easily produced without requiring grinding. The method for producing fine metal hydroxide particles at least includes: a reaction step of mixing an aqueous solution of a metal salt, for example, a magnesium salt, with an aqueous solution of a hydroxide salt to precipitate metal hydroxide particles in an uncrystallized state; a purification step of removing by-product salt from a mixed solution containing the precipitated metal hydroxide particles in an uncrystallized state; a surface treatment step of treating the metal hydroxide particles in an uncrystallized state obtained through the purification step with a surface-treatment agent on the surface thereof; and a heating step of crystallizing the surface-treated metal hydroxide particles in an uncrystallized state by hydrothermal treatment.
The present invention relates to preparation of porous gallium (III) oxide [Ga2O3] photocatalyst for production of hydrocarbons a porous gallium oxide photocatalyst for production of hydrocarbons, manufactured by the foregoing method, and a process of producing hydrocarbons using the porous gallium oxide photocatalyst for production of hydrocarbons, manufactured by the foregoing method.
This invention is directed to hydrodemetallization catalysts and hydrodemetallization processes employing a magnesium aluminosilicate clay. The magnesium aluminosilicate clay has a characteristic 29Si NMR spectrum. The magnesium aluminosilicate clay is the product of a series of specific reaction steps. Briefly, the magnesium aluminosilicate clay employed in the catalyst and process of the invention is made by combining a silicon component, an aluminum component, and a magnesium component, under aqueous conditions and at an acidic pH, to form a first reaction mixture and subsequently the pH of the first reaction mixture is adjusted to greater than about 7.5 to form a second reaction mixture. The second reaction mixture is allowed to react under conditions sufficient to form the magnesium aluminosilicate clay. The resulting magnesium aluminosilicate clay combines high surface area and activity for use in hydrodemetallization catalysts and processes.
A method of patterning a semiconductor device including dividing a layout into more than one pattern. The method further includes depositing a film stack on a semiconductor substrate, depositing a hard mask on the film stack, and depositing a first photoresist on the hard mask. The method further includes patterning the first photoresist using a first pattern of the more than one pattern. The method further includes etching the hard mask to transfer a design of the first pattern of the more than one pattern to the hard mask. The method further includes depositing a second photoresist over the etched hard mask and patterning the second photoresist using a second pattern of the more than one pattern. The method further includes etching portions of the film stack exposed by a combination of the etched hard mask and the second photoresist.
Methods of semiconductor device fabrication techniques using double patterning are disclosed. According to various embodiments of the invention, methods of semiconductor device fabrication using self-aligned double patterning are provided. Particular embodiments of the invention allow creation of logic circuit patterns using two lithographic operations. One embodiment of the invention employs self-aligned double patterning to define two or more sets of parallel line features with a connection feature between the sets. In such embodiments, the sets of parallel line features along with the connection features are formed using two lithographic masks, without the need for an additional mask layer to form the connection. In other embodiments, other features in addition to the connection can be added in the same mask layer.
A three photomask image transfer method. The method includes using a first photomask, defining a set of mandrels on a hardmask layer on a substrate; forming sidewall spacers on sidewalls of the mandrels, the sidewall spacers spaced apart; removing the set of mandrels; using a second photomask, removing regions of the sidewall spacers forming trimmed sidewall spacers and defining a pattern of first features; forming a pattern transfer layer on the trimmed sidewall spacers and the hardmask layer not covered by the trimmed sidewall spacers; using a third photomask, defining a pattern of second features in the transfer layer, at least one of the second features abutting at least one feature of the pattern of first features; and simultaneously transferring the pattern of first features and the pattern of second features into the hardmask layer thereby forming a patterned hardmask layer.
To provide: a technique capable of suppressing a titanium nitride film that is exposed at the side surface of an opening from turning into a titanium oxide film even when water permeates the opening over a pad from outside a semiconductor device and thus improving the reliability of the semiconductor device; and a technique capable of suppressing a crack from occurring in a surface protective film of a pad and improving the reliability of a semiconductor device. An opening is formed so that the diameter of the opening is smaller than the diameter of another opening and the opening is included in the other opening. Due to this, it is possible to cover the side surface of an antireflection film that is exposed at the side surface of the other opening with a surface protective film in which the opening is formed. As a result of this, it is possible to form a pad without exposing the side surface of the antireflection film.
When forming sophisticated high-k metal gate electrode structures on the basis of a replacement gate approach, the fill conditions upon filling in the highly conductive electrode metal, such as aluminum, may be enhanced by removing an upper portion of the final work function metal, for instance a titanium nitride material in P-channel transistors. In some illustrative embodiments, the selective removal of the metal-containing electrode material in an upper portion of the gate opening may be accomplished without unduly increasing overall process complexity.
A semiconductor device having a core device with a high-k gate dielectric and an I/O device with a silicon dioxide or other non-high-k gate dielectric, and a method of fabricating such a device. A core well and an I/O well are created in a semiconductor substrate and separated by an isolation structure. An I/O device is formed over the I/O well and has a silicon dioxide or a low-k gate dielectric. A resistor may be formed on an isolation structure adjacent to the core well. A core-well device such as a transistor is formed over the core well, and has a high-k gate dielectric. In some embodiments, a p-type I/O well and an n-type I/O well are created. In a preferred embodiment, the I/O device or devices are formed prior to forming the core device and protected with a sacrificial layer until the core device is fabricated.
A method includes forming a patterned mask comprised of a polish stop layer positioned above a protection layer above a substrate, performing at least one etching process through the patterned mask layer on the substrate to define a trench in the substrate, and forming a layer of silicon dioxide above the patterned mask layer such that the layer of silicon dioxide overfills the trench. The method also includes removing portions of the layer of silicon dioxide positioned outside of the trench to define an isolation structure, performing a dry, selective chemical oxide etching process that removes silicon dioxide selectively relative to the material of the polish stop layer to reduce an overall height of the isolation structure, and performing a selective wet etching process to remove the polish stop layer selectively relative to the isolation region.
A phase-change memory element with side-wall contacts is disclosed, which has a bottom electrode. A non-metallic layer is formed on the electrode, exposing the periphery of the top surface of the electrode. A first electrical contact is on the non-metallic layer to connect the electrode. A dielectric layer is on and covering the first electrical contact. A second electrical contact is on the dielectric layer. An opening is to pass through the second electrical contact, the dielectric layer, and the first electrical contact and preferably separated from the electrode by the non-metallic layer. A phase-change material is to occupy one portion of the opening, wherein the first and second electrical contacts interface the phase-change material at the side-walls of the phase-change material. A second non-metallic layer may be formed on the second electrical contact. A top electrode contacts the top surface of the outstanding terminal of the second electrical contact.
A method for fabricating an upside-down p-FET includes: fully etching source and drain regions in a donor substrate by etching a silicon-on-insulator layer through buried oxide and partially etching the silicon substrate; refilling a bottom and sidewall surfaces of the etched source and drain regions with epitaxial silicide/germanide to form e-SiGe source and drain regions; capping the source and drain regions with self-aligning silicide/germanide; providing a silicide layer formed over the gate conductor line; providing a first stress liner over the gate and the e-SiGe source and drain regions; depositing a planarized dielectric over the self-aligning silicide/germanide; inverting the donor substrate; bonding the donor substrate to a host wafer; and selectively exposing the buried oxide and the e-SiGe source and drain regions by removing the donor wafer.
A semiconductor structure is provided. The structure includes a semiconductor substrate of a semiconductor material and a gate dielectric having a high dielectric constant dielectric layer with a dielectric constant greater than silicon. The gate dielectric is located on the semiconductor substrate. A gate electrode abuts the gate dielectric. The gate electrodes includes a lower metal layer abutting the gate dielectric, a scavenging metal layer abutting the lower metal layer, an upper metal layer abutting the scavenging metal layer, and a silicon layer abutting the upper metal layer. The scavenging metal layer reduces an oxidized layer at an interface between the upper metal layer and the silicon layer responsive to annealing.
A method of forming a memory array includes forming a dielectric over a semiconductor, forming a charge-storage structure over the dielectric, forming an isolation region through the dielectric and the charge-storage structure and extending into the semiconductor, recessing the isolation region to a level below a level of an upper surface of the dielectric and at or above a level of an upper surface of the semiconductor, forming an access line over the charge-storage structure and the recessed isolation region, and forming an air gap over the recessed isolation region so that the air gap passes through the charge-storage structure, so that the air gap extends to and terminates at a bottom surface of the access line, and so that the entire air gap is between the bottom surface of the access line and the upper surface of the semiconductor.
The present invention provides a system comprising a semiconductor device, a method of controlling the semiconductor device in the system, and a method of manufacturing the semiconductor device in the system. The semiconductor device includes: a semiconductor region located in a semiconductor layer formed on an isolating layer; an ONO film on the semiconductor region; bit lines on either side of the semiconductor region, which are located in the semiconductor layer, and are in contact with the isolating layer; a device isolating region on two different sides of the semiconductor region from the sides on which the bit lines are located, the device isolating region being in contact with the isolating layer; and a first voltage applying unit that is coupled to the semiconductor region. In this semiconductor device, the semiconductor region is surrounded by the bit lines and the device isolating region, and is electrically isolated from other semiconductor regions.
In one embodiment, a floating body field-effect transistor includes a pair of source/drain regions having a floating body channel region received therebetween. The source/drain regions and the floating body channel region are received over an insulator. A gate electrode is proximate the floating body channel region. A gate dielectric is received between the gate electrode and the floating body channel region. The floating body channel region has a semiconductor SixGe(1-x)-comprising region. The floating body channel region has a semiconductor silicon-comprising region received between the semiconductor SixGe(1-x)-comprising region and the gate dielectric. The semiconductor SixGe(1-x)-comprising region has greater quantity of Ge than any quantity of Ge within the semiconductor silicon-comprising region. Other embodiments are contemplated, including methods of forming floating body field-effect transistors.
A recess is formed into a first side of a wafer such that a thinned center portion of the wafer is formed, and such that the central portion is surrounded by a thicker peripheral edge support portion. The second side of the wafer remains substantially entirely planar. After formation of the thinned wafer, vertical power devices are formed into the first side of the central portion of the wafer. Formation of the devices involves forming a plurality of diffusion regions into the first side of the thinned central portion. Metal electrodes are formed on the first and second sides, the peripheral portion is cut from the wafer, and the thin central portion is diced to form separate power devices. In one example, a first commercial entity manufactures the thinned wafers, and a second commercial entity obtains the thinned wafers and performs subsequent processing to form the vertical power devices.
A process for sealing a multilayer article against environmental degradation. The article comprises a photoactive layer disposed on a length of flexible substrate and is sealed by applying a sol-gel layer to the outermost layer of the article and curing the sol-gel layer into a flexible, glass protective-coating. The multilayer article can be a photovoltaic device.
The present disclosure provides a method of fabricating a micro-electro-mechanical systems (MEMS) device. In an embodiment, a method includes providing a substrate including a first sacrificial layer, forming a micro-electro-mechanical systems (MEMS) structure above the first sacrificial layer, and forming a release aperture at substantially a same level above the first sacrificial layer as the MEMS structure. The method further includes forming a second sacrificial layer above the MEMS structure and within the release aperture, and forming a first cap over the second sacrificial layer and the MEMS structure, wherein a leg of the first cap is disposed between the MEMS structure and the release aperture. The method further includes removing the first sacrificial layer, removing the second sacrificial layer through the release aperture, and plugging the release aperture. A MEMS device formed by such a method is also provided.
Disclosed herein is a light emitting device. The light emitting device includes an n-type nitride semiconductor layer; an active layer on the n-type semiconductor layer, an AlN/GaN layer of a super lattice structure formed by alternately growing an AlN layer and a GaN layer on the active layer, and a p-type nitride semiconductor layer on the AlN/GaN layer of the super lattice structure. At least one of the AlN layer and the GaN layer is doped with a p-type dopant. A method for manufacturing the light emitting device is also provided.
Disclosed herein is a light emitting device. The light emitting device includes an n-type nitride semiconductor layer; an active layer on the n-type semiconductor layer, an AlN/GaN layer of a super lattice structure formed by alternately growing an AlN layer and a GaN layer on the active layer, and a p-type nitride semiconductor layer on the AlN/GaN layer of the super lattice structure. At least one of the AlN layer and the GaN layer is doped with a p-type dopant. A method for manufacturing the light emitting device is also provided.
A p-type cladding layer (3) of p-type semiconductor is formed over a substrate. An active layer (5) including a p-type semiconductor region is disposed over the p-type cladding layer. A buffer layer (10) of non-doped semiconductor is disposed over the active layer. A ridge-shaped n-type cladding layer (11) of n-type semiconductor is disposed over a partial surface of the buffer layer. The buffer layer on both sides of the ridge-shaped n-type cladding layer is thinner than the buffer layer just under the ridge-shaped n-type cladding layer.
A light-emitting device includes a semiconductor layer, a light-emitting stack structure formed on a first surface of the semiconductor layer, and a plurality of inverted pyramid structures formed on a second surface of the semiconductor layer opposite to the first surface. Each of the inverted pyramid structures has a sectional area increasing as each of the inverted pyramid structures is more extended in a vertical direction from the second surface.
The present invention generally relates to methods of functionalizing proteins, particularly antibodies, at oligosaccharide linkages, methods of humanizing antibodies by modifying glycosylation, as well as to novel antibodies linked to modified oligosaccharides. The invention further relates to kits that may be used to produce the antibodies of the invention.
Embodiments of the present invention provide for novel peptides of use for detection and/or inhibition of anti-β1-adrenergic receptor antibodies. Certain embodiments concern uses of cyclic and/or linear peptides. In other embodiments, the present invention relates to novel peptides of use in diagnostic and/or pharmaceutical compositions. Some embodiments concern diagnosing and/or treating cardiac conditions. Cardiac conditions of the instant invention can concern infectious heart disease, non-infectious heart disease, ischemic heart disease, non-ischemic heart disease, inflammatory heart disease, myocarditis, cardiac dilatation, idiopathic cardiomyopathy, idiopathic dilated cardiomyopathy, immune-cardiomyopathy, heart failure, and any cardiac arrhythmia condition.
A biosensor that utilizes carbon nanotubes functionalized with a protein sequence. One domain of the multifunctional peptide sequence noncovalently binds to the surface of single-walled carbon nanotubes (SWNTs), while a second domain of the sequence recognizes and binds to a target molecule. The sequence of the peptide may be tailored to allow it to recognize and bind to specific target molecules, such as chemicals, biological materials, and explosives. The binding of the target molecule to the peptide may alter a material property of the SWNTs.
The present invention relates to a non-genetic, detergent-free, bacteria-free method for reprogramming a eukaryotic cell, in particular for obtaining induced pluripotent stem cells (iPS), by using engineered microvesicles carrying at least one reprogramming transcription factor, wherein said engineered microvesicles are virus-free.
Pluripotent human embryonic stem cells (hESCs) hold great potential for restoring tissue and organ function, which has been hindered by inefficiency and instability of generating desired cell types through multi-lineage differentiation. This instant invention is based on the discovery that pluripotent hESCs maintained under defined culture conditions can be uniformly converted into a specific lineage by small molecule induction. Retinoic acid induces specification of neuroectoderm direct from the pluripotent state of hESCs and triggers progression to neuronal progenitors and neurons efficiently. Similarly, nicotinamide induces specification of cardiomesoderm direct from the pluripotent state of hESCs and triggers progression to cardiac precursors and cardiomyocytes efficiently. This technology provides a large supply of clinically-suitable human neuronal or cardiac therapeutic products for CNS or myocardium repair. This invention enables well-controlled efficient induction of pluripotent hESCs exclusively to a specific clinically-relevant lineage for tissue and organ engineering and regeneration, cell-based therapy, and drug discovery.
The present invention relates to an improved cancer therapy comprising co-administration with the E1A 1-80 transcription-repression domain activity. In addition, E1A 1-80 can act as a monotherapy against cancers that express elevated HER2/Neu or in combination with anti-HER2/Neu, chemo- or radiotherapeutic treatments.
In a detection method for detecting the quantity of a target material, a labeled binding material in the amount corresponding to the quantity of the target material contained in a liquid specimen is bonded to the top of a sensor portion; and a signal based on light emitted from a label in an evanescent field or an enhanced optical field produced on a surface of the sensor portion when the sensor portion is irradiated with excitation light is detected. After the labeled binding material is bonded to the immobilization layer, the signal is detected while the fluid over the sensor portion is controlled to flow at a constant flow rate at which bonds between the labeled binding material and the immobilization layer are not broken and the above signal can be detected with a greater magnitude than when the liquid specimen exists over the sensor portion at rest.
A method for enhancing growth of plants comprising contacting a Trichoderma strain with the plant or a plant seed under conditions effective for the Trichoderma strain to colonize the roots of the plant or a plant grown from the plant seed, thereby creating a plant-Trichoderma system. The plant or plant seed is grown under conditions effective to sustain the plant-Trichoderma system in a planting medium and to enhance plant growth. The Trichoderma strain is selected from the group consisting of Trichoderma atroviride strain WW10TC4 (ATCC accession number PTA 9707), Trichoderma harzianum strain RR17Bc (ATCC accession number PTA 9708), Trichoderma harzianum strain F11 Bab (ATCC accession number PTA 9709), and combinations thereof. Methods of enhancing resistance of plants to abiotic stress, increasing nitrogen use efficacy in plants, reducing nitrous oxide emissions in air, reducing leaching of nitrates into soil and water, and enhancing sequestration of carbon from air are disclosed.
The present disclosure provides methods for producing a vaccine composition containing a pathogen that is rendered noninfectious by exposure to hydrogen peroxide. The methods disclosed herein are suitable for the preparation of vaccines for a wide variety of pathogens, including viruses, bacteria and parasites. The disclosure also provides vaccine compositions (medicaments) containing a pathogen inactivated by exposure to hydrogen peroxide. Methods for eliciting an immune response in a subject by administering vaccine compositions containing a hydrogen peroxide inactivated pathogen are also provided.
The invention provides variants of the Thermoanaerobacter brockii CglT beta-glucosidase that have improve beta-glucosidase activity compared to the wild type enzyme. The invention also provides polynucleotides that encode the variants, as well as methods of producing the variants, enzyme compositions comprising the variants, and methods for using the variants in industrial applications.
The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Compositions and methods are provided that relate to solubilized phospholipids and their use in stabilizing nucleic acid polymerases. For example, a phospholipid with a tail containing at least 8 carbons can be solubilized in the presence of an amphipathic molecule.
The invention provides compounds of the formula Poly-([SP-LI]n-PL-L2) including a collection of 152 peptides useful to create the compounds, and their uses thereof for the treatment of a variety of mammalian diseases. The compound, a novel ligand-targeted multi-stereoisomer peptide polymer conjugate, comprises two or more stereoisomer peptides and a peptide-ligand conjugated via linkers to a biocompatible hydrophilic polymer, preferably HPMA. The increased stability and solubility of the compound carrying the stereoisomer peptides and a peptide-ligand provide ideal pharmaceutical properties including the delivery by the polymer of the peptides into the target cells. The compounds of the invention are useful therapeutics for the treatment of a variety of mammalian diseases. Examples of such diseases in human patients include abnormal angiogenesis, pathological conditions of the eye, cancer, metastasis, diabetes, Alzheimer's and Parkinson's diseases, brain and neurodegenerative disorders, bipolar disorder, and diseases caused by aging and pathogen agents, to name a few.
The present invention relates to mutant microorganisms having the ability to produce propanol in high concentration and high yield, and to a method of producing propanol using the same. More particularly, the invention relates to mutant microorganisms having the ability to produce propanol in high concentration and high yield, which have introduced therein genes that encodes enzymes which are involved in the biosynthesis of propanol from threonine, and to a method of producing propanol using the same.
Aspects of the present invention include methods and compositions for determining the number of individual polynucleotide molecules originating from the same genomic region of the same original sample that have been sequenced in a particular sequence analysis configuration or process. In these aspects of the invention, a degenerate base region (DBR) is attached to the starting polynucleotide molecules that are subsequently sequenced (e.g., after certain process steps are performed, e.g., amplification and/or enrichment). The number of different DBR sequences present in a sequencing run can be used to determine/estimate the number of different starting polynucleotides that have been sequenced. DBRs can be used to enhance numerous different nucleic acid sequence analysis applications, including allowing higher confidence allele call determinations in genotyping applications.
The present invention provides methods of improving the levels and stability of expression of interleukin-12 family cytokine polypeptides by expressing the alpha and beta subunits of the polypeptides at their determined relative molar ratios that increase the levels and stability of expression of the heterodimer, e.g., in comparison to heterodimer expressed at an equimolar ratio.